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Highlight 

Genome-wide association studies were used to analyse potassium use efficiency in 

rice. Novel associations were found along with a role for sodium replacement via the 

OsHKT2;1 sodium transporter. 
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Abstract 1 

Increasing the potassium use efficiency (KUE) of crops is important for agricultural sus-2 

tainability. However, a greater understanding of this complex trait is required to develop 3 

new, high KUE cultivars. To this end, a genome-wide association study (GWAS) was 4 

applied to diverse rice (Oryza sativa L.) genotypes grown under potassium stressed and 5 

replete conditions. Using high stringency criteria, the genetic architecture of KUE was 6 

uncovered, together with the breadth of physiological responses to low-potassium 7 

stress. Specifically, 3 quantitative trait loci (QTLs) were identified, which contained over 8 

90 candidate genes. Of these, the sodium transporter gene OsHKT2;1 emerged as a 9 

key factor that impacts on KUE based on (i) the correlation between shoot  Na+ and 10 

KUE, and (ii) higher levels of HKT2;1 expression in high KUE lines. 11 

 12 

Key Words 13 
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Introduction 26 

K+ is the most abundant cation in most plants. It is an essential cofactor for many en-27 

zymes and has a dominant role in turgor provision and water homeostasis (Maathuis, 28 

2009). The large amounts of K+ that are required by plants is typically sustained by ap-29 

plication of K+ fertiliser in agronomic contexts. Global demand for potassium fertilisers is 30 

currently over 30 million tonnes annually and steadily increasing (FAO, 2017). And 31 

though there are ample K+ reserves, production and application of K+ fertiliser has im-32 

portant environmental influence: Potash fertilisers contribute to agricultural energy use 33 

and greenhouse gas emissions (Brentup and Pallière, 2008; Camargo et al., 2013). In 34 

2016, over 95% of potash was produced in the northern hemisphere (USGS, 2017), ex-35 

acerbating deleterious environmental consequences through transportation-related 36 

emissions. Agriculture is also implicated in adding to atmospheric K+ deposition (Allen et 37 

al., 2010). Taken together, judicious use of potash fertilisers clearly forms an important 38 

part of future sustainable agriculture.  39 

At the same time, deficiency for potassium in agricultural soils is widespread and rapidly 40 

increasing in areas such as the Australian wheat belt and Chinese rice paddies (Röm-41 

held and Kirkby, 2010). Under-fertilisation sometimes results from agricultural malprac-42 

tice, but is more commonly due to economic considerations, with the cost of K+ fertiliser 43 

purchase and application proving insurmountable. A sustainable solution to mitigate the 44 

economic and environmental consequences of growing K+ demand, while meeting food 45 

demand, is to develop crops with higher potassium use efficiency (KUE). 46 

In order to increase crop KUE, knowledge of its genetic underpinnings is important to 47 

inform targeted improvement. Studies have been conducted with a range of species and 48 

have led to the identification of quantitative trait loci (QTLs) associated with plant re-49 

sponses to potassium deficiency (e.g. Wu et al., 1998; Prinzenberg et al., 2010; Kong et 50 

al., 2013; Zhao et al., 2014). Similarly, transcriptomics studies (e.g. Armengaud et al., 51 

2004; Wang et al., 2012) in low K+ conditions point to genes that encode membrane 52 

proteins involved in transport and other proteins for transcriptional regulation. Genes for 53 

such proteins can therefore be seen as putative targets for crop improvements (Shin, 54 
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2014; Wang and Wu, 2015), but a more complete understanding of the genetic under-55 

pinnings of KUE is still required.  56 

In rice, QTLs for several traits, including potassium uptake and tissue potassium con-57 

centration in salt- and non-stressed plants, have been reported (Koyama et al., 2001; 58 

Lin et al., 2004; Garcia-Oliveria et al., 2009). Furthermore,  QTLs in the context of po-59 

tassium deficiency have been published (Wu et al., 1998; Miyamoto et al., 2012; Fang 60 

et al., 2015), although little overlap in the identified regions was apparent. However, 61 

both Miyamoto et al. (2012) and Fang et al. (2015) described associations in a large (~7 62 

Mb) QTL on chromosome 6 that were linked with shoot sodium, potassium, and calcium 63 

concentrations.  64 

The detection of QTLs and genes related to agriculturally important traits in rice has 65 

been aided in recent years by genome-wide association studies (GWAS) which typically 66 

yield much higher resolution than conventional QTL mapping approaches. Studies have 67 

examined abiotic stresses such as aluminium (Famoso et al., 2014) and salt (Kumar et 68 

al., 2015; Campbell et al., 2017; Patishtan et al., 2017) and were able to detect novel 69 

loci as well as gene candidates. However, the response of rice to potassium deficiency 70 

has yet to be examined using GWAS. In this study, the genetic architecture of low po-71 

tassium stress was explored using the Rice Diversity Panel 1 (Zhao et al., 2011; 72 

Eizenga et al., 2014) and in doing so, novel QTLs were detected as well as some which 73 

co-localised with those in the prior literature. From this, putative targets for crop im-74 

provement were proposed.  75 

Materials and Methods 76 

Plant Growth and Germplasm 77 

Five seeds from each of 324 rice (Oryza sativa) cultivars (see Supplementary Table 1 78 

for a full list of accessions) were germinated in sand flooded with distilled water for two 79 

weeks prior to transfer to hydroponic treatments. Seedlings were placed in 9 L boxes 80 

which contained a nutrient solution adapted from Yoshida et al. (1976) which consisted 81 

of: (in mM) 1.4 NH4NO3, 0.3 NaH2PO4, 1 CaCl2, 1.6 MgSO4·7H2O, and 0.2 Na2O3Si and 82 

(in µM) 9.5 MnCl2, 0.07 (NH4)6Mo7O24, 18 H3BO3, 0.15 ZnSO4, 0.16 CuSO4, 71 citric 83 
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acid monohydrate. Potassium was added as KCl to a final concentration of 0.1 (low K+ 84 

or LK treatment) or 1 mM (high K+ or HK treatment). Nutrient solutions were changed 85 

weekly. One seedling from each cultivar was placed in each treatment and growth trials 86 

were replicated five times. Plant were grown in a glasshouse for four weeks (or as indi-87 

cated in the text) with 12 hour day and night periods with temperatures of 32 and 28 oC 88 

in the day and night respectively. The relative humidity was maintained between 50 and 89 

60%.  For detailed growth experiments on IR64, plants were grown as described above 90 

in the presence of 0.01, 0.1, 0.5, 1 or 5 mM K+ (added as KCl) and a total amount of 3 91 

mM Na+.  92 

Tissue Cation Analysis 93 

Sampled plants were separated into roots and shoots, and their fresh weights were re-94 

corded before being oven dried at 80 oC for three days. Tissues were then re-weighed 95 

before potassium and sodium concentrations were determined after extraction in 20 mM 96 

CaCl2 for 24 hours. Cation concentrations were measured using a flame photometer 97 

(Sherwood Scientific, Cambridge, Cambridgeshire, UK).  98 

Trait Measurement 99 

Briefly, each rice genotype was grown in potassium deficient (0.1 mM) and replete (1 100 

mM) nutrient solutions (see above). Relative growth rate (RGR) was calculated as 101 

[ln(FWend) - ln(FWstart)] / (tend - tstart), where FW is the whole plant fresh weight. Potas-102 

sium and sodium tissue concentrations were measured as described above. Phenotype 103 

data were based on five biological replicates and least squares means were calculated 104 

from raw data. Cultivars with fewer than three replicates were excluded from the analy-105 

sis. Two different KUE metrics were used: KUE-RGR (defined as the percentage reduc-106 

tion in RGR between LK and HK conditions) and KUE-K (defined as RGR at LK treat-107 

ment divided by shoot K+ concentration at LK treatment). The latter trait examines the 108 

K+ utilisation, while KUE-RGR can be influenced by both the uptake and utilisation of K+. 109 

Genome-wide Association Studies 110 

GWAS was carried out using R 3.3.3 and the GenABEL R package (Aulchenko et al., 111 

2007) for KUE metrics, RGR, and tissue cation concentrations. SNPs with a minor allele 112 
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frequency < 0.05 and a call rate < 0.9 were excluded from analyses to minimise the risk 113 

of spurious associations. Mixed linear models were used for analyses to control for the 114 

population structure present in rice (Zhao et al., 2011) which can also induce spurious 115 

associations between traits and genetic loci . The top three principal components for 116 

population structure were included as fixed effects if this resulted in a model with a ge-117 

nomic inflation factor (Devlin and Roeder, 1999) nearer unity. Previous work has found 118 

that the use of mixed models with principal components as covariates to be successful 119 

in limiting the occurrence of false signals (Zhao et al., 2011; Kumar et al., 2015; Patish-120 

tan et al., 2017).  Associations between SNPs and genotypes were declared significant 121 

if their P-value was <1 x 10-5 (Crowell et al.,2016) and the false discovery rate (Benja-122 

mini and Hochberg, 1995) was less than 10%.  123 

Identification of Quantitative Trait Loci and Candidate Genes 124 

A minimum of two significant associations within a 200 kbp window was required for a 125 

significant association to be considered as a QTL to minimise the risk of false positives. 126 

This genomic region window size was chosen because linkage disequilibrium in rice de-127 

clines rapidly over this distance (Zhao et al., 2011; McCouch et al., 2016) and genes 128 

that are proximal to associations can be considered more credible candidates for influ-129 

encing the trait in question. QTLs which overlapped were grouped into a single QTL. 130 

Genes within QTLs were sourced from found using the the Rice Genome Annotation 131 

Project website (http://rice.plantbiology.msu.edu/pub/data/ Eukaryot-132 

ic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/). Candidate genes 133 

were found among these genes, with those with products relating to transport, signalling, 134 

and transcription considered to be more credible candidates. Co-localisation of signifi-135 

cantly associated SNPs and genes within QTLs was examined using the Rice Diversity 136 

Allele Finder (http://rs-bt-mccouch4.biotech.cornell.edu/AF/). Such co-localisation with a 137 

gene could indicate relevance to the trait and non-synonymous SNPs could lead to 138 

changes that ultimately alter KUE. 139 

HKT2;1 Expression Analysis 140 
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Seeds for the following cultivars germinated (where ‘L’ indicates low KUE and ‘H’ indi-141 

cates high KUE): Cybonnet (L), Dom Sufid (L), Edith (L), Padi Kasalle (L), Tox 782-20-1 142 

(L), 116 (H), Sathi (H), Saturn (H), Ghati Kamma Nangarhar (H), Wanica (H). Plants 143 

were grown a described above on an adapted Yoshida nutrient solution containing (in 144 

mM) 2.9 NH4NO3, 0.3 H3PO4, 0.01 KCl, 1 CaCl2.2H2O and 1.6 MgSO4 (micronutri-145 

ents as described above). Medium was adjusted to pH 5.6 using methyl glucamine and 146 

supplemented with either 0 mM NaCl or 1 mM NaCl. Plants were grown for four weeks 147 

after which roots from the three plants of each cultivar were pooled and frozen in liquid 148 

nitrogen. The root samples were ground to a powder in liquid nitrogen and total RNA 149 

was extracted using a Nucleospin RNA Plant and Fungi kit (Macherey-Nagel Bioanaly-150 

sis). cDNA was synthesised using a Superscript II reverse transcriptase kit (Invitrogen) 151 

with oligo dT primers. Quantitative polymerase chain reactions (qPCR) were performed 152 

using the QuantStudio 3 (Thermo Fisher) system and Fast SYBR green master mix 153 

(Thermo Fisher) using 5’CTCCATCGACTGCTCACTCA3’ and 154 

5’GGACAGTGCAAATGTTGTCG3’ as forward and reverse HKT2;1 specific primers. 155 

The expression of Elongation Factor 1 alpha was used as an internal control with 156 

5’CACATTGCCGTCAAGTTTGC3’ and 5’CCATACCAGCATCACCGTTC3’ forward and 157 

revers primers respectively. Data are presented as the average of three biological repli-158 

cations.  159 

Results and Discussion 160 

Influence of Potassium Stress on Growth and Tissue Cation Concentrations 161 

Lowering the medium K+ concentration from 1 (HK) to 0.1 (LK) mM had a substantial 162 

effect on growth and tissue cation levels. Fig. 1a shows that the mean final mass of LK 163 

plants was approximately 40% of that achieved by HK plants. However, at the tissue 164 

level, plant growth was not affected uniformly. For example, root to shoot mass ratio 165 

was significantly higher in the LK treatment compared to the HK treatment (data not 166 

shown). Furthermore, Fig. 1b shows that rice cultivars vary greatly in their growth re-167 

sponse to LK. The RGR reduction ranged from 30% to -5% when comparing LK and HK 168 

growth data. In other words, the relative growth rates of some lines declines by nearly a 169 
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third between LK and HK conditions, while others were not at all or only little affected, 170 

irrespective of a 10-fold change in medium K+ concentration.  171 

As expected, both root and shoot K+ concentrations were lower in the LK treatment. 172 

Across the cultivars, the average shoot potassium concentration declined from 686 to 173 

154 µmol gDW-1 between the HK and LK conditions, while the root concentrations de-174 

clined from 198 to 59 µmol gDW-1 (Fig. 2). Shoot potassium concentrations were consis-175 

tently greater than those of roots. In combination, the growth and tissue K+ data show 176 

that the LK conditions were effective in causing stress which reduced rice growth, likely 177 

arising from insufficient tissue K+ levels. Indeed, many previous studies have shown a 178 

strong link between tissue K+ and growth across several plant species (e.g. Asher and 179 

Ozanne, 1967; Fageria, 1976; Spear et al., 1978). 180 

While low tissue K+ is strongly linked with reduced RGR between treatments, the asso-181 

ciation is less clear within a specific treatment: In both LK and HK treatments only weak 182 

non-significant correlations were derived between tissue K+ and growth. Such seem-183 

ingly contradictory outcomes can be explained by the existence of considerable (genetic) 184 

variation in the sensitivity of cultivars when exposed to declining levels of tissue K+.  185 

Table 1 shows growth and tissue cation data for the ten highest and lowest ranking rice 186 

cultivars for KUE. KUE-RGR is a measure for the relative growth reduction when chang-187 

ing from HK to LK conditions (RGR_LK/RGR_HK) and differed significantly between 188 

cultivars (one-way ANOVA, P < 0.01). KUE-K denotes the utilisation of K+ (amount of 189 

growth per unit K+ ; RGR_LK/shoot K_LK) and this too, varied significantly between cul-190 

tivars (one-way ANOVA, P < 0.001) with a 5-6 fold difference between the lowest and 191 

highest values (Suppl. Table 4). Interestingly, KUE_RGR and LK shoot [Na+] showed a 192 

highly significant negative correlation (r = -0.385, P < 0.001; Figure 3) and similar, but 193 

weaker, negative correlations were found between KUE-RGR and HK shoot [Na+], LK 194 

root [Na+] and HK root [Na+] respectively (Suppl. Fig. 1). Such evidence points to a po-195 

tential beneficial effect of Na+ in rice shoots when potassium is limiting, and this may be 196 

the result of replacement of K+ by Na+. However, in contrast to KUE-RGR, KUE-K did 197 

not correlate significantly with either root or shoot levels of Na+. Indeed, very little over-198 

lap between the KUE-K and KUE-RGR was apparent with only two cultivars (GSOR 117 199 
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and 142) emerging as high KUE lines irrespective of the KUE definition (see Suppl. Ta-200 

ble 4). The lack of similarity between KUE-RGR and KUE-K emphasises the different 201 

phenomena these metrics describe: while KUE-K is determined by high growth rates 202 

and low shoot [K+] (e.g. ~90 mM and ~ 250 mM in high and low KUE-K lines respec-203 

tively, see Table 1), KUE-RGR expresses how well growth is maintained by cultivars in 204 

the face of a shortage of K+. Though both approaches are valuable in an agronomic 205 

context one may be more suitable for optimising local requirements such as soil nutrient 206 

status or availability of K fertiliser. The wide variability in either parameter suggests 207 

there is a large scope to enhance these traits.  208 

Genome-wide Association Studies of Potassium Stress 209 

In order to better understand which mechanisms contribute to KUE, GWAS was applied 210 

to the growth, cation, and KUE data (Supplementary Table 2). Based on the stringency 211 

criteria outlined in the Methods section, a total of four association signals was detected; 212 

one each for KUE-K (defined as RGR/shoot K), RGR at LK treatment, shoot [Na+] and 213 

root [Na+] at LK treatment (Fig. 4; Table 2). Furthermore, the two sodium-related signals 214 

co-localised at a position approximately 29.5 Mbp along chromosome 6 and had the 215 

same significantly associated SNPs. 216 

The three independent QTLs subsumed a total of 86 unique genes (Suppl. Table 5) and 217 

8 significantly associated SNPs (Table 2). Interrogation of the Rice Diversity Allele 218 

Finder (http://rs-bt-mccouch4.biotech.cornell.edu/AF/) showed that the two SNPs be-219 

longing to the RGR_LK association were synonymous and were located in the coding 220 

region of a putative retrotransposon protein (LOC_Os01g39640). One of the KUE-K as-221 

sociations was a synonymous SNP in the intron of another putative retrotransposon pro-222 

tein (LOC_Os01g59580), and both SNPs the Na+-related signal were synonymous and 223 

located in the coding region of the gene for OsHKT2;1 (LOC_Os06g48810), a sodium 224 

transporter.  225 

QTLs repeatedly found across different studies can help to identify robust candidates for 226 

crop improvement. The positions of QTLs identified in this study were therefore com-227 

pared against those previously reported (Figure 5). Though it is noted that many previ-228 
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ous studies had relatively low resolution, leading to QTLs that span many Mbp (e.g. 229 

Fang et al., 2015), an overlap was found for the chromosome 1 RGR-K signal which is 230 

positioned at the beginning of a ~10 Mbp QTL described by Fang et al. (2015). The tis-231 

sue Na+ associated signals on chromosome 6 found in this study were previously de-232 

scribed by Miyamoto et al. (2012) who identified a 6.4 Mbp region on chromosome 6 233 

related to sodium uptake and, using a map based cloning strategy, isolated a 100 kb 234 

chromosomal region that contained HKT2;1.  235 

Putative Drivers of KUE 236 

Out of the 86 genes covered by the significant association signals, the 42 annotated 237 

genes were further evaluated to identify potential drivers of KUE. Gene ontology analy-238 

sis is problematic with a sample of this size and it is therefore not surprising that no en-239 

riched functional class was discovered. In addition to HKT2;1, three further genes 240 

(OsCML1 - Calmodulin-related calcium sensor protein; OsSub52 - Putative Subtilisin 241 

homologue; OsHKT2;4 - Na+ transporter) were previously shown to respond transcrip-242 

tionally to low K+ conditions (Shankar et al., 2013) suggesting they may play a role in K+ 243 

homeostasis. Furthermore, on the basis of functional annotations the list contains a 244 

large proportion (>10%) of genes that are involved in ‘disease resistance’ (n=7) and in 245 

‘RNA translation’ (n=5), pointing to a potential role of these processes in establishing 246 

KUE. There is a well documented link between K+ deficiency and disease (e.g. Davis et 247 

al., 2018); Rice diseases like brown leaf spot, scab and stem rot are generally not prob-248 

lematic in K+ replete fields but can easily overwhelm K+-deficient rice. It is not directly 249 

obvious how disease impacts on KUE but LK treatment could (transcriptionally or oth-250 

erwise) prime plants and thus make them more disease resilient. Improved resilience 251 

could alter KUE via generic growth effects. Ribosomal functioning is frequently men-252 

tioned as an example process that requires high levels (>100 mM) of K+ (e.g. Maathuis, 253 

2009). Similar to disease resistance, the link between RNA translation and KUE may be 254 

convoluted but more efficient ribosomal constituents and enzymes involved in transla-255 

tion could improve growth and/or allow plants to adequately synthesise proteins at lower 256 

cytoplasmic K+ levels. In contrast to the above, the connection between Na+ and K+ 257 

(and hence between Na+ and KUE) is well established (e.g. Maathuis and Amtmann, 258 
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1999). Thus the appearance of two putative Na+ transporters, in combination with sig-259 

nificant signals in the root Na+ and shoot Na+ traits, strongly suggest that Na+ transport 260 

is an important contributing factor  in KUE. 261 

HKT2;1 Plays a Role in KUE via Shoot Sodium  262 

The cation transport category contains two 'high affinity K transporters'. HKT2;1 and 263 

HKT2;4 are part of significant association signals when either root or shoot Na+ concen-264 

tration was used as trait. HKT2;4 (Os06g48800) is located in the plasma membrane and 265 

expressed in the peripheral layers of rice roots and in the shoot vasculature (Sassie et 266 

al., 2012). Members of subgroup II HKTs typically perform K:Na cotransport but in het-267 

erologous systems HKT2;4 was shown to move K+ without the need for Na+ (Horie et al., 268 

2011). Thus, HKT2;4 could be involved in K+ (re)distribution, for example between root 269 

and shoot. However, its loss of function did not generate a K+-dependent phenotype, 270 

though this could be due to functional redundancy with, for example, the very similar 271 

HKT2;3 (Horie et al.,  2011).  272 

In contrast to HKT2;4, HKT2;1 strongly discriminates against K+ and, in a physiological 273 

context, is believed to exclusively function as a Na+ transporter (Horie et al., 2007; Mi-274 

yamoto et al., 2012). This would fit in with the observation that HKT2;1 is associated 275 

with tissue Na+ phenotypes (Suppl Table 5). Earlier work by Horie et al, (2007) showed 276 

that HKT2;1 is mostly expressed in rice roots and that expression is induced during low 277 

K+ conditions. Furthermore, HKT2;1 was previously identified in a QTL associated with 278 

high Na+ accumulation in K-deficient rice plants (Miyamoto et al., 2012). Thus, HKT2;1 279 

has been identified in multiple QTL studies and is transcriptionally regulated in a K+ de-280 

pendent manner. It therefore forms a high confidence candidate that impacts on KUE 281 

via the replacement of non essential K+ by the physico-chemically similar monovalent 282 

Na+.  283 

Na+ behaves as a beneficial nutrient for K+-starved glycophytes when present at mod-284 

erate concentration (e.g. Maathuis, 2013). Substitution of K+ by Na+ in such conditions 285 

could make a valuable contribution to maintaining non-critical functions of K+, such as 286 

turgor generation, and thus contribute to KUE. Detailed growth experiments with one of 287 
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the cultivars (IR64) show that there is a clear negative correlation between external K+ 288 

levels and tissue Na+, for both roots and shoots (Fig. 6). In addition, our physiological 289 

data suggest that raised root and shoot Na+ has a positive effect on KUE: Fig. 3 shows 290 

that both root and shoot levels of Na+ negatively correlate with KUE-RGR but that this is 291 

clearly more significant for shoot Na+ in the LK treatment. This phenomenon also be-292 

comes clear when overall tissue cation composition is compared between high and low 293 

KUE lines (Table 1). In HK conditions, shoot K+ (~650 umol gDW-1) and shoot Na+ (~50 294 

umol gDW-1) generate a K:Na ratio of around 10-18, and is  similar for high and low 295 

KUE accessions (Table 1), using either KUE definition. But LK treatment causes a dra-296 

matic change in the K:Na ratio to less than one of around 0.7 and 0.3 in low and high 297 

KUE lines respectively, reflecting the greater capacity of high KUE cultivars to exploit 298 

Na+ as a K+ replacement.  299 

Since there is a clear positive impact of Na+ on KUE-RGR it is imperative to identify the 300 

molecular mechanisms involved. Our GWAS studies identified HKT2;1 as a potential 301 

causative agent for Na+ dependent variation in KEU. There is considerable allelic varia-302 

tion in the HKT2;1 coding sequence which contains 5 non-synonymous SNPs that are 303 

located in the cytoplasmic N terminal and at the end of the 1st and 6th transmembrane 304 

spans (Oomen et al., 2012). Extensive measurements on oocytes that heterologously 305 

express HKT2;1 showed that neither of the amino acid substitutions has a significant 306 

effect on HKT2;1 functional properties (Oomen et al., 2012). However, the HKT2;1 pro-307 

moter region contains a large number (>50) of polymorphisms (e.g http://snp-308 

seek.irri.org/), many of which are located in transcription factor binding domains (e.g. 309 

PlantPan2; http://plantpan2.itps.ncku.edu.tw/) and consequently could affect expression 310 

levels. We therefore tested whether HKT2;1 expression levels differed between five 311 

high and five low KUE lines grown on 0.01 mM K+ and with or without 1 mM Na+. Figure 312 

7 shows that in these very low K+ grown plants, the average expression level of HKT2;1 313 

in both low and high KUE lines is induced in the presence of Na+ (1 mM) as was re-314 

ported previously (Horie et al., 2007). However, in both conditions, HKT2;1 expression 315 

levels were more than two fold higher in high KUE lines, a difference that was highly 316 

significant in the minus NaCl condition (p=0.015) but less so in the plus NaCl treatment 317 

(p=0.066). 318 
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Although no significant association signals were detected, further Na+ transporters may 319 

be involved in tissue K+ substitution by Na+: For example, OsHKT1;5 is involved in 320 

shoot Na+ exclusion by retrieving Na+ from the xylem stream and via phloem recircula-321 

tion (Kobayashi et al., 2017). Downregulation of this mechanism during low K+ condi-322 

tions could therefore augment K+ substitution. Other HKTs such as OsHKT2;2, which is 323 

primarily root located and could mediate uptake of both K+ and Na+ (Oomen et al., 324 

2012), is another potential contributor.    325 

Conclusions 326 

A clearer picture of the physiological and molecular underpinnings of KUE variability 327 

would be extremely useful in developing high KUE crops. Differences in KUE can be 328 

achieved through various mechanisms including:  an altered cellular K+ distribution, es-329 

pecially between vacuole and cytoplasm; tissue K+ distribution, i.e. preferential alloca-330 

tion of K+ to the most sensitive tissue such as translocation to the shoot; changes in K+ 331 

uptake capacity, especially at low external K+; changes in K+ supply such as enhancing 332 

available soil K+ via root exudation; and the functional replacement of K+ with other ions 333 

such as Na+ and Ca2+. The relative contribution of these mechanisms is largely un-334 

known and may depend on plant species, developmental stage and soil properties.  335 

In this study, KUE was explored using a rice diversity panel. Variation in KUE was found 336 

to be considerable and the underlying genetic architecture was examined. By deliber-337 

ately applying high stringency criteria KUE-related high resolution QTLs were discov-338 

ered that identified K+ substitution by Na+ as a likely component of KEU in low K+ condi-339 

tions. Although it is likely that multiple Na+ and K+ transporters play a role in this process, 340 

OsHKT2;1 emerged as the prime suspect responsible for increased Na+ uptake. This 341 

transporter and other identified candidates could serve as breeding targets to improve 342 

crop performance during low K+ conditions.  343 

 344 

 345 

Supplementary Data 346 
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Suppl. Tables: spreadsheet Tables containing extended genotype and phenotype data.  347 

Suppl. Figure 1: correlations between growth and tissue Na+ concentrations.  348 

Suppl. Figure 2: all Manhattan plots of GWAS analyses 349 
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Table 1: Growth and tissue cation concentrations for high and low KUE accessions  
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 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

                 KUE_K                    KUE_RGR  

 

 

 low KUE high KUE   low KUE 

 

high KUE  

RGR 0.088 0.11 RGR n.d. n.d. 

DW HK (g) 0.45 0.79 DW HK (g) 0.72 0.42 

DW LK (g) 0.26 0.47 DW LK (g) 0.29 0.34 

ShootK HK (mM) 656 646 ShootK HK (mM) 713 626 

ShootK LK (mM) 244 86 ShootK LK (mM) 136 135 

ShootNa HK (mM) 47 40 ShootNa HK (mM) 39 66 

ShootNa LK (mM) 352 232 ShootNa LK (mM) 197 369 

RootK HK (mM) 253 184 RootK HK (mM) 236 170 

RootK LK (mM) 57 52 RootK LK (mM) 53 59 

RootNa HK (mM) 92 67 RootNa HK (mM) 79 91 

RootNa LK (mM) 104 148 RootNa LK (mM) 140 200 

ShootK:Na ratio (HK) 14 16.2 ShootK:Na ratio (HK) 18.3 9.5 

ShootK:Na ratio (LK) 0.69 0.37 ShootK:Na ratio (LK) 0.69 0.37 
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 492 

Table 2: Summary of quantitative trait loci identified in GWAS  

     

Trait Description Chr Position Significant 

SNP Posi-

tions 

RGR LK Relative growth rate at low K 

treatment 

1 22,260,180 - 22,463,799 22,360,180; 

22,361,410; 

22,361,482; 

22,363,799 

RGR_K K use efficiency defined as 

RGR/shoot K concentration at 

LK treatment 

1 34,344,598 - 34,563,159 34,444,598; 

34,463,159 

NaR_LK Root Na concentration at low K 

treatment 

6 29,440,164 - 29,640,591 29,540,164; 

29,540,591 

NaS_LK Shoot Na concentration at low 

K treatment 

6 29,440,164 - 29,640,591 29,540,164; 

29,540,591 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

Figure Legends 503 
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Figure 1: Responses of rice genotypes to potassium stress.  a) Mean plant dry mass of 504 

cultivars when grown in the presence of 0.1 (LK) and 1 (HK) mM potassium. b) Relative 505 

plant dry mass (dry mass LK/ dry mass HK). c) Reduction in relative growth rate (RGR) 506 

in LK compared to HK conditions. 507 

Figure 2: Distribution of root (top two panels) and shoot (bottom two panels) K+ concen-508 

tration across the diversity panel for plants grown on LK (0.1 mM) and HK (1 mM) K+ 509 

medium. 510 

Figure 3: Significant (p<0.05) correlation between RGR reduction and shoot tissue Na+ 511 

concentration of plants grown on LK medium. 512 

Figure 4: Manhattan plots for traits (RGR at LK, KUE-K, root [Na+] at LK and shoot 513 

[Na+] at LK) that generated significant association signals (arrows) using criteria as ex-514 

plained in the Methods. Note that ‘shoot Na’ and ‘root Na’ trait data associate with the 515 

same locus on chromosome 6. 516 

Figure 5: Co-incidence of previously described QTLs and loci identified in this study re-517 

lated to low K+ growth in the rice genome. Each bar represents a chromosome and pre-518 

viously reported QTLs are marked in white (Wu et al., 1998), yellow (Miyamoto et al., 519 

2012) or red (Fang et al., 2015). Triangles indicate the position of QTLs derived from 520 

this study. 521 

Figure 6: Reducing levels of medium K+ drastically increases Na+ concentrations in 522 

both roots and shoots of rice cultivar IR64. Plants were grown hydroponically for 7 523 

weeks in the presence of varying K+ levels and 3 mM NaCl. Error bars show SD of three 524 

biological replicates. 525 

Figure 7: qPCR analysis of HKT2;1 expression in roots of 5 high KUE cultivars (GSOR 526 

54, 109, 133, 357 and 366, see Suppl Table 1) and 5 low KUE rice cultivars (GSOR 42, 527 

115, 276, 377 and 401). Plants were grown for 4 weeks in medium containing 0.01 mM 528 

K+ supplemented with 0 or 1 mM NaCl. Data are means for 3 biological replicates with 529 

error bars denoting SD. 530 
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Fig 4
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