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Abstract. Modern high-performance concrete, increasingly used in tunnels and other

important infrastructure, is susceptible to explosive fire-induced spalling. To prevent

fire spalling, modern codes recommend the use of small quantities (e.g. 2 kg/m3 as

recommended by the Eurocodes) of polypropylene fibres in the concrete mix. This

paper presents an experimental study investigating, the effect of cleaned recycled

fibres extracted from end-of-life tyres on the explosive fire-induced spalling of con-

crete. This paper presents 24 spalling tests, indicating that recycled tyre polymer

fibres, at dosages equal to or larger than 2 kg/m3, might help prevent fire spalling.

Recycled tyre steel fibres also show the potential of preventing fire spalling damage

by keeping spalled concrete attached to the heated surface, thus protecting the main

steel reinforcement. The use of these fibres might lead to safe and sustainable fire

spalling mitigation solutions.

Keywords: Spalling, Concrete, Tyre, Polymer fibre, Recycled tyre steel fibre, Recycled tyre polymer

fibre

1. Introduction

Despite the common perception that concrete is fireproof, it is prone to fire-in-

duced spalling: the explosive loss of surface concrete when exposed to rapidly ris-

ing temperatures. The problem of fire-induced spalling in concrete-lined tunnels is

a particularly relevant issue at present. Fire-induced explosive spalling is mainly

caused by the combined effect of differential thermal stresses and excessive pore

pressure developed behind the exposed concrete surface. This explosive fire-in-

duced spalling can lead to a reduction of the cross-sectional areas of structural

elements and cause loss of thermal protection to steel reinforcement, both of
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which could significantly reduce the fire resistance of concrete structures. In recent

decades, fire-induced spalling has caused huge economic losses [1]. High-perfor-

mance (high-strength, self-compacting) concrete [2] is increasingly being used

instead of conventional concrete, in tunnels and other major infrastructure pro-

jects. This concrete is particularly vulnerable to fire-induced spalling [3].

Due to the concern about fire spalling, much research on the use of fibres in

concrete to mitigate fire-induced spalling has been conducted. It has been found

that polypropylene fibres (PPF) can be effective in mitigating fire spalling [3–9].

PPF melt at about 170�C and vaporize at about 340�C and could therefore create

voids which are thought to release vapour pressure. Ozawa and Morimoto [10]

showed that the permeability of PPF concrete can increase by up to thirteen times

after heating to 350�C compared to a reference plain concrete. They also con-

cluded that increasing permeability reduces the probability of explosive spalling.

Other studies have shown that the mechanical properties of concrete are also

affected by the addition of fibres. For example, by adding PPF [11–13] the com-

pressive strength is likely to be slightly reduced, mainly due to an associated

increase in voids. On the other hand, the addition of steel fibres to concrete gener-

ally increases its compressive strength at ambient temperature [14–16]. The post-

fire residual compressive strength of concrete decreases due to the addition of

fibres, but the fracture energy is significantly higher after fire exposure than it is

before heating [15]. Recently Yermak et al. [17] studied different high strength

concretes (70 MPa) consisting of different aggregate types, moisture contents,

lengths and dosages of PPF and steel fibres (SF), subjected to the standard ISO

834 fire [18]. The results confirmed that PPF increase the porosity and permeabil-

ity of concrete, and that steel fibres could help control crack development and

prevent the occurrence of large cracks.

The effectiveness of steel and polypropylene fibres in the mitigation of fire-in-

duced spalling depends on several factors, such as fibre content, type, diameter

and length. The addition of PPF to concrete has the clear potential to prevent

spalling [3–9], whilst steel fibres could have a different role, of increasing the ten-

sile strength of the concrete, which should help to lower the risk of spalling [19,

20]. Other researchers have indicated that blending steel and polypropylene fibres

can reduce the degree and severity of spalling, compared with concrete containing

only PPF [12, 15].

Thousands of tonnes of polymer and steel fibres are generated each year in Eur-

ope alone, as by-products of recycling (mainly for recovering rubber) of end-of-

life tyres. These fibres are made of very high-quality materials but are highly con-

taminated (with rubber) and so are mainly buried as landfill or incinerated [21,

22]. Appropriately processed steel fibres could be used in concrete, and classified

steel fibres are now available commercially for use in slabs on grade and in tunnel

linings [21–26]. Small quantities of recycled tyre polymer fibres have been cleaned

appropriately, in the course of the EU-funded project Anagennisi [23], and have

been examined for controlling shrinkage of cracks in concrete and mortars.

This paper examines the effectiveness of clean recycled tyre polymer fibres

(RTPF) and clean recycled tyre steel fibres (RTSF) from end-of-life tyres in high-

strength concrete for the mitigation of fire-induced spalling, on the basis that their
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properties are not very different from those of currently manufactured steel and

polypropylene fibres (see detailed fibre characteristics in Sect. 2.1). The overall aim

is to improve the sustainability of concrete construction by replacing virgin mate-

rials with reused materials, and at the same time to maintain or improve perfor-

mance.

2. Experimental Details

The fire-spalling behaviour of concrete mixes using RTPF, RTSF and RTPF/

RTSF hybrids has been investigated through 24 slab tests in two series (see

Table 1) under simultaneous high temperature and uniaxial compression (see

Sect. 2.3 for detailed heating and loading arrangements). The specimens of Series

1 are: Plain1, the reference plain concrete mix; PF1, with 1 kg/m3 RTPF; PF2,

with 2 kg/m3 RTPF (based on the Eurocode 2 recommended PPF dosage) and

PF7, with 7 kg/m3 RTPF.

The size of the Series 1 specimens was 500 9 220 9 100 mm, without any steel

reinforcement. Significant water/vapour escape was observed from the thinner Ser-

ies 1 specimens. As tunnel linings are usually thicker than 100 mm, in order to

avoid an unrealistic amount of vapour/water escape which reduces pore pressure

and spalling risk, thicker specimens were adopted in the Series 2 tests. The speci-

mens of Series 2 include: Plain2, the reference plain concrete mix; SF40, contain-

ing 40 kg/m3 RTSF; SF40PF2, containing 40 kg/m3 RTSF and 2 kg/m3 RTPF;

SF40PF5 containing 40 kg/m3 RTSF and 5 kg/m3 RTPF.

The size of all Series 2 specimens was 500 9 200 9 200 mm, with [5 mm steel

mesh reinforcement at 50 9 50 mm spacing placed at 30 mm front cover. The

amount of steel mesh and RTSF used aims to reflect typical reinforcement in pre-

cast tunnel segments [24].

All tests were conducted in triplicate. The specimens were cured in a mist room,

at 20�C and 80% relative humidity, for at least 28 days; they were then taken out

of the mist room and stored in the laboratory, at approximately 50% relative

humidity and 20�C temperature, for a week prior to being tested.

2.1. Materials

As high strength concrete is generally vulnerable to fire-induced spalling [3, 27], a

C70 concrete mix was selected, details of which are summarised in Table 2.

Currently, polymer fibres extracted from tyres are too contaminated with rub-

ber, and too agglomerated, to be re-used as a construction material. Techniques

do not exist at present for removing rubber contamination and separating tangled

filaments for the large-scale production of RTPF for use in concrete. During this

research, a screening technique, using vibrating sieves, was developed to remove

most of the rubber dust and particles. This was capable of supplying the quantity

of cleaned RTPF needed for laboratory testing. Typical samples of RTSF and

RTPF used in the experimental testing are shown in Fig. 1. A geometrical charac-

terisation of RTPF showed that the fibre diameter ranged from 8.0 to 38.0 lm,
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and more than 80% of the fibres were shorter than 12 mm. The melting points of

these fibres ranged from 210 to 260�C.

RTSF are irregular in shape (3-D) and vary in length and diameter. The RTSF

used in this study had a fibre nominal average length of 20 ± 2 mm and diameter

of 0.15 ± 0.04 mm [28]. The nominal tensile strength of the RTSF was 2850 MPa.

For the convenience of comparison, typical manufactured steel fibres used in tun-

nel construction could be of 0.4 mm to 0.5 mm diameter, 35 mm length and

1700 N/mm2 tensile strength. Manufactured monofilament polypropylene fibre

could be of 4 mm to 30 mm length, 20 lm to 30 lm diameter and 450 MPa ten-

sile strength.

2.2. Moisture Content and Compressive Strength

Additional cubes and cylinders were cast for compressive strength tests and mois-

ture content measurements. Concrete compressive strength was measured from

100 mm cubes on the day of each spalling test, following the BS EN 12390 [29]

process. For each spalling test specimen, three cubes were tested.

Moisture content was measured using two different approaches. For Series 1,

100 mm cubes were heated in an electric oven at 110�C for 24 h, just prior to each

spalling test, and the weight loss due to evaporation was used to calculate the

average moisture content of the test specimens.

Table 1

Specimen Specifications

Type Size L 9 H9W (mm) RTSF (kg/m3) RTPF (kg/m3) Steel mesh (kg/m3)

Series 1 Plain1 500 9 220 9 100 0 0 0

PF1 0 1 0

PF2 0 2 0

PF7 0 7 0

Series 2 Plain2 500 9 200 9 200 0 0 123.3

SF40 40 0 61.5

SF40PF2 40 2 61.5

SF40PF5 40 5 61.5

Table 2

Mix Design

Constituent Amount (kg/m3)

Coarse aggregate (5 mm to 10 mm) 1281

Fine aggregate (0 mm to 5 mm) 734

Cement (CEM II 52.5) 300

PFA 99

Water 168

Superplasticizer (polycarboxylate) 4

Fire Technology 2019



Figure 1. (a) Recycled tyre steel fibres (RTSF), (b) recycled tyre polymer fibres (RTPF).
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Since fire spalling happens at the surface of a concrete elements, its occurrence

is at least partly dependent on the concrete moisture content near the heated sur-

face, rather than the average moisture content within the entire volume. A differ-

ent approach was adopted for Series 2 to measure the through-depth moisture

content distribution, as well as its development over time. To avoid coring sam-

ples from the spalling test slabs (cooling water could affect moisture content),

additional cylinders of 200 mm height and 100 mm diameter were cast. Before

curing, all cylinders were cut into slices at heights of 10 mm, 20 mm and 50 mm,

and then reassembled to maintain the length of the moisture path [30]. The sides

of the cylindrical slices were individually sealed with aluminium foil tape, and the

edges of the interfaces between adjacent slices were sealed using plastic tape, as

illustrated in Fig. 2. This provided the unidirectional moisture transport condition

corresponding to that in the spalling test slabs. It should be noted that both the

top and bottom surfaces of the cylinders were exposed to the environment. In

total sixteen cylinders, four per mix (one cylinder per spalling test specimen, plus

one control cylinder), were prepared. After curing in conditions identical to those

of the spalling test slabs, all four pieces of one cylinder (the control specimen)

from each mix were dried in the oven for 24 h to measure their initial moisture

condition. For the rest of the cylinders, the development of moisture content over

time was then monitored by weighing each slice (at each depth) daily for 27 days.

Figure 2. (a) Cylinder cut into slices at heights 10 mm, 20 mm and
50 mm; (b) cut cylinder wrapped with aluminium foil and plastic
tapes.
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2.3. Fire Spalling Test Setup and Measurements

The samples were heated using a three-nozzle blowtorch, as shown in Fig. 3. Tri-

als were conducted to determine the appropriate distance between the blowtorch

heads and the heated surface of a specimen to produce an initial heating rate as

close as possible to that of the large hydrocarbon pool fire curve defined in PD

7974-1 [31]. An example comparison between the time history of the maximum

specimen surface temperatures and the large hydrocarbon pool fire curve is shown

in Fig. 9. The distance between the blowtorch and the sample was set at 20 cm,

and this was maintained constant throughout the tests. It is worth noting that this

heating method is not intended to replicate that of standard testing or that of real

fires, and the heating on the heated specimen surface is not uniform. It is

acknowledged that future work using heating approaches generating uniform

heating comparable to standard testing is still necessary. The key purpose of this

preliminary experimental study was to investigate whether the recycled fibres pre-

sent any potential of reducing fire spalling risk. It is, therefore, important to

ensure that the heating conditions of the specimens with and without fibres are

identical.

Before heating, the specimens of Series 1 and 2 were subjected to axial average

compressive stresses of 11 MPa (16% fcu) and 6 MPa (9% fcu) respectively. The

loading (250 kN) was applied using a hydraulic jack mounted between the speci-

men and the frame (see Fig. 3). When this force had initially been set the volume

of fluid in the hydraulic system was locked, and the subsequent changes in com-

pressive force due to thermal expansion were monitored. Since the axial stiffness

Figure 3. Test setup.
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of the loading system, including the threaded rods and the hydraulic system, is at

most one quarter of that of the concrete specimen, this is an arrangement which

should maintain an almost-constant load.

The temperature distribution within the specimens was measured using Type K

thermocouples, and the spalling time was recorded. For Series 1, thermocouples

were cast into the slab at mid-depth (50 mm from the heated surface), directly

behind the centre of heating of each blowtorch head (see Fig. 4a, b). A thermal

imaging camera was also used to measure the temperature distribution over the

heated surface of the specimen. For Series 2, three thermocouples, tied together to

make a thermocouple tree (Fig. 4c), were cast into each specimen at depths of

1 mm, 10 mm and 50 mm from the heated surface. An external thermocouple was

also placed in front of the centre of the heated surface to measure the flame tem-

perature at that location (see Fig. 4d).

3. Results and Discussion

Table 3 summarises the moisture content and compressive strength of each of the

test specimens, as well as their spalling test results. The ‘‘Spalling time’’ refers to

the time in heating at which a specimen initially experienced explosive fire-induced

spalling. ‘‘Max spalling depth’’ is the depth of spalling at the most severely spalled

position. ‘‘Total weight loss’’ is the difference between the weights of the specimen

before and after the test, and ‘‘concrete loss’’ is the weight of the spalled concrete

pieces collected after testing. It should be noted that PF2-1 failed during a trial

(a) (c)

(b) (d)

125 125

500

0
2

2 Thermocouples

Heated Surface

50 mm

10 mm

1 mm

500

2
0

0

Thermocouple tree

3
0

Heated Surface

Figure 4. Thermocouple locations.
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Table 3

Results of the Explosive Spalling Tests and Corresponding Measurements of Compressive Strength and
Moisture Content

Specimens

Moisture content and strength results Explosive spalling results

Age

(days)

Moisture

content (%)

Cube strength,

fcu (MPa)

Occurrence

of spalling

Spalling

time (mm:ss)

Max spalling

depth (mm)

Total weight

loss (kg)

Concrete

loss (kg)

Series 1 Plain1-1 28 2.2 69 Yes 00:30 – 0.505 –

Plain1-2 28 2.1 70 No – – 0.461 –

Plain1-3 28 2.2 68 Yes 00:24 – 0.468 –

PF1-1 28 2.9 65 Yes (small) – – 0.435 –

PF1-2 28 2.9 68 Yes 01:00 – 0.901 –

PF1-3 28 3.2 67 Yes 00:49 – 0.427 –

PF2-1 28 3.2 68 – – – – –

PF2-2 28 2.9 67 No – – 0.179 –

PF2-3 28 3.0 67 No – – 0.222 –

PF7-1 28 3.4 65 No – – 0.224 –

PF7-2 28 3.3 65 No – – 0.257 –

PF7-3 28 3.3 65 No – – 0.114 –

Series 2 Plain2-1 77 3.0 69 Yes 01:12 13 0.49 0.22

Plain2-2 77 3.0 71 Yes 00:41 17 0.94 0.67

Plain2-3 77 3.0 70 No – – 0.25 –

SFC-1 77 2.8 75 No – – 0.32 –

SFC-2 77 2.8 71 No – – 0.34 –

SFC-3 78 2.8 72 No – – 0.30 –

SF40PF2-1 73 2.7 65 Yes 01:07 8 0.45 0.18

SF40PF2-2 71 2.7 67 No – – 0.93 –

SF40PF2-3 73 2.7 67 No – – 0.39 –

SF40PF5-1 51 2.7 68 No – – 0.27 –

SF40PF5-2 51 2.7 68 No – – 0.23 –

SF40PF5-3 51 2.7 69 No – – 0.22 –
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room-temperature loading test, and that the spalling depth and concrete loss of

Series 1 tests were unavailable.

3.1. Moisture Content

Moisture content is an important factor affecting the occurrence of fire-induced

spalling. Eurocode 2 (EC2) states that explosive spalling is unlikely to occur when

the moisture content of concrete is less than 3% by weight for concrete grades

below C80, although it is recognised that the in-service moisture content of con-

crete in structures is not well known. The specimens’ moisture content was mea-

sured at the time of testing. The average moisture content of specimens was

between 2.12% and 3.33% by mass. However, most of the spalled specimens had

moisture contents below 3%, indicating that the EC2 threshold might lead to

unsafe design.

The relative moisture content profiles for specimens of Series 2 are shown in

Fig. 5. The values presented are normalised as proportions of the moisture con-

tent on Day 0 to quantitatively compare the rate of moisture loss of the various

concrete slices. As expected, the greatest moisture loss was experienced by the slice

nearest to the surface. Furthermore, for any given depth, more moisture was lost

by the specimens with fibres than by the plain concrete specimens. This confirms

that these fibres increase the connectivity of pores in concrete, facilitating the

escape of vapour.

3.2. Compressive Strength

The average cube compressive strengths of the plain concrete specimens Plain1

and Plain2 were found to be 69 MPa and 70 MPa, respectively (see Table 3). Pre-

vious research [32] had reported that the addition of PPF could affect the worka-

bility of fresh concrete, introduce voids and lower the strength of the hardened

concrete. However, the mix adopted in this research was designed to be self-com-
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pacting, and so the influence of RTPF on the fresh concrete’s workability was

low. The average compressive strength of the RTPF concrete, for Series 1, ranged

from 65 MPa to 67 MPa. For the highest fibre dosage (7 kg/m3), the compressive

strength was around 6% lower than that of the corresponding plain concrete

(Plain1).

Specimen SFC, containing just 40 kg/m3 of RTSF, had a slightly higher average

compressive strength of 73 MPa, 4.5% higher than that of the corresponding

plain concrete (Plain2). An increase in strength due to the addition of steel fibres

could be caused by the lateral restraint which they provide, which tends to

increase the ductility of concrete [33, 34]. RTSF concrete specimens with the addi-

tion of 2 kg/m3 and 5 kg/m3 of RTPF (SF40PF2 and SF40PF5) show a small

reduction (< 5%) in compressive strength, probably due to an increase in the air

entrapped during RTPF integration.

The above-mentioned compressive strength data is the mean value of the three

compressive test cubes for each spalling test specimen. The standard deviation of

each set of three cubes ranges from 0.5 to 3 MPa.

3.3. Spalling Test Results

The applied load (250 kN) increased only slightly (up to 5%) during the tests, as

exemplified in Fig. 6 for specimen FP7, due to the restraint to thermal expansion

provided by the reaction frame.

Images of the exposed surfaces for Series 1 and 2 of the spalling tests are shown

in Tables 4 and 5, respectively. For Series 1, two (Plain1-1 and Plain1-3) of the

three plain concrete specimens and two (PF1-2 and PF1-3) of the three specimens

with low RTPF dosage (1 kg/m3) experienced explosive spalling. In particular,

specimens Plain1-1, PF1-2 and PF1-3 spalled severely. None of the specimens with

RTPF doses higher than 1 kg/m3 (PF2 and PF7) spalled. PF2-1 failed at ambient

temperature in a trial loading test. For Series 2, two (Plain2-1 and Plain2-2) of the
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Table 4

Samples Plain1, PF1, PF2 and PF7 After Testing and Cooling

# Plain1 PF1 PF2 PF7

1

2

3
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Table 5

Samples Plain2, SFC, SF40PF2 and SF40PF5 After Testing and Cooling

# Plain2 SFC SF40PF2 SF40PF2

1

2

3
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three plain concrete specimens experienced severe spalling, with a maximum spal-

ling depth of 14 mm. The other plain concrete specimen (Plain2-3) did not spall,

but a large splitting crack occurred on the top face (Fig. 7). This may have caused

a reduction in pore pressure and prevented the explosive spalling from happening.

None of the specimens with RTSF, except SF40PF2-1, experienced spalling, show-

ing that RTSF may also contribute to the reduction of the risk of fire spalling;

however, more research is required to confirm this tentative conclusion. RTSF,

which is composed of finer fibres (of 0.1 mm to 0.2 mm diameter and 20 mm

Figure 7. (a) Large crack on top of specimen Plain2–3. (b)
Water/vapour escaping from the crack during test.

Figure 8. Surface temperature measured by thermal imaging
camera.
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average length) is distinctly different from the typical manufactured fibres (of

0.4 mm to 0.5 mm diameter and 35 mm length) used for tunnel applications, lead-

ing to larger numbers of fibres per unit volume of concrete, and hence a denser

fibre distribution. Moreover, the irregular geometry of RTSF enhances the bond

between concrete and fibres. SF40PF2-1, one of the three specimens with RTSF

and 2 kg/m3 of RTPF spalled, but the spalled concrete was held in place by the

steel fibres and remained attached to the specimen surface. This shows that RTSF

might also contribute by keeping the spalled concrete on the heated surface and

retaining its thermal insulation to the steel reinforcement.

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16

T
em

p
er

at
u
re

 (
°C

)

Time (min)

PF1-1

PF1-2

PF1-3

Hydrocarbon Fire

Figure 9. Maximum surface temperature against time of the slab for
samples using the IR camera.

Figure 10. Temperatures measured by the internal thermocouples at
the centres of the specimens and 50 mm behind the heated surface.

Effects of Recycled Steel and Polymer Fibres on Explosive Fire Spalling



3.3.1. Series 1: Temperature Measurement Figure 8 shows a typical infrared (IR)

camera image and the specific points and areas used for data analysis. The loca-

tion, measuring angle and focus of the IR camera are identical for all tests. The

accuracy of the IR camera is ± 1% of reading.

Figure 9 shows the maximum surface temperature plotted against time, deter-

mined from one of the three areas AR01, AR02 and AR03 (see Fig. 8) directly

heated by the blowtorch for the three specimens of PF1. The specimens experi-

enced a high initial heating rate, which then reduced after a few minutes. This
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Plain2 and SFC. Dashed lines are average temperatures per each set
of three repeating specimens. (a) Plain2-1, (b) Plain2-2, (c) Plain2-
3, (d) SFC-1, (e) SFC-2, (f) SFC-3.
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maximum temperature is used to calculate the heating rate, which is then com-

pared with the heating rate of the PD 7974-1 large hydrocarbon pool fire curve

[31]. The comparison indicates a reasonable match between the two. It is worth

noting that the maximum surface temperature of the severely spalled specimen
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Figure 12. Temperature against time of thermocouples for specimens
SF40PF2 and SF40PF5. Dashed lines are average temperatures per
each set of three repeating specimens. (a) SF40PF2-1, (b) SF40PF2-
2, (c) SF40PF2-3, (d) SF40PF5-1, (e) SF40PF5-2, (f) SF40PF5-3.

Effects of Recycled Steel and Polymer Fibres on Explosive Fire Spalling



(PF1-2) dropped suddenly when spalling occurred, revealing the temperature on

the now-exposed cooler inner layer of concrete.

The temperatures measured by the internal thermocouples (see Fig. 10) show

smooth curves of increasing temperature with time. These smooth curves indicate

a steady heating rate, without large variations in temperature. As the surface heat-

ing of the specimens was consistent between tests this means that each mix has a

similar thermal gradient.

3.3.2. Series 2: Thermocouples The thermocouple measurements are plotted for

Plain2 and SFC in Fig. 11, and for SF40PF2 and SF40PF5 in Fig. 12. For Plain2-

1, Fig. 11a shows clearly that the concrete temperatures at depths of 1 mm and

10 mm from the heated surface suddenly increase when spalling occurs. This is

because both thermocouples are then directly exposed to the fire due to the spal-

ling, and so they no longer measure the inner concrete temperature, but that of

the fire. A similar phenomenon can be observed in specimen Plain2-2, which also

spalled. The fire temperatures for these two spalled specimens (Fig. 11a, b), mea-

sured by a thermocouple (Fig. 4d) placed at the heated surface, are higher than

those of the other tests. This is because the impact due to the explosive spalling

dislocated the surface thermocouple and pushed it towards the part of the flame

which is at a higher temperature. It is worth noting that for all concrete mixes a

short temperature plateau could be observed at around 200�C at 10 mm below the

heated surface. The phase change from water to gas (vaporization) is an endother-

mic transformation, so that the system absorbs energy from its surroundings; in

this case using some of the heating energy. The effect is to temporarily reduce the

heat transfer into the concrete, causing the short temperature plateau observed.

The temperature at which this plateau occurs depends on the concrete com-

paction. Previous researchers [35] have reported a similar phenomenon and specu-

lated that it may be caused by the capillary forces that exist in pores at the

interface between liquid water, gas phase and solid.

Although none of the specimens SFC and SF40PF2, with RTSF, experienced

explosive spalling, the temperatures at 10 mm below the heated surface of the

SFC specimens also show a short plateau at around 200�C.

It can be seen that the thermocouple measurements at common depths vary

between the three repeated specimens. This is rather expected since, although pre-

fixed, the thermocouples might have moved during casting and so their locations

might vary; also, any concrete cracking could affect the thermocouple measure-

ments, especially for those close to the heated surface.

4. Thermal Analysis

The temperature profiles obtained experimentally were compared with numerical

predictions obtained using the Vulcan Thermal analysis software, developed at the

University of Sheffield [36]. Vulcan Thermal has the ability to carry out thermal

analysis on concrete, adopting a two-dimensional non-linear finite element proce-

dure to predict the temperature distributions within the cross-sections of concrete
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members subjected to user-specified time–temperature fire curves [37]. The thermal

properties of concrete vary with temperature, and the influence of moisture ini-

tially held within concrete is included in the model.

Two specimens, SFC-1 and SF40PF5-2, were modelled in this study. These

specimens were chosen since they did not spall, and the internal thermocouple

readings are considered reasonably accurate.

The boundary conditions of the model were set as ‘‘face to fire’’ at the bottom

and insulated at the top and sides. The fire curve used was taken from the surface

thermocouple measurements obtained from each of the tests. A sensitivity analysis

was carried out to investigate the effect of the variation of thermal parameters

such as the emissivity of the concrete surface and the surface absorption factor.

The parameters used in the thermal analysis are presented in Table 6. The other

thermal properties of concrete were taken according to EC2 [38].

The thermal analysis results are compared in Fig. 13. The results show a good

match between the time–temperature curves from the explosive spalling tests and

Vulcan thermal analysis, which could be used as the basis for the future develop-

ment of a thermos-hygro-mechanical spalling predictive model.

Table 6

Parameters Used in the Analysis

Parameter Value

Initial water content per m3 concrete 48 kg/m3

Radiation view factor (RVF) for horizontal surfaces exposed to fire 1.0

RVF for vertical surfaces exposed to fire 0.5

RVF for surfaces between 0� and 45� exposed to fire 0.667

Structural surface absorption factor, AB 0.65

Fire emissivity factor, EF 0.75

Structural surface’s emissivity factor, ES 0.94
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Figure 13. Time-temperature curve of specimens at different depths
(numerical results vs. thermocouples) (a) SFC-1, (b) SF40PF5-2.
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5. Conclusions

The paper has shown promising initial experimental results, indicating the poten-

tial of using recycled tyre fibres to replace manufactured fibres for the develop-

ment of more sustainable concretes which resist fire-spalling. It was found that

recycled tyre polymer fibres have the potential to prevent fire-spalling. The addi-

tion of RTPF had little influence on either the fresh or hardened properties of

concrete but increased slightly the moisture loss during drying. The recycled tyre

steel fibres could also contribute to a reduction of the risk of fire-induced spalling,

possibly due to their unique dimensions and geometry. RTSF could also prevent

serious damage due to fire spalling by keeping the spalled concrete attached to the

heated surface, and thus retaining thermal insulation to the steel re-bars. The

above conclusions are drawn based on preliminary experiments subject to the test-

ing conditions reported in this paper. Before more general conclusions can be

drawn, further research is necessary and is currently being undertaken to confirm

the effectiveness of RTSF and RTPF in preventing spalling, to quantify the opti-

mum dosage of these fibres, to understand the mechanisms of spalling, to quantify

spalling resistance, and eventually to develop design guidance for the use of RTSF

and RTPF for spalling prevention.
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