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Motivated by the dynamics within terrestrial bodies, we consider a rotating, strongly1

thermally stratified fluid within a spherical shell subject to a prescribed laterally inhomo-2

geneous heat-flux condition at the outer boundary. Using a numerical model, we explore3

a broad range of three key dimensionless numbers: a thermal stratification parameter4

(the relative size of boundary temperature gradients to imposed vertical temperature5

gradients), 10−3 6 S 6 104, a buoyancy parameter (the strength of applied boundary6

heat flux anomalies), 10−2 6 B 6 106, and the Ekman number (ratio of viscous to7

Coriolis forces), 10−6 6 E 6 10−4. We find both steady and time-dependent solutions8

and delineate the temporal regime boundaries. We focus on steady-state solutions, for9

which a clear transition is found between a low S regime, in which buoyancy dominates10

dynamics, and a high S regime, in which stratification dominates. For the low-S regime,11

we find that the characteristic flow speed scales as B2/3, whereas for high-S, the radial12

and horizontal velocities scale respectively as ur ∼ S−1, uh ∼ S− 3

4 B
1

4 and are confined13

to boundary-induced flow within a thin layer of depth (S B)−
1

4 at the outer edge of14

† Email address for correspondence: gracecox@cp.dias.ie
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the domain. For the Earth, if lower-mantle heterogeneous structure is due principally to15

chemical anomalies, we estimate that the core is in the high-S regime and steady flows16

arising from strong outer-boundary thermal anomalies cannot penetrate the stable layer.17

However, if the mantle hetereogeneities are due to thermal anomalies and the heat-flux18

variation is large, the core will be in a low-S regime in which the stable layer is likely19

penetrated by boundary-driven flows.20

1. Introduction21

Differential heating at the boundary of a stratified fluid arises in a variety of physical22

systems. The oceans and atmosphere are heated non-uniformly from above owing to the23

latitudinal variation of incoming solar energy. Fluid near the differentially heated surface24

moves laterally away from anomalously warm regions towards anomalously cold regions25

and a significant amount of work has considered whether this ‘horizontal convection’26

can drive large-scale overturning circulations (e.g. Paparella & Young 2002; Siggers et al.27

2004; Sheard et al. 2016; Shishkina 2017). The primary motivation for the present study is28

differential heating of planetary cores due to lateral heat flow anomalies in their overlying29

solid mantles. We conduct a systematic investigation of the interaction between thermal30

stratification and differential boundary heating, incorporating the key ingredients of31

rapid rotation and spherical shell geometry. Our main focus is to establish the extent to32

which boundary heat flow anomalies can penetrate and disrupt a pre-existing thermal33

stratification.34

There is now a body of evidence indicating that the cores of Mercury (Christensen35

2006), Earth (Davies et al. 2015; Nimmo 2015), Mars (Stevenson 2001) and Ganymede36

(Rückriemen et al. 2015) are thermally stably stratified below the core-mantle boundary37

(CMB) owing to a subadiabatic CMB heat flow, with convection (and magnetic field38
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generation) arising at greater depths. The existence of stratification is important because39

it influences the intensity and structure of the observable magnetic field (Christensen40

2006; Stanley & Glatzmaier 2010) and reflects the core’s long-term evolution. The41

strength and thickness of these thermally stable regions is hard to assess due to a42

lack of direct observations. The stable layer in Earth’s core could be up to ∼700 km43

thick (Gubbins et al. 2015) with a Brunt-Väisälä frequency comparable to the rotation44

period. Thermal stratification in the Martian core is usually estimated to have begun45

around 4 Ga, corresponding to the epoch when the planet lost its global magnetic field46

(Stevenson 2001), and so the thermally stable region could occupy a significant fraction47

of the present-day core. Thermal history models for Ganymede predict a stable layer48

hundreds of kilometres thick (Rückriemen et al. 2015).49

Terrestrial planetary cores are overlain by rocky mantle, which acts like a viscous50

fluid convecting on timescales of 108 years. In contrast, liquid metal cores have very low51

viscosity and convect on timescales of 103 years. This difference in convection timescales52

means that the core responds to the CMB as a rigid surface with a fixed heat flux53

imposed by the lower mantle, whilst the mantle is subjected to a uniform temperature54

lower boundary condition (Olson & Christensen 2002). Mantle convection simulations55

produce lateral temperature anomalies of thousands of Kelvin and lateral CMB heat56

flow variations greater than the mean CMB heat flow (e.g. Nakagawa & Tackley 2008;57

Olson et al. 2015). These lateral variations will inevitably drive baroclinic flows in the58

underlying core through the thermal wind, but it is unclear the extent to which they will59

drive penetrative flow within a strongly stratified region.60

The competition between stratification and boundary forcing has been explored in61

some numerical studies of convection in nonmagnetic rotating spherical shells, which62

have shown that thermal boundary anomalies are capable of drastically altering the63
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dynamics compared to uniform thermal boundary conditions (e.g. Zhang & Gubbins64

1992, 1993; Gibbons & Gubbins 2000; Gibbons et al. 2007). Zhang & Gubbins (1992)65

solved for steady flows driven by lateral thermal variations at the outer boundary of a66

rotating spherical shell, having specified temperature rather than heat flux for numerical67

simplicity. They studied both unstratified and weakly stratified fluids subjected to a68

range of temperature anomaly patterns and magnitudes. For modest boundary anomaly69

strengths, patterns of temperature fluctuations and fluid flow lock to the boundary70

anomaly pattern through the thermal wind, and flows penetrate deep into the shell71

due to Coriolis effects. Stratification greatly reduces radial flow amplitudes, though72

toroidal flows are less affected, and confine flow towards the outer boundary. The authors73

speculated that these results would also be obtained in the geophysical case of fixed74

heat flux boundary anomalies. Gibbons & Gubbins (2000) were able to confirm this75

for steady flows in their subsequent investigation of weakly stratified fluids in rotating76

spherical shells. They applied different spatial distributions and magnitudes of large-77

scale boundary heat flow anomalies to fluids of varying stratification strengths. For78

equatorially symmetric patterns, rotational effects dominate dynamics at weak or no79

stratification. As the stratification increases, rotational effects become less important,80

radial flow diminishes and flow is confined to a layer beneath the outer boundary.81

Smaller length scale heat flux patterns drive less energetic flows that are not able to82

penetrate as deeply into the fluid. Solutions become increasingly smaller scale with83

increasing boundary anomaly magnitude, with correspondingly higher computational84

expense. Gibbons & Gubbins (2000) suggested that solutions would become unstable85

(time-dependent) with sufficiently strong boundary anomalies, though computational86

limitations prevented the authors from identifying the parameters at which this occurs.87

Several authors have considered the more realistic but more complex magnetohy-88
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drodynamic (MHD) case by studying numerical simulations of dynamos in partially89

stratified spherical shells, including Christensen (2006); Christensen & Wicht (2008);90

Stanley & Mohammadi (2008); Aurnou & Aubert (2011); Nakagawa (2011, 2015); Olson91

et al. (2017). Some numerical models have shown that the presence of a stable layer92

fundamentally changes dynamo action and can drastically alter the magnetic field at the93

planetary surface compared to equivalent models with no stable layer. For example,94

Christensen (2006) showed that a strong magnetic field at the top of the dynamo95

generating region diffuses through a stable layer such that the small-scale, rapidly varying96

components are filtered out.97

Dynamo models with heterogeneous thermal boundary conditions have also been98

investigated by various authors, see the review by Amit et al. (2015) and references99

therein. As in the non-magnetic case, within MHD models heterogeneous boundary100

forcing has been shown to have a significant effect, for example by modifying the101

morphology of the magnetic field (e.g. Olson & Christensen 2002; Gubbins et al. 2007;102

Aurnou & Aubert 2011) such that its long-term fundamental symmetries follow the103

spatial symmetries of the imposed heat flux pattern, or by locking the magnetic field104

to regions of anomalously high heat flow (Willis et al. 2007; Sreenivasan 2009). In some105

circumstances, strong boundary driven flows can also overwhelm the convection such106

that dynamo action is weakened or destroyed altogether (Olson & Christensen 2002;107

Takahashi et al. 2008), though this is not necessarily the case (Aurnou & Aubert 2011).108

Although ultimately the most physically relevant model, a thorough scaling analysis of109

the competition between stratification and boundary forcing within an MHD setting is110

beyond what is currently achievable. Some progress has been made by studying weakly111

stratified models with heterogeneous outer boundary conditions (e.g. Sreenivasan &112
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Gubbins 2008; Aurnou & Aubert 2011; Olson et al. 2017), although the extrapolation113

gap from the parameters used in these models to realistic values is large.114

This work focusses on the simpler, non-magnetic problem which is yet not fully115

described. In particular, the previous studies described above have been limited to highly116

viscous, weakly-stratified fluids in spherical shells with moderate rotation rates and117

subject to relatively weak boundary anomalies: it is not clear how these results bear on the118

rapidly rotating, strongly stratified case relevant to planetary cores that are additionally119

subject to significant lateral variations in heat flux at their outer boundary. One severe120

computational limitation that has hampered progress arises because rotating flows adopt121

small azimuthal length scales even at the onset of convection (Chandrasekhar 1961), while122

increasing the amplitude of the driving force generates a broad spectrum of flow structures123

that become increasingly difficult to resolve. In this study, we minimise this problem124

by considering a subset of steady-state solutions obtained from solving the full time-125

dependent equations, and also by assuming that the entire fluid domain is stably stratified126

without any internal heat sources that drive internal convection. This is equivalent to127

assuming that any underlying convection does not significantly penetrate or mix an128

overlying stable region, which is true in the case of strong stratification (Takehiro &129

Lister 2001; Buffett & Seagle 2010; Gubbins & Davies 2013). These assumptions allow us130

to isolate the interaction between outer-boundary forcing and pre-existing stratification,131

without the additional complication of destabilisation of stratified fluid from below by132

internal convection, and to study the dynamics using a much wider range of parameters133

than has been possible previously.134

The fluid dynamical problem we consider depends upon three dimensionless numbers135

(detailed definitions are given in 2.1): a thermal stratification parameter, S, defined136

as the relative size of boundary temperature gradients to imposed vertical temperature137
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gradients, a buoyancy parameter, B, measuring the strength of the applied boundary heat138

flux anomalies, and the Ekman number, E, the ratio of viscous and Coriolis forces. Our139

study spans the ranges 10−2 6 B 6 106, 10−3 6 S 6 104 and 10−6 6 E 6 10−4. We focus140

primarily on the case where the aspect ratio, the ratio of inner to outer boundary radii,141

corresponds to that of Earth’s liquid core, ri/ro = η = 0.35. Additional simulations are142

performed at η = 0.01, which is almost a full sphere and approximates the core geometry143

of Mars and Ganymede.144

For each choice of (E,S,B) a heat flow pattern must be chosen. Previous studies clearly145

show that the influence of thermal boundary anomalies on the structure and dynamics146

of rotating fluids becomes more pronounced as the lengthscale of the imposed pattern147

is increased (Zhang & Gubbins 1992, 1993; Davies et al. 2009). We choose to apply148

a Y 2
2 spherical harmonic boundary heat flow pattern since this the largest component149

of shear wave variation (a likely proxy for CMB heat flow) in Earth’s lower mantle150

(Dziewonski et al. 2010); it is also a common boundary condition of previous studies,151

which makes comparison straightforward (e.g. Zhang & Gubbins 1992, 1993; Davies et al.152

2009; Sreenivasan 2009; Sahoo & Sreenivasan 2017).153

We have conducted a suite of 99 numerical simulations finding predominantly steady154

solutions, which partition into two distinct regimes. Within each regime we formulate155

theoretical scaling laws that provide excellent fits to our dataset and permit extrapolation156

to the parameter regimes appropriate to planetary interiors. The remainder of the paper is157

structured as follows: the mathematical formulation is given in §2, results of the numerical158

simulations are presented in §3, scaling analyses and their application to Earth and159

Ganymede’s outer cores follow in §4 and §5, and a summary of results is found in §6.160
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2. Method161

We consider an incompressible Boussinesq fluid in an impenetrable spherical shell, of162

outer radius ro and inner radius ri, rotating about the axial ẑ direction with constant163

angular velocity Ω. The whole shell is thermally stratified and compositional effects are164

neglected, as in Gibbons & Gubbins (2000), in order to isolate the effects of thermal165

boundary anomalies on a thermally stratified fluid. Again following Gibbons & Gubbins166

(2000), we also neglect the magnetic field so as to reach more realistic E, B and S167

values; the effects of free convection and the resulting magnetic field evolution will be168

investigated in a future study. In the following work, r, θ and φ denote spherical polar169

coordinates, r is the position vector and t is time.170

2.1. Governing equations and non-dimensionalisation171

Following the formulation of Zhang & Gubbins (1992) and Gibbons & Gubbins (2000),172

the temperature is split into a steady radial part, T0, and a time-varying part, T1, such173

that174

T (r, θ, φ, t) = T0(r) + T1(r, θ, φ, t). (2.1)

The steady radial temperature profile satisfies175

κ∇2T0 = F, (2.2)

where κ is the thermal diffusivity and F > 0 is a heat sink, and is chosen to impose a176

background thermal gradient that, if strong, suppresses radial motion. Integrating with177

respect to r in spherical coordinates gives178

r2
dT0

dr
= βr3 +A (2.3)
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where β = F
3κ and A is a constant of integration. Setting the outer boundary condition179

such that180

dT0

dr

∣

∣

∣

r=ro
= βro (2.4)

results in A = 0 and so within the spherical shell dT0

dr = βr.181

We define the outer boundary condition of the temperature gradient as182

∂T1

∂r

∣

∣

∣

r=ro
= HY 2

2 (θ, φ), (2.5)

in which the spatial pattern of the anomaly is given by the spherical harmonic Y 2
2 (θ, φ),183

and the magnitude of the anomaly is given by H. Rewriting the general temperature184

equation185

∂T

∂t
+ (u · ∇)T = κ∇2T − F, (2.6)

using (2.1) and (2.4) leaves186

∂T1

∂t
+ (u · ∇)T1 + urβr = κ∇2T1 (2.7)

as the relevant temperature equation.187

The equations for conservation of momentum in a rotating frame of reference and for188

conservation of mass are189

∂u

∂t
+ (u · ∇)u+ 2Ω(ẑ × u) = −∇

(

P ′

ρ0

)

+
ρ′g

ρ0
+ ν∇2

u (2.8)

and190

∇ · u = 0 (2.9)

where u is velocity, P ′ is the pressure perturbation, ρ0 is a reference density, ρ′ is191

the deviation from the reference density, g is gravity and ν is the kinematic viscosity.192
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Expressing ρ′ as193

ρ′ = −ρ0αTT1, (2.10)

where αT is the coefficient of thermal expansivity, gives an alternative form of the194

momentum equation195

∂u

∂t
+ (u · ∇)u+ 2Ω(ẑ × u) = −∇P̂ + αT γT1r + ν∇2

u, (2.11)

where P̂ is the reduced pressure (= P ′/ρ0) and γ is a constant (g = −γr).196

Scaling radius by a characteristic length scale d (= ro − ri), time by the thermal197

diffusion time d2/κ, velocity by κ/d and temperature by Hd (from equation (2.5)) gives198

the radial temperature profile and the temperature and momentum equations in their199

dimensionless forms200

dT ∗
0

dr∗
= S r∗, (2.12)

201

∂T ∗
1

∂t∗
+ (u∗ · ∇)T ∗

1 + S u∗
rr

∗ = ∇2T ∗
1 (2.13)

and202

E

Pr

[

∂u∗

∂t∗
+ (u∗ · ∇)u∗

]

+ (ẑ∗ × u
∗) = −∇P̂ +B T ∗

1 r
∗ + E∇2

u
∗, (2.14)

where r
∗ is the dimensionless radial vector, S is the stratification parameter, E is the203

Ekman number, Pr is the Prandtl number and B is the buoyancy parameter. These204

dimensionless numbers are defined as205

S =
βd

H , E =
ν

2Ωd2
, P r =

ν

κ
,B =

αT γHd3

2Ωκ
, (2.15)

and B is related to E and a Rayleigh number, RaH, where206

B

E
= RaH =

αT γHd5

νκ
. (2.16)
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In this work, all calculations are performed at Pr = 1 for numerical convenience and the207

majority with a shell aspect ratio η = 0.35; a summary of model parameters is given in208

tables A.1 to A.4 in appendix A. We investigate the effects of varying the shell aspect209

ratio using models with η = 0.01 in section 4.3. The governing equations are solved for210

u and T1 with no-slip boundary conditions on both inner and outer boundaries, a fixed211

temperature of zero imposed on the inner boundary, and a fixed heat flux imposed on212

the outer boundary as previously discussed. A detailed description of the pseudo-spectral213

code may be found in Willis et al. (2007) and Davies et al. (2011), and in the most recent214

dynamo benchmark paper (Matsui et al. 2016). Although equations (2.1) – (2.5) give the215

clearest mathematical description of our method, in fact the code solves the following216

equation217

∂T ∗

∂t∗
+ (u∗ · ∇)T ∗ = ∇2T ∗ − 3 S, (2.17)

which is equivalent to (2.13). To benchmark our code for this particular problem, we218

reproduced the flow magnitudes and spatial patterns reported in Gibbons & Gubbins219

(2000), using a shell aspect ratio η = 0.4 and their parameters of E = 10−3, Pr = 1,220

B = 1 and S = 0 and S = 100.221

Given that we focus upon steady-state solutions to the time-dependent equations,222

for numerical expediency where possible we used the final steady-state solution of a223

model nearby in parameter space as the initial condition. Models were run long past224

the initial transient period and until the volume-averaged kinetic energy converged to225

a steady value. Several numerical models were unstable and no steady-state solutions226

were obtained at those parameters. In such cases, we cannot rule out the existence of a227

steady-state model using different initial conditions.228

For each of our models, spatial convergence was verified by assessing the kinetic229

energy power spectrum as a function of spherical harmonic degree (l) and order (m).230
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10−3 10−2 10−1 100 101 102 103 104

S

10−1

101

103

105

B
E = 10−4, steady

E = 10−5, steady

E = 10−6, steady

E = 10−4, unsteady

E = 10−5, unsteady

E = 10−6, unsteady

E = 10−4, periodic

Figure 1: Stability diagram in (S, B) parameter space showing all models summarised
in tables A.1 to A.3. The symbol type represents the Ekman number (crosses denote
E = 10−4, circles denote E = 10−5 and plus signs denote E = 10−6); the symbol colour
represents the stability of the solution obtained (blue denotes a steady state solution,
red denotes a time dependent solution and green denotes a periodic solution).

For all models, the maximum power was found at long wavelengths (the lowest l), which231

generally exceeded the power in the shortest wavelengths (high l) by a large amount: at232

least two, though usually four or five, orders of magnitude.233

Fig. 1 is a stability diagram showing regions of parameter space resulting in steady234

and unsteady solutions. The figure shows the transition between high B and low S235

models, which are unsteady, and higher S models, which produce a steady state. One236

periodic model was obtained at the boundary between the steady and unsteady regions237

of parameter space. In the remainder of this work, we focus our attention upon the238

steady-state regime; time-dependent models are the subject of a future paper.239

240

3. Results241

Fig. 2 shows the temperature perturbations in the equatorial plane, denoted T ∗
f , for242

models at E = 10−4 and a range of B and S values. Note that in the remainder of this243
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text, we use T ∗
f (the fluctuating part of the temperature) as a proxy for T ∗

1 defined in244

eq. (2.1). To calculate the quantity T ∗
f , the Y 0

0 spherical harmonic component of the245

total temperature T ∗ has been removed, which includes all of T ∗
0 and also the mean246

of T ∗
1 . Therefore, T

∗
f and T ∗

1 differ in that differ in that the former is zero mean and247

the latter is not. Figs 3 and 4 show the radial and azimuthal velocity components, u∗
r248

and u∗
φ, for the same models. At low B and S, the temperature fluctuations are large-249

scale with a Y 2
2 spatial pattern locked to the applied heat flux pattern on the outer250

boundary and penetrating through the whole shell depth. The two lobes of negative251

temperature (blue) correspond to regions of high outward heat flux and the two lobes252

of positive temperature (red) correspond to regions of low outward heat flux. Zeroes of253

T ∗
f (at φ ≈ π/4, 3π/4, 5π/4, 7π/4) correspond to locations of the outer boundary heat254

flux changing sign. The radial velocity is dominated by large-scale convection cells that255

occupy the whole shell, with two upwellings and two downwellings present, and the peak256

velocity amplitudes occur at approximately half the shell radius. The lateral locations of257

these maxima and minima approximately correspond to locations of T ∗
f = 0. In azimuthal258

velocity, locations of diverging (converging) lobes of opposite sign correspond to locations259

of upwellings (downwellings) of radial flow and T ∗
f = 0.260

As the stratification parameter (S) increases, temperature perturbations and flow261

magnitudes decrease and the dynamics become concentrated towards the outer boundary262

rather than occupying the entire shell thickness. Radial flow cells begin to elongate263

near the inner boundary, and high velocity magnitudes are concentrated near the outer264

boundary rather than the inner boundary. In u∗
φ, inner and outer cells of the same polarity265

begin to join together through tails trailing from the outermost cells, with the inner cells266

decreasing in amplitude. Radial flow is strongly suppressed with increasing S, which is267

expected because stratification does not permit large radial velocities. Azimuthal flow is268
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only weakly suppressed with increasing stratification as horizontal flows are permitted269

within a stably stratified layer. At high S, all flow becomes confined to a thin shear layer270

of thickness δ∗ beneath the outer boundary (hereafter referred to as the ‘penetration271

depth’ into the fluid).272

As B increases, temperature perturbations decrease and flow magnitudes increase.273

This is a consequence of the fixed heat flux outer boundary condition; increasing the274

buoyancy produces stronger flows that better homogenise the temperature, resulting in275

velocity increasing with B while temperature perturbations decrease (e.g. Otero et al.276

2002; Mound & Davies 2017). Flows are phase shifted so that upwellings (and diverging277

u∗
φ) and downwellings (and converging u∗

φ) are now locked to the boundary pattern itself278

rather to locations of heat flux changing sign. Upwellings (downwellings) are beneath279

high (low) boundary heat flow regions. At low S and increasing B (e.g. figs 2–4, a–c),280

temperature and flow patterns are strikingly different from models at other parameters.281

Downwellings become increasingly faster and much narrower in azimuth with increasing282

B, though still occupying the whole shell radius, whilst the upwellings remain broad and283

low amplitude. This pattern of slow, broad upwellings and fast, narrow downwellings in284

the presence of lateral boundary anomalies was also obtained in e.g. Willis et al. (2007);285

Sreenivasan & Gubbins (2011). At higher S, upwellings and downwellings are of similar286

lateral extent and dynamics are confined to a thin shear layer whose thickness decreases287

with increasing S and B.288

Fig. 5 shows u∗
r (left) and u∗

φ (middle) and T ∗
f (right) in a meridional plane for models289

run at E = 10−4 and B = 1 for a range of stratification parameters (S). At low290

S, dynamics are dominated by large-scale features that are aligned with the rotation291

axis. There is little variation parallel to the z-axis, as expected in a rapidly rotating292

system from the Taylor-Proudman theorem. As stratification increases, the dynamics are293
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(a) B = 1, S = 0.1 (b) B = 10, S = 0.1 (c) B = 100, S = 0.1

(d) B = 1, S = 10 (e) B = 10, S = 10 (f) B = 100, S = 10

(g) B = 1, S = 100 (h) B = 10, S = 100 (i) B = 100, S = 100

(j) B = 1, S = 1000 (k) B = 10, S = 1000 (l) B = 100, S = 1000

Figure 2: Equatorial plots of T ∗
f for models at E = 10−4 and varying S (increasing from

top to bottom) and B (increasing from left to right). Red indicates positive values and
blue indicates negative values. Note the different colour scales. Locations of high (H) and
low (L) outward heat flux are shown on the top left.
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(a) B = 1, S = 0.1 (b) B = 10, S = 0.1 (c) B = 100, S = 0.1

(d) B = 1, S = 10 (e) B = 10, S = 10 (f) B = 100, S = 10

(g) B = 1, S = 100 (h) B = 10, S = 100 (i) B = 100, S = 100

(j) B = 1, S = 1000 (k) B = 10, S = 1000 (l) B = 100, S = 1000

Figure 3: Equatorial plots of u∗
r for models at E = 10−4 and varying S (increasing from

top to bottom) and B (increasing from left to right). Red indicates positive values and
blue indicates negative values. Note the different colour scales. Locations of high (H) and
low (L) outward heat flux are shown on the top left.
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(a) B = 1, S = 0.1 (b) B = 10, S = 0.1 (c) B = 100, S = 0.1

(d) B = 1, S = 10 (e) B = 10, S = 10 (f) B = 100, S = 10

(g) B = 1, S = 100 (h) B = 10, S = 100 (i) B = 100, S = 100

(j) B = 1, S = 1000 (k) B = 10, S = 1000 (l) B = 100, S = 1000

Figure 4: Equatorial plots of u∗
φ for models at E = 10−4 and varying S (increasing from

top to bottom) and B (increasing from left to right). Red indicates positive values and
blue indicates negative values. Note the different colour scales. Locations of high (H) and
low (L) outward heat flux are shown on the top left.
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confined to the shear layer at the top of the shell, as seen in figures 2 to 4, which means294

that significant z variations now occur in the models on the order of the penetration295

depth, δ∗.296

Fig. 6 shows 〈u∗
r〉v, 〈u∗

φ〉v, 〈v∗θ〉v and 〈T ∗
f 〉v, where the angular brackets denote the297

magnitude averaged over the shell volume V such that, for example, 〈u∗
r〉v =

∫

|u∗
r |dV ,298

and likewise for vector quantities. We define a similar operator for the integral over299

a surface S of radius r such that 〈u∗
r〉s = 1

S

∫

|u∗
r |dS. We adopt an average over the300

entire domain, rather than only the shear layer volume, because it is difficult to estimate301

the exact location of the shear layer edge. We assume that the quantities of interest302

are dominated by their values within the shear layer, with negligible contribution from303

elsewhere in the domain, such that our volume-averaged quantities are representative of304

the shear layer volume-average. Furthermore, we use the average of the modulus because305

integration over solid angle would otherwise result in large scale cancellation due to306

the spherical symmetry of the problem. The volume-averaged quantities show a clear307

transition from the low stratification (S) regime, in which dynamics appear to be related308

to B and E only, and the high S regime, in which stratification dominates the dynamics309

and the quantities obey power law relationships in both S and B.310

We use the location of the peak in 〈u∗
r〉s as a function of radius to estimate the311

penetration depth, δ∗, for each model. We define the radius of maximum 〈u∗
r〉s as rmax312

and calculate the penetration depth as follows313

δ∗ = ro − rmax. (3.1)

Radial velocity is used to estimate the penetration depth because it has only a single314

peak that is located centrally within the shear layer, whereas the horizontal components315

typically have several peaks, with the highest value close to the outer boundary in our316
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(a) S = 0.1 (b) S = 0.1 (c) S = 0.1

(d) S = 10 (e) S = 10 (f) S = 10

(g) S = 100 (h) S = 100 (i) S = 100

(j) S = 1000 (k) S = 1000 (l) S = 1000

Figure 5: Meridional plots of u∗
r (left), u

∗
θ (middle) and T ∗

f (right) for models at E = 10−4,
B = 1 and varying S (increasing from top to bottom). Red indicates positive values and
blue indicates negative values.
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Figure 6: Volume-averaged values of the absolute (a) radial velocity, 〈u∗
r〉v, (b) meridional

velocity, 〈u∗
θ〉v, (c) azimuthal velocity, 〈u∗

φ〉v and (d) temperature perturbations, 〈T ∗
f 〉v,

as a function of the stratification parameter, S, for all steady models. Symbol shapes
represent the Ekman number, E, and colours represent the buoyancy parameter, B. The
black line in panel (a) is the power law best fit for all models at S > 1.

S > 1 models, see the equatorial sections in figs 3 and 4, and fig. 7 for a representative317

example of radial velocity profiles. Note that the 〈〉s operation averages any longitudinal318

dependence of u∗
r , as seen in fig. 5 for example. Fig. 8 shows that δ∗ has different behaviour319
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Figure 7: Components of velocity as a function of radius for a model run at E = 10−4,
B = 100 and S = 1000. The line colour denotes the flow component (blue for radial, red
for meridional and green for azimuthal). The black arrow represents the width used as
an estimate for the penetration depth, δ∗, in this model (calculated according to (3.1)).

in the two stratification (S) regimes, with δ∗ on the order of the shell thickness at low S320

and obeying power law relationships in S and B.321
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10−3 10−2 10−1 100 101 102 103 104

S

10−2

10−1

100
δ
∗

Figure 8: Estimates of the penetration depth δ∗, as a function of the stratification
parameter, S, for all steady models. Symbol shapes represent the Ekman number, E,
and colours represent the buoyancy parameter, B. The key is given in fig 6a.

4. Scaling analysis322

In this section, our aim is to recover power laws of the form323

f = SaBb (4.1)

from the governing equations to express the velocity components, temperature fluctua-324

tions and penetration depth (denoted f above) as functions of the control parameters325

S and B (and, equivalently, S, RaH and E), where coefficients a and b are to be326

determined. We then verify these predicted scalings for our models using the volume327

averaged quantities introduced above, and finally we extrapolate the power laws to328

planetary core conditions.329
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4.1. High stratification regime330

At high stratification parameter, S, flow is confined to a shear layer of thickness δ∗ at331

the top of the shell and this penetration depth decreases with increasing stratification.332

Within the layer, flow tends to be in long, thin lobes with relatively little lateral variation,333

which suggests that the radial gradients of velocity ( ∂
∂r∗ ) are larger than the horizontal334

( ∂
∂θ and ∂

∂φ ) gradients. Our dimensionless horizontal lengths are O(1) and the relevant335

radial length scale is O(δ∗) so that the continuity equation (∇ · u) gives a relationship336

between the velocity components337

u∗
r ∼ δ∗u∗

θ ∼ δ∗u∗
φ, (4.2)

assuming that ∂
∂θ ∼ ∂

∂φ . Adherence of our high S models to this scaling was verified338

using the estimates of δ∗ shown in fig. 8 and volume-averaged velocities 〈u∗
r〉v, 〈u∗

θ〉v339

and 〈u∗
φ〉v shown in fig. 6. These results, summarised in fig. B.1 show clear flattening340

of 〈u∗
r〉v/δ∗〈u∗

h〉v for the highest S models, where 〈u∗
h〉v is the average volume-averaged341

horizontal velocity (= 1

2
[〈u∗

θ〉v + 〈u∗
φ〉v]).342

4.1.1. Vorticity equation balance343

Taking the curl of (2.14) gives the dimensionless vorticity equation for steady flow344

∂u∗

∂z∗
= ∇×B T ∗

1 r
∗ + E∇2

ω
∗, (4.3)

in which pressure does not appear and inertia is assumed small. In this three-term345

balance, we note that the buoyancy term is purely horizontal, and so the radial component346

of the first term must be small except outside the viscous boundary layer. Motivated by347

the observation that the viscous term is large only near the boundaries (fig. B.2), we seek348

a thermal wind balance between the horizontal components of the Coriolis and buoyancy349
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terms, and will show subsequently that the resulting scaling remains consistent for cases350

in which viscosity is also included in the balance.351

We adopt δ∗ as the relevant length scale in the Coriolis term that controls variations352

parallel to the rotation axis at high stratification (see fig. 5), and an O(1) horizontal353

length scale for the buoyancy term since it is determined by the boundary condition.354

The balance is then355

u∗
θ,φ

δ∗
∼ B T ∗

1 . (4.4)

The volume-averaged magnitude of the Coriolis and buoyancy terms, scaled by our356

approximations to those terms using δ∗ and volume-averaged velocities and temperatures357

(∂u
∗

∂z∗
∼ 〈u∗〉v/δ∗ for Coriolis and ∇×B T ∗

1 r
∗ ∼ B 〈T ∗

f 〉v for buoyancy), are plotted for358

all models in figs B.3 and B.4. These ratios are approximately one for all high S models,359

and show little S dependence, indicating that the correct scalings are encapsulated in360

our approximations and that the volume-averaged quantities are suitable diagnostics of361

model output.362

4.1.2. Temperature equation balance363

The dimensionless time-independent temperature equation is364

∇2T ∗
1 − u∗

r

∂T ∗
1

∂r∗
− u∗

θ

r

∂T ∗
1

∂θ
−

u∗
φ

r sin θ

∂T ∗
1

∂φ
− S u∗

rr
∗ = 0. (4.5)

Assuming that diffusion occurs on the length scale of the penetration depth, and that365

the geometric factors of r and sin θ are order unity, leaves366

T ∗
1

δ∗2
− 3

u∗
r

δ∗
T ∗
1 − S u∗

r ≈ 0 (4.6)
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using the scaling for the velocity components of equation (4.2). For two representative367

high S models, (u∗ · ∇)T ∗
1 is small compared to the other terms, fig. B.5. Therefore,368

T ∗
1

δ∗2
∼ S u∗

r . (4.7)

is the appropriate balance. The approximation ∇2T ∗
1 ∼ 〈T ∗

f 〉v/δ∗2 and the term balance369

in the temperature equation described by (4.7) were verified for our high S models, see370

B.6, which shows a clear flattening of
〈T∗

f 〉v

δ∗2 /S 〈u∗
r〉v for higher stratification parameters371

and little dependence on B.372

4.1.3. Power law scalings373

Rearranging (4.7) for δ∗, eliminating u∗
r using (4.2) from the continuity equation and374

substituting B T ∗
1 δ

∗ for horizontal flow (from balancing ∂u∗

∂z∗
with ∇×B T ∗

1 r
∗ in (4.3)),375

results in a scaling for the penetration depth in terms of the control parameters376

δ∗ ∼ (S B)−
1

4 ∼ (S RaH E)−
1

4 . (4.8)

We now postulate that the radial velocity u∗
r depends on S but not B as it is not377

directly forced by the thermal wind; it arises to conserve mass for the horizontal velocity378

components, which are directly forced by the boundary anomalies. Then379

u∗
r ∼ Sa, (4.9)

and the horizontal flow components scale as380

u∗
θ,φ ∼ Sa+ 1

4B
1

4 , (4.10)

from (4.2). The temperature perturbations depend on both S and B381

T ∗
1 ∼ Sb Bc (4.11)
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where the exponents b and c are to be determined. From (4.7) and (4.8),382

Sb−aBc ∼ T ∗
1

u∗
r

∼ δ∗2S ∼ S
1

2B− 1

2 , (4.12)

substituting (4.9) and (4.11), from which we deduce c = − 1

2
and b − a = 1

2
. Another383

assumption is required in order to proceed further with the analysis. We now assume384

that at sufficiently high β, the boundary anomalies become unimportant so that the385

temperature perturbations are independent of H. Then, T ∗
1 can only depend on the386

product S B and, since the power of B is − 1

2
, the power of S (=b) must also be − 1

2
. We387

have now determined the exponents for the temperature fluctuations388

T ∗
1 ∼ (SB)−

1

2 ∼ (SRaHE)−
1

2 , (4.13)

radial flow389

u∗
r ∼ S−1, (4.14)

and horizontal flow components390

u∗
θ,φ ∼ S− 3

4B
1

4 ∼ S− 3

4 Ra
1

4

H E
1

4 . (4.15)

4.1.4. Empirical fit to models391

In order to test the scaling laws obtained in the previous section, we computed best fits392

to our models using a least squares inversion of the estimates of the penetration depth393

and the volume-averaged velocities and temperature perturbations. We seek power laws394

of the form395

ỹ = ǫSχBζ (4.16)

where the ‘observations’ y are model outputs, and the predictions ỹ are calculated396

from the control parameters S and B, given the specified functional form. We take the397
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Quantity Prediction Fit to models Fit R2

u∗

r S−1 S−1.01B0.02 0.98

u∗

φ S−
3

4B
1

4 S−0.86B0.24 0.97

u∗

θ S−
3

4B
1

4 S−0.82B0.21 0.99

T ∗

1 S−
1

2B−
1

2 S−0.46B−0.46 1.00

δ∗ S−
1

4B−
1

4 S−0.21B−0.22 0.95

Table 1: Scaling analysis and least squares inversion results for all S > 1 models.

logarithm to transform the power law problem into a linear problem such that398

log ỹ = log ǫ+ χ logS + ζ logB (4.17)

and calculate the prefactor ǫ and exponents χ and ζ using a linear least squares inversion.399

A summary of the predicted scaling exponents ((4.8) and (4.13)-(4.15)) and those400

obtained from the least squares fits to all models in the stratification-dominated regime401

(S > 1) is provided in table 1 for comparison. A measure of how well the models are fit402

is given by the R2 values (rounded to two decimal places throughout). The best fitting403

exponents are in good agreement with those obtained in the analysis; see also figs 9a to404

9c.405

4.1.5. The role of viscosity406

Having verified our two-term balance in the vorticity equation, we now address the407

question of whether our scalings are also consistent when considering all three terms.408

The additional viscous term scales as E u∗ l−3
ν , where lν is a relevant length scale yet to409

be determined.410

The assertion that lν = δ leads to lν = δ ∼ E1/2 independent of S, which as figure411

7 demonstrates is not the case as δ has clear empirical S-dependence (see also fig. B.7,412

which shows the ratio of the viscous term to the incorrect scaling E u∗
hδ

∗−3 as a function413

of S for all models). Alternatively, assuming that lν represents a thin boundary layer414
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Figure 9: (a) Volume-averaged meridional velocities, (b) volume-averaged azimuthal
velocities, (c) volume-averaged temperature perturbations and (d) penetration depth
estimates, normalised by the best empirical fit to the buoyancy parameter for all models
with S > 1, as a function of S. Symbol shapes represent the Ekman number, E, and
colours represent the buoyancy parameter, B. The key is given in fig 6a. The solid black
lines show the best fitting power laws for S in the stratification-dominated regime and
the dotted lines show the theoretically predicted S exponents.

(consistent with figure B.2), then the three-term balance determines lν to be415

lν ∼ (E δ∗)
1

3 . (4.18)

Fig. 10 shows that the shear layer thickness (given in (4.8)) and the Ekman layer depth are416

comparable for most of our models, which are therefore are in fact described by a three-417

term (rather than a two-term) balance within the shear layer. The inclusion of viscosity418

within the balance in no way invalidates our analysis of the two-term scaling, but merely419

provides information about the characteristic lengthscale lν at which viscosity becomes420
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Figure 10: The shear layer thickness, δ∗, scaled by the dimensionless Ekman layer
thickness estimated using (4.18) as a function of the stratification parameter, S, for all
steady models. Symbol shapes represent the Ekman number, E, and colours represent
the buoyancy parameter, B. The key is given in fig 6a.

important. Indeed, our derived scalings of the previous sections, confirmed empirically,421

appear to hold independently of the relative size of lν and δ∗. It is worth pointing out the422

physically relevant planetary regime is one in which E ≪ 1 and lν ≪ δ (see also section423

5), and therefore in this limit the two term balance is appropriate for the shear-layer. We424

speculate that there may be a different behavioural regime in which lν ≫ δ∗ for certain425

choices of parameters, when viscosity balances just one other term.426

4.2. Low stratification regime427

At low S, the basic state is one of neutral stability (rather than stratification) and428

the flow occupies the whole shell rather than being concentrated within a thin layer.429

Furthermore, from equation (2.12) it follows also that T ∗
0 ≈ 0 so that T ∗ ≈ T ∗

1 . The430

dynamics of the low-S regime have previously been investigated in Zhang & Gubbins431
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(1992), Gibbons & Gubbins (2000) and Gibbons et al. (2007), but these studies did not432

develop scaling laws as we do here using a much broader range of models in (E,S,B)433

space.434

Within the low-S regime, we consider the energy balance of (2.14) in a steady state, by435

taking the inner product with u∗ and integrating over the volume V . Neither the Coriolis436

force (which is orthogonal to the flow) nor the pressure contributes to the energy equation,437

as the fluid is incompressible and438

∫

V

u∗ · ∇P̂ dV =

∫

V

∇ · (P̂ u∗) dV = 0 (4.19)

because u∗
r = 0 on the boundary. The balance439

B

∫

V

T ∗u∗
rr

∗dV = E

∫

V

(∇× u∗)2dV (4.20)

is then exact.440

Following Shishkina et al. (2016), the temperature equation (2.13) in steady state and441

the limit of no source (S = 0) may be written442

∇ · (u∗T ∗ −∇T ∗) = 0. (4.21)

Integrating over the volume bounded by radii r∗ and ro, with r∗ < ro, and using the443

divergence theorem leads to444

〈u∗
rT

∗ − ∂T ∗

∂r∗
〉 = 0 (4.22)

at any radius r∗, where 〈·〉 denotes integration over all solid angle, and where we have445

used the facts that both u∗
r and 〈∂T∗

∂r∗ 〉 = 〈Y 2
2 〉 = 0 at r∗ = ro. It follows that446

∫

V

T ∗u∗
rr

∗dV =

∫ ro

ri

r∗3〈u∗
rT

∗〉dr∗ = 〈
∫ ro

ri

r∗3
∂T ∗

∂r∗
dr∗〉, (4.23)
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Figure 11: The Reynolds number Re against (B∆T )
1

2 for all low-S models. The black
line shows the best empirical fit to the simulations.

and integrating by parts leads to447

[

〈T ∗〉[r∗3 − 3r∗2 + 6r∗ − 6)
]ro

ri
= A(ro)∆T (4.24)

because T ∗ = 0 on r∗ = ri, where A = r3o−3r2o+6ro−6 is a constant and ∆T = 〈T ∗〉
∣

∣

ro
.448

The exact relation449

BA∆T = E

∫

V

(∇× u∗)2dV (4.25)

then follows. The viscous dissipation term on the right hand side may be estimated as450

(u∗)2 by assuming a viscous boundary layer length scale of E1/2. The resulting scaling451

u∗ ∼
√
B∆T (4.26)

is verified using an empirical fit to the low-S models, which gives Re ∼ (B∆T )0.50452

(R2 = 0.88) and is shown in fig. 11.453

We now need to estimate ∆T , which is not prescribed in models with a fixed heat flux454
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boundary condition, in contrast to those with a fixed temperature boundary condition.455

We consider the thermal dissipation equation, obtained by multiplying equation (2.13)456

with T ∗ and integrating over V :457

∫

V

T ∗∇2T ∗dV =
1

2

∫

V

(u∗ · ∇)T ∗2dV = 0 (4.27)

since u∗
r is zero on the boundaries, and so458

〈T ∗ ∂T
∗

∂r∗
〉
∣

∣

r∗=ro
=

∫

V

∇ · (T ∗∇T ∗)dV = −
∫

V

(∇T ∗)2dV (4.28)

because T ∗ = 0 on the lower radial boundary. Since ∂T∗

∂r∗ is prescribed as Y 2
2 on ro, this459

suggests the leftmost term is comparable to ∆T . In the rightmost term, we estimate460

∇T ∗ ∼ ∆T , which is reasonable if the majority of the dissipation occurs on the lateral461

length scale of O(1). Assuming that most of the dissipation occurs over a radial length462

scale LT at the top of the shell, the whole term is estimated to be (∆T )2LT . Thus the463

balance in (4.28) is ∆T ∼ (∆T )2 LT or464

LT ∼ ∆T−1. (4.29)

Furthermore, balancing advection (which is dominated by horizontal gradients with465

length scales of O(1)) and diffusion in the temperature equation (2.13) over the length466

scale LT leads to u∗ ∼ L−2

T . Hence ∆T ∼ (u∗)1/2 and it therefore follows that467

u∗ ∼ B2/3 (4.30)

and468

∆T ∼ B1/3. (4.31)

The scaling for u∗ is confirmed with an empirical fit to the low-S simulations, which gives469
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Figure 12: The Reynolds number Re against the buoyancy parameter B for all low-S
models. The solid black line shows the best empirical fit to the simulations and the
dotted line shows the theoretically predicted exponent from (4.30).

Re ∼ B0.72 (R2 = 0.98) and is shown in fig 12. It is worth noting that the exponent (of470

2/3) in the scaling for u∗ is higher than any of those reported in table 1 of Shishkina et al.471

(2016) for the related study of plane layer horizontal convection with lateral temperature472

variations on the lower boundary.473

4.3. Effects of the shell aspect ratio474

We have used an aspect ratio η = 0.35 in all previous models, however as we would475

like to apply the derived scaling laws to other shells with different aspect ratios, we476

now consider whether varying the geometry influences the results. To this end, we have477

run simulations with η = 0.01 using the parameters listed in table A.4 and obtained478

steady-state solutions. It is apparent that the overall dynamics of the low aspect ratio479

models is very similar to the previously presented models, fig. C.1. We again have two480

stratification regimes, a low S regime in which dynamics occupy the entire shell and481
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buoyancy is the dominant effect, and a high S regime in which stratification dominates482

and dynamics are concentrated towards the outer boundary. In both regimes, the phase483

of the velocity and temperature lobes with respect to the boundary anomaly pattern is484

the same as in the previously discussed models. We have computed the best empirical fits485

to the high S models in this geometry (shown in fig. 13) and confirm that these models486

obey the same scaling laws as derived in 4.1.3. Note that the values of the quantities487

shown in figures C.1 and 13, are different from those shown in previous sections for the488

same apparent parameter values because the length scales in the parameters S and B489

differ because d = ro − ri = ro(1− η), and averaging takes place over different volumes,490

meaning that for example, B = 1 and St = 1000 models at η = 0.35 and η = 0.01 are not491

directly comparable without accounting for geometric factors. It is worth remarking that492

the theoretical scaling for the horizontal velocity components (which scale as ∼ S−3/4)493

actually agree slightly better with the numerics in the quasi-full sphere than the spherical494

shell calculations, indicating a possible weak dependence on ri for such quantities.495

5. Application of scaling laws to planetary cores496

In order to apply our power law scalings to a planet, we must estimate S and B for497

its outer core. We write β and H in terms of temperature gradients at the CMB498

β d =
dTad

dr

∣

∣

∣

∣

∣

ro

− dTc

dr

∣

∣

∣

∣

∣

ro

(5.1)

where Tad is the adiabatic temperature and Tc is the core temperature at the CMB, and499

H =
dT ′

dr

∣

∣

∣

∣

∣

ro

=
q′

kc
, (5.2)

where T ′ (q′) is the anomalous temperature (heat flow per unit area) on the core-side of500

the CMB. In equation (5.2), we have used the continuity of heat-flux across the CMB501
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Figure 13: (a) Volume-averaged radial velocities, (b) volume-averaged azimuthal
velocities, (c) volume-averaged temperature perturbations and (d) penetration depth
estimates, normalised by the best empirical fit to the buoyancy parameter for all models
with η = 0.01 and S > 1, as a function of S. The R2 values for the fits are, respectively,
0.95, 0.99, 1.00 and 0.99. Symbol shapes represent the Ekman number, E, and colours
represent the buoyancy parameter, B. The black line shows the best fitting power law in
S for models at S > 1.

along with its estimated value, q′, on the mantle-side; kc is the thermal conductivity of502

the core. The gradients in (5.1) are evaluated using503

dTad

dr

∣

∣

∣

∣

∣

ro

=
αT gcTc

Cp
(5.3)

and504

dTc

dr

∣

∣

∣

∣

∣

ro

=
Qcmb

Acmbkc
(5.4)

where gc is the acceleration due to gravity at the CMB, Cp is the core specific heat, Qcmb505

is the total CMB heat flux, Acmb is the area of the CMB (=4πr2o) and kc is the core506
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thermal conductivity. For the Earth’s core, we have taken a range of plausible values from507

the literature, given in table 2, and calculated a range of possible S and B parameters.508

Estimating the stratification parameter (S = βd/H) is particularly challenging due to509

large uncertainties on H, the magnitude of lateral variations in CMB heat flux, whose510

estimate derives from relating observed shear-wave anomalies with either thermal or511

chemical hetereogeneities. If the anomalies are attributed predominantly to thermal512

differences in the mantle, then the value of q′ from table 2 leads to S values of O(10−6)513

to O(10−4) and B values of O(1017), placing the core in a regime in which the stratified514

layer is likely penetrated by unsteady boundary-driven flow.515

On the other hand, if the mantle hetereogeneities are attributed instead to chemical516

anomalies (e.g. Garnero et al. 2016; Lau et al. 2017), then H could be much smaller517

than the above estimate, rendering S plausibly O(1) or above, placing the core in the518

stratification-dominated regime. Taking S = 1 for illustration with our estimates of B,519

applying the high S scalings (4.13) to (4.15) gives dimensional temperature perturbations520

of O(10−3 K), radial velocities of O(10−12 ms−1), horizontal velocities of O(10−7 ms−1)521

and penetration depths of around 70m, much thicker than the estimated viscosity522

boundary layer in Earth’s core of about 1m (e.g. Livermore et al. 2016) associated523

with E = 10−15. A similar analysis for Ganymede’s core, using values from table 1524

of Rückriemen et al. (2015) and estimating αT = 5.8 × 10−5 based on Williams &525

Nimmo (2004), gives B values of O(1013) and S values of O(10−1) to O(1), assuming526

the mantle hetereogeneities are attributed to thermal anomalies. As for the Earth, if the527

anomalies are predominantly due to chemical sources, these S values are significantly528

underestimated and Ganymede’s core will be in the stratified regime.529

For comparison with other works on stratified fluids, it is of interest to calculate the530
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Brunt-Väisälä frequency, N , defined by531

N2 = − g

ρ0

∂ρ′

∂r
(5.5)

both for our models and for the planetary interiors considered. Non-dimensionalising532

with the same scalings as used previously gives the ratio of the Brunt-Väisälä frequency533

to the rotation rate534

N

2Ω
=

√

B E

Pr

∂T ∗

∂r∗
=

√

B E S

Pr
, (5.6)

assuming ∂T∗

∂r∗ ≈ ∂T∗

0

∂r∗ due to the small magnitudes of the temperature perturbations.535

Values of this ratio for our simulations vary between O(10−6) and O(10), given in536

tables A.1 to A.4 in appendix A. Based on our B−S estimates for Earth and Ganymede,537

along with E and Pr estimates from table 1 of Schaeffer et al. (2017) for Earth (E =538

10−15, Pr = 0.1− 10) and table 4 of Schubert & Soderlund (2011) for Ganymede (E =539

10−13, Pr = 0.1), we estimate their Brunt-Väisälä ratios of O(1) for some parameter540

combinations, consistent with other estimates using different methods (e.g. Buffett 2014).541

Ignoring the dependence on E, it is worth remarking that the relationship between N and542

the product S B may explain why this quantity is so important in our derived theoretical543

scalings, with δ∗ ∼ N−1/4 and T ∗
1 ∼ N−1/2.544
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Parameter Symbol Value Reference

Inner core radius ri 1221 km Dziewonski & Anderson (1981)

Outer core radius ro 3480 km Dziewonski & Anderson (1981)

Shell thickness d (= ro − ri) 2259 km Dziewonski & Anderson (1981)

Gravitational acceleration constant at CMB gc 10.68ms−2 Olson (2009)

Angular velocity of rotation Ω 7.272× 10−5 s−1 Olson (2009)

Coefficient of thermal expansion αT 1.5× 10−5 K−1 Gubbins et al. (2003)

Core thermal diffusivity κ 1.25× 10−5 m2 s−1 Pozzo et al. (2012)

Core thermal conductivity kc 100Wm−1 K−1 Pozzo et al. (2013)

Lower mantle thermal conductivity km 10Wm−1 K−1 Ammann et al. (2014)

Core specific heat capacity Cp 728 J kg−1 K−1 Gubbins et al. (2003)

CMB temperature Tc 4000K Olson (2009)

Total CMB heat flow Qcmb 5TW to 17TW Lay et al. (2008); Nimmo (2015)

Total adiabatic heat flow Qad 14TW to 16TW Pozzo et al. (2012)

Peak-to-peak anomalous CMB heat flow q′ 100mWm−2 to 300mWm−2 Nakagawa & Tackley (2013)

Table 2: Outer core and lower mantle physical, thermodynamics and transport properties used to estimate S and B for the Earth.
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6. Discussion and conclusions545

We have investigated a thermally stratified fluid in a rotating spherical shell subject546

to a laterally varying heat flux pattern on the outer boundary. Converged, steady-state547

numerical simulations were obtained for Pr = 1, E = 10−6 to E = 10−3, S = 10−3 to548

S = 104 and B = 10−2 to B = 106. For some parameters, we obtained time-dependent549

solutions, which were not analysed in this study, however we were able to map the stability550

domain in parameter space in greater detail than any previous study. The steady-state551

solutions separate into two distinct dynamical regimes corresponding to low stratification552

parameter (S), in which buoyancy effects dominate the dynamics, and high S, in which553

stratification effects dominate.554

In the low S regime, the inhomogeneous thermal boundary condition drives flows that555

are locked to the boundary pattern and penetrate most of the shell thickness. We have556

developed scaling relationships for the characteristic velocity Re and the temperature557

drop ∆T as a function of the buoyancy parameter B. In the high S regime, stratification558

strongly suppresses radial flow but horizontal flow is less affected. All flow is concentrated559

toward the outer boundary, resulting in shear layers whose thickness decreases with560

increasing B and S. This layer thickness represents the depth to which the boundary561

driven flows penetrate the stratified fluid. We have developed scaling relations for the562

velocity components, temperature perturbations and penetration depth as functions of563

the control parameters E, B and S; these are summarised in table 1. We have used these564

scaling relationships to extrapolate to Earth’s core using a range of plausible parameters.565

If the Earth’s mantle heterogeneities are attributed to thermal anomalies, the outer core566

is in the buoyancy-dominated regime and no steady-state solutions exist. In that case,567

it is likely that unsteady boundary-driven flows can penetrate the stratified layer. On568

the other land, if such heterogeneities are linked to chemical anomalies (e.g. Garnero569
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et al. 2016; Lau et al. 2017), the much reduced heat-flux boundary condition would likely570

place Earth’s core in the stratification-dominated regime where penetration from steady571

boundary-driven flows is not possible. In that case, the shear layer thickness (i.e. the572

depth of penetration of boundary driven flows through the core) is very small (on the573

order of a few tens of metres) compared to the stable layer thickness and the predicted574

velocities are several orders of magnitude smaller than those inferred from inversions575

of geomagnetic secular variation (e.g. Holme 2015). Since there is no reason why the576

‘observed’ flows have to be generated (even in part) by mantle heterogeneities, the high577

S scalings suggest that we observe general convective flow rather than boundary-driven578

flow. Furthermore, it seems unlikely that chemical anomalies in the lowermost mantle579

are able to directly affect the magnetic field that is generated inside the core (by creating580

persistent non-zonal features for example) through steady boundary-driven flows.581

However, the relative contributions of thermal and chemical anomalies to the bound-582

ary forcing is poorly constrained for Earth and not at all for other bodies (including583

Ganymede), hence the difficulty in estimatingH and the resulting uncertainty as to which584

stratification regime their outer cores belong. Interestingly, this means that independent585

evidence of penetrating flow within the stable layer, for example through the magnetic586

signature of upwellings and patches of reversed magnetic flux (Gubbins 2007; Metman587

et al. 2018), may be able to discriminate between these two regimes and therefore588

offer evidence that constrains the heat-flux on the boundary, and therefore mantle589

composition.590

Finally, we have considered steady-state solutions in entirely stratified spherical shells591

with no convection or magnetic field generation; further work is needed to investigate the592

effects of adding these dynamics to our simplified models. The fluid dynamics problem593

studied here should be relevant in the uppermost region of the outer core, where no594
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convection is expected due to stratification. Yet, it is possible that at sufficiently high595

B, models at S = 1 (the lowest stratification parameter required for our high S scalings596

to be applicable, and a plausible value for Earth’s outer core) will be unsteady rather597

than steady. This transition may well occur at a B lower than our estimates for Earth’s598

core, however, computational limitations have prevented us from reaching this transition599

and our simulations remain many orders of magnitude from Earth estimates. Since our600

systematic parameter study has revealed the different dynamical regimes that exist in601

the absence of internal convection, future studies will be able to benchmark against602

the present results and also target particular regions of parameter space to make most603

effective use of available computational resources.604
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Appendix A. Summary tables774

Summary tables of the model resolution, control parameters and selected output775

parameters for all simulations. In all cases Pr = 1 and the shell aspect ratio η = 0.35776

for models in tables A.1 to A.3 and η = 0.01 for models in table A.4. Definitions for777

B, S and RaH are given in 2.1. The quantity N/2Ω, defined in (5.6), is the ratio of the778

Brunt-Väisälä frequency, N , to the rotation rate Ω. The variable nr is the number of779

radial points within the fluid shell, lmax is the maximum degree of the spherical harmonic780

expansion (=mmax, the maximum order of the expansion). Since Re = Pe = 〈u∗〉v, the781

Rossby number is782

Ro = 2 Re E = 2〈u∗〉v E. (A 1)

B S RaH nr lmax
N
2Ω Re Ro State

0.01 0.001 102 32 32 3.16×10−5 0.03 6.30×10−6 steady

0.1 0.001 103 32 32 1.00×10−4 0.08 1.58×10−5 steady
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1 0.001 104 48 48 3.16×10−4 0.72 1.44×10−4 steady

1 0.01 104 60 48 1.00×10−3 0.72 1.44×10−4 steady

1 0.1 104 60 48 3.16×10−3 0.72 1.43×10−4 steady

1 1 104 60 48 1.00×10−2 0.69 1.38×10−4 steady

1 10 104 60 48 3.16×10−2 0.41 8.14×10−5 steady

1 100 104 60 48 1.00×10−1 0.08 1.68×10−5 steady

1 1000 104 60 48 3.16×10−1 0.02 3.23×10−6 steady

1 10000 104 60 48 1.00 0.003 5.69×10−7 steady

5 0.001 5× 104 48 48 7.10×10−4 3.11 6.22×10−4 steady

5 0.01 5× 104 48 48 2.24×10−3 3.11 6.22×10−4 steady

5 0.1 5× 104 48 48 7.10×10−3 3.06 6.13×10−4 steady

5 1 5× 104 48 48 2.24×10−2 2.49 4.98×10−4 steady

10 0.001 105 60 48 1.00×10−3 5.22 1.04×10−3 steady

10 0.01 105 48 48 3.16×10−3 5.22 1.04×10−3 steady

10 0.1 105 48 48 1.00×10−2 5.01 1.01×10−3 steady

10 1 105 60 48 3.16×10−2 3.55 7.10×10−4 steady

10 10 105 60 48 1.00×10−1 0.84 1.69×10−4 steady

10 100 105 60 48 3.16×10−1 0.16 3.24×10−5 steady

10 1000 105 60 48 1.00 0.03 5.70×10−6 steady

10 10000 105 80 64 3.16 0.005 9.58×10−7 steady

100 0.001 106 96 96 3.16×10−3 17.45 3.49×10−3 steady

100 0.01 106 96 96 1.00×10−2 17.25 3.45×10−3 steady

100 0.1 106 80 64 3.16×10−2 15.21 3.04×10−3 steady

100 1 106 80 64 1.00×10−1 8.50 1.70×10−3 steady

100 10 106 80 64 3.16×10−1 1.66 3.33×10−4 steady
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100 100 106 80 64 1.00 0.29 5.76×10−5 steady

100 10000 106 224 224 10.0 0.008 1.60×10−6 steady

1000 0.001 107 256 256 unsteady

1000 0.01 107 96 96 unsteady

1000 0.1 107 160 160 periodic

1000 1 107 96 96 3.16×10−1 27.99 5.60×10−3 steady

1000 10 107 96 96 1.00 2.86 5.72×10−4 steady

1000 100 107 64 64 3.16 0.48 9.59×10−5 steady

1000 1000 107 192 192 10.0 0.08 1.60×10−5 steady

1000 10000 107 224 224 31.6 0.01 2.70×10−6 steady

10000 1 108 64 64 1.00 39.73 7.95×10−3 steady

10000 10 108 64 64 3.16 4.79 9.58×10−4 steady

10000 100 108 128 128 10.0 0.80 1.60×10−4 steady

10000 1000 108 64 64 31.6 0.14 2.70×10−5 steady

100000 1 109 64 64 3.16 52.57 1.05×10−2 steady

1000000 1 1010 96 96 10.0 97.37 1.95×10−2 steady

Table A.1: Summary of all numerical simulations with E = 10−4.

B S RaH nr lmax
N
2Ω Re Ro State

1 0.001 105 48 48 1.00×10−4 0.75 1.49×10−5 steady

1 0.01 105 48 48 3.16×10−4 0.75 1.49×10−5 steady

1 0.1 105 48 48 1.00×10−3 0.75 1.49×10−5 steady

1 1 105 48 48 3.16×10−3 0.73 1.46×10−5 steady

1 10 105 64 64 1.00×10−2 0.45 9.02×10−6 steady

1 100 105 64 64 3.16×10−2 0.10 2.07×10−6 steady
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1 1000 105 64 64 0.1 0.02 4.51×10−7 steady

10 0.001 106 48 48 3.16×10−4 5.49 1.10×10−4 steady

10 1 106 48 48 1.00×10−2 3.96 7.92×10−5 steady

10 10 106 64 64 3.16×10−2 1.04 2.07×10−5 steady

10 100 106 64 64 1.00×10−1 0.23 4.51×10−6 steady

10 1000 106 64 64 3.16×10−1 0.05 9.12×10−7 steady

100 0.001 107 48 48 1.00×10−3 20.74 4.15×10−4 steady

100 0.01 107 96 96 3.16×10−3 20.57 4.11×10−4 steady

100 0.1 107 96 96 1.00×10−2 18.43 3.69×10−4 steady

100 1 107 48 48 3.16×10−2 10.20 2.04×10−4 steady

100 10 107 96 96 1.00×10−1 2.37 4.75×10−5 steady

100 100 107 96 96 3.16×10−1 0.47 9.35×10−6 steady

100 10000 107 192 192 3.16 0.02 3.10×10−7 steady

1000 0.01 108 160 160 unsteady

1000 0.1 108 128 128 unsteady

1000 1 108 128 128 1.00×10−1 43.64 8.73×10−4 steady

1000 10 108 128 128 3.16×10−1 6.00 1.20×10−4 steady

1000 100 108 128 128 1.00 0.87 1.75×10−5 steady

10000 0.01 109 128 128 unsteady

10000 0.1 109 128 128 unsteady

10000 1 109 128 128 3.16×10−1 218.25 4.36×10−3 steady

10000 10 109 128 128 10.0 10.36 2.07×10−4 steady

10000 100 109 128 128 3.16 1.55 3.10×10−5 steady

100000 1 1010 64 64 1.00 420.48 8.41×10−3 steady
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Table A.2: Summary of all numerical simulations with E = 10−5.

B S RaH nr lmax
N
2Ω Re Ro State

10 0.001 107 96 96 1.00×10−4 5.57 1.11×10−5 steady

10 0.01 107 96 96 3.16×10−4 5.56 1.11×10−5 steady

10 0.1 107 96 96 1.00×10−3 5.54 1.11×10−5 steady

10 1 107 96 96 3.16×10−3 4.17 8.34×10−6 steady

10 10 107 96 96 1.00×10−2 1.13 2.25×10−6 steady

10 100 107 192 192 3.16×10−2 0.27 5.33×10−7 steady

100 0.001 108 128 128 3.16×10−4 22.69 4.54×10−5 steady

100 0.01 108 128 128 1.00×10−3 22.37 4.47×10−5 steady

100 0.1 108 128 128 3.16×10−3 20.04 4.01×10−5 steady

100 1 108 96 96 1.00×10−2 11.43 2.29×10−5 steady

100 10 108 96 96 3.16×10−2 2.81 5.26×10−7 steady

1000 0.1 109 160 160 unsteady

1000 10 109 96 96 1.00×10−1 9.91 1.98×10−5 steady

1000 100 109 224 224 3.16×10−1 1.34 2.68×10−6 steady

Table A.3: Summary of all numerical simulations with E = 10−6.

E B S RaH nr lmax
N
2Ω Re Ro

10−4 1 0.001 10000 48 48 3.16×10−4 0.300872 0.601744×10−4

10−4 1 1 10000 48 48 1.00×10−2 0.295070 0.590139×10−4

10−4 1 10 10000 48 48 3.16×10−2 0.217627 0.435254×10−4

10−4 1 100 10000 48 48 1.00×10−1 0.064906 0.129813×10−4
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10−4 1 1000 10000 48 48 3.16×10−1 0.013037 0.260743×10−5

10−4 10 1 10000 48 48 3.16×10−2 2.243120 0.448624×10−3

10−4 10 10 10000 48 48 1.00×10−2 1.056216 0.211243×10−3

10−4 10 100 10000 48 48 3.16×10−1 0.594569 0.118914×10−3

10−4 100 1 10000 48 48 1.00×10−1 11.922864 0.238457×10−2

10−4 100 10 10000 48 48 3.16×10−1 11.787036 0.235741×10−2

10−4 100 100 10000 48 48 1.00 0.243352 0.486704×10−4

10−4 100 1000 10000 48 48 3.16 0.041440 0.828798×10−5

Table A.4: Summary of all numerical simulations with E = 10−4 and shell aspect ratio
η = 0.01.

Appendix B. Scaling analysis figures783

Example figures of the term balances in the vorticity and temperature equations for784

a few representative high and low S models. These figures are used to verify our scaling785

predictions (i.e. that we have used the correct length scales in various terms) and to786

justify only considering certain terms in the governing equation in the scaling analyses,787

as they make clear that the balances we consider are both applicable in our two S regimes,788

appropriately scaled in our analysis and that our volume-averaged model diagnostics are789

appropriate (as we could have chosen other diagnostic outputs from the simulations).790
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Figure B.1: Radial velocity scaled by δ∗〈u∗
h〉v, where 〈u∗

h〉v is the average volume-averaged
horizontal velocity, as a function of the stratification parameter, S, for all steady models.
Symbol shapes represent the Ekman number, E, and colours represent the buoyancy
parameter, B. The key is given in fig 6a.
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(a) B = 1, S = 1000
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(b) B = 1000, S = 1000
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Figure B.2: All terms (denoted by line colour) in the dimensionless vorticity equation
as a function of radius for two representative E = 10−4 models at high stratification
parameter (S = 1000) and (a) B = 1 and (b) B = 1000.
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Figure B.3: Volume-averaged Coriolis term of the vorticity equation (∂u
∗

∂z∗
), scaled by

our approximation to that term (〈u∗〉v/δ∗), as a function of the stratification parameter,
S, for all steady models. Symbol shapes represent the Ekman number, E, and colours
represent the buoyancy parameter, B. The key is given in fig 6a.
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Figure B.4: Volume-averaged buoyancy term of the vorticity equation (∇ × B T ∗
1 r

∗),
scaled by our approximation to that term (B 〈T ∗

f 〉v), as a function of the stratification
parameter, S, for all steady models. Symbol shapes represent the Ekman number, E,
and colours represent the buoyancy parameter, B. The key is given in fig 6a.
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(a) B = 1, S = 1000
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(b) B = 1000, S = 1000
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Figure B.5: All terms (denoted by line colour) in the dimensionless temperature equation
as a function of radius for two representative E = 10−4 models at high stratification
parameter (S = 1000) and (a) B = 1 and (b) B = 1000.
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Figure B.6: Ratio of the two dominant terms in the temperature equation as a function
of the stratification parameter, S, for all steady models. Symbol shapes represent the
Ekman number, E, and colours represent the buoyancy parameter, B. The key is given
in fig 6a.
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Figure B.7: Volume-averaged viscous term of the vorticity equation (E ∇2ω∗), scaled by
the (incorrect) approximation to that term (E u∗

hδ
∗−3), as a function of the stratification

parameter, S, for all steady models. Symbol shapes represent the Ekman number, E, and
colours represent the buoyancy parameter, B. The key is given in fig 6a.
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(a) B = 1, S = 0.01
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(b) B = 100, S = 0.01
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Figure B.8: All terms (denoted by line colour) in the dimensionless vorticity equation as a
function of radius for two representative E = 10−4 models at low stratification parameter
(S = 0.01) and (a) B = 1 and (b) B = 100.
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(a) B = 1, S = 0.01
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(b) B = 100, S = 0.01
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Figure B.9: All terms (denoted by line colour) in the dimensionless temperature equation
as a function of radius for two representative E = 10−4 models at low stratification
parameter (S = 0.01) and (a) B = 1 and (b) B = 100.
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Appendix C. Low shell aspect ratio dynamics791

a: S = 0.001, T ∗
f b: S = 1000, T ∗

f

c: S = 0.001, u∗
r d: S = 1000, u∗

r

e: S = 0.001, u∗
φ f: S = 1000, u∗

φ

Figure C.1: Equatorial plots of T ∗
f (top), u∗

r (middle) and u∗
φ (bottom) for

models with shell aspect ratio η = 0.01 at E = 10−4, B = 1 and S = 0.001
(left) and 1000 (right). Red indicates positive values and blue indicates
negative values. Note the different colour scales. Locations of high (H) and
low (L) outward heat flux are shown on the top left.
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