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An End-to-End Approach to Self-Folding Origami Structures

Byoungkwon An, Shuhei Miyashita, Aaron Ong, Michael T. Tolley,

Martin L. Demaine, Erik D. Demaine, Robert J. Wood and Daniela Rus

Abstract—This paper presents an end-to-end approach to
automate the design and fabrication process for self-folding
origami structures. Self-folding origami structures by uniform
heat are robotic sheets composed of rigid tiles and joint actuators.
When they are exposed to heat, each joint folds into a pre-
programmed angle. Those folding motions transform themselves
into a structure, which can be used as body of 3D origami
robots, including walkers, analog circuits, rotational actuators,
and micro cell grippers. Given a 3D model, the design algorithm
automatically generates a layout printing design of the sheet
form of the structure. The geometric information, such as the
fold angles and the folding sequences, is embedded in the sheet
design. When the sheet is printed and baked in an oven, the sheet
self-folds into the given 3D model. We discuss (1) the design
algorithm generating multiple-step self-folding sheet designs,
(2) verification of the algorithm running in O(n2) time, where n is

the numbers of the vertices, (3) implementation of the algorithm,
and (4) experimental results, several self-folded 3D structures
with up to 55 faces and two sequential folding steps.

Index Terms—Cellular and Modular Robots; Smart Actuators;
Printable Origami Robots; Self-Folding

I. INTRODUCTION

FOlding is a method to transform a device during or after

fabricaiton. The foldings on a structure or a machine can

yield the dimensional transformation of the device (Fig. 1),

such as a two-dimensional sheet of paper folding into a three-

dimensional origami artwork, or the solar panels of a satellite

unfolding on its orbit to make a wide two-dimensional surface

receiving sun light. Folding is widely used for engineering

applications, including space projects [1], [2], soft-robots [3],

micro-scale fabrications [4], [5], and microrobotics [6]–[8].

Folding is also found in nature, for example, in insect

wings [9], leaves [10], [11], and proteins [12].

Self-folding origami structures are robotic sheets composed

of tiles and joint actuators [13], [14]. They are developed to

simplify the folding process of folding-based designed devices.

Each joint actuator holds the neighbor tiles [15]. When the

joint receives a signal, it folds the neighbor tiles into an

angle. These local foldings yield a global transformation of

the sheets [16]. Self-folding origami structures by uniform heat

receive heat as a signal. When the robotic sheet is uniformly

exposed to heat, the actuators fold the sheet into the target
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Fig. 1. Self-folding Stanford Bunny. (Top-left) Input 3D graphic model.
(Top-right) 3D self-folded structure. (Bottom) Frames from the experiment of
self-folding by uniform heating. The time elapsed since exposure to uniform
heating is indicated in the lower-right corner of each frame (in minutes and
seconds).

robotic devices, such as printable robots [17]–[19], sensors

[20], and micro-scale grippers that hold a single cell [21].

Because 2D fabrication processes are used for making 3D self-

folding robots, the process of fabricating complex structures

becomes relatively simple. A self-folding sheet transforms

itself into arbitrary 3D surfacial shapes on-demand. This pro-

cess enables rapid prototyping with relatively lower fabrication

cost.

Folding fabricated robotic sheets into 3D devices is rela-

tively easy and simple because the general controllers and

planners for the sheets have been studied. However, the design

and building process of origami robotic sheets is difficult. This

study aims to develop an automated design and fabrication

process for self-folding origami robots. We explore an end-to-

end approach, including an algorithm and a system that auto-

mates the design and fabrication. Given 3D input models, the

algorithm outputs the layouts of the self-folding origami. By

printing the algorithmically designed layouts, the user builds

robotic sheets. Upon being baked in an oven, these sheets

transform into physical devices (Fig. 2). We also develop a new

method and algorithm to control the multiple-step folding by
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uniform heat. The edges of the sheets have predefined folding

temperatures. This allows us to create 3D devices that require

multiple folding steps, advancing the prior work that supported

only single-step self-folding [22].

Our contributions include the following:

1) a new method for achieving multiple-step self-folding

under uniform heat,

2) a design algorithm that takes a 3D model as an input and

computes layouts of single- or multiple-step self-folding

sheets in O(n2) time, where n is the number of vertices

in the 3D model,

3) an implemented design automation system including the

design algorithm, and

4) demonstration of automatically designed self-folding

sheets. The self-folded models are comprised up to 55

faces, and the sheet is self-folded in up to 2 steps.

The remainder of this paper is organized as follows: Sec-

tion III describes and analyzes its model for self-folding

origami. Section IV describes the design algorithm. Section V

discusses the system implementation. Section VI explores the

experiments. Section VII discusses the lessons learned and

options for future research.

II. RELATED WORK

A. Programmable Matter by Folding

Our prior work introduced universal self-folding devices

called programmable matter by folding [13], [15]. We used

a box-pleated crease pattern, which is a universal crease

pattern [23], to transform a sheet of special material into any

shape composed of O(n) cubes, where n is the length of the

side. Its re-programmability (re-usability), folding planning,

programming methods, and design and programming automa-

tion have been studied theoretically and experimentally [13],

[15], [16].

While general folding theory and algorithms for creating

folding patterns have been studied for decades, design theory

and algorithms for the self-folding origami using a uniform

energy source is a recent direction of research interest. [23]–

[29] introduce various computational origami designs, and

[13], [30] discuss the theoretical and experimental complexity

of folding patterns. This paper introduces a design algorithm

and its verification as well as a compilation-like approach to

automate fabrication of self-folding origami.

B. Self-Folding Materials

The self-folding technique has been developed in a broad

spectrum at the micrometer scale [31], [32], the millimeter

scale [33], and the centimeter scale [34]. There are various

self-folding materials that work with heat [19], [20], [35], [36],

[20], electronics [17], light [37], cells [38], surface tension

[39], and microwaves [40]. Recently, 3D printing technology

has been proposed as an on-demand synthesis method for

self-folding shape memory polymers (SMP) [41], [42]. As a

result, the complexity and scale of the fabricated structures

has increased, and the development of the computational

methods have become more important. In this paper, we

explain the theoretical, system, and experimental aspects of our

computational methods. We develop an algorithm to automate

the design of sheets that will self-fold as a specified geometric

shape. Furthermore, we develop a new method for multiple-

step folding (sequential folding). We implement the algorithms

as a software pipeline. We performed experiments with two

selected self-folding materials reacting to uniform heat from

our prior work [35], [36].

C. Multi-Step Self-Folding

Most origami shapes are made using multiple folding steps.

This process is called sequential folding. For each fold step,

some hinges rotate from their original fold angles to other

fold angles. Multiple-step folding allows to share some space

for the hinge rotations because, after every fold step, the

folding trajectory is cleared for the other hinges’ trajectories.

To control the folding trajectories of self-folding origami

sheets, we introduced a fold planning algorithm [16] that

determines an optimized folding sequence of a paper piece

to achieve a given (or muliple given) origami structures. one

or many desired origami shapes. The multiple-step folding

plan, which the algorithm built, was implemented with a self-

folding sheet [13]. The optimized plan was compiled to a flex-

ible electronic circuit while the fold sequence was manually

controlled with a switch. By transfering energy to selected

folding hinge, the hinge was triggered by the electrically

produced local heat [17], [18]. This paper introduces multiple-

step self-folding origami sheets that fold into users’ desired

shapes with multiple fold steps with no manual intervention.

The self-folding sheets work with uniform heat, no on-board

controllers, and no local heat control.

III. MODELS AND DEFINITIONS

A uniform heat self-folding sheet is defined as a crease

pattern composed of cuts (outlines) and folding edges (hinges),

as shown in Fig 3. Each edge contains a fold angle and folding

group. All the edges of the sheet are controlled using global

signals such as uniform heat. The folding group is identified

by a predefined temperature, and when a folding group signal

is transmitted to a sheet, the edges in the folding group

simultaneously fold themselves. Then, when the signal for the

second folding group is transmitted to the sheet, the edges of

the second group fold. For example, when the uniform heat

temperature surrounding a self-folding sheet is p degrees, all

the edges of the p degree group are self-folded, and when the

uniform heat temperature reaches q degrees where q > p, all

the edges of the q degree group are self-folded.

A. Fold Angle

In this paper, a folding actuator is composed of three layers

(Fig. 4, 6). The top and bottom layers of the actuator are heat

resistant materials, while the middle layer is a shrinking ma-

terial. Since all layers are firmly attached to each other, when

the actuator is exposed to heat, a section of the uncovered

middle layer shrinks, allowing the hinge to fold. The size of

the folding angle is controlled by the size of the gap (see wt ,

wb in Fig. 5, 6)
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Fig. 2. A visual overview of the self-folding origami development process. Two examples are self-folding bunny and egg.
      ‐  

Fig. 3. Visualized self-folding crease pattern representing a bunny
shape (left) and an egg shape (right). The solid lines are cuts and the
dashed lines are edges (hinges). Each edge contains a fold angle.

                                              

Fig. 4. Three self-folding origami with one, two, and three self-folding
(hinge) actuators. The arrows show the shrinking directions. (Top
row) origami patterns. (Middle row) initiation fold states. (Bottom
row) final fold states.

Top(View

Side(View

Bottom(View

wt

wb

wt

wb

Fig. 5. Structure of self-folding actuator model.

The middle layer is made of a shape memory polymer

(SMP), which has the property of shrinking in the presence

of heat. The top and bottom layers of the composite are the

structural elements of the object and can be made out of

any structural material. We used polyvinyl chloride (PVC),

prestrained polystyrene (PP, the material used in the children’s

toy “Shrinky Dinks”), and polyolefin (commonly used for

shrink wrap) for the middle layer. We used polyester sheets

and paper for the top and bottom layers.

The fold angle of each edge is encoded in the geometric
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Fig. 6. Self-folding actuator models with three fold angles. (Left)
before activation and (Right) after activation. The arrows show the
shrinking directions.

structures of the hinges. Fig. 4 shows simplified models of

self-folding sheets. The gaps wt , wb of the top and bottom

layers determine the fold angles and directions (see Fig. 6).

For example, if the gap (Fig. 6(a)) is wider than the gap at

another location (Fig. 6(b)), the former (Fig. 6(a)) folds to a

greater extent. If the gap of the bottom layer is wider than

the gap of the top layer, the actuating edge bends in the other

direction (Fig. 6(c)).

B. Time Step

We achieve sequential folding by using a multi-material

shrinking layer that is segmented into several regions, each

capable of shrinking in a different temperature range. This

layer is placed on the middle of the multiple-step self-folding

sheet, and transforms uniform heat to fold angles of the hinges.

In other words, each material shrinks sequentially after a ma-

terial finishes the shrinking. While the temperature increases,

different regions of the layer shrink at different times. Fig. 7

shows an example. The left and right edges of the self-folding

sheet are placed on material 1, reacting to 60�C. The two

middle edges are on material 2, reacting to 110�C. When this

sheet is baked in the oven, the two outside edges fold first,

and then the inside edges fold. We demonstrate this multi-

material middle layer by manual building with jigsaw-puzzle-

like placement. A multi-material printer, like MultiFab [43] or

Objet Connex 500, can be used to automate this fabrication.

IV. DESIGN ALGORITHM

The multi-step self-folding origami design algorithm con-

verts a shape represented as a 3D mesh1 or a 3D origami

model2 into a self-folding origami design, which is the struc-

tural layout of the self-folding origami. Just as the crease

pattern of an origami model contains the information required

to produce a folded origami object, a self-folding origami

1A polygon mesh is a collection of faces that defines a polyhedral object.
2An origami model is a folded state of a paper structure, that is represented

with a crease pattern and folded angles [16].

Middle&Layer&

1 122

1(60°C)1(60°C)

Top&View

2&(110°C)

1 122
Side&View

Fig. 7. Self-folding sheet with two-step folding. The middle layer is
composed of two different materials: Material 1 reacts at 60�C and
material 2 reacts at 110�C.

design contains information to fabricate a multi-step self-

folding origami. The design is composed of the layers’ layouts

of the self-folding origami. The self-folding origami can be

printed or fabricated according to the design.

The algorithm compiles an input model to the self-folding

origami design with the following phases (Fig. 8): (1) un-

folding a given 3D mesh, (2) computing fold angles, (3)

constructing a self-folding crease pattern, (4) constructing a

self-folding origami design, (5) drawing a self-folding origami

layout, and (6) compiling time-step information to the layout

of the middle layer.

Phases (1)–(5) of the algorithm first compiles structural in-

formation (Sec. IV-A). If the multi-step folding is necessary,

the algorithm runs Phase (6) to compile the time information

to the middle layer design of the layout (Sec. VI-B).

If the input is an origami model associated to its crease

pattern and fold angles, the algorithm starts in Phase (3) after

skipping Phases (1) and (2).

Theorem 1. Any mesh with n faces can be folded from a

multiple-step self-folding pattern built by a design algorithm

in O(n2) time.

Thm. 1 provides the design algorithm’s geometric correct-

ness of output self-folding origami design. Sec. IV-C shows a

proof of the theorem.

The notations of the paper are listed in Table I.

A. Compile Structural Information

1) Unfolding a 3D Mesh: The objective of this phase is to

compute the unfolding of a given 3D shape. Several algorithms

exist to unfold 3D meshes or 3D origami designs [44]–[46].

Given a mesh, a set of nets3 is constructed on a plane without

any collisions [47]. In this paper, we transform the 3D mesh

in a graph and unfold it using Prim’s algorithm (a minimum

spanning tree algorithm) [48]. As the algorithm unfolds the

3D mesh, it maintains the relationship between the vertices of

the unfolded 2D structure and the 3D mesh.

We define a mesh M is a pair (V,F), where V is a finite

set of the vertices, and F is a finite set of the faces of the

mesh. A unfolding (net) N is four-tuple (V 0,E 0,F 0,T ), where

V 0 is a finite set of the vertices, E 0 is a finite set of the edges

3A net of a mesh is an arrangement of edge-jointed faces in a plane.
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Fig. 8. Six phases of self-folding origami design algorithm

TABLE I
NOTATIONS

Notation Name

(Mesh)
M = (V,F) Mesh

V Vertex set of M

F Face set of M

U Angle set of M

v Vertex of M

e Edge
f , fi Face in F

ni Normal vector of fi

u Fold angle
n The number of vertices of M

O(n) The number of faces of M

(Unfolding)
N = (V 0,E 0,F 0,T ) Unfolding (Net)

V 0 Vertex set of N

E 0 Edge set of N

F 0 Face set of N

T State set of N

t State; t 2 {hcuti, hhingei}
N0 = (V 0,E 0,F 0,T,U 0) Self-folding crease pattern

M0(N0) Folded state Mesh of N0

U 0 Angle set of N0

e(e0) Original edge e of e0

f ( f 0) Original face f of f 0

(Folding Actuator)
g(u); g : A! D Actuator design function of u

A Fold angle set
D Actuator design set
u Fold angle(�180 u 180);u 2 D

d = (wt , wc, wb) Actuator design; d 2 D

wt Gap on top layer of actuator
wc Gap on middle layer of actuator
wb Gap on the top layer of actuator

wt(d) Gap on top layer of d

wc(d) Gap on middle layer of d

wb(d) Gap on bottom layer of d

ε None; No gap
S Fold actuator sample set

s = (u,d) Fold actuator sample

(Layout Design)
H Self-folding origami model

L = (Lt ,Lc,LB) Self-folding origami layout
Lt = (Vt ,Et) The top layer of L

Lc = (Vc,Ec) The middle layer of L

Lb = (Vb,Eb) The bottom layer of L

e0 = {a,b}, a and b are in V 0, F 0 is a finite set of the faces

of the net, T is a finite set of (e0, t), and t is a state of e0 in

{hcuti, hhingei}. e(e0) 2 E(M) is an original edge of e0 2 E 0.

f ( f 0) 2 F(M) is an original face of f 0 2 F 0. Since all the

vertices of the nets are originally from a mesh, during the

unfolding process, tracking functions for e(e0) and f ( f 0) can

be constructed.

2) Computing Fold Angles: The goal of this phase is to

compute the fold angles associated with all the edges of a

given mesh (Fig. 9). In origami theory [49], an edge (hinge)

is a line segment between two faces. A fold angle of an

edge is the supplement of the dihedral angle between two

faces (Fig. 9). The sign of the fold angle is determined by the

hinge: either a valley fold (+) or a mountain fold (-).

Lemma 1. Given a mesh, a finite set U of all fold angles of

the mesh is computed in O(n2⇥m) time, where n vertices and

m edges are in the mesh.

Proof. For each edge, if the edge is not cut, there are two

neighboring faces sharing the edge (Algorithm 1 Step 1).

Using the dot product and the cross product of their normal

vectors, the algorithm calculates the fold angle (Steps (b), (c)).

Since there are at most n2 edges, the algorithm computes and

stores all angles in O(n2⇥m) time.

Corollary 1. The angles of the mesh can be computed in

O(n2) by update Step 1 (See footnote 4)

Algorithm 1: Computing Fold Angles 4

Input : M = (V,F), where all the normal vectors of the

faces point outside and the vertices of each face

(v1,v2, ...,vk) are positioned counter-clockwise

from the top view of each face.

Output: U

1) For each edge e = {a,b} 2 E(M), where e 6= hcuti.

a) Find two faces f1, f2 where f1 contains direc-

tional edge (a,b), and f2 contains directional

edge (b,a).
b) Get u = acos( n1⇧n2

|n1||n2|
), where n1 and n2 are the

normal vectors of f1, f2, respectively.

c) If u 6= 0, and directions of (a,b) and n1⇥n2 are

different, assign ‘-’ to u; otherwise, assign ‘+’

to u.

d) Insert (e,u) into U .

3) Constructing the Self-Folding Crease Pattern: This

phase takes two inputs, a set of nets and fold angles and

computes a self-folding crease pattern (the abstracted self-

folding information), as shown in Fig. 9. In this section, we

show that Algorithm 2 constructs a correct self-folding crease

pattern (Lemma 4). Lemma 2 shows the construction of a self-

folding crease pattern, and Lemma 3 shows the correctness of

the constructed crease patterns.

4The time complexity improves from O(n2⇥m) to O(n2) when Step 1) of
Alg. 5 is replaced by following statement:

1) For each face f1 2 E(M) and for each edge e = {a,b} of f1, where
e 6= hcuti:
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Unfolding (Net) NMesh M Fold Angle Set U

(e1, -0.6°)

(e2,  1.4°)
(e3, 10.2°)
(e4, 17.1°)
(e5, 21.6°)
(e6, 25.0°) 

(e7, 53.6°)
…

Crease Pattern N’ Layout L = (Lt, Lc, Lb)Design H

(e’1, d1)
(e’2, d2)
(e’3, d3)

(e’4, d4)
(e’5, d5)
(e’6, d6)
(e’7, d7)

…

Fold Steps E’

(e1, g1) 
(e2, g2) 
(e3, g3) 

(e4, g4) 
(e5, g5) 
(e6, g6) 
(e7, g7) 
…

Fig. 9. Data structures of self folding origami design algorithm

Fig. 10. The fold angle at a crease is the supplement of the dihedral
angle.

Algorithm 2: Constructing Self-Folding Crease Pattern

Input : N = (V 0,E 0,F 0,T ), U

Output: N0 = (V 0,E 0,F 0,T,U 0)

1) For each (e,u) 2U , insert (e0(e),u) into U 0

2) Construct N0 = (V 0,E 0,F 0,T,U 0)

Lemma 2. Given a net N and a finite fold angle set U,

Algorithm 2 constructs a self-folding crease pattern N0 in

O(n2) time.

Proof. Given N and U for each element (e,u) 2 U , Algo-

rithm 2 transforms the element into (e0(e),u) and inserts

it to U 0. The algorithm builds a self-folding crease pattern

N0 = (V 0,E 0,F 0,T,U 0) by adding U 0 on N. The algorithm runs

in O(n2) time.

Lemma 3. Given a mesh M, its net N, its angle set U the self-

folding crease pattern N0 generated by Algorithm 2, M0(N0)
is equivalent to M, where M0(N0) is the folded state of N0.

Proof. Let L = { f 01, f 02, ..., f 0k}, where L ✓ F 0, e(e0) = 9e(e00),
e0 is an edge of f 0i , e00 is an edge of f 0j, j < i and L = F 0. Let

Lt be { f 01, f 02, ..., f 0t }✓ L. Let F(Mt) be { fi = f ( f 0i ) | f 0i 2 Lt}.

Let F(M0t ) be { f 001 , f 002 , ..., f 00t }, where each f 00i is a face of the

folded state of f 0i 2 L.

For each t � 1, P(t) is M0t = Mt , where Lt = F(Nt), and Nt

is the crease pattern of Mt .

Basis: P(1): M01 = M1 because f1 = f 001 .

Induction step: For each k � 1, we assume that P(k) is true,

and we show that it is true for t = k+1.

Suppose the inductive hypothesis is that M0k is equal to

Mk, and fk+1 and f 00k+1 are the same shape. By the definition

of Lk+1, f 0k+1 must be connected to f 0s 2 Lk, and f ( f 0k+1) is

connected to f ( f 0s), where s < k+1.

Let u0 be the fold angle of e0 between f 00s and f 00k+1. Then

u = u0, where u is the fold angle of e(e0). Thus, fk+1 = f 00k+1

and F(M0k+1) = F(Mk+1). Therefore M0k+1 = Mk+1, and P(t)
is true.

Lemma 4. Given M, N, and U(M), Algorithm 2 correctly

generates a self-folding crease pattern in O(n2) time.

Proof. Lemma 2 shows that Algorithm 2 builds a self-folding

crease pattern in O(n2) time. Lemma 3 shows that this self-

folding crease pattern is correct. Therefore, Lemma. 4 is true.

4) Constructing a Self-Folding Origami Design: Given

a self-folding origami crease pattern and actuator design

function, this phase generates a self-folding origami design

(Fig. 9). A self-folding origami design is an abstracted model

of the actuators and the outlines.

A self-folding origami design is a finite set of pair (e0,d),
where e0 is an edge, and d is an actuator design. An ac-

tuator design d is (wt ,wc,wb), where wt , wc, and wb are

in R [ {ε} and are the gaps on the top, middle, and bottom

layers, respectively (Fig. 5). If a variable is in R, the variable

is a gap. If a variable is ε, then there is no gap. The model

in Fig. 5 is (wt ,ε,wb). The gaps of the top and bottom layers

are wt and wb. Because wc is ε, the middle layer has no gap.

An actuator design can express an outline. For example, if

an actuator design is (0,0,0), all three layers of this actuator

have cuts, and these cuts become an outline.

g : A! D denote an actuator design function, where A is

a set of angles between �180� and +180� and D is a set of

actuator designs. The function is dependent on the self-folding

material. Each type of self-folding material has a different

function. The implementation of g for the experiments is

discussed in Sec. V.

Proof. Algorithm 3 constructs self-folding origami design H.

U 0 contains the fold angles of the edges, while T contains the

types of the edges. Given angle u, g(u) outputs actuator design

d (Step 1-(a)). According to edge type t and g(u), Algorithm 3

computes each design of the actuator.

For each edge, if the edge is a hinge, the algorithm inserts

(e0,d) into H. The algorithm removes the edge type from T

after inserting the actuator design of the edge (Step 1-(c)-(iii)).

After Step 1, all edges in T are the cuts of both input mesh and

unfolding. Step 2 compiles these edges into actuator design

(0,0,0). All edges of N’ are compiled to H. The algorithm

runs in O(n2) time.
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Algorithm 3: Constructing Self-Folding Origami Design

Input : N0 = (V 0,E 0,F 0,T,U 0), g : A! D

Output: H

1) For each (e0,u) 2U 0:

a) d g(u)
b) If t = hhingei, where (e0, t) 2 T :

i) Insert (e0,d) into H

c) If t = hcuti:

i) d (wt(d),0,wb(d))
ii) Insert (e0,d) into H

iii) T  T �{(e0,hcuti)}

2) For each (e0,hcuti) 2 T :

a) d (0,0,0)
b) Insert (e0,d) into H

5) Constructing a Self-Folding Origami Layout: A self-

folding origami layout contains the graphical information of

each layer. Given a self-folding origami design, this phase

generates three layers of the layout (Fig. 9). For each element

of a self-folding origami design, an actuator layout of a layer

is drawn (Fig. 11).

Lemma 5. A self-folding origami design has a valid self-

folding origami layout, computable in O(n2) time.

Proof. The output of Algorithm 4 is the self-folding origami

layout L. L composes three nets Lt , Lc, and Lb. They are the

graphical information of the top, middle, and bottom layers,

respectively. The algorithm builds the nets.

Each element (e0,d) in D contains the gap of each layer and

the shape of the bridge. Given an edge, the gap of an actuator

of a layer, and a bridge shape, Algorithm 5 draw the layout

of the actuator of the target layer. d contains correct actuator

and outline information, and wt , wc, and wb of d are correct

values. Steps (a)-(c) construct the actuator layout for e0. Steps

(d)-(i) add this layout of each layer. The algorithm runs O(n2)
while Steps (a)-(c) are O(1).

Lemma 6. Each edge of a self-folding origami design has a

valid folding actuator.

Proof. All actuators and cuts of a self-folding crease pattern

are described with fold actuators. (1, ε, 0) is an example of

a valley fold actuator. (0, ε, 1) is an example of a mountain

fold actuator. (0, 0, 0) is an example of a cut. Each actuator is

composed of three layers. Steps (a)-(c) of Algorithm 4 draw an

actuator or a cut using Algorithm 5, which draws each layer of

the actuator. For example, if an actuator is (1, ε, 0), Step (a)

of Algorithm 4 runs Algorithm 5 on 1 as w0. Algorithm 5

draws the top layer of the actuator with a gap. In Step (b),

Algorithm 5 skips the drawing because w0 is ε. In Step (c),

Algorithm 5 draws a line {a,b}, because w0 is 1. These three

layers become an actuator like Fig. 6. Algorithm 5 draws a

layer of an actuator, as shown in Fig. 11. Algorithm 5 is O(1).
Therefore, Steps (a)-(c) run in O(1).

Algorithm 4: Drawing Self-Folding Origami Layout

Input : H

Output: L = (Lt ,Lc,Lb)

1) For each (e0,d = (wt ,wc,wb)) 2 H

a) Run Algorithm 5 on e0 and wt as w0, and

Algorithm 5 returns Gt = (V 00t ,E
00
t )

b) Run Algorithm 5 on e0 and wc as w0, and

Algorithm 5 returns Gc = (V 00c ,E
00
c )

c) Run Algorithm 5 on e0 and wb as w0, and

Algorithm 5 returns Gb = (V 00b ,E
00
b )

d) Vt  Vt [V 00t where Lt = (Vt ,Et)
e) Et  Et [E 00t
f) Vc Vc[V 00c where Lc = (Vc,Ec)
g) Ec Ec[E 00c
h) Vb Vb[V 00b where Lb = (Vb,Eb)
i) Eb Eb[E 00b

2) Construct L = (Lt ,Lc,Lb)

Fig. 11. For input edgeei = {a,b}, Steps (a)–(g) of Alg. 5 draws a rectangle as
an actuator layout (a), Steps (h) and (i) rotates the layout (b), and Steps (j)–(k)
shifts the layout (c).

B. Compile Time Step Information

6) Construction the middle layer: In our previous paper

[16], we introduced algorithms that, given the final folded state

of an origami, determine a folding sequence. The folded state

has information about the number of hinges and their final

angles. The folding sequence has information about when the

folding groups of hinges are folded, where a group of hinges

fold simultaneously. We found that, in practice, some origami

structures had to be constructed with more than one folding

step. A collision is a common issue of failure, for this reason,

the folding trajectory should be more accurately controlled.

Fortunately, there are many origami shapes can be realized

with multiple-folding steps. Our prior approach was to use

an on-board electronic controller to selectively transfer was
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Algorithm 5: Construct Actuator Layout

Input : e0 = {a,b}, w0

Output: G = (V 00,E 00)

1) If w0 =ε, then V 00 φ and E 00 φ and return.

2) If w0 = 0, then insert a,b into V 00 and {a,b} into E 00.

3) If w0 6= 0:

a) l (length of e0)/2

b) v1 (w0, l)
c) v2 (w0,�l)
d) v3 (�w0,�l)
e) v4 (�w0, l)
f) Insert v1,v2,v3,v4 into V 00

g) Insert {v1,v2},{v2,v3},{v3,v4},{v1,v4} into E 00

h) θ  arctan2(yb� ya, xb� xa)
i) Rotate all vertices in V 00 through θ

j) c (a+b)/2

k) For each v 2V 00, v v+ c

energy to a folding hinge [17], [18]. The hinge was triggered

by the local heat made by the energy. In this section, we

introduce self-folding origami that transform themselves into

user’s desired shapes with multiple-folding steps. The origami

work with uniform heat, no on-board controllers, and no local

heat control.

To achieve multiple-step sequential folding with uniform

heat, we extend the self-folding origami model with a multi-

material shrinking layer (Fig. 7). The top and bottom layers

of this model are automatically designed by Algorithm 4. The

middle layer is composed of multiple materials that react to

different temperatures. Intuitively, the edges made of materials

reacting to lower temperatures fold first. Then the other

folding edges reacting to higher temperatures fold after that.

Additional details of the model are described in Sec. III-B.

Given a self-folding crease pattern, a folding sequence can be

automatically computed – in our prior work [16], we intro-

duced a folding-planning algorithm that computes optimized

folding sequences by grouping the simultaneously foldable

edges and minimizing folding steps. For k-step sequential

folding, k shrinking materials are used for the middle layer.

The middle layer of self-folding origami is algorithmically

designed. In this section, we describe an algorithm for gener-

ating the design of a middle layer (Fig. 12, Algorithm 6).

An edge e in this section is a three-tuple (a,b,g), where a

and b are vertices, and g is a folding group. The edges with

the same folding group are folded at the same time. The edges

of the smaller folding groups always fold before the edges of

larger folding groups. For example, the edges of group 1 fold

before the edges of group 2.

Lemma 7. A self-folding crease pattern with sequential fold-

ing steps has a valid shrinking layer design, computable in

O(n2) time, where n and O(n) are the numbers of vertices

and faces, respectively.

Proof. Algorithm 6 constructs a multi-material shrinking

layer. The algorithm is composed of four parts. Steps 1-3 pre-

pare the geometry, Step 4 tessellates the possible boundaries

Fig. 12. Example of the construct of a multi-material middle layer (Algo-
rithm 6). (Left) Crease Pattern N0. The red dotted lines are the first step
folding creases, and the blue dashed lines are the second step folding creases.
(Right) Middle Layer of Layout Lc. The red solid line polygon is shrinking
material 1. The blue dashed line polygon is shrinking material 2. Material 1
reacts at the first folding step. Material 2 reacts at the second folding step.

Algorithm 6: Constructing Multi-Material Middle Layer

Input : N0 = (V 0,E 0,F 0,T,U 0),Lc = (Vc,Ec)
Output: Lc = (Vc,Ec)

1) For each e in E 0, if e is an outline, set hNonei to

group g(e).
2) Split all faces in F 0 into triangle faces, and set hNonei

to the groups of all newly made edges during the

triangulation.

3) For each face f = (a,b,c) in F 0:

a) Insert a new vertex i in V 0, where i is the center

of the incircle of the triangle f .

b) For each edge e = (v1,v2,g) of f :

i) Insert face ((v1,v2, i),g(e)) into F 00, where

g(e) is the folding group of edge (v1,v2).
ii) Insert (v1, i,g(e)),(v2, i,g(e)) into B.

iii) If e is an outline, insert (v1,v2,g(e)) into B.

4) For each e in B, where f 2 F 0 and f 0 2 F 00 are the

neighbor faces of e, and g( f ) is hNonei and g( f 0) is

not hNonei:

a) g( f ) g( f 0).
b) Change the groups of all edges of f to g( f 0).

5) Repeat 4) until the group of no edges in B is hNonei.
6) For each e in B, where f and f 0 in F 00 are sharing e,

and g( f ) is equal to g( f 0):

a) Remove e from B.

7) Vc Vc[V 0

8) For each (v1,v2,g) 2 B, insert {v1,v2} into Ec

of the materials, and Steps 5-6 assign all areas to a shrinking

material. Step 7 removes unnecessary boundaries and merges

the areas. Step 8 outputs B, the design of the multi-material

shrinking layer. Each edge of B is assigned a folding group.

All edges of each folding group represent the boundary of the

shrinking material for this folding group.

Given a self-folding crease pattern N0, the algorithm sets

hNonei to the groups of outline edges (Step 2) and the groups

of new edges generated during the triangulation (Step 3). In

Step 4, it splits each triangle into three small triangles. It

adds vertex i, where i is the center of the inscribed circle of

the triangle. In Step 4-b, the algorithm constructs a boundary

edge set B and small triangle set F 00. Step 4 runs in O(n).
After building F 00, some small triangles (faces) in F 00 are not

assigned to any groups. The algorithm moves the faces in the
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Compound
Folding

Box Latch

Input Origami

Top Layer

Bottom Layer

Middle Layer

(Material 1)

(Material 2)

Fig. 13. Design of the multiple-step folding algorithm. (Input Origami) An
input origami represents a final fold state of origami. Each colored crease line
represents an angle and a step. Each line of an angle of compound folding is
180 degrees. The red dotted lines are the first step folding creases, and the blue
dashed lines are the second step folding creases. All lines are valley folds.
(Top, Bottom Layers) The red solid lines are cut traces. The top and bottom
layers are rigid materials. (Middle Layer) The red solid line polygons are
shrinking material 1. The blue dashed line polygons are shrinking material 2.
Materials 1 and 2 react sequentially.

hNonei group to the group of a neighbor face (Step 5). After

this step, all faces are assigned to exactly one folding group.

For these steps, we chose the triangle shape as it is the most

commonly used polygon for mesh given its consistent convex

property. In this regard, any partitioning algorithm, including

Voronoi partitioning, shall work.

O(n) is the number of the edges in the hNonei group after

Step 4. Each time Step 6 runs, at least one group of an edge

in B is changed from hNonei. Thus, Steps 5-6 run in O(n2).

The algorithm merges the areas with the same material by

removing the boundary edges in B (Step 7). The algorithm

exports a valid shrinking layer (Step 8). Since all the small

faces are assigned to a group, Step 7 runs in O(n). The total

running time is O(n2), and the running space is O(n).

Fig 13 shows the input and output of the algorithm. The

inputs are the final folding states of the origami structures.

C. Proof of Theorem

Now we are ready to prove Theorem 1.

Proof. We derive the layout of the self-folded origami whose

folded state is equivalent to the input model (Lemma 3). We

also show how a sequence of origami folding is encoded into

the associated self-folded origami (Lemma 7). Each group of

edges is associated with a middle layer material that reacts to

heat. Thus each edge can be folded according to the target

angle. The total required computation time is O(n2).
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Fig. 14. Graph of an implemented actuator design function for the pin
alignment process. The inset images show the test strips used to characterize
the fold angle as a function of the size of the gap on the inner structural sheet.
Each bar is the standard deviations from the average of the angles of three
hinges (Tab.II).

V. IMPLEMENTATION

A. Software for Compiling a Printable 2D Design

We implemented the design algorithm in Java. The input

file formats are Wavefront .obj for a 3D mesh and AutoCAD

.dxf for a 3D origami design [16]. The output files are in .dxf

format.

To support the various manufacturing processes of the self-

folding origami, the software supports script files to define

the template of the fabrication files (outputs). To demonstrate

automatically generated self-folding origami with two manu-

facturing processes, we built two template scripts: a folding-

alignment manufacturing process [35] and a pin-alignment

manufacturing process [36].

B. Actuator Design Function

The folding angle is determined by the combination of the

thicknesses of three layers. Our previous work revealed that the

torque inducible is proportional to the thickness [36], namely

the mass of SMP, albeit the mass also increases in the same

proportion. This implies that in order to exploit the maximum

lifting torque of a hinge, using less dense structural sheet is

a solution. We also identified various issues caused by the

physical limitation associated with practical self-folding.

Given a fold angle u, an actuation design function g outputs

an actuator design d. An actuator design is composed of three

parameters (wt ,wc,wb) (Sec. III). We implement this function

by sampling the profile and construct a fold angle sample set

S. When g receives u, if u is in S, g outputs d in S; otherwise,

g approximates and outputs a design. This function is formally

defined as shown in Def. 1.

Definition 1. An actuator design function is g : A!D, where:

1. A is a set of the angles u (�180�  u 180�),

2. D is a set of the actuator designs {d1,d2,d3, ...,di, ...}
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TABLE II
FOLDING ANGLES

Gap Angle1 Angle2 Angle3

0.25 mm 11.58� 14.6� 20.09�

0.50 mm 22.85� 23.34� 33.25�

0.75 mm 39.49� 40.44� 39.79�

1.00 mm 47.6� 51.16� 48.42�

1.25 mm 56.62� 49.36� 54.51�

1.50 mm 69.57� 61.39� 64.39�

1.75 mm 77.44� 72.88� 71.36�

2.00 mm 80.34� 82.53� 76.13�

(Sec. IV-A4),

3. S is a finite set of the fold angle samples si = (u,d) for

u(si)< u(si+1),
4. s0 = (0,(0,ε,0)) 2 S,

5. if (u,d) 2 S, then g(u) = d, and

6. if (u,d) 62 S, then g(u) = (w(di) + u�ui
ui+1�ui

⇥ (w(di+1)�

w(di)), ε, b(di) + u�ui
ui+1�ui

⇥ (b(di+1)� b(di))), where ui =

u(si),
ui+1 = u(si+1), di = d(si), di+1 = d(si+1), ui < u < ui+1, and

si, si+1 2 S.

g(u) is continuous for u2A. If u is in u(s) for s= (u,d)2 S,

g(u) outputs d. Otherwise, g(u) constructs an actuator design

d according to the actuator ratio
u�u1
u2�u1

and designs d1 and d2,

where u1 and u2 are the angles of d1 and d2, and u1 < u < u2.

Theoretical model covers geometric properties, such as

collisions, edge types, or scalability. The geometry issues are

characterized by material functions which can experimentally

be built. The other practical issues include thickness, transition

temperatures, force, gravity, and self-folding hinges connected

with many faces. To handle these issues, we define an actuator

design function and develop a planning algorithm. The func-

tion works as an interface between the algorithm and experi-

ments. To minimize the gap between theory and experiment,

we have implemented the function using experimental data.

We plugged this function into the pipeline system (software),

as an input. It covers the unpredictable characteristics of self-

folding transitions.

To implement the actuator design function, we characterize

the fold angle as a function of the actuator geometry. We

built eight self-folding strips with gaps on the inner layer

in the range of 0.25mm–2mm and baked them at 170�C.

Each strip had three actuators with identical gap dimensions.

After baking, we measured the fold angle of each self-folded

actuator with a different gap, as shown in Fig. 14. This

method is modified from our prior work in [36]. This time,

we automated the design process of the strips using our

self-folding origami design pipeline. We can easily generate

another set of strips for a different range of gaps.

VI. EXPERIMENTS

A. Fold Structure Control

We evaluated the self-folding pipeline by building self-

folding origami sheets for four shapes: a house, a humanoid,

an egg, and a bunny (Fig. 15). The bunny is the most complex

shape we self-folded by heating. Given the 3D models of these

input shapes, the pipeline outputs a set of .dxf files containing

House Humanoid Egg Bunny

10mm$
10mm$ 10mm$ 10mm$

   
   

 
   

Fig. 15. (Top) Self-folded 3D shapes: the house, humanoid, egg, and bunny
shapes. Each scale bar is 10mm. (Bottom) Input models. We modeled the
house and humanoid designs with paper and coded them into origami patterns.
We modeled the egg and bunny shapes using CAD software.

TABLE III
COMPLEXITY OF TARGET MODEL

House Humanoid

# of Faces 9 41
# of Actuators 8 44

Fold Angle Range -135.0�– 90.0� -100.0�– 125.0�

Egg Bunny

# of Faces 50 55
# of Actuators 48 54

Fold Angle Range -0.6�– 55.0� -103.4�– 67.1�

the layout of each self-folding origami. We built and baked

each self-folding origami according to two different fabrication

processes: folding alignment [35] and pin alignment [36]. The

pipeline successfully built the shapes in a relatively short time

(see Table V).

We built the humanoid and house origami shapes using

paper. The 3D shape of the house was composed of nine faces,

and its 2D unfolding contained eight actuators. The 3D shape

of the humanoid was composed of 41 faces, and its 2D sheet

contained 44 self-folding actuators (Table III). Figs. 16 (a)

and (b) show the fabrication files of the house shape and the

humanoid shape.

The egg shape was modeled in CAD software (Solidworks,

Dassault Systemes SolidWorks Corp.) and exported as a 3D

mesh with 2,538 faces. We reduced the number of the faces

to 50 (MeshLab, Visual Computing Lab, ISTI, CNR) and

then unfolded it with our software. The 2D sheet of the egg

contained 48 actuators (Table III). We generated the fabrication

files for the egg shape from this model. Fig. 16 (c) shows the

fabrication files of the egg shape.

For the bunny shape, we downloaded the 3D Stanford

Bunny (Rev 4, Stanford Computer Graphics Laboratory),

which contains 948 faces, and reduced the number of the

faces to 55 using MeshLab. We unfolded this mesh and created

the fabrication files with our software. Fig. 16(d) shows the

fabrication files of the bunny shape.

After we built the fabrication files, we manufactured phys-

ical self-folding origami sheets for the house, humanoid, egg,

and bunny shapes. Folding alignment was used for the house

and humanoid shapes, whereas pin alignment was used for the

egg and bunny shapes. The algorithm of the pipeline is general

enough to apply to two different self-folding approaches
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(a) (b)

 

 

(c) (d) 

(c)

 

Fig. 16. Fabrication layout for self-folding origami. (a) and (b) are fabri-
cation layouts of the folding alignment process generated for the house and
humanoid. The left and right sides of each house and humanoid are the top
and bottom layers, respectively. The line in the center guides the folding
alignment while the top layer and the bottom layer are sandwiched. (c) and
(d) are fabrication layouts of the pin alignment process generated for the egg
and bunny. The tiny holes are for the pin alignments. The left, middle, and
right sides of each egg and bunny are the top layer, the bottom layer, and the
final outline.

(a) House (b) Humanoid
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Fig. 17. The histograms of the fold angles. The x-axis is fold angles. The
y-axis is frequency. The width is 2.5�.

(Table IV).

Each shape has various fold angles. The distributions of

these angles are shown in the histograms in Fig. 17. The angles

of the humanoid have the widest range, although the most

frequent angles are 90�. The bunny includes the most diverse

angles in both valley and mountain folds.

We heated the house and humanoid at 65�C without pre-

heating the oven. We put each sheet into the oven at room

temperature and then increased the heat to 65�C. The egg and

bunny were baked in an oven preheated to 120�C. While the

sheet of the egg shape was placed on the preheated ceramic

10mm$ 10mm$ 10mm$

Fig. 18. Self-folding sheets (before baking) for humanoid (left), egg (center),
and bunny (right). Each scale bar is 10 mm.

 

0:00 2:36 3:47

3:57 4:35 4:58

Fig. 19. Frames from experiment of the self-folding humanoid shape by
uniform heating. The sheet was built using the folding alignment process.
The time elapsed since exposure to uniform heating is indicated in the upper-
right corner of each frame (in minutes and seconds).

plate, the sheets of the humanoid, house, and bunny shapes

were hung on bars in the oven to reduce the effect of gravity

on the self-folding process4. Fig. 19, 20, and 1 show frames of

the videos taken during the experiments with the self-folding

bunny, humanoid, and egg shapes, respectively. To determine

the reliability of the pipeline, we baked 10 self-folding bunnies

and 8 eggs and measured their well-formed rates. When all

vertices meet in a 3 mm (the circle size of the vertices) radius

circle, the result is called a well-folded shape; otherwise, it is

called a failed shape.

Our self-folding algorithm designed self-folding origami

sheets that accurately reproduced the house and humanoid

4See [36] for an analysis of the forces provided by such self-folding
actuators in the presence of gravity as well as the resulting design constraints.

2:37#1:15# 1:30#

0:00# 0:50# 1:00#

Fig. 20. Frames from the experiment of the self-folding egg shape by uniform
heating. The sheet was built with the folding alignment process. The time
elapsed since exposure to uniform heating is indicated in the lower-right corner
of each frame (in minutes and seconds).
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TABLE IV
FABRICATION AND MATERIAL OF SELF-FOLDING SHEETS

House & Humanoid Egg & Bunny

Fabrication Process Folding Pin
Folding Temp. 65�C 120�C

Top & Bottom Layers Mylar Paper
Middle Layer PVC (Polyvinyl PP (Prestrained

Chloride) Polystyrene)

TABLE V
COMPUTING AND SELF-FOLDING TIMES

House Humanoid

Computing Time 392.17 ms 478.17 ms
Folding Time 4m 57s 4m 58s

Egg Bunny

Computing Time 478.2 ms 464.5 ms
Folding Time 2m 37s 6m 26s
CPU Intel Core i3-2350M (2.30 GHz)
RAM 4 GB
Storage 500 GB 5400 rpm 2.5” HDD

(TOSHIBA MK5076GSX)
Graphics Intel HD Graphics 3000

shapes. The house, humanoid, and bunny shapes were sus-

pended while they were self-folding because the fold-force is

not strong enough to lift the whole body. The egg shape folded

on a plate.

Using the proposed pipeline, the self-folded structures were

rapidly designed and built (Table V). The computing time for

each model was less than 0.5 sec. The self-folding time was

also relatively short. All shapes folded themselves in 7 min;

the egg folded itself on a preheated ceramic plate in 3 min.

The time to physically construct the 2D self-folding origami

sheets took longer than all of the other steps combined because

the construction includes manual labor, such as CO2 laser

machining, alignment, layer lamination, and release cutting.

The failure rate of the egg shape was 0% while the failure

rate of the bunny shape was 20.0%. Two out of the 10 bunnies

failed because of overfolding, creating collisions during the

process. Delamination of the SMP layers from the structural

layers was observed along the overfolded edges. The total

failure rate was 11.1% (Table VI, Fig. 21).

During the self-folding of some bunny shapes, slight col-

lisions of the faces (which did not interrupt the folding

procedure) were observed. This can be addressed by using

a self-folding simulator to minimize the collision while the

pipeline generates the design. Alternatively, we can use a

multiple-step folding algorithm.

B. Time Control

Fig. 13 shows the multiple-step self-folding patterns used

TABLE VI
FAILURE RATES

Egg Bunny Total

Run 8 10 18
Failure 0 2 2

Failure Rate 0% 20% 11.1%

10mm*

Fig. 21. Self-folded bunny and egg shapes. The scale bar is 10 mm.

10mm$ 10mm$

Fig. 22. Front and back sides of the self-folded egg and bunny. Each scale
bar is 10 mm.

for the time-control experiments.

1) Compound Folding: To achieve multiple-step self-

folding, two materials, PVC (SMP 1), which reacts at ⇠65�C,

and polyolefin (SMP 2), which reacts at 80�C, are used for

actuation to enable a two-step self-folding process. The exper-

imental result of compound self-folding is shown in Fig. 23.

The experiment was conducted on the water in an oven, and

the temperature was raised to 80�C from room temperature.

Note that the elapsed time shown was measured starting from

the time that deformation on creases was observed. First, two

creases actuated by PVC started self-folding (33 sec - 53 sec)

then a crease actuated by polyolefin followed (86 sec - 96 sec).

As a result, the structure was folded into a fourth of the

original size (105 sec).

2) Box and Latch: We designed two self-folding shapes to

demonstrate the significance of sequential folding (Figs. 24

and 25). The first design presents a folded box (Fig. 25(d)),

96 sec                                      105 sec86 sec

53 sec33 sec0 sec

Fig. 23. Frames from the experiment of compound folding. Two actuation
materials differentiate the timings of self-folding and enable compound
folding.
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TABLE VII
FABRICATION, MATERIAL, AND TIME SPECIFICATION OF BOX

AND LATCH SHAPE

Compound
Folding

Box Latch

Fabrication Process Folding Pin Pin

Top & Bottom Layers Mylar Paper Paper

Middle Layer (SMP 1) PVC Polyolefin Polyolefin

Middle Layer (SMP 2) Polyolefin Polystyrene Polystyrene

Folding Time of SMP 1 86 sec 82 sec 90 sec

Folding Time of SMP 2 105 sec 200 sec 118 sec

which requires sequential folding, while the second addresses

the issue of latching in order to lock the assembled structure

(Fig. 25(h)). Both shapes require a two-stage folding sequence

for proper assembly. (Unsuccessful single-stage versions of

these designs are shown in Fig. 25(b) and 25(f).)

To achieve sequential folding, we used a multi-material

layer (Fig. 7) composed of polyolefin (SMP 1) for the first

stage of folding and pre-strained polystyrene (SMP 2) for the

second. Fig. 25 (a), (c), (e), and (g) show 2D laminates, where

the transparent hinges show the region composed of polyolefin,

and the solid-colored hinges show the region composed of

pre-strained polystyrene. To fabricate these laminates we used

pin-alignment (Fig. 5). We cut the generated .dxf files from

the algorithm presented earlier for all the layers using a

laser system (ULS PLS6MW). The layers were laminated

using adhesive layers. Finally, the laminate was heated in a

convection oven (12 qt. Fagor Halogen) until the final structure

was achieved.

We performed eight trials for each shape with the oven

starting from room temperature and set to a target temperature

of 175�C. The sequential folding specified in input origami

was achieved. Box SMP 1 reacted before Box SMP 2. Latch

SMP 1 reacted before Latch SMP 2. Box SMP 1 reacted before

Box SMP 2. Latch SMP 1 reacted before Latch SMP 2. As

the oven heated, the region involving polyolefin actuated first

at an average time and temperature of 82 sec at 99�C for the

box and 90 sec at 94�C for the latch. The polystyrene began

folding for the box at 200 sec at 140�C and at 118 sec at

111�C for the latch. Fig. 26 shows the relative temperature of

actuation measured using a K-type thermocouple (Fluke 87 V

Digital Multi-meter). This graph shows a distinct difference in

actuation temperature for the polyolefin and polystyrene SMPs

for each shape.

VII. CONCLUSION AND FUTURE WORK

In this paper we described an end-to-end approach to

designing and building self-folding origami sheets activated

by uniform heat. We introduced a design pipeline that au-

tomatically generates folding information for an arbitrary 3D

shape and then compiles this information into fabrication files.

We modeled single- and multiple-step self-folding origami

sheets that fold into arbitrary fold angles. We proposed a

design algorithm for such sheets and proved its correctness.

We also demonstrated the implementation of this pipeline

and characterized the actuator design function to convert the

theoretical design into a physical self-folding origami. Finally,

(a)

0:00 6:15

7:10

6:24

6:47 7:51

(b)

0:00 1:45

6:00

1:52

5:303:25

(c)

0:00 3:47

6:00

5:05

5:375:14

(d)

0:00 1:45

2:45

1:52

2:302:07

Fig. 24. Frames from the experiment of box and latch. (From the top left)
(a) Single-material middle layer for box, (b) multi-material middle layer for
box, (c) single-material middle layer for latch, and (d) multi-material middle
layer for latch.

we validated this approach experimentally by generating self-

folding origami for the fabrication of seven target shapes with

up to 55 faces and up to 2 step folds. These were correctly

designed and baked into their respective physical shapes under

uniform heat.

Several practical challenges remain to be addressed in the

physical fabrication of self-folding origami sheets. Delamina-

tion of the SMP layers from the structural layers occurred

along the edges of our self-folding origami when baking the

egg and bunny shapes. This can be mitigated by sealing the

edges of the sheet or with improved adhesion.

Another challenge is the evaluation of self-folding origami.

Although the back side of the bunny shape in Fig. 22 shows

the completion of the shape, it was difficult to evaluate

or analyze the completeness of the self-folded model. The

development of benchmarks and criteria for evaluating the

quality of self-folding origami would support a systematic

approach to methodological improvements in this area. In

our future work, we aim to extend this approach to create

mobile/actuatable self-folded machines.
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Fig. 25. Unfolded (left column) and folded (right column) structures for
the box and latch. (a) single-material middle layer for box, (b) failed box
assembly for a single-material middle layer, (c) multi-material middle layer
for box, (d) successful sequential folding of box for multi-material middle
layer, (e) single-material middle layer for latch, (f) failed latch assembly for
a single-material middle layer, (g) multi-material middle layer for latch, and
(h) successful sequential folding of latch for multi-material middle layer.
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Fig. 26. Relative temperatures of actuations for SMP 1 and 2 for box and
latch shapes. SMP 1 and 2 are used for the first and second folding steps of
the shape, respectively. Each bar is the standard deviations from the average.
Eight points of each material represent the relative temperatures of eight trials
of each shape.
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