
This is a repository copy of Ordinal-response GARCH models for transaction data: A 
forecasting exercise.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/142440/

Version: Accepted Version

Article:

Dimitrakopoulos, S orcid.org/0000-0002-0043-180X and Tsionas, M (2019) Ordinal-
response GARCH models for transaction data: A forecasting exercise. International 
Journal of Forecasting, 35 (4). pp. 1273-1287. ISSN 0169-2070 

https://doi.org/10.1016/j.ijforecast.2019.02.016

© 2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Ordinal-response GARCH models for transaction data: A

forecasting exercise

Stefanos Dimitrakopoulos1* and Mike Tsionas**

*Economics Division, Leeds University, UK

**Department of Economics, Lancaster University, UK

Abstract

Using numerous high-frequency transaction data sets, we evaluate the forecasting per-

formance of several dynamic ordinal-response time series models with generalized autore-

gressive conditional heteroscedasticity (GARCH). The specifications account for three

components; leverage effects, in-mean effects and moving average error terms. To es-

timate the model parameters we develop Markov chain Monte Carlo algorithms. Our

empirical analysis showed that the proposed ordinal-response GARCH models achieve

better point and density forecasts than standard benchmarks.
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1 Introduction

Since the seminal work of Bollerslev (1986), several extensions of the generalized autoregressive

conditional heteroscedastic (GARCH) model have been proposed. Such extensions include,

among others, the autoregressive moving average (ARMA) component (Nakatsuma, 2000), the

leverage effect (Nelson, 1991; Engle and Ng, 1993; Glosten et al., 1993, among others) and

the conditional heteroscedasticity in mean. Incorporating the aforementioned empirical facts of

financial time series in the context of GARCH models, leads to well-documented forecast gains

(Awartani & Corradi, 2005; Christensen et al., 2010; Corsi & Renò, 2012; Chan and Grant,

2016).

However, financial time series do not always follow a continuous path but there is a dis-

creteness in the responses that can not be captured by continuous-response models. One such

series is related to transaction - by - transaction data in security markets, which are the ulti-

mate high-frequency data in finance. A distinguishing feature of trading data is that the price

change of a stock (an asset) from one transaction to the next one occurs in integer multiples of

a tick size (tick-by-tick data).

High-frequency price changes can not, therefore, be treated as a continuous variable. Ignor-

ing price discreteness can affect severely the empirical distribution of stock returns (Chordia

and Subrahmanyam, 1995, Cordella and Foucault, 1999, Ronen and Weaver, 2001, Chakravarty

et al., 2004, Münnix et al., 2010, O’Hara et al., 2014, and Ye and Yao, 2014).

The discreteness has motivated the development of models for high-frequency integer price

changes that have also accounted for conditional heteroscedasticity (Hausman et al., 1992,

Dueker, 1999). For instance, Hausman et al. (1992) proposed an ordered probit model for the

analysis of this type of data, which was extended with an autoregressive term by Müller and

Czado, (2005). Müller and Czado (2009) defined an ordinal-response stochastic volatility model,

Barra and Koopman (2017) presented a negative binomial difference model with stochastic

volatility, while Koopman et al. (2017) set up a dynamic Skellam model. Other researchers

developed Tobit GARCH models (Calzolari and Fiorentini, 1998), ordered probit GARCH

models (Yang and Parwada, 2012) and probit GARCH models (Ahmed, 2015). See, also,

Bianco & Renò (2006, 2009).

Yet, the forecasting behaviour of discrete-response time series models with conditional het-
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eroscedastic remains an uncharted region, when they are extended to account for additional

empirical facts of financial data. In particular, does the forecast ability of these models increase,

when they are equipped with (AR)MA components, or/and leverage or/and in-mean effects?

These issues have not been examined before. The present paper aspires to fill these gaps.

With these thoughts in mind, our objective is to investigate the forecasting performance of

a new class of discrete-response models with conditional heteroscedasticity. Since this paper

deals with discrete stock price changes that occur in clusters, the order of which matters,

the series of price changes can be regarded as an ordinal-valued high-frequency financial time

series. As such, we propose a novel ordinal-response model with a GARCH-type conditional

heteroscedasticity.

The novelty of our model is that it accounts for potential microstructure effects that have

been disregarded in a discrete-response setting so far. In particular, our model is equipped

with leverage, in-mean effects and a moving average error term. It is also enriched with an

autoregressive structure in the conditional mean to control for time-dependence that usually

characterises discrete (macro)financial data (Müller and Czado, 2005).

The resulting model specification is an autoregressive moving average (ARMA) ordinal-

response (OR) GARCH model with leverage (L) and in-mean effects (M). We name this spec-

ification the ARMA-OR-GARCHLM model.

To control for leverage effects, we exploit the threshold GARCH (TGARCH) approach by

Glosten et al. (1993). Moreover, the presence of the moving average part in our model tackles a

problem related to transaction data according to which prices suffer from bid-ask bounce (Roll,

1984, and Campbell et al., 1997). Depending on whether or not the last trade was a buy or

sell, the registered trade price difference will be almost surely positive or negative. As a result,

a lag-1 serial correlation is usually observed in the series of price changes. A moving average

term could potentially rectify this.

Our contribution is twofold. First of all, using a large number of transaction data sets (ten)

from the Trades and Quotes (TAQ) database of the New York Stock Exchange (NYSE), we

perform a substantive forecasting exercise that lacks in the literature on discrete-response time

series models. In particular, the proposed model is compared against several nested versions

of it. In this way, we examine the forecasting behaviour of ordinal-response GARCH variants
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(with AR, MA, leverage, and/or in mean effects).

The forecasting ability of the competing models is evaluated by conducting a recursive out-

of-sample forecasting analysis, where point and density forecasts are computed. Moreover, we

exploit the conditional predictive ability (CPA) test of Giacomini and White (2006), which is

a pairwise test of the accuracy of competing forecasting results, while we also perform multiple

testings, using the Model Confidence Set (MCS) approach (Hansen et al., 2011). In addition,

we conduct optimal prediction pooling, proposed by Geweke and Amisano (2011) that com-

bines predictive densities from various models, with the aim of selecting the optimal model

combination (pool). Aside from the forecast comparison metrics, we also simulated a simple

trading rule for buying or selling a stock based on the forecasts, as these metrics are hard to

tell if the improvements are large or small. Then, we calculated the trading profits generated

by the forecasts.

Second, the ARMA-OR-GARCHLM model entails estimation challenges due to its latent

nature, its autoregressive structure, the inclusion of the leverage and moving average compo-

nents and the presence of conditional heteroscedasticity both in its conditional mean and its

conditional variance. Therefore, we resort to Bayesian methods and design a Markov chain

Monte Carlo (MCMC) method in order to estimate all parameters of our main specification.

Our estimation approach exploits the Riemann manifold Metropolis adjusted Langevin algo-

rithm (RMMALA) of Girolami and Calderhead (2011).

At this point it is worth mentioning that we excluded from the present analysis additional

market microstructure effects, such as irregularly spacing in time. We believe that it is impor-

tant to investigate first how the proposed models of this paper behave in terms of forecasting

performance, before equipping them with additional characteristics of trading data.

The paper is structured as follows. In section 2 we set up the model and in section 3

we describe the posterior analysis. In section 4 we carry out our empirical study. Section 5

concludes. An Online Appendix accompanies this paper.

2 Econometric set up: The main specification

Suppose that {yt, t = 1, ..., T} is a time series of ordinal responses, where each yt takes on any

one of the J ordered values in the range 1, ..., J such that P (yt = j) = ptj for j = 1, ..., J and
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∑J
j=1 ptj = 1 for t = 1, ..., T .

The underlying mechanism that induces the ordinal structure in the observed process yt lies

in the existence of a latent variable y∗t , which is connected to yt are according to the following

mapping specification

yt = j ⇔ ζj−1 < y∗t ≤ ζj, 1 ≤ j ≤ J. (1)

Relationship (1) implies that yt is observed in category j if y∗t lies in the interval demarcated

by the cutpoints ζj−1 and ζj. In order to ensure that the cumulative distribution function for

yt is properly defined, we require that ζj > ζj−1, ∀j, with ζ0 = −∞ and ζJ = +∞. A typical

restriction in this type of models is to set a cutpoint equal to zero (usually the second one,

ζ1 = 0) and another one equal to 1 (usually the second to last, ζJ−1 = 1); see, for example,

Müller and Czado (2009) and Dimitrakopoulos and Dey (2017).

For the latent variable y∗t we consider the following novel latent autoregressive moving

average model with conditional heteroscedasticity σ2
t ,

y∗t = ρy∗t−1 + z′tδ + τ1σ
2
t + εt + ut + γut−1, t = 1, ..., T, (2)

εt ∼ N(0, σ2
t ), ut ∼ N(0, 1), (3)

σ2
t = α0 + (α1 + τ21(εt−1 < 0))ε2t−1 + α2σ

2
t−1. (4)

In equation (2), y∗t−1 is the single one-period lagged latent dependent variable that captures

time dependence in the observed sequence of yt, zt is a vector of covariates and δ is a constant

coefficient vector of dimension k × 1. Also, expression (2) allows for a moving average error

process, where the error term ut follows a normal distribution with mean zero and a variance

which is normalized to one for identification. This process satisfies the invertibility condition;

that is, |γ| < 1. The stochastic disturbance εt is normally distributed with time-varying

conditional variance σ2
t .

Conditional heteroscedasticity is captured by a GARCH(1,1) specification with leverage

and is described by (4). Expression (4) was proposed by Glosten et al. (1993), where 1(·) is

an indicator function and τ2 controls for asymmetric (leverage) effects; if τ2 > 0 the volatility

increases much more after a negative shock than after a positive shock. To guarantee that the
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variance process is always positive we impose the restrictions α0 > 0, α1 + τ2 ≥ 0 and α2 ≥ 0.

The GARCH process is initialized with ε0 = 0 and a known constant σ2
0.

As can be seen in (2), the conditional variance σ2
t is included as an additional regressor in

the conditional mean equation of y∗t , where the coefficient τ1 is known in financial literature as

the risk premium parameter. Provided that τ1 6= 0, the in-mean effects imply that there is an

additional source of serial correlation in the underlying continuous latent process {y∗t } (apart

from the serial correlation in y∗t s that is induced by the ARMA component) that stems from

the serial correlation in the GARCH-type volatility process {σ2
t }.

The model, given by (1)-(4), is an autoregressive moving average ordinal-response GARCH

model with leverage and conditional heteroscedasticity in mean. We name this model the

ARMA-OR-GARCHLM model1.

Note that the ARMA-OR-GARCHLMmodel encompasses a large number of submodels. For

instance, when τ1 = 0, the ARMA-OR-GARCHLM model reduces to the ARMA-OR-GARCH

model with leverage (ARMA-OR-GARCHL). When τ2 = 0, the AROR-GARCHLM model is

equivalent to the ARMA-OR-GARCH model with in-mean effects (ARMA-OR-GARCHM).

For both τ1 = 0 and τ2 = 0, we obtain the ARMA-OR-GARCH model2.

3 Posterior analysis

3.1 The MCMC algorithm for the ARMA-OR-GARCHLM model

Define:

xt = (y∗t−1, z
′
t)

′,β = (ρ, δ′)′,α = [α0, α1, α2, τ2]
′.

1Note that this model does not account for the fact that the trades are not necessarily equispaced. Putting a
∆ operator in (2) could potentially alleviate the problem. However, this is not a proper way of dealing with this
issue as there are other more suitable models for this purpose, such as the autoregressive conditional duration
model (ACD) proposed by Engle and Russell (1998). Similar analysis holds for potential diurnal effects and
microstructure noises. These issues will be examined in a future paper.

2In time series econometrics literature, ARMA-GARCH models in a Bayesian setting have been analyzed by
Nakatsuma (2000). ARMA models in a non-Gaussian setting have been considered by Benjamin et al. (2003),
Startz (2008), and Zheng et al., (2015), among others.
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The likelihood for the latent model is:

L (α,β, τ1, γ, {ut};y
∗,X) =

{

∏T
t=1(2πσ

2
t (α))−1/2

}

× exp

{

−
∑T

t=1(y∗t −x
′

tβ−τ1σ2
t (α)−ut−γut−1)

2

2σ2
t (α)

}

, (5)

where y∗ = [y∗1, ..., y
∗
T ]

′, X is the T × k matrix of explanatory variables, σ2
t (α) = α0 + (α1 +

τ21(εt−1 < 0))ε2t−1 + α2σ
2
t−1(α), and εt = y∗t − x′

tβ − τ1σ
2
t (α)− ut − γut−1.

Given y∗, the likelihood can be maximized using standard techniques and is amenable to

Markov Chain Monte Carlo (MCMC) simulation through the posterior:

p (α,β, τ1, γ, {ut}|y
∗,X) ∝ L (α,β, τ1, γ, {ut};y

∗,X) · p(α,β, τ1, γ), (6)

where p(α,β, τ1, γ) denotes the joint prior of the model parameters.

MCMC in the complete data posterior is implemented using a Riemannian manifold tech-

nique due to Girolami and Calderhead (2011). This permits jointly updating all elements of

the parameter vector θ = [α′,β′, τ1]
′, conditional on y∗ and {ut}.

As y∗ is latent, we have to consider the augmented posterior:

p (θ, ζ, γ, {ut},y
∗|y,X) ∝

{

∏T
t=1 σ

2
t (α)−1/2

}

exp

{

−
∑T

t=1(y∗t −x
′

tβ−τ1σ2
t (α)−ut−γut−1)

2

2σ2
t (α)

}

×p(θ)
{

∏T
t=1 1 (ζj−1 < y∗t ≤ ζj)

}

p(ζ)p(γ),

(7)

where y = [y1, ..., yT ]
′ and p(ζ) is the joint prior for the vector of cutoff points ζ = [ζ2, ..., ζJ−2]

′.

The MCMC algorithm for the ARMA-OR-GARCHLM model is described in the Online

Appendix.

3.2 Average marginal effects

It is desirable in nonlinear models to understand how small changes in the regressors affect the

mean responses. Since we are dealing with such models, interpreting directly the coefficients

may be ambiguous. To this end, we calculate partial effects, which can be obtained as a by-

product of our MCMC sampler. In this way, we can estimate the effect of a covariate change
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on the probability of y being equal to an ordered value.

Let xk,t be a continuous regressor. The partial effect (pe) of xk,t on the probability of yt

being equal to j, after marginalizing out all the unknown parameters, is defined as

E(pektj|y) =

∫
(

∂P (yt = j|θ, y∗t−1, γ, ut, ut−1, ζj−1, ζj)

∂xk,t

)

dp(θ, y∗t−1, γ, ut, ut−1, ζj−1, ζj|y). (8)

The derivative
∂P (yt=j|θ,y∗t−1,γ,ut,ut−1,ζj−1,ζj)

∂xk,t
is calculated as

∂P (yt=j|θ,y∗t−1,γ,ut,ut−1,ζj−1,ζj)

∂xk,t
= φ(

ζj−1−x
′

tβ−τ1σ2
t (α)−ut−γut−1

σ2
t (α)

)

− φ(
ζj−x

′

tβ−τ1σ2
t (α)−ut−γut−1

σ2
t (α)

),

(9)

where φ denotes the density of the standard normal distribution.

The average partial effect (APE) is the mean of the partial effects:

APE =
T
∑

t=1

E(pektj|y). (10)

Using draws from the MCMC chain, expression (10) is estimated by taking the average of

(8) over all t = 1, ..., T and over all iterations.

3.3 Forecast evaluation

In order to evaluate the forecasting performance of the ARMA-OR-GARCHLM model we

conduct a recursive out-of-sample forecasting exercise. In particular, we produce density and

point r-step-ahead iterated forecasts with r = 1, 5 and 10. This process works as follows.

Given data up to time t+ r− 1, we implement the MCMC algorithm of section 3.1 for a large

number of iterations (after a burn-in period) and obtain pairs of posterior draws (one pair at

each iteration) for both the predictive mean and the predictive density, which are used as point

and density forecasts, respectively. By taking the average over all posterior draws, we obtain

estimates for the predictive mean and the predictive density for yt+r. Next, we move one period

ahead and repeat the same forecasting exercise and so forth.

In particular, let Θ = (θ, ζ, γ, {ut},y
∗) denote the vector of all parameters in the model

and Θ(m) be an MCMC sample of Θ at iteration m = 1...M, after the burn-in period. The
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conditional predictive density for the r-step ahead yt+r given Θ(m) and the data Ωt+r−1 =

(yt+r−1,Xt+r−1), where yt+r−1 = (y1, ..., yt+r−1) and Xt+r−1 = (x1, ...,xt+r−1) is given by

p(yt+r|Ωt+r−1,Θ
(m)) = Φ(

ζ
(m)
j −x

′

t+rβ
(m)−τ

(m)
1 σ2

t+r(α
(m))−u

(m)
t+r−γ(m)u

(m)
t+r−1

σ2
t+r(α

(m))
)

− Φ(
ζ
(m)
j−1−x

′

t+rβ
(m)−τ

(m)
1 σ2

t+r(α
(m))−u

(m)
t+r−γ(m)u

(m)
t+r−1

σ2
t+r(α

(m))
).

(11)

By taking the average over the MCMC samples we can integrate out Θ to obtain the predictive

density defined as

p(yt+r|Ωt+r−1) =
1

M

M
∑

m=1

p(yt+r|Ωt+r−1,Θ
(m)). (12)

Replacing yt+r by the observed value yot+r, we obtain the value p(yt+r = yot+r|Ωt+r−1), which

is called the predictive likelihood of yt+r. Next, we move one period ahead and repeat the

same forecasting exercise using Ωt+r data. The log predictive score (LPS) of the model for the

evaluation period t = t0 + 1, ..., T − r is the sum of the log predictive likelihoods

LPS =
T−r
∑

t=t0

log p(yt+r = yot+r|Ωt+r−1). (13)

Higher values indicate better (out-of-sample) forecasting ability of the model.

A natural measure to evaluate the density forecast p(yt+r|Ωt+r−1) is the predictive likelihood

p(yt+r = yot+r|Ωt+r−1). We can also obtain the point forecast for yt+r by producing an estimate

for the predictive mean E(yt+r|Ωt+r−1). For the evaluation of point forecasts a usual metric is

the root mean squared forecast error (RMSFE) defined as

RMSFE =

√

∑T−r
t=t0

(yot+r − E(yt+r|Ωt+r−1))2

T − r − t0 + 1
. (14)

Lower values of the RMSFE indicate better point forecasts.

In our forecasting comparison of the competing ordinal-response models, both the log pre-

dictive score values and the root mean squared forecast error values are reported. We produce

r-step ahead point and density forecasts, with r = 1, 5 and 10.
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3.4 Tests of equal predictability

As a formal test of equal predictive ability of two competing forecasting results, we consider

the Conditional Predictive Ability (CPA) test of Giacomini and White (2006). It is a pairwise

test that assesses the significance of differences in the out-of-sample forecasting performance

between two models, accounting also for parameter uncertainty.

For the one-step CPA test and given a sample of size T, let N be the size of the estimation

window. Based on rolling samples of size N , we, then, obtain n = T − N one-period ahead

forecasts. This sequence of out-of-sample forecasts is evaluated by a sequence of n loss functions

{Lt+1(yMi,t+1, ŷMi,t+1)}
T−1
t=N , where yMi,t+1 is the observed value and ŷi,t+1 is the predicted value

of model Mi. The difference in loss of model Mi relative to a baseline model Mo is defined

as dMi,t+1 = Lt+1(yMi,t+1, ŷMi,t+1)−Lt+1(yMo,t+1, ŷMo,t+1). Under the null hypothesis of equal

predictive ability Ho : E(dMi,t+1|F) = 0, where F is some information set, the CPA test

statistic is a Wald-type test statistic of the form

WMi
= n

(

n−1

T−1
∑

t=N

hMi,tdMi,t+1

)′

Ω̂−1
n

(

n−1

T−1
∑

t=N

hMi,tdMi,t+1

)

, (15)

where hMi,t is a test function and Ω̂−1
n is a consistent estimator of the covariance of hMi,tdMi,t+1.

A similar analysis holds for a multistep CPA test; see equation (6) in the Giacomini and White

(2006) paper.

To test significant differences of multiple competing models, we use the Model Confidence Set

(MCS) approach of Hansen et al., (2011). The MCS approach does not require the specification

of a benchmark model. Starting from the full set of models, M, this method sequentially

eliminates the worst performing models, until it ends up with a set of models M∗ ⊂ M, where

the null hypothesis of equal predictive ability is not rejected at a certain confidence level a. The

resulting set M∗ is the MCS. Model i belongs to M∗ only if the estimated p-value is greater

than or equal to a, namely p̂Mi
≥ a.

Given the forecast horizon r, the MCS method repeatedly tests the following null hypothesis

of equal forecasting ability

Ho,M : E
(

Lt+r(yMi,t+r, ŷMi,t+r)− Lt+r(yMj ,t+r, ŷMj ,t+r)
)

= 0 for all i, j ∈ M, (16)
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where L is a loss function. The alternative hypothesis is that the models have different forecast

accuracy. To test the above null hypothesis the following statistic is constructed

T = max ti,j
i,j∈M

, (17)

where ti,j is the Diebold-Mariano (1995) test statistic. If we fail to reject the null hypothesis,

all models in M are equally accurate. If we reject the null hypothesis, we eliminate the worst

model that has the highest average loss and repeat the test in (16) with a different set of models,

until no model is eliminated. Following Hansen et al. (2011), we calculate the p-values using

block bootstrap methods as the distribution under the null is not identified.

3.5 Optimal pooling

For the comparison of multiple forecasting models, we adopt the approach of model pooling

by Geweke and Amisano (2011). This approach assumes that none of the competing models

corresponds to the true data generating process, but instead considers a linear prediction pool

based on the predictive likelihood (log score function) from a set of competing models.

Given a set of models {Mi}
M
i=1 and a set of predictive densities {p(yt|y1, ..., yt−1,Mi)}

M
i=1,

we consider the following form of combined predictive densities

M
∑

i=1

wip(yt|y1, ..., yt−1,Mi),where
M
∑

i=1

wi = 1, wi ≥ 0, i = 1, ...,M. (18)

The optimal weight vectorw∗ is chosen to maximise the log pooled predictive score function;

that is,

argmax
wi,i=1,...,M

τ2
∑

t=τ1

log

(

M
∑

i=1

wip(yt|y1, ..., yt−1,Mi)

)

, (19)

where the predictive density is evaluated at the realised value yt.

Conditional on the data up to time t−1, i.e., y1, ..., yt−1, we obtain a large number of posterior

draws for the parameters (by applying the MCMC algorithm of section 3.1 for a large number of

iterations), which are then used to evaluate the predictive likelihood p(yt = yot |y1, ..., yt−1,Mi).

Based on the entire history of predictive likelihood values we can estimate the weights in

expression (19). For optimization, we have used a standard nonlinear solver (Nash, 1984).
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4 Empirical examples

4.1 Data sets and modelling strategies

To illustrate our methods we use ten transactions data sets of different liquidity and tick

size that were obtained from the Trades and Quotes (TAQ) database of the New York Stock

Exchange (NYSE); see Table 1. For each data set, we consider several competing ordinal-

response time series models for comparison purposes. In particular, we employ the main model

(ARMA-OR-GARCHLM) without covariates, which is compared against its following nested

versions:

• ARMA-OR-GARCH model

• ARMA-OR-GARCH model that controls only for leverage (ARMA-OR-GARCHL)

• ARMA-OR-GARCHmodel that controls only for in mean effects (ARMA-OR-GARCHM)

• AR-OR-GARCH model

• AR-OR-GARCH model that controls only for leverage (AR-OR-GARCHL)

• AR-OR-GARCH model that controls only for in mean effects (AR-OR-GARCHM)

• AR-OR-GARCHmodel that controls for leverage and in mean effects (AR-OR-GARCHLM)

• the AR-OR model with constant variance (no conditional heteroscedasticity)

The above list is augmented to include also the continuous counterpart of the main model,

the ARMA-GARCHLM model.

To make the exposition of the forecasting results more readable, we report, throughout the

paper, the ratio of the LPS of the baseline model to that of a given model, with the baseline

model being the AR-OR model. Values smaller than one indicate better forecasting ability

than the baseline model. Similarly, for ease of exposition, the root mean squared forecast error

(RMSFEs) of the baseline model is divided by that of a given model. Values greater than one

indicate better forecasting power than the AR-OR model.

Regarding the implementation of the optimal prediction pooling of Geweke and Amisano

(2011), we have used the last 500 data points. As far as the CPA tests are concerned, they are all
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two-sided. We produce sequences of r-step ahead forecasts for r = 1, 5, 10 over rolling windows

of 100 observations and report the p-values (in the Online Appendix). The test function for

the CPA tests is hMi,t = (1, dMi,t)
′ for each model Mi and t, while the squared error loss is

used as a loss function. The same loss function was used for the MCS approach, with the block

bootstrap length being equal to ten. The MCS p-values are also given in the Online Appendix.

All our estimation results (posterior means and posterior standard deviations) are based

on 150000 iterations of the samplers, using a burn-in of 50000 cycles. Also, throughout our

empirical analysis we set the ζ3 cutpoint equal to 1. Below we analyse the estimation and

forecasting results for the first data set (Caterpillar stock) of Table 13.

4.2 Data set I: Caterpillar stock

We first consider the tick-by-tick trading data of Caterpillar stock on January 4, 2010. We

focus on the intraday price changes of Caterpillar stock between 9:30 AM and 4:00 PM Eastern

time. During this time period there were recorded 37716 transactions and 37715 price changes

which are displayed graphically in Figure 1. These price differences tend to be concentrated

(clustered) on multiples of 1 cent, as their histogram shows in Figure 2, with 98.7% of these

differences lying between −2 cents and +2 cents. So, the price change of Caterpillar stock in

consecutive trades can be considered as a discrete-valued variable yt. Furthermore, since the

intraday price changes of less than 2 cents and more than 2 cents are few, we group them as

price changes of < −2 and > 2, respectively.

Taking these considerations into account, the dependent variable yt in our analysis takes

on 6 categories of price changes, where a value of “1” is assigned to price changes that fall

more than two cents (< −2), a value of “2” is assigned to price changes that fall in the interval

[−2,−1) and so on up to price changes that are above 2 cents (> 2), which are assigned a

value of “6”. Table 2 displays the intervals of price differences and the corresponding response

categories along with their corresponding observed frequencies for the Caterpillar stock data.

The sample autocorrelation functions (ACF) for the price differences (Figure 3) and their

squared values (Figure 4) seem a good motivation for the inclusion of the moving average

component (likely due to bid ask bounce) and for accounting for time-varying second moments

3Due to the large number of models and data sets in question, we do not report the estimation results for
the rest of the empirical data sets. These results are available upon request.
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(conditional heteroscedasticity). Also, the negative skewness of the unconditional distribution

of the stock price changes (the histogram has skewness equal to -0.1838) prompts for accounting

for in-mean effects as the GARCH-M model, generally speaking, implies postulating a marginal

distribution for the returns, which is skewed.

4.2.1 Estimation results

The ρ and γ parameters

Table 3 presents the results. The estimated autoregressive parameters ρ are significant and

positive across all models. The significance of the AR(1) parameters signals the presence of

time dependence in the observed responses of the data set in question, through the dependence

of the latent variable y∗t at time t on its level at t−1. The positive sign implies positive dynamic

persistence in the discrete price changes.

The magnitude of ρ appears to be largest in the AR-OR-GARCHLM and ARMA-OR-

GARCHLM models that control for both leverage and in mean effects (0.414 and 0.410, respec-

tively). The standard models, which have been encountered in the relevant empirical literature

(AR-OR and AR-OR-GARCH), downgrade the strength of the dependence of the current trans-

action price on the previous transaction price, as they produce the smallest values of ρ (0.188

and 0.217, respectively).

It is worth noting that ρ was also found to have a positive sign in the paper by Müller and

Czado (2005). Müller and Czado (2005) estimated an autoregressive ordinal-response (AR-OR)

model and the coefficient on y∗t−1 was equal to 0.1362. In our empirical data, the respective

estimated value of ρ for our AR-OR model is similar (0.188); see Table 3.

However, since we are dealing with discrete-response probability models, we also calculated

the average partial effects (APEs) for the regressors y∗t−1 and σ2
t . The results are presented in

Table 4. The APE of y∗t−1 on the expected price change is positive and significant across all

models except for the ARMA-OR-GARCHM model. Therefore, a big (small) price change in

the previous transaction increases the probability of observing another big (small) price change

in the next transaction.

For the AR-OR-GARCHLM and ARMA-OR-GARCHLM models, the (significant) APEs

for y∗t−1 are equal to 0.388 and smaller in magnitude than the (significant) APEs obtained
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from the ordinal-response models with only leverage or only in mean effects. In any case, the

statistically significant effects of the lagged dependent variables on the expected price changes

are lower in the standard ordinal-response models (AR-OR and AR-OR-GARCH) than in the

rest of the models, as Table 4 shows. Put differently, when additional microstructure effects of

the series of prices changes (moving average, leverage or in mean effects) are disregarded, there

seems to be a downward bias in the estimated value of the APE for y∗t−1 (dynamic effects).

The posterior mean of γ was found to be between 0.02 and 0.182 in the ordinal-response

models that incorporate the moving average component (Table 3). The serial error correlation,

although not strong in magnitude, verifies that the data behaviour may suffer from the bid-ask

bounce (as the data plots also showed). This is a finding that had been ignored by previous

empirical studies. Also, the estimated value of γ is the highest for the main model (ARMA-

OR-GARCHLM) and the lowest for the ARMA-OR-GARCH model.

The GARCH and in-mean parameters

There is a positive feedback from the conditional variance to the conditional mean of the

latent regression for y∗t (volatility feedback effect), as the in-mean parameters τ1 are all positive

in Table 3. This is also verified by the estimated APEs for the regressor σ2
t in Table 4, where we

additionally observe that they are larger in the ordinal-response models with a moving average

component. In the models that control for leverage effects, the posterior means of τ2 parameters

are positive and significant (Table 3), implying that a negative shock that takes place at time

t will increase the conditional variance at time t+ 1.

We conclude that both the in-mean and leverage effects affect the underlying continuous

latent process of y∗ that regulates the discretisation of the observed responses, and therefore,

they are important factors in analyzing transaction stock prices. This is another empirical

finding in the literature on discrete-response financial time series models.

The GARCH parameters (α0, α1, α2) that govern the evolution of the conditional variance

process are also significant across the models of Table 3. Furthermore, there is some persistence

in the time-varying conditional variances; the posterior means for α1 were found to be between

0.271 (for the AR-OR-GARCHL model) and 0.615 (for the ARMA-OR-GARCH. Also, most of

the ARMA-OR-GARCH-type models yield larger volatility persistence than the non-ARMA-

OR-GARCH-type models.
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4.2.2 Forecasting results

In this section we examine how the models of Table 3 behave in terms of forecasting per-

formance. In our forecast evaluation exercise, we computed point and density forecasts for

1-transaction, 5-transaction and 10-transaction ahead (r = 1, 5 and 10). To this end, we cal-

culated log predictive scores (LSPs) and root mean squared forecast errors (RMSFEs). The

results are presented in Tables 5 and 6, respectively.

Table 5 presents the results for the density forecasts. For short-horizon forecasts (r = 1), the

AR-OR-GARCH model performs better than the rest of the models. The AR-OR-GARCHLM,

which is the second best forecasting model, produces better density forecasts than its nested

versions AR-OR-GARCHM (third best) and AR-OR-GARCHL (fourth best).

Notice also that the AR-OR-GARCH-type models outperform the ARMA-OR-GARCH-

type models. Therefore, the addition of the moving average component to the AR-OR-GARCH

variants does not contribute to their forecasting performance at short horizons.

For medium horizon forecasts (r = 5), the best forecasting performance is attained by the

AR-OR-GARCHLM, followed by the AR-OR-GARCH model. Both the ARMA-OR-GARCHL

and ARMA-OR-GARCHM models occupy the next two positions and they do better than the

corresponding AR-OR-GARCHL and AR-OR-GARCHM models. That was not the case for

r = 1. Hence, the role of the moving average term becomes more important in improving

medium horizon density forecasts.

For longer horizons (r = 10), the AR-OR-GARCHLMmodel still remains the winner (as was

also the case for r = 5), followed by its nested versions ARMA-OR-GARCHL (second best) and

ARMA-OR-GARCHM (third best). We see that as the horizon of forecasts becomes bigger,

some of the previously less dominant ARMA-OR-GARCH variants elevate their forecasting

power, outperforming previously dominant AR-OR-GARCH variants. For instance, the second

best and third best models at long horizons displaced the AR-OR-GARCH model, which was

dominant at short and medium horizons.

The point forecast results are given in Table 6. For short horizons (r = 1), the most

preferred model is the ARMA-OR-GARCH. Also, the ARMA-OR-GARCHM and ARMA-OR-

GARCHL models occupy the second best and third best positions, respectively. In addition,

we observe a superiority of almost all the ARMA-OR-GARCH variants (except for the main
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model) over all AR-OR-GARCH variants. That was not the case for the short horizon density

forecasts. Among the AR-OR-GARCH variants, the AR-OR-GARCH model produces the best

point forecast. The same story is repeated for r = 5.

For r = 10, the AR-OR-GARCH model loses its dominance among the AR-OR-GARCH-

type models. Also, all the models now with the moving average term (including the main

specification) do better than the rest of the models, with the ARMA-OR-GARCHL model

being the best.

Based on the LPS and the RMSFE values, the continuous ARMA-GARCHLM model has

the worst forecasting performance across all horizons.

According to the MCS results (Table 6), the superior set of models contains the ARMA-

OR-GARCH variants, indicating that their forecasting accuracies are not significantly different.

These variants survive the elimination process for every value of r, except for the ARMA-OR-

GARCH model, which is excluded from the MCS for r = 5 and r = 10. All the other models

are excluded from the MCS at the 95% confidence level for all horizons; the forecasting ability

of the ARMA-OR-GARCH variants is superior to that of the AR-OR-GARCH variants and of

the traditional models (AR-OR-GARCH, AR-OR and ARMA-GARCHLM). These results are

also verified by the produced RMSFE values.

We also considered weighted linear combinations of prediction models (linear pools), evalu-

ated using the log predictive scoring rule (Geweke and Amisano, 2011). In particular, optimal

weights can be computed in each transaction to form a prediction pool for the r-step ahead

transaction (r = 1, 5, 10). Figure 5 shows the evolution of these weights.

The main specification, the ARMA-OR-GARCHLM, receives by far the largest weight over

the entire out-of-sample forecasting period (Figure 5(a)). This weight increases over time at

the expense of the ARMA-OR-GARCHL model (Figure 5(b)) and the ARMA-OR-GARCHM

model (Figure 5(c)), both of which receive a negligible weight. Figure 5(d) displays the sum of

weights “on all other models”, which is even smaller than the weights shown in Figures 5(b)

and 5(c).

The pool of models optimized over all the out-of-sample predictive densities for all the 500

data points (see expression (19)) is given in the second row of Table 10. For example, for

r = 1, the optimal prediction weight for the ARMA-OR-GARCHLM model is 0.799, for the

17



ARMA-OR-GARCHL model is 0.140, and for the ARMA-OR-GARCHM model is 0.061. The

sum of these weights is equal to one, with the ARMA-OR-GARCHLM receiving most of the

weight. All the other models are excluded from the optimal pool as they were assigned zero

weight. For r = 5 and 10, the optimal pools also include ARMA-OR-GARCH-type models

only, where the ARMA-OR-GARCHLM dominates again.

As a next step in our analysis we examined graphically how well the models in question

can forecast the price changes in consecutive trades (r = 1) for four different time intervals of

5000 observations each. To this end, we produced Figure 6 that displays the evolution of the

real cumulative price changes (blue line) against that of the predicted cumulative price changes

obtained from various forecasting models.

Among the ordinal-response models, the ARMA-OR-GARCHLM model (red line), had the

best fit to the real path of cumulative price changes. We, then, compared the predicted path

generated by this model against that generated by the traditional models ARMA-GARCHLM

and AR-OR-GARCH. As can be seen from the first three plots (Figures 6(a)-6(c)), the tradi-

tional models do worse than the ARMA-OR-GARCHLMmodel, failing to follow closely the true

path of values for the three time intervals in question and there are cases where the divergence

is significant.

In Figure 6(d) we plotted the time series of the predicted cumulative price changes obtained

from the optimal pool of models (ARMA-OR-GARCHLM, ARMA-OR-GARCHL, ARMA-OR-

GARCHM) for the last 5000 observations of our data set. We observe that when these three

models are combined together, the resulting series is able to replicate/capture very well the

movement of the true one.

As a last issue we evaluated the proposed models, in terms of profitability. It is known that

traders want to buy low and sell high so as to achieve high returns with low risk. Hence, it is

worth examining if our proposed models are realistic models for trading purposes. As such, we

simulated a simple trading rule according to which we sell when we predict a decrease in price

and buy otherwise. The decrease or increase has to be “significant” in the sense that the price

difference changes category. The predictions are extracted from the ARMA-GARCHLM model

and the optimal combination of models. In either case, we produce a forecast for r = 1, 5, 10

based on the relevant predictive density.
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Then, the performance of the trading strategy for each case (ARMA-GARCHLM or optimal

pool) is evaluated by the average excess return it can generate. We found that the out-of-sample

average excess returns earned by the trading rule are greater for the optimal pool of models than

for the ARMA-GARCHLM model by 5.30%, 4.17% and 3.22% for r = 1, 5 and 10, respectively;

see second row of Table 11.

4.3 General findings for the rest of the data sets

The same analysis was repeated for the rest of the data sets of Table 1. Due to the large

number of models and data sets in question, we provide in Tables 7-11 an overall summary of

the forecasting results that were obtained from the data sets I-X. In the Online Appendix we

report the full forecasting results (relevant tables and figures) for data set II only (as did for

data set I). For the data sets III-X, these results are available upon request.

Tables 7 and 8 report the best forecasting model for each data set and for each horizon (r =

1, 5, 10), based on the LPS and RMSFE values, respectively. In terms of density forecasts, the

ARMA-OR-GARCH variants occupy the first best position, with the ARMA-OR-GARCHLM

being the dominant model in most of the cases. The traditional benchmark AR-OR-GARCH

produced the best density forecast result only for data set I and only for the short-term horizon.

Also, the AR-OR-GARCH-type models produced worse density forecasts than the ARMA-OR-

GARCH-type models.

Similar analysis holds for the point forecast results, as far as the dominance of the ARMA-

OR-GARCH specifications is concerned. The continuous-response model ARMA-GARCHLM

beats the rest of the models but only for data set X and only for r = 1. As was also the case

for the density foreacsts, the AR-OR-GARCH variants fail to defeat their counterparts that

control for an MA term.

Based on the MSC results (Table 9), the set of models with equal predictability contains, in

any case, the ARMA-OR-GARCH specifications, which again dominate. Only for data set II,

the AR-OR-GARCH variants survive the elimination process, where the ARMA-GARCHLM

model is also included in the superior set of models for every r. The continuous model belongs

to the superior set of models and for data X as well.

In Table 10, we report the optimal prediction pool optimized over all the last 500 obser-
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vations. In doing so for each horizon, we obtain the optimal weights for the models that are

included in the pool. These weights add up to one. As can be seen from Table 10, most of the

weight is allocated to the ARMA-OR-GARCHLM model. The rest of the ARMA-OR-GARCH

variants receive the remaining weight. The various AR-OR-GARCH models are excluded from

the optimal pool, as is also the case for the continuous ARMA-GARCHLM model, except for

the last data set.

Using also the trading rule that we developed in the previous section, we were able to

calculate the profitability obtained from the optimal pool of models against that obtained from

the ARMA-GARCHLM model. From Table 11, we observe that the average excess returns

generated from the optimal pool of models are always greater than those generated from the

ARMA-GARCHLM model by 2.16% up to 9.32%.

5 Conclusions

In this paper we proposed a novel autoregressive (AR) ordinal-response (OR) time series model

with generalized autoregressive conditional heteroscedasticity (GARCH). In an attempt to ac-

count for potential microstructure effects that may be present in intraday transaction stock

prices, the proposed model specification was equipped with leverage effects, a moving average

(MA) component and conditional heteroscedasticity in mean. For model estimation, a Markov

Chain Monte Carlo algorithm was developed, while a substantive forecasting exercise was con-

ducted. We found that the proposed ordinal-response models produce forecast gains over the

traditional benchmarks, with the ARMA-OR-GARCH-type models being dominant.
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Bianco, S., & Renò, R. (2006). Dynamics of intraday serial correlation in the Italian futures

market. Journal of Futures Markets, 26, 61–84.
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Figure 1: Empirical results. Time plot of price changes (measured in cents) in consecutive
transactions for Caterpillar stock traded on January 4, 2010.
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Figure 2: Empirical results. Histogram of price changes for Caterpillar stock traded on January
4, 2010.
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Figure 3: Empirical results. Sample autocorrelation function of the price changes for Caterpillar
stock traded on January 4, 2010. The two blue horizontal lines represent the 95% confidence
bounds.
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Figure 4: Empirical results. Sample autocorrelation function of the squared price changes for
Caterpillar stock traded on January 4, 2010. The two blue horizontal lines represent the 95%
confidence bounds.
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Figure 5: Empirical results. Evolution of model weights in the nine-model pool of Caterpillar
stock r = 1, 5 and 10-step ahead predictive densities.
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15000, ..., 20000).
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(c) Actual and predicted time series of cumu-
lative price changes for particular models (t =
20000, ..., 25000).
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(d) Actual and predicted time series of cumula-
tive price changes for the optimal pool of models
(t = 32715, ..., 37715). The optimal pool of models
consists of the models reported in Figures 5(a)-5(c);
see also Table 10.

Figure 6: Empirical results: Actual and predicted cumulative price changes for r = 1- step
ahead transactions (Caterpillar stock).
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Table 1: Data sets.

Data set Description Total price changes

I Caterpillar stock traded on January 4, 2010. 37715
II Jonson and Jonson (JNJ) stock traded on October 5, 2010. 47805
III General Electric (GE) stock traded on December 2, 2003. 13048
IV Starbucks stock traded on July 29, 2011. 74396
V Boeing stock traded on December 1, 2008. 43893
VI Alcoa stock traded on June 8, 2010. 83016
VII IBM stock traded on June 9, 1999. 4149
VIII IBM stock traded on January 13, 2000. 5552
IX Microsoft stock traded on December 16, 1997. 6422
X Microsoft stock traded on May 16, 2000. 23775

Notes: The transaction data sets were obtained from the Trades and Quotes (TAQ) database of the
New York Stock Exchange (NYSE). We focus on normal trading hours from 9:30 AM to 4:00 PM
Eastern time. The tick size on NYSE was $1

8 before June 24, 1997 and $ 1
16 before January 29, 2001.

Since January 29, 2001 all NYSE stocks are traded in decimals and the price changes in consecutive
transactions tend to occur in multiples of 1 cent.

Table 2: Empirical application. Response categories, intervals of price
changes and observed frequencies for Caterpillar stock data on January 4,
2010.

Price change intervals (cents) < −2 [−2,−1) [−1, 0] (0, 1] (1, 2] > 2
Responses (yt) 1 2 3 4 5 6
Frequencies 228 638 30239 5672 691 247

Table 3: Empirical results. Competing autoregressive ordinal-response models (Caterpillar stock).

Models/Parameters ρ γ τ1 τ2 α0 α1 α2

ARMA-OR-GARCHLM 0.410* (0.032) 0.182* (0.016) 0.017* (0.0032) 0.032* (0.013) 0.053* (0.012) 0.303* (0.025) 0.572* (0.044)

ARMA-OR-GARCHL 0.372* (0.025) 0.091* (0.029) 0.044* (0.021) 0.049* (0.017) 0.382* (0.017) 0.488* (0.032)

ARMA-OR-GARCHM 0.313* (0.019) 0.177* (0.023) 0.025* (0.0093) 0.061* (0.014) 0.399* (0.021) 0.588* (0.037)

ARMA-OR-GARCH 0.332* (0.017) 0.022* (0.0045) 0.059* (0.0083) 0.615* (0.022) 0.287* (0.015)

AR-OR-GARCHLM 0.414* (0.032) 0.012* (0.0038) 0.035* (0.007) 0.061* (0.0044) 0.313* (0.042) 0.544* (0.017)

AR-OR-GARCHL 0.372* (0.041) 0.027* (0.0013) 0.057* (0.0032) 0.271* (0.036) 0.655* (0.015)

AR-OR-GARCHM 0.288* (0.018) 0.017* (0.0044) 0.044* (0.0041) 0.301* (0.028) 0.598* (0.013)

AR-OR-GARCH 0.217* (0.011) 0.058* (0.012) 0.288* (0.032) 0.582* (0.019)

AR-OR 0.188* (0.015)

Reported posterior means. Standard errors in parenthesis.* denotes significant based on the 95% highest posterior density intervals.

Table 4: Empirical results. Marginal effects for competing
autoregressive ordinal-response models (Caterpillar stock).

Models/Regressors y∗t−1 σ2
t

ARMA-OR-GARCHLM 0.388* (0.071) 0.103* (0.044)

ARMA-OR-GARCHL 0.414* (0.082)

ARMA-OR-GARCHM 0.055 (0.077) 0.138* (0.054)

ARMA-OR-GARCH 0.455* (0.071)

AR-OR-GARCHLM 0.388* (0.081) 0.027* (0.0092)

AR-OR-GARCHL 0.431* (0.061)

AR-OR-GARCHM 0.444* (0.075) 0.035* (0.012)

AR-OR-GARCH 0.303* (0.061)

AR-OR 0.289* (0.055)

Reported posterior means. Standard errors in parenthesis.*
denotes significant based on the 95% highest posterior den-
sity intervals.
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Table 5: Empirical results. Relative log predictive scores
(LPS) for competing autoregressive ordinal-response
models (Caterpillar stock).

Models r = 1 r = 5 r = 10
ARMA-OR-GARCHLM 0.233 0.245 0.239
ARMA-OR-GARCHL 0.144 0.132 0.127
ARMA-OR-GARCHM 0.132 0.138 0.128
ARMA-OR-GARCH 0.166 0.212 0.27
AR-OR-GARCHLM 0.083 0.092 0.114

AR-OR-GARCHL 0.105 0.177 0.185
AR-OR-GARCHM 0.097 0.182 0.130
AR-OR-GARCH 0.081 0.103 0.155

AR-OR 1 1 1
ARMA-GARCHLM 1.115 1.225 1.334

Notes: Values in bold indicate that the corresponding
models have the best forecasting performance.

Table 6: Empirical results. Relative root mean squared
forecast errors (RMSFEs) for competing autoregressive
ordinal-response models (Caterpillar stock).

Models r = 1 r = 5 r = 10
ARMA-OR-GARCHLM 1.022* 1.027* 1.029*
ARMA-OR-GARCHL 1.037* 1.043* 1.051*
ARMA-OR-GARCHM 1.038* 1.040* 1.044*
ARMA-OR-GARCH 1.045* 1.044* 1.040*
AR-OR-GARCHLM 1.017* 1.013* 1.010*
AR-OR-GARCHL 1.012* 1.011* 1.010
AR-OR-GARCHM 1.033* 1.022* 1.017*
AR-OR-GARCH 1.035* 1.032* 1.015

AR-OR 1 1 1
ARMA-GARCHLM 0.972* 0.835 0.770

Notes:
1) Values in bold indicate that the corresponding
models have the best forecasting performance.

2) * indicates that the respective model performs
significantly different from the baseline model (AR-OR
model) at the 5% level, based on the p-values of the
Giacomini-White (2006) test. The table of these values
is given in the Online Appendix.

3) Underlined numbers indicate that the correspond-
ing models are included in the Model Confidence Set
(Hansen et al., 2011). The confidence level for MCS
is 95%. The table of the MCS p-values is given in the
Online Appendix.
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Table 7: Summary table for the LPS results.

Data r = 1 r = 5 r = 10
I AR-OR-GARCH AR-OR-GARCHLM AR-OR-GARCHLM
II ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
III ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
IV ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
V ARMA-OR-GARCHLM ARMA-OR-GARCHL ARMA-OR-GARCHLM
VI ARMA-OR-GARCHM ARMA-OR-GARCHM ARMA-OR-GARCHLM
VII ARMA-OR-GARCHM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
VIII ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
IX ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
X ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM

Notes: This table reports the best forecasting model for each data set and for each
horizon r, based on the LPS values. In the Online Appendix we report the full
forecasting results for the data set II only. The forecasting results for the data sets
III-X are available upon request.

Table 8: Summary table for the RMSFE results.

Data r = 1 r = 5 r = 10
I ARMA-OR-GARCH ARMA-OR-GARCH ARMA-OR-GARCHL
II ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
III ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
IV ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
V ARMA-OR-GARCHLM ARMA-OR-GARCH ARMA-OR-GARCHL
VI ARMA-OR-GARCHLM ARMA-OR-GARCH ARMA-OR-GARCHM
VII ARMA-OR-GARCHLM ARMA-OR-GARCH ARMA-OR-GARCHLM
VIII ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHL
IX ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
X ARMA-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM

Notes: This table reports the best forecasting model for each data set and for each
horizon r, based on the RMSFE values. In the Online Appendix we report the full
forecasting results for the data set II only. The forecasting results for the data sets
III-X are available upon request.
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Table 9: Summary table for the MCS results.

Data r = 1 r = 5 r = 10
I ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM

ARMA-OR-GARCHL ARMA-OR-GARCHL ARMA-OR-GARCHL
ARMA-OR-GARCHM ARMA-OR-GARCHM ARMA-OR-GARCHM
ARMA-OR-GARCH

II ARMA-OR-GARCH ARMA-OR-GARCH ARMA-OR-GARCH
AR-OR-GARCHLM AR-OR-GARCHLM AR-OR-GARCHLM
AR-OR-GARCHL AR-OR-GARCHL AR-OR-GARCHL
AR-OR-GARCHM AR-OR-GARCHM AR-OR-GARCHM
AR-OR-GARCH AR-OR-GARCH AR-OR-GARCH

ARMA-GARCHLM ARMA-GARCHLM ARMA-GARCHLM
III ARMA-OR-GARCHLM ARMA-OR-GARCHL ARMA-OR-GARCHLM

ARMA-OR-GARCHL ARMA-OR-GARCHM ARMA-OR-GARCHM
ARMA-OR-GARCHM

IV ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
ARMA-OR-GARCHL ARMA-OR-GARCHL ARMA-OR-GARCHL

V ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
ARMA-OR-GARCHL ARMA-OR-GARCHL ARMA-OR-GARCHL
ARMA-OR-GARCHM ARMA-OR-GARCHM ARMA-OR-GARCHM

VI ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
ARMA-OR-GARCHL ARMA-OR-GARCHL ARMA-OR-GARCHL
ARMA-OR-GARCHM ARMA-OR-GARCH ARMA-OR-GARCH
ARMA-OR-GARCH

VII ARMA-OR-GARCHM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
ARMA-OR-GARCH ARMA-OR-GARCHM ARMA-OR-GARCH

ARMA-OR-GARCH
VIII ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM

ARMA-OR-GARCH ARMA-OR-GARCHM ARMA-OR-GARCH
ARMA-OR-GARCH

IX ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM
ARMA-OR-GARCH ARMA-OR-GARCHM ARMA-OR-GARCH

ARMA-OR-GARCH
X ARMA-OR-GARCHLM ARMA-OR-GARCHLM ARMA-OR-GARCHLM

ARMA-GARCHLM ARMA-OR-GARCHM ARMA-OR-GARCH
ARMA-GARCHLM ARMA-GARCHLM

Notes: This table reports the Model Confidence Set for each data set and for each
horizon r, based on the MCS p-values. In the Online Appendix we report the full
forecasting results for the data set II only. The forecasting results for the data sets
III-X are available upon request.
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Table 10: Summary table for the Geweke-Amisano results.

Data r = 1 r = 5 r = 10
I ARMA-OR-GARCHLM(0.799) ARMA-OR-GARCHLM (0.855) ARMA-OR-GARCHLM (0.620)

ARMA-OR-GARCHL (0.140) ARMA-OR-GARCHL (0.120) ARMA-OR-GARCHL (0.214)
ARMA-OR-GARCHM (0.061) ARMA-OR-GARCH (0.025) ARMA-OR-GARCHM (0.152)

ARMA-OR-GARCH (0.014)
II ARMA-OR-GARCHLM (0.614) ARMA-OR-GARCHLM (0.789) ARMA-OR-GARCHLM (0.892)

ARMA-OR-GARCHL (0.221) ARMA-OR-GARCHL (0.211) ARMA-OR-GARCHL (0.053)
ARMA-OR-GARCHM (0.032) ARMA-OR-GARCHM (0.022)
ARMA-OR-GARCH (0.133) ARMA-OR-GARCH (0.033)

III ARMA-OR-GARCHLM (0.732) ARMA-OR-GARCHLM (0.812) ARMA-OR-GARCHLM (0.935)
ARMA-OR-GARCHL (0.128) ARMA-OR-GARCHL (0.052) ARMA-OR-GARCHL (0.065)
ARMA-OR-GARCHM (0.14) ARMA-OR-GARCHM (0.071)

ARMA-OR-GARCH (0.065)
IV ARMA-OR-GARCHLM (0.810) ARMA-OR-GARCHLM (0.834) ARMA-OR-GARCHLM (0.944)

ARMA-OR-GARCHL (0.190) ARMA-OR-GARCHL (0.166) ARMA-OR-GARCHL (0.056)
V ARMA-OR-GARCHLM (0.940) ARMA-OR-GARCHLM (0.717) ARMA-OR-GARCHLM (0.832)

ARMA-OR-GARCHL (0.060) ARMA-OR-GARCHL (0.133) ARMA-OR-GARCHL (0.056)
ARMA-OR-GARCHM (0.120) ARMA-OR-GARCHM (0.071)
ARMA-OR-GARCH (0.030) ARMA-OR-GARCH (0.041)

VI ARMA-OR-GARCHLM (0.540) ARMA-OR-GARCHLM (0.550) ARMA-OR-GARCHLM (0.815)
ARMA-OR-GARCHL (0.230) ARMA-OR-GARCHM (0.450) ARMA-OR-GARCHM (0.117)
ARMA-OR-GARCHM (0.120) ARMA-OR-GARCH (0.068)
ARMA-OR-GARCH (0.11)

VII ARMA-OR-GARCHLM (0.730) ARMA-OR-GARCHLM (0.710) ARMA-OR-GARCHLM (0.810)
ARMA-OR-GARCH (0.270) ARMA-OR-GARCHM (0.220) ARMA-OR-GARCH (0.190)

ARMA-OR-GARCH (0.070)
VIII ARMA-OR-GARCHLM (0.85) ARMA-OR-GARCHLM (0.713) ARMA-OR-GARCHLM (0.832)

ARMA-OR-GARCH (0.15) ARMA-OR-GARCHM (0.133) ARMA-OR-GARCH (0.168)
ARMA-OR-GARCH (0.154)

IX ARMA-OR-GARCHLM (0.600) ARMA-OR-GARCHLM (0.710) ARMA-OR-GARCHLM (0.640)
ARMA-OR-GARCH (0.400) ARMA-OR-GARCHM (0.23) ARMA-OR-GARCH (0.360)

ARMA-OR-GARCH (0.06)
X ARMA-OR-GARCHLM (0.550) ARMA-OR-GARCHLM (0.623) ARMA-OR-GARCHLM (0.644)

ARMA-GARCHLM (0.450) ARMA-OR-GARCHM (0.167) ARMA-OR-GARCH (0.140)
ARMA-GARCHLM (0.210) ARMA-GARCHLM (0.216)

Notes: This table reports the optimal pool of forecasting models for each data set and for each horizon r. The numbers in
parentheses are the weights for the pool optimized over all the last 500 observations. The sum of these numbers is equal
to 1. The model in bold received most of the weight. In the Online Appendix we report the full forecasting results for the
data set II only. The forecasting results for the data sets III-X are available upon request.
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Table 11: Summary table for the trading rule.

Data r = 1 r = 5 r = 10
I 5.30% 4.17% 3.22%
II 2.17% 4.72% 5.51%
III 7.33% 6.88% 6.32%
IV 8.25% 8.71% 9.32%
V 3.71% 4.15% 5.08%
VI 4.88% 5.14% 5.33%
VII 4.77% 4.90% 5.12%
VIII 2.44% 4.85% 4.85%
IX 3.15% 4.03% 3.01%
X 2.16% 2.22% 2.28%

Notes: This table reports the
percentage by which the av-
erage excess return from the
trading rule for the optimal
pool of models exceeds that
for the ARMA-GARCHLM
model.
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