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Abstract 
This paper assesses the accuracy and reliability of the Theory of Critical Distances (TCD) and the 

Strain Energy Density (SED) approach in estimating the lifetime of plain and notched specimens 

subjected to cyclic loading. To validate the two approaches for plain and notched components under 

uniaxial and multiaxial fatigue loading, a large bulk of experimental data taken from the literature 

were re-analyzed, with the state variables, i.e. the stress distributions and the strain energy density, 

being calculated via Finite Element (FE) approach. The results obtained demonstrate that both the 

TCD and the SED approach can provide highly accurate fatigue life estimation. In addition, the two 

adopted approaches require few computational efforts and experimental data to be implemented and 

used for fatigue design in situations of practical interest. 

 

Keywords: Theory of Critical Distances, Strain Energy Density, Modified Wöhler Curve, Uniaxial 

fatigue, Multiaxial fatigue. 

 

Nomenclature 

k, kĲ negative inverse slope of the 
Wöhler curve 

E elastic modulus 

Kth threshold value of the stress 
intensity factor 

ǻıp,el,  elastic peak stress ranges at the notch 
tip under tension loadings 

Kt stress concentration factor 
nom  nominal stress ranges tied to tension 

loadings, 
KIC plane strain material toughness ı0 plain fatigue limit 

t net,axialK ,
t net,torsionalK  

theoretical stress concentration 
factors under tension and torsion 
loadings 

ıeff effective stress calculated according 
to the TCD 

∆K1A, ∆K3A reference values at high cycle 
fatigue of the notch stress 
intensity factor range under 
Mode I and III loading 

ı1 maximum principal stress 
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K1, K2, K3 the values of mode I, mode II and 
mode III σSIF 

ıu ultimate tensile stress 

L material characteristic length ıA amplitude of the nominal gross stress 
at σA cycles 

LM material characteristic length 
determined in the medium-cycle 
fatigue regime 

g,a  amplitude of the nominal gross stress 

σ0 number of cycles to failure 
defining the position of the knee 
point 

ı1,a 
amplitude of the maximum principal 
stress 

σf number of cycles to failure 
n,m

 
mean stress perpendicular to the 
critical plane 

σA reference number of cycles to 
failure in the high-cycle fatigue 
regime 

n,a  amplitude of the stress perpendicular 
to the critical plane 

σf ,e estimated number of cycles to 
failure 

A,p  fatigue strength of the smooth sample 
at σA cycles 

I1, I2 the first and second invariants of 
the stress tensor 

ij  stress state components 

R0 radius of the control volume 
0  fully reversed uniaxial fatigue limit 

R load ratio ıA,n nominal stress of notch sample at σA 
cycles 

R1, R3 the radius of the control volume 
under Mode I and Mode III 
loading 

∆ıA nominal stress range of the unnotched 
material 

r, ș polar coordinates ǻĲp,el  elastic peak stress ranges at the notch 
tip under torsion loadings 

m mean stress sensitivity index 
nom  nominal stress ranges tied to torsion 

loadings, 
plain
0W  strain density energy from the 

plain sample 
Ȝ1, Ȝ2, Ȝ3 Williams’ eigenvalues 

notch
W  strain energy density value 

averaged over the control volume 
from the notch sample 

e1, e2, e3   shape functions for sharp V-notches 

Wc critical energy value 2Į opening angle of notch  
Welement,i energy contributions for all the 

finite element 
ȣ Poisson’s ratio 

W  averaged value of the SED over a 
control volume 

cw weighting parameter 

0  fully reversed torsional fatigue 
limit 

V control volume 

Ĳa maximum shear stress amplitude  Tı, TW stress-based and strain energy-based 
scatter index 

ĲA,Ref amplitude of the reference shear 
stress at σA cycles to failure 

a, b, Į , ȕ constants used in the MWCM 
approach 

ȡeff effective value of the critical 
ij  Kronecker delta 
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plane stress ratio 
ȡlim limit value of ȡeff TCD Theory of Critical Distances 
Eσ error of fatigue life calculation SED, Strain Energy Density, 

e
ij  elastic strain state components MWCM Modified Wöhler Curve Method 

 

1 Introduction 

The fatigue problem of mechanical components has been studied intensively to safely assess 

structures subjected to different and complex loading conditions. Accurate fatigue damage prediction 

of structural components is still a big challenge due to a number of variables, including geometrical 

discontinuities, non-zero superimposed static stresses and the degree of multiaxiality of the stress 

fields that can change locally near the stress risers. There are numerous methods to predict fatigue 

life of structural components under different stress conditions [1-4]. However, a universal criterion 

for plain and notched specimens under uniaxial and multiaxial loading conditions has not yet been 

agreed by the international scientific community. 

In the present study, the accuracy in performing fatigue assessment of the TCD [5-10] and the 

SED approach [11-18] has been checked systematically against a large number of experimental 

results taken from the literature. 

The elastic maximum stress at the notch tip can be successfully used only to assess the fatigue 

strength of blunt notches. When notches become sharp, the assessment based on the maximum value 

of the stress evaluated at the notch tip are invariably too conservative. Many different strategies have 

been employed to evaluate the detrimental effect on the material fatigue strength of blunt and sharp 

notches. Based on the critical distance concept, σeuber [19] and Peterson [20] were able to estimate 

the high-cycle fatigue strength of mechanical components experiencing stress concentration. Tanaka 

[21], Lazzarin et al. [22] and Taylor [23] proposed a closed form relationship between the critical 

distance and El Haddad’s length parameter [24]. Both the TCD and SED approach assume that 

engineering materials obey a linear-elastic constitutive law and the linear-elastic stress fields of 

interest can be easily evaluated by using simple linear-elastic FE solutions that are able to capture 

with high accuracy the stress filed in the vicinity of the stress concentrator being investigated. By 

employing the TCD, the fatigue behavior of notched components can be predicted from such stress 

fields by using two material parameters: characteristic length L and the plain material fatigue limit. 

The idea of a microstructural support is due to σeuber [19]. Afterwards, Susmel and Taylor reviewed 

most of the findings in the use of the TCD to assess the fatigue strength of notched mechanical 
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components [25-27]. They were able to validate the accuracy of the TCD when applied to the fatigue 

assessment of specimens weakened by notches under cyclic variable loading conditions. Recently, 

in conjunction with the TCD, the Modified Wöhler Curve Method (MWCM) was successful 

employed in predicting the finite lifetime of notched components subjected to complex loadings [7, 

8, 28-30]. The proposed fatigue life estimation technique is based on the assumption that the linear 

elastic stress state can be used to estimate the fatigue damage, at least when the fatigue phenomenon 

is governed by the initiation phase and the propagation phase is limited. In addition, the MWCM 

directly considers the degree of multiaxiality of the stress field in a process zone placed in the 

proximity of the notch tip. At the same time, the degree of multiaxiality of the stress field damaging 

the fatigue process zone is directly accounted for the MWCM, which is a critical plane approach 

sensitive to the presence of both non-zero mean stresses and non-proportional loadings. 

Some methodologies making use of the energy density have also been used to assess the fracture 

and fatigue behavior of materials exhibiting both ductile and brittle behavior. Different SED-based 

approaches were proposed and applied to static and fatigue loading conditions [31-38]. Dealing with 

the strain energy density concept, Sih proposed a criterion based on the strain energy density factor 

S, which is a point method criterion and determine the direction of crack propagation by imposing a 

minimum condition on S [32, 39-41]. A more general formulation, based on a fatigue master curve 

evaluated from the sum of the positive elastic and plastic strain energy densities of representative 

cyclic hysteresis loops, was suggested by Ellyin et al. In some uniaxial and multiaxial cyclic fatigue 

results, the SED-based approaches can accurately assess the fatigue behavior of components [42-45]. 

Lazzarin et al. firstly introduced the concept of mean strain energy density, which is evaluated over 

a control volume surrounding the notch tip [11, 46-48]. The method derived from the elementary 

structural volume concept previously proposed by σeuber [19]. The control radius of the volume is 

a material property: in the case of static loading, it depends on the ultimate tensile strength, the 

fracture toughness and Poisson’s ratio; in the case of high cycle fatigue loading, it also depends on 

the unnotched specimen’s fatigue limit and the threshold stress intensity factor range. The main 

advantage of the averaged SED over the local stress-based criteria is the mesh independency and 

insensitive to the mesh refinement. For this reason, a method to rapidly estimate the averaged SED 

at the tip of cracks under in-plane mixed mode loading has been recently proposed. It is based on the 

peak stresses evaluated from finite element (FE) analyses, according to the peak stress method [49-

51]. The averaged SED has been found to be one of the most powerful tools to assess the static and 
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fatigue behaviour of notched and unnotched components in structural engineering [40, 41, 52-58]. 

In this paper, the aim is to investigate the accuracy of TCD and SED methods in estimating 

fatigue life of plain and notched specimens under uniaxial and multiaxial loading. Firstly, the 

framework of TCD and SED methods for notched components under uniaxial fatigue loading are 

described. A large number of experimental data relevant to blunt and sharp notched specimens have 

been employed herein for the validation purpose. In the second part of the work, the analytical frames 

of the same criteria for multiaxial fatigue loading are introduced. Validations are given by comparing 

the predictions with a large number of experimental data from different materials and involving 

samples under different loading conditions. Finally, conclusions are drawn. 

2 Fatigue assessment of notched components under uniaxial fatigue loading 

2.1 Fatigue lifetime estimation of notched components using TCD 

Peterson [20] proposed the point method (PM) which considers as a critical parameter the 

effective stress measured at a given distance from the tip from the stress raiser. τn parallel tracks, 

the line method (LM) was formalized by σeuber [19]. The LM method is based on the idea that the 

effective stress is averaged over a line. These methods have been successfully formalized by taking 

into account the LEFM concepts [21-23].  

The material characteristic length L can be evaluated as follows as: 
2

th

0

1 K
L

 
 

  
 

                            (1) 

where Kth is the threshold value of the stress intensity factor and ı0 is the plain fatigue limit of 

material (both determined at the same load ratio, R, applied to the specimens). As briefly mentioned 

above, the TCD can be formalized in different ways, by considering different integration domains 

(point, line, area or volume method) for the effective stress ıeff evaluation. Under the mode I loading 

conditions, the PM postulates that the effective stress is equal to the principal stress measured at a 

distance from the notch tip equal to L/2. The critical condition is reached when ıeff=ı0 as explicitly 

reported below: 

eff 1 00,
2

L
r        

 
                     (2) 

In Eq. (2) ı1 is the maximum principal stress, ș and r are the polar coordinates. The value of ı1 should 

be evaluated along a line drawn starting from the hotspot (the point experiencing the maximum peak 
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stress) in a direction normal to the maximum principal stress. Usually, this direction is normal to the 

surface of the notched components. Under mode I loading conditions, the notch bisector represents 

the line of stress evaluation. 

Instead of determining ıeff at a given distance from the notch tip, the LM can be evaluated by 

averaging the value of 1 along the notch bisector over a distance equal to 2L at the fatigue limit 

condition of the notched component: 

 
2

eff 1 00

1 ș=0, =
2

L
r dr

L
                       (3) 

For the area and volume method, the range of the effective stress can be calculated by averaging 

the principal stress over a semicircular area of radius equals to L (area method) or in a hemisphere 

centered at the notch tip with the radius equal to 1.54L (volume method) [59]. 

As an extension to the finite fatigue lifetime, Susmel and Taylor proposed to apply the TCD in 

medium-cycle fatigue regime by considering the critical distance, L, as material property but also as 

a function of the number of cycles to failure. The following expression has been proposed in Ref 

[25]: 

 M f f
BL N A N                           (4) 

In Eq. (4) A and B are material constants to be determined by running appropriate experiments, which 

require some simple static tests to determine the ultimate tensile stress ıu and plane strain material 

toughness KIC and some standard fatigue tests aimed to determine the plain fatigue limit ı0 and the 

threshold value of the stress intensity factor Kth. Unfortunately, the stress based approach is not 

adequate at describing the behavior of engineering materials in the low-cycle fatigue regime, 

resulting in an approximate calculation of the reference number of cycles to failure in the low-cycle 

fatigue regime. Besides, it is very difficult to coherently define the reference number of cycles to 

failure in the high-cycle fatigue regime corresponding to the knee point due to the fact that, for a 

given material, the position of the knee point can change by changing the geometry of the tested 

samples. So it is not adequate to determine constants A and B by using the above strategy. 

In order to overcome the just mentioned problem, an alternative proposed by Susmel and Taylor 

[25] was adopted. This proposal is based on two calibration ı-σ fatigue curves: one obtained by 

testing plain specimens and the second one obtained by testing notched specimens. In particular, by 

using the PM, the values of ı1,a can be determined at any given number of cycles σf by the Wöhler 

equation (see Fig. 1): 
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1,aA A f
kk N N                           (5) 

In Eq. (5) σA is reference number of cycles to failure in the high-cycle fatigue regime and ıA is the 

amplitude of the nominal gross stress at σA cycles. The linear elastic stress field distribution in the 

proximity of the notch tip can be determined by FE method. The mapped mesh in the vicinity of the 

stress raiser’s apex is gradually refined until convergence occurred. Then, the linear elastic stress 

field distribution ı1(r) can be fitted accurately with an exponential decay function (coefficient of 

determination: R2 > 0.99) through a post processing of the simulated data. For the calculated values, 

it is easy to determine the distance LM(σf)/2 from the fitting function. 

 1,a 1 f( )/2L N                                                    (6) 

An identical procedure can be used to evaluate the distance 2LM (σf ) with the LM: 

   M f2 2 ( )

1,a 1 10 0
M f

1 1
=0, =0,

2 2 ( )

L L N
r dr r dr

L L N
            (7) 

By calculating the critical distance value for all the numbers of cycles, constants A and B in Eq. 

(4) can be determined by employing a fitting procedure. 

In order to better clarify the recursive procedure which can be used to assess the number of 

cycles to failure σf ,e by using the TCD, consider a notched specimen subjected to a given value of 

the nominal stress ıg,a. The distribution of the linear elastic stress field can be determined by using a 

FE model. Then by simply substituting the equation M e,f= BL A N  into Eq. (6), it is possible to write: 

 
e,f1 1 e,f 1 1,a( )/2 /2Br L N A N                                       (8) 

Subsequently, by substituting the value of 1 e,fı ( )/2L N    into the Eq. (5), the equation just 

containing the number of cycles to failure σf ,e can be obtained: 

e,f

A A A
e,f A A A

1,a 1 e,f 1
ı ( )/2 ı /2

k

B

kk

N N N N
L N A N

  

 

            

  
         

        (9) 

Through σewton’s method, the value of σf,e can be determined directly from Eq. (9) which 

provides a general solution. If Eq. (9) does not have a real root, an approximate value obtained by 

minimizing the error can be obtained. The same procedure can be used for applying the LM with the 

only difference that in Eq. (9) the integral form is still present as shown below: 
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 e,f
e,f 2

10
e,f

=0
1 ı dr

2

B

k

A
A A N

B

N N
r

A N




 
 
 
    






             (10) 

The relationship between LM and σf can be obtained by testing plain and V-notched specimens. 

The main advantage of this approach is its accuracy in determining L and the possibility to be easily 

applied to engineering applications. For different geometrical features, under the hypothesis of linear 

elasticity and at high-cycle regime, the use of notches as sharp as possible is always recommended 

to generate the fatigue curve needed to determine the main constants A and B. 

The two calibration ı-σ fatigue curves can be used to assess the fatigue life of other notched 

specimens made of the same material and tested at the same load ratio. The procedure mainly consists 

in defining the LM versus σf relationship based on the use of two calibration curves and consequently 

finding the linear elastic stress field distribution along the distance under at a given nominal stress 

ıg,a by FE method. Finally, the estimation is based on PM or LM by substituting the linear elastic 

stress field distribution into Eq. (9) or Eq. (10). Such the method is also summarized by the flow-

chart sketched in Fig. 2. 

2.2 Estimate fatigue lifetime of notched components using SED 

The local SED approach has been extensively used in the last years to deal with high cycle 

fatigue of notched components and welded joints. The local SED states that failure occurs when the 

mean value of the strain energy density averaged over a control volume surrounding the notch tip is 

equal to a critical energy value Wc. Under plane strain or plane stress conditions, the control volume 

becomes a circle, a circular sector or a crescent shape as depicted in Fig. 3, where the radius of the 

control volume R0 does not depend on the notch geometry. Under the hypothesis of plane strain, all 

the stress and strain components in the highly stressed region are related to mode I and II notch stress 

intensity factors (σSIFs). The expressions for the σSIFs can be defined according to the following 

expressions: 

 11
1

0
2 lim ( , 0)

r
K r r

  





                       (11) 

21
2

0
2 lim ( , 0)r

r
K r r

  





                          (12) 

Thus, the strain energy in a well defined area surrounding the notch tip as shown in Fig. 3 can 

be evaluated as follows: 
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1 2

2 2
1 2

1 22(1 ) 2(1 )
0 0

wc K K
W e e

E R R  

  
     

 
                       (13) 

In Eq. (13) Ȝ1 and Ȝ2 are Williams’ eigenvalues, ∆K1 and ∆K2 represent the values of mode I and 

mode II σSIF ranges, and R0 represents the radius of the control volume. e1 and e2 are shape functions 

which depend on the notch angle 2Į and the Poisson’s ratio ȣ. In order to consider the influence of 

the nominal load ratio R, the weighting parameter cw has to be adopted in agreement with the 

following expression [54, 60]: 
2

2

2

2

1
for - 0

(1 )

( ) 1 for 0

1
for 0 1

(1 )

w

R
R

R

c R R

R
R

R
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Under uniaxial loading (i.e.,mode I loading) the mode II contribution vanishes, Eq. (13) can be 

simplified as follow: 

1

2
1 1

2(1 )
0

w

e K
W c

E R 

 
   

 
                             (15) 

 
It is worth of mentioning that the application of the SED criterion and the reliability of its results 

are strictly related to the proper determination of fatigue parameters, i.e. the critical value of 

deformation energy and the radius of the control volume. The control radius R0, can be easily 

estimated by means of the following expression: 

1

1

1-
1 1A

0
A

2e K
R





 
    

                      (16) 

where ∆K1A and ∆ıA are the reference values at high cycle fatigue of the notch stress intensity factor 

range of the severely notched material and the nominal stress range of the unnotched material, 

respectively. As soon as the notch stress intensity factor ∆K1A is known, the control radius can be 

evaluated. Due to the lack of data of the critical stress intensity factors for different materials an 

alternative procedure is suggested here to evaluate R0. 

An alternative approach for the evaluation of R0 is proposed here. By referring to the fatigue 

strength of plain and notched samples at σA cycles, which is the reference value of number of cycles 

to failure in the high-cycle fatigue regime, the value of R0 can be obtained by equating the strain 
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energy density of the unnotched sample to the averaged strain energy density over the sector of radius 

R0 surrounding the tip of the notch as shown in Eq. (17): 
2

notchA,p
0

plain
0 ( )

2
W W R

E


                      (17) 

A,p  is the fatigue strength of the smooth sample at σA cycles and E is the elastic modulus of the 

material. Fig. 4 shows the procedure for the evaluation of the control radius R0 of the critical 

volume by using linear elastic FEA. By varying the control radius R around the notch tip in the FE 

model under a nominal stress ıA,n, the corresponding values of the strain energy density value
notch

W  averaged over the control volume can be easily evaluated. It is then possible to fit 
notch

( )W R  as a function of the control radius R obtaining a fitting equation. The control radius 

R0 can be calculated by equating notch
( )W R  to the strain density energy from the plain samples, 

plain
0W . Due to the lack of experiments providing the critical values of the stress intensity factors, 

the control radius can be easily evaluated with the procedure explained above. 

The local SED can also be easily and directly calculated from the post-processing of the FEA 

by summing the energy contributions Welement,i for all the finite element within the control volume 

V: 

element,V i
w

W
W c

V




                            
(18) 

The parameter cw of Eq. (18) takes into account the load ratio R when the nominal stress amplitude 

is applied to the FE model to obtain the local SED value [60]. As previously mentioned it is 

important to remember that refined mesh are not necessary to determine the values of the SED, 

because this parameter can be determined via the nodal displacements, without involving their 

derivatives [61]. This means that the mean value of the local SED is substantially independent of 

the mesh size. The value of the SED in the control volume can be accurately determined through 

FEA using regular coarse meshes. 

It should be mentioned that the assumption of the SED as a damage parameter allows to 

summarize a lot of fatigue data obtained for notched specimens in a reasonable scatter band. 

Generally, it is important to understand the fatigue behavior of notched components and to assess 

with a reasonable accuracy the fatigue strength without performing a large number of experiments. 

Therefore, in order to predict the fatigue life of components having different geometrical features, 
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the SED W versus the fatigue life σf relationship is calculated by considering the notched samples 

as sharp as possible following the same approach developed for the TCD and described above. In 

complete analogy with the process employed for the TCD by applying in the FE model a value of 

nominal stress, the averaged SED, W , can be evaluated from the post-processing of the FE results 

by employing Eq. (18). W  versus the number of cycles to failure σf can be expressed as follows: 

f

DNW C                                  (19) 

In Eq. (19) C and D are material constants. Keeping constant the material and the nominal load 

ratio, the fatigue life can be assessed by using Eq. (19) for any geometrical configuration of the 

notch. The flow-chart summarizing the procedure used to estimate fatigue lifetime is shown in 

Fig.5. 

2.3 TCD Method validation by experimental data 

In order to validate the accuracy of the TCD in predicting the fatigue life of notched components, 

some data sets taken from the literature have been re-analyzed in the present investigation. The 

selected series of data under uniaxial loading are listed in Table 1. For the selected series the nominal 

load ratio varies from -1 up to 0.5. It is worth mentioning that the constants A and B in Eq.(4) have 

been determined by considering the fatigue curve corresponding to unnotched material and that from 

very sharp notches (i.e. the highest value of the stress concentration factor).  

The accuracy of the TCD approach in predicting the number of cycles to failure as a function 

of different geometrical configuration is summarized by the diagrams reported in Fig. 6. Point and 

line methods have been applied here to summarize the data. In Fig. 6 the experimental number of 

cycles to failure, σf, are plotted against the estimated number of cycles to failure, σf,e. The scatter 

bands have been calculated by considering the fatigue data from plain specimens and from the 

sharpest notched configuration available for each set of data. A probability of survival, PS, equal to 

5ș and 95ș, has been considered. The results summarized in Fig. 6 confirm that the TCD method 

is successful in predicting the uniaxial fatigue behavior of different materials. All the data, in fact, 

fall within the scatter band of the parent material with the only exception of the samples characterized 

by a lower value of the stress concentration factor. When the stress concentration factor (Kt) decreases, 

the final fatigue assessment tend to be too conservative. τn the other hand the  prediction of the 

data characterized by a higher value of Kt always fall within the scatter band, showing a high accuracy 
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in the final assessment of the fatigue life. In general, the overall best accuracy is achieved by applying 

the LM, whereas the application of the PM results in slightly conservative predictions.  

2.4 SED Method validation by experimental data 

The synthesis of the same original experimental data in terms of averaged SED has been 

performed in the present section of the paper. All the main parameters necessary to apply the SED 

approach are summarized in Table 2. The relationship linking the local SED with σf, the stress-based 

scatter index Tı, the strain energy-based scatter index Tw referred to a probability of survival in the 

range of 10ș-90ș and the control radius R0 are summarized in Table 2 for each material. It can be 

noted that the value of TW becomes equal to the value of Tı when reconverted to an equivalent local 

stress range ( WT T  ). 

The SED accuracy in the fatigue prediction has been validated in Fig. 7. The results reported in 

Fig. 7 confirm that the SED method is able to predict with good accuracy the fatigue data from 

different materials and geometries with all the data falling within the scatter band of the parent 

material with the only exception of the notched specimens characterized by a low value of the stress 

concentration factor. 

In order to precise comparison of the calculation results obtained with the discussed methods, 

the methods prediction error can be defined according to the following relationship [65, 66]: 

 f
10

f,e

logN

N
E

N

 
   

 
                           (20) 

The probability density function of errors of fatigue life determination is shown in Fig. 8, which 

shows the similar distribution as shown in Figs. 6 and 7. From the figure it appears that the errors are 

slightly displaced towards the safe area for the results calculated by the TCD, but the errors by the 

SED are sometimes unsafe and other times safe without a clear regularity. 

3 Fatigue assessment of unnotched and notched components under multiaxial fatigue loading 

3.1 The MWCM in fatigue assessment 

Several multiaxial fatigue criteria have been formalized and validated in order to make reliable 

and accurate fatigue predictions of components subjected to complex multiaxial loading paths. 

Among these different criteria, the Critical Plane Method based criteria have been found very 

effective [67-70]. In particular the Modified Wöhler Curve Method (MWCM) has been successfully 
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applied not only to unnotched specimens but also to notched components subjected to different 

multiaxial loading conditions [71-73]. 

The MWCM postulates that the fatigue damage mainly depends on the maximum shear stress 

amplitude Ĳa, the mean value ın,m and the amplitude of the normal stress ın,a measured on the critical 

plane [71, 73, 74]. The effective value of the critical plane stress ratio, ȡeff, can be defined as follows: 

n,m n,a
eff

a

m 





                             (21) 

In Eq. (21) m is the mean stress sensitivity index, which is a material constant ranging between 0 and 

1. It gives a measure of the material sensitivity to nonzero mean stresses perpendicular to the critical 

planes. In particular, m takes on the following value:  

n,aa 0 a

n,m 0 0 a

2
2

m
  

   

 

 

 
    

                   (22) 

where a
 , n,m   and n,a  are the critical plane stress components determined under a load ratio, R, 

larger than -1, where the relevant stress components relative to the critical plane. 0  and 0  are 

fully reversed uniaxial fatigue limit and fully reversed torsional fatigue limit, respectively. In general, 

when the mean stress sensitivity index m is not available, the material can be assumed to be fully 

sensitive to the presence of non-zero mean stresses perpendicular to the critical planes (i.e., m=1), 

increasing the degree of conservatism of the estimates [30]. 

A large amount of experimental data have shown that the fatigue lifetime can be estimated 

through the degree of multiaxiality of the stress field damaging the fatigue process zone in terms of 

ȡeff [30, 72]. According to the modified Wöhler diagrams, the negative inverse slope, kĲ(ȡeff) versus 

ȡeff and the reference shear stress amplitude, ĲA,Ref(ȡeff) versus ȡeff relationships are obtained by 

running appropriate experiments as shown in Fig. 9. The calibration functions are defined as follow: 

eff eff( )k a b                             (23) 

A,Ref eff eff( )                            (24) 

where a, b, Į and ȕ are fatigue constants to be determined experimentally. The accuracy of constants 

can be increased by considering a large number of fatigue curves for the calibration. 

Fig. 9 summarizes the use of the MWCM method to estimate the fatigue lifetime of components. 

In more detail, from the stress state at point τ, the maximum shear stress amplitude, Ĳa, and the 

effective critical plane stress ratio, ȡeff, can be determined by taking full advantage of the Maximum 
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Variance Methods [75-78]. The Maximum Variance Method assumes that the fatigue damage is 

proportional to the variance of the load history that is damaging, at the assumed critical point, the 

component being assessed. Subsequently, according to the calculated value of ȡeff, the modified 

Wöhler curve corresponding to the degree of multiaxiality of the considered stress field acting on the 

fatigue process zone can be estimated directly from Eqs (23) and (24). In general, when the degree 

of multiaxiality of the stress field relative to the fatigue process zone is evaluated in terms of ȡeff, the 

constants of functions kĲ(ȡeff) and ĲA,Ref(ȡeff) have to be determined by using the fully reversed 

uniaxial and torsional fatigue curves. Finally, fatigue lifetime of plain components under the 

investigated loading condition can be predicted by using the following equation: 

eff( )

A,Ref eff
f,e 0

a

( )
k

N N
 

 


 
  

 
                     (25) 

In the light of the good accuracy shown by the TCD when employed to predict fatigue lifetime 

of notched components, the extension of MWCM has been also proposed to be applied in terms of 

the TCD to predict the fatigue lifetime of notched components. It is worth noting that among the 

different formalizations of the TCD, PM has been used to estimate high-cycles fatigue strength 

because the stress state at one single point is much easier to be handled under complex multiaxial 

load histories. As postulated by the TCD, the critical distance value to be used to calculate an 

effective equivalent stress is a material dependent property whose value increases with decreasing 

the number of cycles to failure as shown in Eq. (4). 

To estimate the fatigue life, the employed methodology is described in Fig. 10. In more detail, 

initially the linear-elastic stress distribution along the focus path r has to be calculated by using either 

analytical or numerical methods. The values of the effective value of the critical plane stress ratio, 

ȡeff(r), the maximum shear stress amplitude, Ĳa(r), the amplitude of the stress perpendicular to the 

critical plane, ın,a(r) and the mean stress perpendicular to the critical plane, ın,m(r), are calculated at 

the critical plane identified along the focus path, as shown in Fig. 10. At any distance r from the 

notch tip, and according to the calculated values of Ĳa and ȡeff, the corresponding modified Wöhler 

curve can be estimated by using the kĲ vs. ȡeff and ĲA,Ref vs. ȡeff relationships previously calibrated 

through the parent material fatigue properties. The corresponding number of cycles to failure, σf can 

be calculated directly at any point belonging to the focus path. Subsequently, for any value of r, the 

critical distance LM is calculated according to Eq. (4). Finally, the component to be assessed is 

assumed to fail at the number of cycles to failure, σf,e, when the distance r is equal to the critical 
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distance LM/2, that is: 

 f,eM 0 0
2 2

BA NL
r r


                       (26) 

3.2 Multiaxial fatigue assessment by means of SED 

Ellyin et al. suggested that fatigue life of unnotched components can be made by considering 

both the plastic energy and the positive elastic energy [40, 41]. This assumption is based on the 

experimental evidence that, in the high-cycle fatigue regime fatigue damage mainly depends on the 

contribution of elastic energy due to the plastic energy is in general negligible [79].  

The elastic strain increment is related to the stress increment through the generalized Hooke’s 

law: 

1
d de

ij ij kk ijE E

    
                          (27) 

In Eq. (27) ȣ is the Poission ratio, E the Young modulus and ij  the Kronecker delta. ij  is equal 

to 1 when i=j and it is equal to 0 otherwise, and a repeated index implies summation over its range, 

11 22 33kk      , in this case i, j=1, 2, 3.  

The elastic SED can be calculated as, 
e

ij ijW d                                (28) 

For an isotropic linear elastic material, by substituting Eq. (27) into Eq. (28) and integrating the 

following expression can be obtained:  

21 1 2
( )

2 6ij ij kkW S S
E E

   
                    (29) 

The first term on the right hand side of the equation is the deviatoric strain energy density, while the 

second term is related to the strain energy linked to the volume change. The following expressions 

can then be written: 

2
2 1 2

1
3

3
J I I                               (30) 

In Eq. (30) 1 xx yy zzI       and    2 2 2
2 xx yy yy zz xx zz xy yz zxI               

 
are the first 

and second invariants of the stress tensor, respectively. 

By using the above relationships, it is straightforward to obtain eW for plain specimens under 

multiaxial fatigue loading: 
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2 2
nom nom1

2
W

E E

  
                           (31) 

With the aim to unify in a single diagram the fatigue data related to different values of the 

nominal load ratio R, it is also necessary to consider a weighting factor in the the previous expression. 

For unnotched specimens under different loading modes, substituting from Eq. (14) into Eq. (31), 

the expressions become: 

 
2 2
nom nom1

2e WW c
E E

 
  

    
 

                      (32) 

As shown in the first part of the paper, the SED as a damage parameter allows all the fatigue 

data obtained from plain specimens with different loading modes to be summarized in a narrow 

scatterband. W  versus the fatigue life σf can be expressed as follows, in analogy with the Wöhler 

curve representation: 

f

BNW A                                  (33) 

In Eq. (33) A and B are material constants. As soon as the curve W -σf is drawn, Eq. (33) is very 

convenient to determine the different values of W  as a function of the fatigue life σf. 

The extension to notched components is more complicated due to the effects of the stress 

concentration and stress gradients in the proximity of the notch tip. The notch stress field is dependent 

on the notch shape and its dimensional features. For structural components subjected to multiaxial 

loading conditions in presence of V-notches with a small root radius mode I and mode III σSIFs, K1 

and K3, can quantify the stress field in the vicinity of the notch tip [53]. The averaged strain energy 

calculation is based on the local stress and strain state in a control volume embracing the notch tip. 

These parameters are evaluated from linear elastic FE analyses taking into consideration a sharp V-

notch with tip radius equal to 0 (see Fig. 11). In particular, with reference to the coordinate system 

shown in Fig. 11, the mode I and mode III σSIFs can be defined by means of the following 

expressions [80-82]: 

 11
1

0
2 lim , 0

r
K r r

  





                      (34) 

 31
3

0
2 lim , 0r

r
K r r

  





                      (35) 

The eigenvalues Ȝ1 and Ȝ3 depend on the notch opening angle 2Į. τn the other hand, in 

conditions of linear elastic hypothesis, the σSIFs can be linked to the nominal stress components 
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according to the following expressions [60, 81]: 
11

1 1 nomK k d                                   (36) 

31
3 3 nomK k d                                   (37) 

where d is the notch depth, while k1 and k3 are non-dimensional factors derived from FE analyses, 

which simply take into account the shape of the component, in analogy with the representation of 

linear elastic fracture mechanics. In the case of V-notched specimens subjected to mode I+III under 

linear elasticity hypothesis, the SED averaged over a control volume, which embraces the notch tip, 

can be expressed by means of the following equation [83]: 

31

22
31

1 3 2(1 )2(1 )
1 3

1 KK
W e e

E R R  

 
     

 
                   (38) 

In Eq. (38) ǻK1 and ǻK3 represent the values of Mode I and Mode III σSIF ranges, while R1 and R3 

are the radius of the control volume under Mode I and Mode III. The functions e1 and e3 are two 

parameters related to the V-notch geometry. These parameters are directly linked to the integrals of 

the angular functions over the control volume of tip and can be determined once the V-notch opening 

angle is known [46, 54]. 

The calculation of σSIFS requires a refined mesh in the proximity of the notch tip where the 

stress field is singular. τn the other hand, the SED averaged over a control volume can be accurately 

obtained by means of relatively coarse meshes as explained in previous works [14]. By considering 

independently Mode I and Mode III loading, the control radii R1 and R3 can be estimated. They can 

be estimated by considering the high-cycle fatigue strengths derived from unnotched specimens and 

the values of ǻK1A and ǻK3A referred to a number of cycles σA, belonging to the high-cycle fatigue 

regime: 

1

1

1
1

1 1
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31

A

A

e K
R



 

 
     

                           (40) 

In order to unify in a common diagram the fatigue results by adopting different nominal load 

ratio R, the weighting parameter cw has to be taken into account. Therefore, the final expression 

becomes as follow: 
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31

22
w 31

w 1 3 2(1 )2(1 )
1 3

SED=
c KK

c W e e
E R R  

 
     

 
            (41) 

When blunt notches are considered, the application of σSIFs is not longer valid. In this case, 

the averaged SED can be linked to the elastic peak stress at the notch tip. The total strain energy 

density, calculated at the notch tip, can be expressed as [52, 53]: 

2 2w
P,el p,el2(1 )

2

c
W

E
                          (42) 

In Eq. (42) E and ȣ are the Young modulus and the Poisson ratio, and ǻıp,el and ǻĲp,el are the elastic 

peak stress ranges at the notch tip. Eq. (42) can be also rewritten in terms of the theoretical stress 

concentration factors: 

2 2 2 2w
t net,axial net t net,torsional net2(1 )

2

c
W K K

E
                 (43) 

As previously made in the paper W  can be related to σf by means of the following expression: 

f

DW CN                                 (44) 

where C and D are material constants. The fatigue life can be assessed by using Eq. (44) for notched 

components under multiaxial loading. 

3.3 MWCM method validation by using unnotched components 

The systematic validation of the proposed method was performed by using a large number of 

experimental data taken from the literature. A synthesis is provided in Table. 3 where the constants 

of the two fatigue master curves used to calibrate the method were reported together with the fully 

reversed fatigue limits ıA and ĲA, the ultimate strength ıu and reference number of cycles to failure 

σA. 

In order to get a good understanding of the statistical distribution by using the MWCM, Fig. 12 

shows the correlation of experimental fatigue life σf versus estimated fatigue life σf,e for all the 

materials re-analyzed in the present work. In these diagrams, both multiaxial fatigue data and 

calibration data are plotted together. Calibration data include the uniaxial, bending and torsional data 

used to calibrate by means of Eqs (23) and (24) the MWCM criterion. In the diagrams, the continuous 

straight lines define the uniaxial or bending scatter bands, while the dashed lines define the torsional 

scatter bands. As mentioned above, all scatter bands were calculated under the hypothesis of a log-

normal distribution of the number of cycles to failure, with a confidence level equal to 95ș. 
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Fig. 12 shows that all data from multiaxial specimens mainly fall within the widest scatter band 

related either to uniaxial or to torsional loadings. This simply means that the MWCM allows a sound 

multiaxial fatigue life prediction characterized by a statistical scatter index close to those exhibited 

by the two master curves used to calibrate the method. The intrinsic dispersion of the two calibration 

curves obviously influences the degree of accuracy of the predictions under multiaxial fatigue 

conditions. More precise predictions can only be obtained by reducing the dispersion of data 

belonging to the master curves keeping into consideration additional parameters. 

In the majority of the cases the effect of the mean value of the torsional stress can be disregarded, 

but this does not hold true, for example, in the case of 18G2A steel specimens as shown in Fig. 12. 

This material is very sensitive to the mean value of the torsional component and this causes non-

conservative fatigue lifetime predictions when the load ratio R is larger than -1. Conservative 

predictions in the fatigue life have been observed for low carbon steel. This over conservative 

estimations can be explained considering that this material tends to have non negligible plastic 

deformation also in the high cycle fatigue regime. 

3.4 SED validation under multiaxial loading 

The synthesis of the original experimental data in terms of the SED method according to Eq. 

(32) has been evaluated. All the data for a suitable application of the criterion are listed in Table 4. 

The scatter index values are close to those previously suggested by Haibach. The SED accuracy in 

the case of multiaxial loading conditions is well visible in Fig. 13, which reported the experimental 

number of cycles to failure, σf, versus the estimated number of cycles to failure, σf,e. In particular, 

the continuous straight lines define the uniaxial scatter bands, while the dashed lines define the 

torsional scatter bands, by post-processing the experimental data generated by testing plain 

specimens under both uniaxial and torsional fully-reversed loading. The probability density function 

of calculation errors, shown in Fig. 14, proves the accuracy of predicting results obtained from the 

two models. The obtained results calculated by the SED are mostly in the same proportion at the safe 

and dangerous sides. 

The diagrams in Fig. 13 make it evident that the systematic adoption of Eq. (32) resulted in 

estimating fatigue life mainly falling within the parent material torsional scatter band for the majority 

of the considered materials. These diagrams clearly show that the SED is an accurate method for a 

wide variety of multiaxial loading configurations. The SED method summarises all the experiment 
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data under different loading condition together to get the SED W   versus the fatigue life σf 

relationship through a least squares linear regression. Its main advantage is that the best fitting line 

is the line with minimum error from all the points, which could correct the error efficiently. Therefore, 

in order to predict the fatigue life of plain specimens, the SED W   versus the fatigue life σf 

relationship is calculated accurately by a large number of fatigue experimental data. 

The only effect on this in the prediction is that the SED is not able to take into account the effect 

of non proportional loading that for many materials is negligible. So this is not a drawback in many 

cases. In addition, as a scalar quantity within a volume, the SED method cannot consider the 

preferential orientation of crack path. The assumption might be acceptable from an engineering point 

of view only considering the crack initiation life, and not the whole fatigue life of the component, 

which is also a limitation of the TCD.  

3.5 MWCM validation using notched components 

In order to investigate the accuracy of the MWCM applied in conjunction with the PM, some 

multiaxial fatigue data results taken from the literature. According to the procedure briefly explained 

above, the two fatigue curves generated by testing, under full-reversed uniaxial fatigue loading, the 

plain specimens and the notched samples, respectively, have been used to calculate constants A and 

B in the LM versus σf relationship. The constants a, b, Į and ȕ as well as ȡlim have been determined 

through the uniaxial and torsional fully reversed plain fatigue curves. The mean stress sensitivity 

index, m, has been estimated by using a uniaxial limit generated under a load ratio, R, larger than -1. 

The values of the constants needed to calibrate both the MWCM and the the LM versus σf relationship 

are summarized in Table 5. 

The σf versus σf,e diagrams reported in Fig. 15 are able to prove that the MWCM method is 

successful in estimating the lifetime of notched components under multiaxial loading. In particular, 

these results confirm that MWCM is capable of making the estimates located mainly within the 

widest plain scatter band between the two used to calibrate. Fig. 15 also clearly proves that MWCM 

in terms of PM can be highly accurate in predicting fatigue life, correctly taking into account not 

only the presence of various stress concentration factors derived from notches but also the damaging 

effect of stress gradients due to the nominal loading. Moreover, it has to be said that, strictly speaking, 

the constants of the LM versus σf relationship under torsion is different from these values determined 

under uniaxial fatigue loading. The critical distance value under torsion is larger than the 
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corresponding value determined under uniaxial fatigue loading [84]. By reanalyzing large amount of 

experimental data, the results strongly support the validity of the idea that the LM versus σf 

relationship generated under uniaxial fatigue loading can be assumed to be independent of the 

complexity of the assessed stress field. But for some materials, like Ti6Al4V and 39σiCrMo3 in Fig. 

15, the predicting results show that the pure torsional data fall outside the widest parent material 

scatter band and tend to conservative lifetime prediction, with loss of accuracy. It is important to 

highlight that under pure torsional loading there are a large plastic zone ahead of the notch tip for V-

notch Ti6Al4V and 39σiCrMo3 specimens [56, 57]. Therefore, the predicting fatigue life under pure 

torsion loading would be conservative if the LM versus σf relationship generated under uniaxial 

fatigue loading was used to calculate the fatigue life. 

3.6 The SED method validation by using notched components 

The multiaxial fatigue behavior of materials under different loading conditions has been 

investigated to analyze the influence of load ratio and load phase angle on the fatigue life of 

specimens weakened by notches with different root radius. Synthesis of the experimental results 

taken from the literature is shown in Table 6 together with the main parameters necessary for the 

application of the SED approach. It is observed that the scatter index Tı and TW are quite narrow, 

with a probability of survival of 10-90ș. In terms of equivalent stress range (by simply making the 

square root of scatter index TW), the scatter index results are nearly equal to the Haibach scatter band 

Tı. Under linear elastic hypothesis, the contribution ascribable to the stress component ∆ı has been 

averaged over a control radius R1, while the ascribable to the stress component ∆Ĳ has been averaged 

over a control radius R3. The later radius definition is strongly influenced by extrinsic mechanism 

summarized by the term crack tip shielding (plasticity, rough contact surface and corrosion debris). 

In the present investigation, as dealing with high notch sensitivity of notched specimens, plasticity 

and shielding effects are very limited and play only a second role on the fatigue crack initiation and 

propagation. Therefore, a single control radius can also be used to obtain satisfied results without 

considering the loading modes [52]. For large radius of blunt V and U notched specimens, “the point 

criterion” based on the SED method at the notch tip is adopted to calculate the data. 

Finally, Fig. 16 reports the experimental number of cycles to failure, σf, versus the estimated 

number of cycles to failure, σf,e . It is important to highlight that in such diagrams not only the 

experimental data but also the scatter bands of the calibration fatigue curves plotted, including the 
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torsional scatter bands and the uniaxial scatter bands of parent materials. These scatter bands refer to 

a probability of survival, PS, equal to 5 and 95ș, respectively. These results confirm that the method 

is giving fatigue predictions mainly falling within the uniaxial scatter band or the torsional scatter 

band, which can also be proved by the course of the probability density function as shown in Fig. 17. 

When the errors are calculated for the MWCM, the results are not located around the mean error 

equal to zero. Compared with the MWCM, the obtained results by SED are nearly in the same 

proportion at the safe and dangerous sides. Although the re-analysis of the experimental data in terms 

of the SED range at the notch tip allows most of the uniaxial and multiaxial data referred to notched 

specimens to be summarized in the fatigue scatter band, there are still some data falling outside the 

largest scatter bands. A possible explanation might involve the different influence that tensile and 

torsion loads have on the local yielding in the highly stressed regions [56]. It is extensive plasticity 

provoked by torsion loading with nonlinear effects and by interference phenomena between the crack 

surfaces. Moreover, the proposed procedure shows that the SED approaches need large amount of 

fatigue data to obtain high accuracy and reliability of predicting fatigue life, which might be complex 

and high cost from an engineering point of view. 

4 Conclusions 

(1) The TCD approach can successfully assess the fatigue life of notched components subjected 

to uniaxial loading, and it held true independently of the geometrical feature weakening the tested 

specimens. The TCD approach in the line method has been found to be more accurate than the point 

method in assessing the fatigue lifetime of notched specimens. 

(2) The SED approach has been also found to be an accurate design methodology under uniaxial 

loading, with exception to U notches with low stress concentration factors. The approach is very 

sensitive to the critical radius value, which defines the control area. The critical radius can be easily 

estimated using the appropriate equation depending on the fatigue strength of plain specimens and 

the notch stress intensity factor at a specific reference number of cycles. 

(3) The MWCM itself and its combination with the point method has been found to be highly 

accurate in estimating the multiaxial fatigue lifetime of plain and notched components. The method 

can be easily implemented to assess the lifetime of real structures by means of a simple linear elastic 

FEA. Under torsional loading, the mean stress has obvious effect on the accuracy of predicted fatigue 

life. For some materials, due to the presence of a large plastic zone surrounding the crack tip, the 

application of TCD constants obtained from uniaxial loading to torsional loading can yield to 
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inaccurate results. This is due to the different stress filed distribution in these two loading cases and 

their different effects on the plastic zone. 

(4) The SED has highly accuracy in assessing the fatigue lifetime of plain and notched 

components under multiaxial loading. Using the averaged SED, the reanalysis of the data on different 

volumes allows to summarise the main body of the results in a single, narrow scatter band relative to 

the fatigue results of parent materials generated under torsional or uniaxial loading. 
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Table 1 Synthesis of the experimental results of notched specimens under uniaxial 
loading calculated by TCD. 

Material R L versus σf relationship Specimen geometry Load type 

Ti6Al4V[85] 0 
PM: L(σf)=0.058Nf0.08709 
LM: L(σf)=0.047Nf0.0922 

V-notched 
cylindrical bars 

Tension 

2024-T3[86] 0.5 
PM: L(σf)=5.72Nf-0.28605 
LM: L(σf)=7.72Nf-0.34163 

U and V-notched 
plates 

Tension-
compression 

FeP04[87] 0 
PM: L(σf)=70.76Nf-0.32783 
LM: L(σf)=45.50Nf-0.30299 

U and V-notched 
plates 

Tension 

SAE 1010CR22[88] -1 
PM: L(σf)=2.58Nf-0.18345 

LM: L(σf)=13.82Nf-0.32164 
Plates with a central 

circular hole 
Tension-

compression 

SAE 1010HR[88] -1 
PM: L(σf)=7.68Nf-0.17794 

LM: L(σf)=20.42Nf-0.26631 
Plates with a central 

circular hole 
Tension-

compression 

SAE 1045[89] -1 
PM: L(σf)=100.28Nf-0.49868 
LM: L(σf)=176.02Nf-0.56547 

Plates with a central 
circular hole 

Tension-
compression 

2024-T351[89] -1 
PM: L(σf)=0.26Nf-0.10104 
LM: L(σf)=0.18Nf-0.10095 

Plates with a central 
circular hole 

Tension-
compression 

AISI 304L[90] -1 
PM: L(σf)=128.64Nf-0.35662 
LM: L(σf)=70.53Nf-0.3258 

Central circular 
hole, U and V-
notched plates 

Tension-
compression 

AISI 416[53] -1 
PM: L(σf)=642.94Nf-0.624317 
LM: L(σf)=179.25Nf-0.514785 

V-notched 
cylindrical bars 

Tension-
compression 

A356-T6[91] -1 
PM: L(σf)=1.78Nf-0.07359 
LM: L(σf)=1.93Nf-0.08838 

U and V-notched 
cylindrical bars 

Tension-
compression 

AM50 
Magnesium[92] 

-1 
PM: L(σf)=19.36Nf-0.33804 
LM: L(σf)=56.62Nf-0.47577 

Plates with a central 
hole 

Tension-
compression 
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Table 2 Synthesis of the experimental results of notched specimens under uniaxial 

loading calculated by SED. 
Material W versus σf relationship cw Tı Tw R0(mm) 

Ti6Al4V[85] SED: W(σf)=201.79Nf-0.23175 
1 Plain:1.29 

σotch:1.12 
1.24 0.0158 

2024-T3[86] SED: W(σf)=149.94Nf-0.46051 
3 Plain:1 

σotch:1.63 
3.2 0.03 

FeP04[87] SED: W(σf)=11.89Nf-0.3794 
1 Plain:1.08 

σotch:1.15 
1.33 0.44 

SAE 1010CR22[88] SED: W(σf)=2.44Nf-0.23423 
0.5 Plain:1.10 

σotch:1.26 
1.6 0.16 

SAE 1010HR[88] SED: W(σf)=2.90Nf-0.31333 0.5 
Plain:1.34 
σotch:1.12 

1.25 0.36 

SAE 1045[89] SED: W(σf)=67.55Nf-0.34875 0.5 
Plain:1.24 
σotch:1.1 

1.24 0.139 

2024-T351[89] SED: W(σf)=39.92Nf-0.33783 0.5 
Plain:1.78 
σotch:1.21 

1.48 0.21 

AISI 304L[90] SED: W(σf)=5.80Nf-0.3485 0.5 
Plain:1.03 
σotch:1.17 

1.36 3.1 

AISI 416[53] SED: W(σf)=300.67Nf-0.49467 0.5 
Plain:1.12 
σotch:1.47 

2.16 0.13 

A356-T6[91] SED: W(σf)=7.12Nf-0.3446 0.5 
Plain:1.46 
σotch:1.82 

3.3 0.35 

AM50 
Magnesium[92] 

SED: W(σf)=0.053Nf-0.45299 0.5 
Plain:1.22 
σotch:1.54 

2.3 0.09 
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Table 3 Parameters of the fatigue curves related to the plain specimens. 
Material ıA ĲA ıu m Load type σA(Cycles) 

18G2A[93] 282.6 186.5 535 1 Bending-torsion 2106 
39σiCrMo3[94] 346.9 285.3 995 1 Tension-torsion 1106 

SAE 1045[95] 195.8 115.8 621 
1 

Bending-torsion 2106 

2024-T3[96] 137.1 131.7 495 
1 

Tension-torsion 2106 

6082-T6[73] 133 76.8 343 
1 

Bending-torsion 2106 

Al 1070[97] 77.9 45.6 130 
1 

Tension-torsion 2106 

AlCu4Mg1[98] 164.6 97.3 545 
1 

Bending-torsion 2106 

Al-LY12CZ[99] 149.4 110.3 459 
1 

Tension-torsion 2106 

Inconel 718[100] 696.4 338.1 1850 
1 

Tension-torsion 2106 

Low-carbon steel[101] 225 145 500 1 Tension-torsion 1106 
SM45C[102] 258.6 209.4 731 1 Bending-torsion 2106 

S45C[103] 204.7 147.3 798 
1 

Tension-torsion 1106 

Ti6Al4V-as bulit[104] 107.4 146.4 1052 
1 

Tension-torsion 1106 

Ti6Al4V-wrough[104] 618.7 350 1045 
1 

Tension-torsion 1106 

Ti6Al4V-machined[104] 82.3 177 1052 
1 

Tension-torsion 1106 

Z12CσDV12-2[97] 413.3 296.3 880 1 Tension-torsion 2106 
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Table 4 Synthesis of the experimental results of plain specimens under multiaxial 
loading calculated by SED. 

Material W versus σf 
relationship 

cw Tı (10ș-
90ș) Tw(10ș-90ș) 

18G2A[93] W(σf)=6.1Nf-0.19431 

0.5(R=-
1), 

0.6(R=-
0.5), 

1(R=0) 

1.3 4.2 

39σiCrMo3[94] W(σf)=18.56Nf-0.22195 0.5 1.26 1.58 
SAE 1045[95] W(σf)=3.27Nf-0.16616 0.5 8.01 1.79 
2024-T3[96] W(σf)=22.32Nf-0.28854 0.5 1.34 2.57 
6082-T6[73] W(σf)=6.02Nf-0.20016 0.5 1.98 1.79 
Al 1070[97] W(σf)=0.29Nf-0.06938 0.5 1.41 5.16 

AlCu4Mg1[98] W(σf)=29.04Nf-0.29571 0.5 6.89 1.71 
Al-LY12CZ[99] W(σf)=8.59Nf-0.19874 0.5 1.89 2.42 
Inconel 718[100] W(σf)=44.30Nf-0.27634 0.5 1.57 2.31 

Low-carbon steel[101] W(σf)=2.42Nf-0.13289 0.5 1.21 1.46 
SM45C[102] W(σf)=5.01Nf-0.16434 0.5 1.58 1.23 
S45C[103] W(σf)=9.93Nf-0.28757 0.5 2.13 4.56 

Ti6Al4V-as bulit[104] W(σf)=409.29Nf-0.5784 0.5 3.44 5.04 
Ti6Al4V-wrough[104] W(σf)=10.95Nf-0.06631 0.5 4.07 12.3 

Ti6Al4V-machined[104] W(σf)=14.41Nf-0.20008 0.5 2.56 6.56 
Z12CσDV12-2[97] W(σf)=24.09Nf-0.26698 0.5 1.83 2.38 
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Table 5 Values of the fatigue constants used to apply the MWCM in conjunction with 
the PM to the considered materials. 

Material B 
A 

(mm/cyclesB ) 
a b 

Į 

(MPa) 
ȕ 

(MPa) 
m ȡlim 

σA 

(Cycles) 
Ti6Al4V[57] -0.1019 0.32785 -12.88 22.13 -144.22 400.6 1 1.389 1×106 

C40 steel[52] -0.345 48.7 -1.2 17.5 -63.3 194.3 1 1.534 2×106 

39σiCrMo3[56] -0.1065 1.5611 -2.31 9.52 -111.89 285.3 1 1.275 1×106 

En3B[30] -0.565 118.9 1 18.7 -95.3 268.3 0.22 1.407 1×106 

AISI416[53] -0.6243 642.942 6.3 21.2 -62.7 236.9 1 1.889 2×106 



 

38 

 
Table 6 Synthesis of the experimental results of notched specimens under multiaxial 

loading calculated by SED. 

Material 
W versus 

σf relationship 

Specimen 
geometry 

cw 
Tı 

(10ș-90ș) 

TW 

(10ș-
90ș) 

R1 or R3 
(mm) 

Ti6Al4V[57] W(σf)=60.12Nf-

0.21978 

V-notched 
cylindrical 

bars 

0.5(R=-1), 
1(R=0), 
3(R=0.5) 

1.322 2.2 
0.051,0.8

37 

C40 steel[52] W(σf)=61.94Nf-

0.26601 

V-notched 
cylindrical 
bars, shaft 

0.5(R=-1), 
1(R=0) 1.81 2.75 

Point 
criterion 

39σiCrMo3[
56] 

W(σf)=22.93Nf-

0.24755 

V-notched 
cylindrical 

bars 

0.5(R=-1), 
1(R=0) 1.53 2.24 

0.327,1.4
26 

En3B[30] W(σf)=11.62Nf-

0.33444 

V-notched 
cylindrical 

bars 

0.5(R=-1), 
1(R=0) 1.872 3.01 0.33,0.93 

En3B[30] W(σf)=4.99Nf-

0.09926 

V-notched 
cylindrical 

bars 

0.5(R=-1), 
1(R=0) 1.998 4.22 

Point 
criterion 

AISI416[53] W(σf)=7.33Nf-

0.21619 

V-notched 
cylindrical 

bars 

0.5(R=-1), 
1(R=0) 1.66 2.7 0.13,0.78 
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Figure 1 Calibration method of the critical distance using plain and notched fatigue 
curve. 
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Figure 2 Flow-chart summarizing the procedure used to estimate fatigue lifetime 

according to the TCD.
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Figure 3 Critical volume (area) for sharp V-notch (a), crack (b) and blunt V-notch (c) 
under mode I loading. Distance r0=ȡ×(ʌ−2Į)/(2ʌ−2Į). 



 

42 

 
 
 
 

 
Figure 4 Calibration method of the control radius of the critical volume by using FEA.  

 
 



 

43 

 
 

Figure 5 Flow-chart summarizing the procedure used to estimate fatigue lifetime 
according to the SED.
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Figure 6 PM and LM accuracy in predicting fatigue lifetime of notched specimens. 
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Figure 7 SED accuracy in predicting fatigue lifetime of notched specimens. 
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Figure 8 Probability density function of errors of predicting fatigue lifetime according 
to TCD and SED. 
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Figure 9 Flow-chart summarizing the in-filed use of the MWCM method. 
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Figure 10 In-field use of the MWCM in terms of the PM to estimate fatigue lifetime of 
the notched components subjected to fatigue loading. 
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Figure 11 Polar coordination system for V-notches, with z normal to the plane; the stress 
component ıș is evaluated along the notch bisector line (ș=0) for mode I σSIF; the 
shear stress component Ĳzș is oriented as ıș. 
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Figure 12 MWCM accuracy in predicting fatigue lifetime of plain specimens under 

multiaxial loading. 
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Figure 13 SED accuracy in predicting fatigue lifetime of plain specimens under 
multiaxial loading. 
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Figure 14 Probability density function of errors of predicting fatigue lifetime of plain 
specimens under multiaxial loading according to MWCM and SED. 
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Figure 15 MWCM accuracy in predicting fatigue lifetime of notched specimens under 
multiaxial loading. 
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Figure 16 SED accuracy in predicting fatigue lifetime of notched specimens under 
multiaxial loading.  
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Figure 17 Probability density function of errors of predicting fatigue lifetime of notched 
specimens under multiaxial loading according to MWCM and SED. 

 
 


