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A new paradigm for Predictive Functional Control to enable more

consistent tuning

John Anthony Rossiter1 and Muhammad Abdullah2

Abstract— This paper presents two significant contributions
to the understanding of Predictive Functional Control (PFC).
First, it gives novel insights and explanations into a poorly
understood issue, that is the weak link between PFC tuning
parameters and the resulting closed-loop behaviour. This new
understanding is then exploited to proposed a modification to
the existing PFC algorithm which creates a much stronger
tuning link while retaining the critical properties of elementary
coding and understanding. The efficacy of the proposal is
demonstrated on several numerical examples.

Keywords—Predictive Control, PFC, Tuning, Perfor-

mance.

I. INTRODUCTION

Predictive functional control (PFC) has been very widely

adopted in industry [1], [2], [3] and has been successful

because of its relatively simple concept, that helps indus-

trialists and technical staff easily understand its core design

principles. The coding requirements, at least for systems with

straightforward dynamics, are simple and can be coded in

just a few lines on whatever processor is available, including

PLCs [4], [5]. Indeed, the downside is that academic rigour

and proofs of convergence and stability [6] are generally

quite difficult to obtain except for a few special cases [7],

[8]; yet, most industrialists would not worry too much about

that as long as the control algorithm is effective and cheap.

One purpose of this paper is to unpick one of the theoreti-

cal weaknesses in a standard PFC approach and thus explain

why the tuning procedure, although simple in practice, in

reality gives quite poor links between the expected behaviour

compared to what is achieved [9]. Building on this, some

insights from more general predictive control are used to

suggest how this weakness might be overcome in a manner

which is still very simple to implement and code and thus

maintaining the cost-effectiveness of PFC. The reader should

note however that it is unrealistic to expect generic proofs of

stability and/or feasibility with PFC; while these are avail-

able with many MPC algorithms they come at substantially

greater computational demand and expense.

The main concept in PFC is to treat a 1st order response

as an ideal closed-loop behaviour and choose future input

values which force the predicted system behaviour to overlap

with the target 1st order response at some specific point in

the future. For systems with close to first-order dynamics it

can be shown that this approach is very effective and indeed,

one can even develop strong stability and feasibility results
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for this case [8], [9], [10]. Conversely, when a system is

governed by dynamics which are not close to first-order, it

is unsurprising that attempting to force a first-order response

is ambitious at best and unwise at worst; indeed for several

types of dominant dynamics, it is easy to show that a standard

PFC algorithm can be difficult to tune effectively [11], [12].

This paper focusses on a related issue which has strong

links to the concepts of recursive feasibility adopted in the

mainstream MPC literature [6], [13], [14]; that is can one

select at the next time instant a policy which, in essence,

replicates the policy selected at the previous sample? Embed-

ding consistency of decision making from one sample to the

next enables the user to quickly give proofs for convergence,

as the worst case decision making is bounded by that given

at the previous sample, and also feasibility (guarantees that

predictions satisfy constraints), for the same reasons [6].

It will be shown in section II that for classical PFC, the

use of a reformulated first-order dynamic target at each

sampling instant implies an inconsistency in decision making

which results in the poor tuning properties. However, using

the same insights, section III proposes a straightforward

modification of PFC which gives a conceptually almost

similar algorithm that has much stronger properties and thus

more reliable tuning. Section IV provides a conclusion.

II. CLASSICAL PFC CONCEPTS AND RECURSIVE

PROPERTIES

This section will introduce a classical PFC and then show

how it has good recursive properties with first-order systems

but may not do so with higher-order dynamics. Without loss

of generality and ease of presentation, this paper utilises a

general transfer function model although PFC can take any

form of prediction structures [2].

A. Classical PFC algorithm

The PFC framework is based on the assumption that the

system should behave similarly to a desired target trajectory.

Although it is possible to use a higher order polynomial

as a target trajectory, yet the usual practise is to follow

a first-order response due to its simple characterisation of

convergence [2]. More precisely, the predicted output follows

a first-order response from the current value to the desired

steady-state, and thus one could enforce the following equal-

ity [9]:

yk+n|k = (1−λ
n)r+λ

nyk (1)

where yk+n|k is the n-step ahead system prediction at sample

time k, λ is the desired closed-loop pole which controls the

convergence rate from output yk to steady-state target r and



n is a coincidence horizon (a tuning parameter), the point

where the system prediction is forced to match the target

trajectory [2]. For convenience later, define the implied target

sequence based on (1) at sampling k as follows:

Rk+n|k = {yk+n|k = (1−λ
n)r+λ

nyk, n = 1,2, · · ·} (2)

The n-step ahead prediction for a transfer function model

(e.g. [13], [14], [15]) takes the following form for input uk:

yk+n|k = Huk
→
+Puk

←
+Qyk

←
(3)

where matrix H, P, Q depend on the model parameters and

for a transfer function with dimension na (denominator) and

nb (numerator):

uk
→

=
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...
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


;yk
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

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yk
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yk−na








(4)

Substituting prediction (3) into equality (1) gives:

Huk
→
+Puk

←
+Qyk

←
= (1−λ

n)r+λ
nyk (5)

Extracting the nth row from the matrix: Hn,Pn,Qn along with

the constant future input assumption of PFC [2], [3] means

uk+i|k = uk for i > 0 and defining hn = ∑(Hn), the control

law is formulated as:

∆uk =
1

hn

[

(1−λ
n)r+λ

nyk−Qnyk
←
−Pnuk

←

]

(6)

Remark 1: This subsection has ignored details of unbiased

prediction [14], the handling of uncertainty and prediction

alternatives so as not to distract from the core concepts.

B. Recursive properties with PFC

A core concept within the MPC literature is the so-called

tail, that is the part of the prediction from the previous

sample which has yet to happen. In order to ensure consistent

decision making, it is normal to define the degrees of

freedom (d.o.f.) in the prediction such that the predictions

at subsequent samples can be chosen to match, if desired;

that is:

yk+n|k = yk+n|k+1, ∀n > 0 (7)

Given PFC deploys the constant future input assumption,

such property complies automatically.

A secondary but related concept is that the performance

index or control law computation should be such that one

could easily default to the tail through normal decision mak-

ing and only move from this where predicted performance

improvement is evident. This is where PFC has a weakness:

• In effect that the input trajectory is defined for the entire

future as a constant.

• The output trajectory is only computed at a single point

from (1), with the rest of the trajectory being ignored.

• The implicit assumption is that the output predictions

will follow (1), however with the exception of a single

special case, this is not true.

The consequence is that there is a mismatch in the implied

assumptions: either the input will deviate away from its tail

or the output predictions will do so and thus some important

recursive properties are lost. However, the most important

possible inconsistency arises from variations in (1) from

one sample to the next. To see this, we will illustrate the

prediction and coincident points at successive samples.

1) Recursive properties with high-order models: This

section will plot the implied targets of (1) calculated at

a number of successive sampling instants. For consistent

decision making, one would expect the implied target to be

the same.
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Fig. 1. Implied target sequences Rk+i|k for 0 < i < 10 from (2) for system
(8) at successive sampling instants k.

• Take the following second order system (8) with n = 5

and λ = 0.8,

G(z) =
0.1z−1−0.4z−2

1−1.4z−1 +0.45z−2
(8)

Compute the sequences Rk+i|k from (2) at different

sampling instants k and overlay on Fig. 1. The target

sequence at sampling instant k = 21 is notably different

from that of the previous sample k = 20 and hence there

is inconsistency in what is being asked of the control

law from one sample to the next. This inconsistency

continues through future sampling instants, although as

the output yk converges the effective target gets closer

and closer to r and so the differences reduce.

• Consider now a third order example (9) with n= 10 and

λ = 0.92,

G(z) =
3.3z−1 +0.31z−2−3z−3

1−2.76z−1 +2.54z−2−0.78z−3
(9)

The compute sequences Rk+i|k as in (2) at different

sampling instants k in Fig. 2 shows the same pattern

as example (8), where the target Rk+i keeps changing

at different sampling instant k.

2) Recursive properties with first-order models:

G(z) =
1.2z−1

1−0.9z−1
(10)

Readers will be interested to know that the observations

of Fig. 1 and 2 do not apply to first-order models (or indeed
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Fig. 2. Implied target sequences Rk+i|k for 0 < i < 10 from (2) for example
(9) at successive sampling instants k.

where one can safely use n = 1). A corresponding example

(10) with n = 1 and λ = 0.8 as in Fig. 3 clearly shows that

the target Rk+i is now unchanged at different sampling k!
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Fig. 3. Implied target sequences Rk+i|k for 0 < i < 10 from (2) for example
(10) at successive sampling instants k.

C. Repercussions of target changes on output behaviour

A core tenent of PFC is that the user or designer is

able to select the desired closed-loop time constant, or

equivalently the implied closed-loop λ which appears in (1).

The target behaviour is expected to be embedded by forcing

the predictions to follow that target behaviour. However,

herein the reader will notice an immediate inconsistency.

• Fig. 1 and 2 show that the implied target changes every

sample so that, in effect one is no longer following the

expected target stated at the outset, but some alternative

lagged version. The lag is critical as this means that

in effect, the control law computations are following a

slower target than expected and desired.

• Fig. 3 shows that this lag does not occur in the first-

order case (or where n = 1) and in this case, the implied

target is the same from one sample to the next.

The effect of this implied lagging can be demonstrating by

looking at the system predictions associated to control law

(6) at successive samples alongside the implied coincidence

of (1), n steps into the future. Fig. 4-6 show the corre-

sponding output predictions for Fig. 1-3, respectively and

the chosen coincidence points, over-lapped with the sequence

Rk+i from the initial sample k.

1) For example (8) (see Fig. 4) the coincidence points

deviate away from R20+i|20 and also show a somewhat

meandering path which calls into question the efficacy

of λ as a tuning parameter given the implied coinci-

dence point is somewhat inconsistent from one sample

to the next and thus does not overlap well with the

original desired dynamic of R20+i|20.

2) For example (9), Fig. 5 shows even greater deviations

between the coincidence points and the original target

and thus it is wholly unsurprising that the eventual

closed-loop dynamic achieved is not close to the orig-

inal target.

3) Example (10) (see Fig. 6) is the exception. Although

there are some changes in the optimised predictions,

it is noted that all the coincidence points lie upon the

original target R20+i|20 and therefore, in this case, the

desired dynamic is achieved in the closed-loop.
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Fig. 4. Implied predictions for example (8) at successive sampling instants
k alongside the associated coincidence point n used to determine the PFC
control law.

D. The reasons why the PFC tuning parameter of desired

time constant is flawed with non-first-order models

It is self evident from Fig. 1,2,4,5 that for many cases, the

definition of the PFC control law through coincidence points

in (1) alongside an initially slow responding underlying sys-

tem dynamic and n≫ 1, leads to the implied target trajectory

gradually drifting away from the original target; in effect the

target behavior is much slower and thus unsurprisingly the

resulting closed-loop behaviour is also much slower. While

other works [9], [10], [14] have noticed the inconsistency

between the target λ and the achieved closed-loop pole, this

is the first work to our knowledge which fully exposes why

this inconsistency is happening.

The reader should note that the change from one sample to

the next is a consequence of two parallel prediction processes

which are inconsistent for most systems.
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Fig. 5. Implied predictions for example (9) at successive sampling instants
k alongside the associated coincidence point n used to determine the PFC
control law.
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Fig. 6. Implied predictions for example (10) at successive sampling instants
k alongside the associated coincidence point n used to determine the PFC
control law.

• Trajectory shape one-step ahead given by:

yk+1|k = (1−λ )r+λyk

• Actual system behaviour:

yk+1 = ∑i biuk−i+1−∑ j a jyk− j+1

where uk is selected to meet (1).

In general ∑i biuk−i+1−∑ j a jyk− j+1 6= (1−λ )r+λyk.

Theorem 1: The desired trajectory sequence Rk+1|k+1 at

the next sample is consistent with the second prediction from

the previous sample Rk+2|k, that is:

Rk+1|k+1 = (1−λ )r+λyk+1 = (1−λ
2)r+λ

2yk (11)

if and only if yk+1 = (1−λ )r+λyk.

Proof: Although a generic proof is not possible, it is fairly

obvious that for typical high order dynamics the 1-step ahead

response to a change in input is quite small, so meeting a

coincidence point computation (1) n steps into the future will

likely mean the implied yk+1|k is much smaller than target,

that is (without loss of generality the reader can assume zero

initial conditions and positive system gain) for illustration:
{

uk ⇒ yk+n|k = (1−λ n)r+λ nyk

yk+1 = ∑i biuk−i+1−∑ j a jyk− j+1

}

⇒ yk+1≪ (1−λ )r+λyk

(12)

As a consequence, yk+1 has not changed from yk as much

as required except for first-order processes:

(1−λ )r+λyk+1 6= (1−λ
2)r+λ

2yk (13)

and thus some lag in the set point trajectories is introduced,

as seen in Fig. 1 and 2. �

However, of course the actual yk+1 is typically different,

where uk is selected to satisfy (1) and n 6= 1 (as n > 1 is

typically essential especially for non-minimum phase system

and higher order model [9]).

III. IMPROVING THE TUNING EFFICACY OF PFC

Some recent works [5], [10] used parallel prediction via

partial fraction expansions and exploited the PFC properties

for first-order systems as a means of improving the tuning

process. However, that method still required an arbitrary

selection of some parameters/poles which could impact

significantly on the overall behaviour. Ideally, PFC should

be defined to have a few design variables as possible to

simplify the process while ensuring it as intuitive as possible

for users. Other recent work [16] is considering the use of

alternative parameterisations for the degrees of freedom in

the prediction, again as a means of embedding the desired

tuning more logically. However, that approach does not yet

explicitly deal with the trajectory lag issues discussed here.

Hence, this paper will exploit the new insights given by

the previous section into why classical PFC often does not

deliver the targeted poles and will, as a preliminary work,

focus solely on a classical PFC formulation such as defined

in (6). It has been shown that the classical formulation

can lead to a drift in the implied target, primarily due to

the implied mismatch illustrated in (12) when a process

has a slow initial response (slow that is compared to 1st

order dynamics). The most obvious proposal therefore is to

consider mechanisms which avoid the drift in the implied

target trajectory used in the control law computations, so

that the sequence Rk remains the same, irrespective of the

actual system behaviour. This is not as immediately trivial as

the reader might think due to the requirement for ensuring

effective handling of uncertainty within the control law

formulation.

A. Classical PFC control law with handling of uncertainty

In order to cater for uncertainty such as disturbances

and parameter uncertainty, it is common to rewrite (1) in

an equivalent form as follows (readers should note that

alternatives do exist and we chose the formulation that is

most convenient for purpose):

yp,k+n|k = (1−λ
n)r+λ

nyp,k (14)

where the subscript p is used to denote actual system output

value. The model (denoted by subscript m) and process are

simulated in parallel as indicated in Fig. 7.

In practice, the user estimates the values of yp,k+n|k using

the following:

dk = yp,k− ym,k; E[yp,k+n|k] = ym,k+n|k +dk (15)
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Fig. 7. Independent model prediction structure.

Thus the control law of (14) can be rewritten as:

ym,k+n|k +dk = (1−λ
n)r+λ

n[ym,k +dk] (16)

or ym,k+n|k = (1−λ
n)[r−dk]+λ

nym,k (17)

B. Modification of PFC control law to remove lag

The lag noted in section II-B arises due to the inconsis-

tency in (12). We can remove this inconsistency by making

the target fixed in time, that is, removing the dependency

of the implied target sequence Rk+i on the current output

measurement yp,k, but obviously while still defining the

control law so that it caters for uncertainty.

Algorithm 1: Without loss of generality and ultimately

using superposition, consider the case where the system has

zero initial conditions and there is a change in the target, that

is rk = 0, k ≤ 0 and rk = r, k > 0. Hence, at sample time k

the implied target sequence Rk+i|k can be formulated as:

Rk+i|k = [(1−λ ),(1−λ
2), (1−λ

3), · · · ]
︸ ︷︷ ︸

R0

r

= [Rk+1|k,Rk+2|k,Rk+3|k, · · · ]

(18)

At the next sample k + 1, we would simply update this

sequence in logical manner by removing the first term which

is now in the past, so that

Rk+i|k+1 = [(1−λ 2),(1−λ 3), (1−λ 4), · · · ]r
= [Rk+2|k,Rk+3|k,Rk+4|k, · · · ]

(19)

Next consider a scenario where the target changes, so

for example rk− rk−1 6= 0,k = h. Such a change implies an

associated target change so, using superposition, then:

Rh+i|h = [(1−λ ),(1−λ 2), (1−λ 3), · · · ](rh− rh−1)
+ [Rh+2|h−1,Rh+3|h−1,Rh+4|h−1, · · · ]

(20)

Changes in disturbance estimate dk impact the target

sequence in an analogous fashion so that the overall sequence

catering for uncertainty is updated each sample as follows:

Rh+i|h = R0[(rh− rh−1)− (dh−dh−1)]
+ [Rh+2|h−1,Rh+3|h−1,Rh+4|h−1, · · · ]

(21)

Algorithm 2: The PFC control law is given from:

ym,k+n|k = Rk+n|k (22)

Where the reader notes the removal of the explicit depen-

dence on the initial condition and instead the use of history

information from the target to ensure the target sequence

is consistently defined, and thus removing any lag in the

implied target.

C. Analysis of properties of proposed PFC law

The most important property to establish is offset free

tracking, or equivalently, that the control law will success-

fully reject both parameter uncertainty and disturbances.

Theorem 2: Assuming closed-loop stability, the use of

Algorithm 2 in conjunction with update (21) will ensure the

system outputs converge to a reachable steady-state target.

Proof: The control law leads to fixed term control law

which thus reaches a fixed steady-state. A simple proof can

be based therefore on assessing the steady-state and checking

whether that is inconsistent or not with zero offset. Steady-

state assumes that past and future inputs (including those

arising from (22) now) must be the same. First, assum-

ing no changes in the target and set point, then Rk+n|k =
Rk+n+1|k+1 =Rk+n+2|k+2, · · ·= r−dk where dk=yp,k−ym,k. At

steady-state (subscript ss), from (22), the following identities

must hold:

ym,k = ym,k+n|k = Gssuk = Rk+n|k; yp = ym +dk (23)

which alongside the definition of Rk+n|k implies that yp = r

as required! �

D. Numerical illustrations

This section will utilise the same examples (8), (9) and

demonstrate that the replacement of control law (1) with

Algorithm 2 for removing lag from the overall process and

thus gives a better consistency with the desired closed-loop

dynamic λ . The illustrations will also include an external

and time invariant output disturbance to demonstrate that

Algorithm 2 does indeed deliver offset free tracking in the

uncertain case.

The responses for example (8) are shown in Fig. 8 and 9. It

is clear that the proposed algorithm is much more faithful to

the original target trajectory than the classical algorithm as,

despite the initial slow response due to the non-minimum

phase characteristic, the output response then approaches

the original target within settling time whereas the classical

approach does not. The desired speed up is also obtained

during the output disturbance rejection. A similar response

is shown in Fig 10 and 11 for example (9).
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Fig. 8. Closed-loop output tracking responses for classical PFC and
Algorithm 2 PFC on system (8).
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Fig. 9. Closed-loop disturbance (with amplitude of -0.1) rejection responses
for classical PFC and Algorithm 2 PFC on system (8).

IV. CONCLUSIONS

This paper has made two notable and novel contributions

in the field of predictive functional control.

1) Firstly, it has given explanations and illustrations for

why the main tuning parameter that is the desired

closed-loop time constant/settling time is often inef-

fective when the coincidence horizon exceeds one. In

particular, it has shown how inconsistency between

the very rapid initial response of a first order system

(and the ideal target) as compared to the more typical

slow initial response for high order systems, means

that the effective target deployed by PFC is continually

lagged more and more in each sample. This repetitive

lagging/delay in the target leads to the closed-loop

response lagging behind the originally desired target

and thus having slower dynamics than intended.

2) Secondly, the paper proposes a straightforward mod-

ification to PFC to overcome this repetitive lagging.

The main idea is to frame the PFC objective slightly

different so it is not based on an instantaneous measure

of the distance from the target, but rather a measure

with some memory of the targets used at previous

samples. The computation in this step is trivial and

thus the resulting algorithm is no more complex than

the classical PFC to code as seen in (21) and (22).

In summary, this paper identifies a known weakness which

is the poor link between the PFC tuning parameters and the

resulting closed-loop behaviour. By exposing the causes, this

paper has proposed a solution which has been shown to be

effective on non-simple case studies.
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