
This is a repository copy of Adaptive Optimization Design of Vector Error Diffusion
Algorithm and IP Core for FPGA.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/142337/

Version: Accepted Version

Proceedings Paper:
Yang, P, Wang, Q, Guo, T et al. (2 more authors) (2018) Adaptive Optimization Design of
Vector Error Diffusion Algorithm and IP Core for FPGA. In: Proceedings - 2018 IEEE
SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation. 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation, 08-12 Oct 2018,
Guangzhou, China. IEEE , pp. 1193-1198. ISBN 978-1-5386-9380-3

https://doi.org/10.1109/SmartWorld.2018.00208

© 2018 IEEE. This is an author produced version of a paper published in Proceedings -
2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Adaptive Optimization Design of Vector Error

Diffusion Algorithm and IP Core for FPGA

Pengfei Yang, Quan Wang, Tao Guo, Wei Li

School of Computer Science and Technology

Xidian University

Xi’an, China

qwang@xidian.edu.cn

ZhiQiang Zhang

School of Electronic and Electrical Engineering

University of Leeds

Leeds, UK

Z.Zhang3@leeds.ac.uk

Abstract—A vector error diffusion algorithm can obtain better
halftone results than a scalar error diffusion algorithm in digital
printing, thus, extensive research work about the vector error
diffusion has been done to decrease the time that users wait for
printing. In this paper, an improved vector error diffusion IP
core is proposed. The IP is implemented in FPGA and can meet
the requirement of real-time printing by the improvements as
follow: three R G B planes are computed in parallel, a matrix-
valued error filter is designed to diffuse error among the three
planes, matrix-valued pre-stored memory is created to speed
multiplications and five stage pipelines are adopted to replace
traditional sequential processes. Based on the improvements, we
build a practical hardware test system on the SoCKit platform.
The test results show that optimal algorithm only needs one clock
circle to get the halftone result of a pixel on average and can
meet the requirements of practical printing.

Index Terms—Vector error diffusion, FPGA

I. INTRODUCTION

For a typical process of printing, the Raster Image Proces-

sor(RIP) module, which converts the content to be printed into

a bitmap is processed first, then, by translating, caching and

decompressing, the printed output obtained. The RIP module

is the kernel technology, it usually includes data resolution,

half-tone processing, data recombining and compressing. As

the most important process of printing, the halftone values

determine the performance and quality of printing. Every pixel

of a source image is synthesized by red, green and blue, with

different grey values arranging from 0 to 255, thus, there are so

many possible colours for any pixel. However, there are only

two choices for the printer: print the dot or not. The halftone

algorithm builds the connection between them.

There are many methods to get halftone images, including

lookup-based schemes such as Look Up Table (LUT) halfton-

ing, error diffuse-based schemes such as Error Diffusion(ED),

Dot Diffusion iteration-based schemes such as Direct Binary

Search(DBS), and threshold-based schemes such as Ordered

Dithering(OD). Of those mentioned above, the error diffusion

algorithm is most advantageous because it can produce a rel-

atively satisfactory image, and it has become the mainstream

solution for the printer industry. Many works have been carried

out to get a better error diffusion results.

The research is supported by National Natural Science Foundation of China,
under Grant Nos. 61572385, 61702395, 61711530248.

Nowadays the print density becomes higher with the de-

velopment of printing technology, and more ink dots can be

printed in a unit area, the amount of calculation of halftoning

is becoming larger and larger, However, as a typical serial

algorithm, traditional error diffusion algorithm can process

only one pixel at a time even on a PC platform. A larger

storage is also required to caching the error value of the

previous element before calculating the value of the next pixel.

One more thing, off-line printing which without a computer

is becoming more and more popular.This requires an adaptive

design of the error diffusion algorithm to avoid significantly

increasing the print waiting time and detracting from the user

experience.

II. RELATED WORKS

People always hope that the high-quality images or videos

can be obtained in a quick and convenient way, so the image

and video processing methods and platforms are required to

optimized continuously[1-4]. For the error diffusion of colour

imagines, the error of one plane can diffuse not only in its

plane but also among other planes to reduce the loss of colour

information. The traditional colour error diffusion algorithms

handle each colour separately, by considering the R, G, and

B planes as three unattached images with continuous grey

error, the propagation and quantization of every plane are

carried out independently, and the halftone results are always

unsatisfactory. Vector colour error diffusion algorithm has been

proposed, during which the correlation among different colour

planes is considered, and error diffusion is extended to colour

images by using error filters with matrix-valued coefficients.

Vector colour error diffusion was first described by Haneishi

al.[5], and many improvements were proposed later. Zhigang

Fan[6] presented a simple but effective method for reducing

the boundary artefacts. Shaked Doron al.[7][8] designed a

vector colour error diffusion algorithm based on the Mini-

mal Brightness Variation Criterion(MBVC). They proposed a

minimum brightness distribution standard MBVC according to

the principle of colour and the characteristics of human vision

and applied it to the quantization of a vector error diffusion

algorithm. Compared with the algorithm proposed earlier, the

colour noise of the halftones was greatly improved. Dantera

al.[9][10] development an optimal noise distortion error dif-

fusion coefficient matrix using half toning, that converted the

brightness error into a colour component that was insensitive to

human vision. Similar to a MBVC-based vector error diffusion

algorithm, it still used the average quantization method, the

halftone result was eight primary colors, and the problem of

brightness difference still existed. Meng al.[11] fine-tuned the

Floyd-Steinberg matrix of classical error diffusion coefficient,

and added a source image input to realize edge enhancement,

and thereby greatly improve the problem of a less hierarchical

level of vector error diffusion based on MBVC. Jing Zhang

combined the advantages of the above and proposed a quan-

tizer with a minimum brightness distribution standard; she also

replaced the Floyd-Steinberg error kernel with the vector of

the optimal error diffusion filter error diffusion algorithm to

get better colour halftone images.

For the application of a vector error diffusion algorithm,

Ryosuke al.[12] proposed a new colour quantization method

to generate dichroic images based on vector error diffusion

and particle swarm optimization. The Floyd-Steinberg error

diffusion coefficient matrix was used to implement the vector

error diffusion algorithm, and the particle swarm optimization

palette based on human vision was used to improve the vector

error diffusion algorithm.

At the same time, The field programmable gate ar-

ray(FPGA) has undergone rapid development. The larger pro-

grammable area and more flexible internal connection style

provided greater convenience for a programmer to perform

complex functions in a simple way[13], one more thing, the

easy IP encapsulation facilitates the reuse of the function

modules[14]. Before the work in this article, we designed

an error diffusion IP core on FPGA[15], but the results of

halftones were not satisfactory for high-quality print because

it was implemented with the scalar halftone algorithm; and

the colour information among different planes was ignored.

This paper presents an improved vector error diffusion IP core

that can be implemented in FPGA in real- time. The main

contributions of this paper are as follows:

(1) The difficulties and challenges in implementing the

vector halftone algorithm on FPGA are analyzed and detailed

design and implementation are carried out.

(2) The algorithm is encapsulated into a reusable IP core

and tested with the actual hardware system to prove that the

algorithm can meet the actual needs of the offline printer

printing.

The rest of this paper is organized as follows. In section III,

the halftone results of the vector error diffusion algorithm and

the scalar error diffusion algorithm are compared to prove the

superiority of former; then, the details of the improvements

are presented. Section IV describes the encapsulation of the

algorithm into an IP core and its test in a practical system.

Section V summarizes our work.

III. VECTOR ERROR DIFFUSION OPTIMIZATION

At first, we compare the halftone colour images obtained

by the vector error diffusion algorithm and the traditional

error diffusion algorithm separately. These two algorithms

TABLE I
COMPARISON BETWEEN TRADITION ERROR DIFFUSION AND VECTOR

ERROR DIFFUSION

Method scalar Al-
gorithm

Linearized
CIELab

Opponent
Color
Space

YUV YIQ

PSNR(dB) 5.4975 5.5670 5.5329 5.4938 5.5233

WSNR(dB) 13.5442 14.0807 13.8455 13.6149 13.4952

LDM 0.1497 0.1390 0.1460 0.1490 0.1514

UQI 0.0741 0.1029 0.0673 0.0662 0.0716

�
�
��
����

	

�

�
�

	�	��

�

���

�
�
�
��
������

�
	����

�
����

	

�

�

�

�

���

����

�

�

�

�

Fig. 1. Parallel processing of vector error diffusion

were implemented with Matlab, the vector error diffusion al-

gorithm adopts the optimal error coefficient matrix Linearized

CIELab[9], the source image is a 256 * 256 Lena image.

We calculated the peak signal to noise ratio(PSNR), weighted

signal to noise ratio(WSNR), linear distortion measure(LDM)

and Universal Quality Index(UQI)[16][17][18] of the scalar

error diffusion algorithm and vector error diffusion algorithm

using Linearized CIELab, Opponent Colour Space[19][20],

YUV and YIQ[21]. The result is shown in table I. It can

be seen that, the PSNR, WSNR and UQI of the vector error

diffusion algorithm are higher than those of the scalar error

diffusion algorithm, and that the LDM is lower than that of

the scalar error diffusion algorithm, the vector error algorithm

obtains better halftone results for the colour images than the

scalar algorithm does. The vector error diffusion algorithm is

the inevitable choice to get better print quality for a printing

system. Following is a detailed discussion of the specific

optimization and implementation of the algorithm.

A. Parallel Processing

The traditional colour error diffusion algorithms neglect

colour information among different planes. Error propagation

and quantization of each channel are handled separately, it

is easy to make a parallel design. The parallel design of

the vector error diffusion algorithm is difficult, because the

colour information among RGB planes is not independent, the

error of one channel diffuses among other planes to reduce

the loss of colour information. In this paper, we process the

three colours in parallel fashion as shown in figure 1. Error

diffusion between different planes is carried out in part called

”E-D”, which includes the operation of the vector colour

error diffusion filter coefficient. This can greatly shorten the

processing time compared with serial processing and can

improve the processing efficiency.

For an RGB image, the error filter coefficient is a 3*3

matrix, which is adapted to reduce the mean squared error

between the halftone and the original. Based on the human

0.5269

0 00.2814

0.0700

0 0.00680.0481

0

0.0930 00

0

0 00.0481

0

0.0330 00

0

0

0.0668 0

0.1938

0.4577

0.2328 0

0

0 00

0

0.9670 00

R->R R->G R->B

G->R G->G G->B

B->R B->G B->B

Fig. 2. Error diffusion coefficient based on Linearized CIELab

visual system, four optimized matrix-valued error filters were

proposed: YIQ space, YUV space, opponent colour space, and

Linearized CIELab[19][20][21] colour space. In this paper, we

test our design using these four matrix-valued error filters.

Figure 2 is a sample of an error diffusion coefficient based on

Linearized CIELab, The sum of coefficients of any channel is

1, ensuring the error can be diffused to the local colour plane

and other planes completely without information losing.

B. Process of Halftone and Error Value Generation

Many hurdles must be crossed when using FPGA to imple-

ment error diffusion calculations. First, a hardware description

language such as Verilog HDL cannot address negative oper-

ations directly, but the calculation of halftone and error value

involves negative numbers. Second, an established system

always sets a fixed data width; for example, 8 bits is defined

for a variable ranged from 0 to 256, which would cause data

overflow during data processing.

In this paper, the mosaic operator of unsigned in Verilog

HDL is used as a sign expansion such that the updated pixel

values are applicable to signed operations. Every number

is composed of an unsigned number and the sign bit. The

unsigned number is the absolute value of the original data, and

the sign bit, which is stored in an extra register, indicates the

positive or negative of the data. The modified design converts

the calculation of signed numbers into the operation of un-

signed numbers, the problems involving negative numbers and

data overflow are all resolved. Figure 3 illustrates the process

of error diffusion and error value generation. ERR[7..0] feeds

back the error diffusion values of neighbouring pixels in

the last row. Accdata[9..0] updates the pixel value based

on ERR[7..0] and data[7..0]; then, the module proceeds to

get the err-data and the halftone values of the pixel by

comparing accdata[9..0] with the threshold value. To facilitate

looking up the error diffusion values in the next step, the sign

bits(err data sig) of the error values(signed or unsigned) are

extracted alone, the negative error values are output in the

form of their absolute value, and the next level’s operation

Fig. 3. Halftone and error value generation block structure

����������	

��

���������	����

�������	����	���������

�����������	����

����
������������

�������	����	���

�����������������

�	����

�����������

�������� �!

��������
�

"�������#
 $��	����

���������������������

�	����	���������

"�������#
 $��	����

���������������������

�	����	���������

"�������#
�$��	����

�������������������

�	����	���������

"�������#
�$��	����

���������������������

�	����	���������

%�������&�������

�������������������

�	
��&	�

%�������������������

�����	
��&	�

%�������&�������

�������������������

�	
��&	�

%�������������������

�����	
��&	�

���	���
�������

'��
��������	�����

Fig. 4. Flowchart of Error values generation

is carried out by judging the sign bit of the error diffusion

values.

Figure 4 is the flowchart of generating error values. When

updating the values of a pixel, four different cases should

be considered: greater than 255, between 255 (equal) and

128, between 128 (equal) and 0, and less than 0. The error

values and halftone values will be determined and output

corresponding to different cases. The pipelining of the entire

halftone system is allowed because the halftone values of a

pixel can be produced within one clock cycle under this design.

As is shown in figure 2, for a single colour, there are

128 error values ranging from 0 to 127 that will diffuse into

three RGB planes in four directions, the process of error

diffusion mainly involves subtraction and multiplication op-

erations. Direct multiplication in FPGA will require extensive

logic resources and increase the system resource occupation.

R-R channel gain Matrix pre-

stored memory(Right)

R-R channel gain Matrix pre-

stored memory(Bottom left)

R-R channel gain Matrix pre-

stored memory(Bottom)

R-R channel gain Matrix pre-

stored memory(Bottom right)

 Error Diffusion value

Right

 Error Diffusion value

(Bottom left)

 Error Diffusion value

(Bottom)

 Error Diffusion value

(Bottom right)

Error values

Fig. 5. Matrix-value pre-stored memory structure

���������

���	
��������

�
��
�
������
�

���
�������

���
�������

���
�������

�������������
��
�
������
�

�
��

�

���������

��
�

��

�
�
�
��
��

��

��� ��� ��� ��� ���

�����
���

�����

�����
���

�����

�����
���

�����

�����
���

�����

�����
���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

������

��

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

������

��

������

��

������

��

�
�
�
���

�
���

�
���
�
���

���
������
���

!
��

"�����#
��
�
���$���

��� ��� ��� ��� ���
$���
��������������
��

Fig. 6. Pipeline timing chart

This proposal can hardly meet the requirement of real-time

processing, so optimizing the multiplication operations in the

system is essential.

In our system, we calculate the error diffusion values and

store them in a memory called matrix-value pre-stored mem-

ory. The error values will serve as indexes for looking up the

error diffusion values in each direction in the corresponding

table to minimize the computing time when error diffusion

values are required. Complex multiplication operations will be

eliminated from the system. Twelve matrix-value pre-stored

memories are constructed to store error diffusion values in

the four directions of three planes. The error diffusion values

corresponding to each of these diffusion coefficients can be

referenced from the error values. The figures for the memory

design for the R channel diffused into it are shown in figure 5,

this will save logic resources and shorten the computing time.

C. System Pipeline Design

Commonly, pixel data cannot be calculated until the error

diffusion values of the previous pixel and the accumulation

values of error diffusion of the last raw data from three planes

are obtained. It is a typical serial execution and will seriously

affect the real-time performance of the system. This paper

introduced a parallel design so the algorithm can be processed

in the pipeline.

Pipeline design is the most common speed optimization

technique for this problem[22]. The pipeline timing diagram of

the vector error diffusion algorithm is designed by indicating

each pixel value and setting the optimal colour space filter,

as shown in figure 6. The horizontal axis represents time, and

the vertical axis represents the function modules. The error

diffusion is divided into five parts, i.e., reading the original

pixel data, calculating the halftone value, determining the error

diffusion value corresponding to the error value, accumulating

the error diffusion values and storing the error diffusion values.

To further improve the efficiency of computing, three reg-

isters are applied in the accumulation module to cache the

multiple error diffusion values simultaneously, the final results

will be written into the storage module later. High efficiency

will be achieved through the pipeline process for the system if

and only if these modules are in the required timing relations

shown in the diagram.

IV. IP CORE DESIGN AND EXPERIMENT VALIDATION

FPGA provides an integrator for users to integrate their

own design into an intellectual property for reusability and

to accelerate the process of system design and development.

We integrated our optimization into a vector error diffusion

IP core, referring to the master-slave signal of Avalon[13].

Using the vector error diffusion IP, a verification system was

constructed based on the SoCKit development board. Then, a

series of tests and comparisons are as follows:

At first, we compare the halftone images generated through

the verification system and Matlab using the same algorithm.

The size of these diagrams are all 256 * 256, and the results

are shown in figure 7, where (a), (b), and (c) show the source

images, the results of Matlab and results of the verification

system. The results obtained for the verification system were

basically the same as those obtained in Matlab.

In addition, the PSNR, WSNR, LDM and UQI of these

diagrams are calculated as shown in table II. The PSNR of

halftone results generated by the two methods are almost the

same, the WSNR is slightly lower than the Matlab result, the

LDM is slightly higher than the Matlab result, and the UQI

index is slightly lower than the Matlab result. These slightly

worse results are foreseeable because the decimal of float

numbers is ignored in the calculation process on the FPGA

platform.

TABLE II
COMPARISON BETWEEN MATLAB AND FPGA

Source
images

PSNR(dB) WSNR(dB) LDM UQI
Matlab FPGA Matlab FPGA Matlab FPGA Matlab FPGA

Lena 5.5670 5.5538 14.0807 13.5479 0.1390 0.1505 0.1030 0.0743
Pepper 5.6957 5.6772 11.0739 10.9267 0.2470 0.2525 0.0238 0.0134
House 4.8483 4.8609 15.0766 14.7521 0.1212 0.1269 0.1707 0.1688
Girl 6.1206 6.1438 11.6486 11.5013 0.1951 0.2031 0.0658 0.0267
Trees 4.9902 5.0196 11.7978 11.5530 0.1908 0.1982 0.1603 0.1547
Sailboat 5.1973 5.1876 10.3822 10.1117 0.2246 0.2326 0.1376 0.1490

Third, we compared the results of 256*256 Lena colour

image generated by the verification system and Matlab in three

colour channels of R, G and B; a window was set to show the

difference of these results. The pixel window size was 8 *

8, starting from the (70,70) pixels of each channel, and the

(a) Source Images (b) Matlab results (c) FPGA results

Fig. 7. Comparison results of color images

1197

� � � ������	
��

�� � �
��
�����	
��

Fig. 8. Comparison of color image generated by Matlab and FPGA

TABLE III
DATA OF COMPARATIVE EXPERIMENT

Image Size Running time of
Matlab(ms)

Running time of
FPGA(ms)

Lena 256*256 9324.87 2.62

A4 72dpi 595*842 71854.07 20.04

A4 96dpi 794*1123 126358.58 35.67

A4 120dpi 1487*2105 442780.88 125.21

A4 150dpi 1240*1754 300109.38 87.00

A4 300dpi 2479*3508 1221622.54 347.85

result is shown in figure 8. The slight differences caused by

the calculation process on the FPGA can be seen from the

windows.

Finally, some images of A4 paper of 150 dpi (1240 *

1754) and 300 dpi (2479 * 3508) are used as the input to

the verification system because the printer inputs are usually

images with the A4 size. The halftone results of those images

can be obtained correctly, which validates the correctness of

the algorithm designed in this paper when dealing with large

images.

For the efficiency of the IP, a clock frequency from 25 MHz

to 100 MHz can be used as the input clock, the calculation of

three colour planes are executed in parallel, and on average,

it takes only one clock circle to obtain the halftone result

of a pixel. Using 25 MHz as the input clock frequency can

generate halftone results of 3 * 2.5 * 107 pixels per second.

In this paper, the running time of the Lena image, A4 72 dpi

image, A4 96 dpi image, A4 120 dpi image, A4 150 dpi image

and A4 300 dpi image are calculated based on Matlab and the

verification system separately, as shown in Table III. It can be

seen from the table that the vector error diffusion algorithm

based on the verification system has a shorter running time

than does the algorithm based on Matlab.

V. CONCLUSION

We made a series of improvements on a vector colour error

diffusion algorithm. The improved algorithm was implemented

in FPGA, and the IP core of a vector colour error diffusion

algorithm was designed. We implemented the IP core on the

SOPC system and tested the function of the system with

matrix-valued filters. The results of the experiment indicate

that the IP core that we designed has a faster execution speed

and higher scalability and could meet the requirements of real-

time printing. In the next phase, we will integrate this IP core

into our printer SoC controller to reduce the production costs

and improve the user experience.

REFERENCES

[1] Shi Y, Wang K, Chen C, et al. Structure-Preserving Image Super-
resolution via Contextualized Multi-task Learning[J]. IEEE Transactions
on Multimedia, 2017.

[2] Lu Z, Ramakrishnan S, Zhu X. Exploiting Video Quality Information
with Lightweight Network Coordination for HTTP-based Adaptive Video
Streaming[J]. IEEE Transactions on Multimedia, 2017.

[3] Song J, Yang Y, Huang Z, et al. Effective multiple feature hashing
for large-scale near-duplicate video retrieval[J]. IEEE Transactions on
Multimedia, 2013, 15(8): 1997-2008.

[4] Ding K, Fan B, Huo C, et al. Cross-Modal Hashing via Rank-Order
Preserving[J]. IEEE Transactions on Multimedia, 2017, 19(3): 571-585.

[5] Haneishi H, Suzuki T, Shimoyama N, et al. Color digital halftoning taking
colorimetric color reproduction into account[J]. Journal of Electronic
Imaging, 1996, 5(1): 97-107.

[6] Fan Z. Boundary artifacts reduction in vector error diffusion[C]//Color
Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts
IV. International Society for Optics and Photonics, 1998, 3648: 480-485.

[7] Shaked D, Arad N, Fitzhugh A, et al. Ink relocation for color
halftones[C]//PICS. 1998: 340-343.

[8] Shaked D, Arad N, Fitzhugh A E, et al. Color diffusion: error diffusion
for color halftones[C]//Color Imaging: Device-Independent Color, Color
Hardcopy, and Graphic Arts IV. International Society for Optics and
Photonics, 1998, 3648: 459-466.

[9] Dantera-Venkata N, Evans B L, Monga V. Color error-diffusion halfton-
ing[J]. IEEE Signal Processing Magazine, 2003, 20(4): 51-58.

[10] Damera-Venkata N, Evans B L. Design and analysis of vector color error
diffusion halftoning systems[J]. IEEE transactions on image processing,
2001, 10(10): 1552-1565.

[11] MENG Xiaojie, ZENG Ping. A Vector Error Diffusion Half-toning
Algorithm for Color Image. The research of computer application, 2005,
22(10):171-172.

[12] Kubota R, Tamukoh H, Kawano H, et al. A Color Quantization Based
on Vector Error Diffusion and Particle Swarm Optimization Consider-
ing Human Visibility[C]//Pacific-Rim Symposium on Image and Video
Technology. Springer, Cham, 2015: 332-343.

[13] Cyclone V Avalon-ST Interface for PCIe Solutions User Guide.(2017,
May 24). Retrieved June 12, 2017, from Altera Corporation.

[14] Altera SoC Golden System Reference Design User Guide.(2017, May
24). Retrieved June 12, 2017, from Altera Corporation.

[15] Yang P, Wang Q, Zhang J. Parallel design and implementation of Error
Diffusion Algorithm and IP core for FPGA[J]. Multimedia Tools and
Applications, 2016, 75(8): 4723-4733.

[16] Mitsa T, Varkur K L. Evaluation of contrast sensitivity functions for the
formulation of quality measures incorporated in halftoning algorithms[J].
1993, 5(1-2):53-81.

[17] Mannos J, Sakrison D. The effects of a visual fidelity criterion of the
encoding of images[J]. IEEE Transactions on Information Theory, 1974,
20(4):525-536.

[18] Wang Z, Bovik A C. Universal Image Quality Index[J]. IEEE Signal
Processing Letters, 2002, 9(3):81-84.

[19] Poirson A B, Wandell B A. Appearance of colored patterns: pattern-
color separability[J]. JOSA A, 1993, 10(12): 2458-2470.

[20] Zhang X, Wandell B A. A spatial extension of CIELAB for digital color-
image reproduction[J]. Journal of the Society for Information Display,
1997, 5(1): 61-63.

[21] Monga V, Geisler W S, Evans B L. Linear color-separable human
visual system models for vector error diffusion halftoning[J]. IEEE Signal
processing letters, 2003, 10(4): 93-97. Poirson A B, Wandell B A.
Appearance of colored patterns: pattern-color separability[J]. JOSA A,
1993, 10(12): 2458-2470.

[22] Venugopal, R. K., Heath, J. R., Lau, D. L. (2011, June). FPGA based
parallel architecture implementation of Stacked Error Diffusion algorithm.
In Application Specific Processors (SASP), 2011 IEEE 9th Symposium
on. IEEE. Pages:66-69.

