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Abstract 

Rotating packed beds (RPBs), as a type of process intensification technology, are promising to be 

employed as high-efficiency CO2 absorbers. However, the detailed understanding of the liquid flow in the 

RPB is still very limited. The complex and dense packing of the bed and the multiscale of the RPB make it 

very difficult to perform numerical simulations in detail, in particular for full 3D simulations. In this paper, 

a mesoscale 3D CFD modelling approach is proposed which can be used to investigate the liquid flow in 

both laboratory- and large-scale RPBs in detail and accuracy. A 3D representative elementary unit of the 

RPB has been built and validated with experimental observations, and then it is employed to investigate 

the gas�±liquid flows at different locations, across a typical RPB, so that the overall characteristics of the 

liquid flow in the RPB can be assembled. The proposed approach enables the detailed prediction of the 

liquid holdup, droplets formation, effective interfacial area, wetted packing area and specific surface area 

of the liquid within real 3D packing structures throughout the bed. New correlations to predict the liquid 

holdup, effective interfacial area, and specific surface area of the liquid are proposed, and the sensitivities 

of these quantities to the rotational speed, liquid flow rate, viscosity and contact angle have been 

investigated. The results have been compared with experimental data, previous correlations and theoretical 

values and it shows that the new correlations have a good accuracy in predicting these critical quantities. 

Further, recommendations for scale-up and operation of an RPB for CO2 capture are provided. This 

mailto:lin.ma@sheffield.ac.uk
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proposed model leads to a much better understanding of the liquid flow behaviours and can assist in the 

RPB optimisation design and scaling up. 

Keywords: rotating packed bed, CFD, liquid holdup, interfacial area, flow pattern, VOF model 

1. Introduction 

1.1. Introduction of the RPB and its investigation 

Rotating packed beds (RPBs), which utilize a rotating porous component to generate a high centrifugal 

field, are very important means of process intensification (PI). A schematic diagram of a typical RPB is 

shown in Fig. 1. Packing is a central component of the RPB, typically made of wire meshes or metal sheets 

forming complex 3D pore structures. In the operation of the RPB, a solvent is radially injected into the 

packing region from the liquid distributor located at the centre of the bed, and gas can be fed into the bed 

from the periphery, or the centre of the bed to form a counter-current or co-current gas-liquid configuration, 

respectively. The rotating porous packing turns the continuous liquid into thin films and tiny droplets 

through the action of the shear, which significantly increases the interfacial area and consequently 

promotes the mass transfer between the liquid phase and the gas phase that flows through the RPB (Yan et 

al., 2014). In addition, there are other advantages of the RPB, such as the small footprint, the short-time 

response to meet the control requirements, the ability to deal with fluids with high viscosity (Wang et al., 

2015). Due to these prominent advantages, it has been successfully applied in the separation process (Chen 

and Liu, 2002; Chu et al., 2014; Zou et al., 2017), reaction process (Chen et al., 2010), engineering of 

nanoparticles (Chen et al., 2000), etc. since it was first proposed by Ramshaw and Mallinson (1981).  



  

3 
 

 

Fig. 1. Schematic diagram of a typical RPB with a counter-current flow configuration. 

In recent years, in the context of global carbon emission mitigation, there is a great demand for high-

efficient and low-cost CO2 capture technology. The solvent-based post-combustion CO2 capture (PCC) by 

chemical absorption using amines, which is suitable for retrofitting to the existing power plants and being 

incorporated into the new power plants, is one of the promising CO2 capture technologies for commercial 

deployment. However, the rate of CO2 capture by amines, through the conventional separation technology 

(i.e. packed columns), is limited by the relatively slow mass transfer process (Biliyok et al., 2012). 

Therefore, the RPB has the potential to replace the packed columns in the PCC process to achieve a higher 

mass transfer efficiency, less equipment footprint, less equipment investment, and it can deal with high-

concentrated amine-based solvents more efficiently (Jassim et al., 2007; Wang et al., 2015; Yu et al., 2016; 

Zhao et al., 2014). 

The detailed understanding of the liquid flow behaviours, which determines the mass transfer 

performance, is significant for the optimum design and scale-up of the RPB. At present, different 

measuring techniques have been used to measure the fluid dynamics in RPBs. These include (i) non-

invasive measuring techniques, such as the high-speed photography (Burns and Ramshaw, 1996; Guo et al., 

2000; Sang et al., 2017), particle image velocimetry (PIV) (Yang et al., 2011), X-ray computed 

tomography (Yang et al., 2015a), and (ii) invasive measuring techniques, such as tracking the liquid 

trajectories in the RPB by inserting papers (Yan et al., 2012) or wrapping paper tapes (Guo et al., 2014). 
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Although these experimental methods assist us in forming some understanding of the liquid behaviour 

within RPBs, there are still some great challenges for accurately describing the liquid flow in the RPB. In 

particular: (i) It is very difficult to directly measure the gas/liquid and liquid/packing interfacial areas in 

the RPB with different gas/liquid/packing systems, which impedes the accurately prediction of the mass 

transfer and drag force between them. (ii) There is no feasible method to obtain the volume ratio of the 

droplets to the liquid films at present, thus the flow model has not been fully described. 

1.2. CFD modelling of the RPB 

Compared with the experiments, CFD simulations have unique advantages, for example, they can 

visually present the detailed liquid hydrodynamic and mass transfer behaviour in the complex inner space 

of the chemical equipment, which is often difficult to obtain through experimental measurements (Lopes 

and Quinta-Ferreira, 2009; Yang et al., 2016). At present, CFD simulations of the RPB have been 

performed based on both the single and two-phase models (Yang et al., 2018). For the single-phase 

simulation, the porous media model based on empirical formulae have mostly been used to describe the 

resistance of the packing to the gas phase (Llerena-Chavez and Larachi, 2009; Wu et al., 2018; Yang et al., 

2015b). This is in order to avoid directly resolving the flow field in the actual geometry of the packing, 

which requires a large number of computational grids and consequently a large amount of computational 

resource (Liu et al., 2017). For the two-phase flow modelling, the volume of fluid (VOF) model is mostly 

employed since it can calculate the interface between the gas and liquid, and significant progress has been 

achieved in predicting the overall behaviour of the liquid flow in the RPB. For example, gas-liquid flow 

(Shi et al., 2013), mass transfer (Yang et al., 2016), micromixing (Guo et al., 2016) and end effect (Ouyang 

et al., 2018) in the RPBs were simulated in 2D calculation domains, where the wire mesh packings are 

simplified as small square blocks. Xie et al. (Xie et al., 2017b) investigated the liquid holdup and liquid 

dispersion in the RPB through employing a 2D calculation with small circle blocks closely representing the 

actual wire mesh packings. In addition, Guo et al. (Guo et al., 2017) simulated the liquid flow in an RPB 

through employing a 3D VOF model, where the wire mesh packing is simplified as small cylinders. 

Compared to the 2D VOF model, the 3D VOF model is more accurate in simulating the liquid flow in the 

RPB; however, due to the extremely complexed structure and small scales of the pores in the RPB, it 

requires an extremely large number of computational grids to resolve the pore structure. Although the VOF 

method theoretically allows the resolution of the detailed geometry of the RPB, it is very difficult to meet 
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the requirement of performing transient calculations for the full 3D simulation of even a laboratory-scale 

RPB with appropriate accuracy (Guo et al., 2017).  

In order to improve the understanding of the real gas/liquid flow in the pores of the packing, detailed 

and more accurate 3D simulations of the flow in the real geometrical structure of the packing are necessary. 

However, due to the multiscale issues that have plagued the modelling of the RPB, the multiscale 

modelling strategy has to be taken into account and the mesoscale 3D modelling of the flow over the 

packing structure/pores is the most important aspect of the analysis. At present, simulating the pressure 

drop (Llerena-Chavez and Larachi, 2009; Lu et al., 2018; Wu et al., 2018; Yang et al., 2015b) and liquid 

holdup (Lu et al., 2018) in the RPB by using a porous media model can be considered as the macroscale 

CFD modelling. This method does not resolve the geometrical structure of the packing in the RPB, and 

therefore it can be used to simulate large-scale RPBs without using too much computing resources. 

However, currently there is substantial difficulty in finding a generally applicable model that accurately 

describes the drag force between the gas and liquid, the gas and solids and the liquid and solids in the 

RPBs. On the other hand, some CFD models have focussed on the details of the gas-liquid flow and mass 

transfer on the gas-liquid interface of thin liquid films (Albert et al., 2014; Hu et al., 2014; Xie et al., 2017a) 

and single droplets (Bothe and Fleckenstein, 2013; Ozkan et al., 2016), and these can be regarded as the 

microscale CFD simulations. Mesoscale CFD studies of a packed bed refer to the CFD simulations of the 

flow at a scale that is comparable to the dimensions of a typical packing unit (Li et al., 2016; Liu et al., 

2016; Raynal and Royon-Lebeaud, 2007; Sebastia-Saez et al., 2015a; Singh et al., 2018; Sun et al., 2013). 

The characteristics of the liquid flow in the mesoscale affect both the performance of the microscale mass 

transfer and overall performance of the RPB, such as the overall pressure drop and liquid flooding.  

Therefore, in this paper, a mesoscale CFD model is proposed to investigate the liquid flow in the RPB. 

The mesoscale model is based on a small 3D representative elementary unit (REU), being implemented at 

different locations in an RPB. Through this model, the influence of the operating conditions and the 

properties of the packings and liquids on the local hydrodynamic characteristics are investigated. In 

addition, new correlations for predicting the distribution of the liquid characteristic parameters in the 

whole RPB are developed based on the local data. 
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2. CFD model 

2.1. Representative elementary unit (REU) of the RPB 

Fig. 2(a) shows a cross section of the packing area of a pilot-scale RPB, with a bed of 0.1 m inner 

radius, 0.5 m outer radius and 0.2 m thickness, which is investigated in this paper. The RPB is operated at 

100-300 rpm and the liquid flow rate ranges from 7.2-21.6 m3/h. In the RPB, the liquid is radially injected 

into the packing from the centre of the RPB through a liquid distributor. Due to the structure of the packing 

being repeated in the circumferential and axial directions of the RPB and the flow is dominated by the 

packing, the idea of representative elementary unit (REU) is proposed in order to reduce the computational 

cost, which has been used in both the single-phase system (Qi et al., 2017) and the multiphase system 

(Sebastia-Saez et al., 2015a; Singh et al., 2018). As demonstrated in Fig. 2(a), a small REU can be 

identified (Fig. 2(b) and (c)) at locations of interest in the RPB. Then the local liquid flow at these 

positions can be simulated with appropriate boundary conditions, such as the liquid flow rate and 

centrifugal acceleration, to the REU. The VOF model is used to capture the gas-liquid interface in the REU 

and the centrifugal force field in the REU is simulated using a rotating reference frame.  

 

Fig. 2. (a) Schematic diagram of the bed of the simulated RPB, (b) schematic diagram of the REU and (c) 

left side view of (b). 

 



  

7 
 

From the existing studies (Guo et al., 2000; Ouyang et al., 2018; Xie et al., 2017b; Yan et al., 2012), 

there are two regions, i.e. the entrance region and the bulk region, in the packed bed of the RPB. In the 

entrance region, the liquid interacts with the rotating packing, and obtains the tangential velocity of the 

packing. Almost all the liquid can be captured by the packing within approximately 10 mm from the 

entrance (Guo et al., 2000) and then the liquid closely follows the rotation of the bed. In a pilot-scale or 

industrial-scale RPB with a large diameter, the size of the entrance region in terms of the percentage of the 

bed size becomes very small. For example, if the depth of the entrance region is assumed to be 10 mm in 

the RPB, as investigated in this paper, it only takes 2.5% of the total depth of the bed. Therefore, the focus 

of this investigation is the bulk region, and the liquid can be assumed to be evenly distributed in the 

circumferential direction according to the experimental observations (Yan et al., 2012) and simulations 

(Ouyang et al., 2018). As a future work, a submodel for the entrance region may be developed in order to 

take into account in more detail the end-effect of the RPB. 

In addition, special attention should be paid to the packing due to its strong effect on the gas-liquid 

hydrodynamics and mass transfer performance. Stainless steel meshes are widely employed as the 

packings of RPBs due to their high mass transfer performance (Chen et al., 2006) and their resistance to 

corrosion. At present, most of the stainless steel meshes used in the RPBs are knitted or woven stainless 

steel wire mesh. However, these meshes have poor repeatability in construction as well as low mechanical 

strength (Luo et al., 2017). Therefore, the expanded stainless steel mesh packing, which has been used for 

investigating CO2 absorption by monoethanolamine (MEA) solutions (Jassim, 2002), is employed in this 

study, as shown in Fig. 3(a). The mesh is manufactured through expanding the stainless steel sheet, and 

this enhances the material strength during the expansion, hence it has sound reliability for the industrial 

RPBs for long-time operation. In addition, there is almost no waste material from the manufacturing 

process and this is because the base metal is cut and stretched to the final form (Smith et al., 2009). 

Typically, the expanded stainless steel mesh sheets are cut into annular shapes and they are stacked along 

the axial direction of the rotor layer by layer to form a firm packed bed. In order to increase the porosity of 

the packing, and make the liquid evenly distributed, the mesh is configured to be 90° between the two 

adjacent sheets. Therefore, every two packing layers form a repeating structure in the axial direction of the 

bed and the fluid flows between the two sheets from the top to the bottom (see Fig. 2(b) and (c)). In 

addition, along the radial direction from the inner periphery to the outer periphery, the packing also can be 
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regarded as being made up of many duplicate structures. The structure of the minimum unit of the 

expanded metal mesh is shown in Fig. 3(b) and the structural dimensions of the packing are listed in Table 

1. Based on this configuration, the specific surface area of the packing is 546.5 m2/m3 and the void fraction 

is 0.84.  

The size of the REU is determined through considering both the periodicity of the packing and the mesh 

numbers. The dimensions of the REU in the circumferential and axial directions are the minimum periodic 

distance of the packing, which are 15.81 mm and 5.7 mm respectively. While, due to a certain distance 

being required for the development of the liquid along the radial direction, the distance of the two 

minimum periodic units (31.62 mm) are taken as the dimension of the REU in the radial direction after 

investigating the effect of the liquid inlet configuration on the liquid distribution (this is discussed in 

Section 3.3). 

 

Fig. 3. (a) Photograph of the expanded stainless steel mesh and (b) a schematic of the minimum unit. 

 

Table 1. Structural dimensions of the expanded stainless steel mesh packing. 

Name Dimensions (mm) 

Long way of the mesh (LWM) 15.81 

Short way of the mesh (SWM) 4.78 

Long way of the opening (LWO) 10.57 

Short way of the opening (SWO) 2.90 

Strand width (SW) 1.33 
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Strand thickness (ST) 0.90 

 

2.2. Computational grid and boundary conditions of the REU 

In order to prevent numerical difficulties associated with the quality of the grid generated, some special 

treatments have been adopted in the model. For example, chamfering has been performed to avoid the 

sharp corners at the splits. In addition, there is a 0.2 mm gap in the nearest location between the packing 

sheets rather than them touching each other through contact points, and this value is chosen based on trial 

and error. These treatments have been employed in the literature (Lopes and Quinta-Ferreira, 2009; 

Nijemeisland and Dixon, 2001). Then the calculation domain is discretized with an unstructured mesh as 

shown in Fig. 4. Prism grids with a higher grid density is implemented near the packing surface in order to 

capture the thin liquid film accurately, and in other regions, the grid is tetrahedral mesh dominate. The 

final grid size is a result of a grid sensitivity study, which is discussed in more detail in Section 3.1. In this 

paper, the geometry is generated using SOLIDWORKS 2015, and the computational gird is generated 

using ICEM CFD 17.2.  

 

Fig. 4. Computational domain, boundary conditions and grids for the REU (A stands for the axial direction, 

C stands for the circumferential direction and R stands for the radial direction in the RPB). 
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The liquid superficial velocity (U), namely the liquid flow rate per unit annular cross-section area of the 

RPB, is calculated according to the following equation: 

�7 
L
�3�Å

�t�è�N�D
 (1) 

where QL is the volume flow rate of the liquid, r is the radial position of the REU in an RPB, h is the 

thickness of the packed bed in the axial direction of an RPB. 

Therefore, for a given operating condition, the volume flow rate of the liquid feeding the REU is 

calculated as follows: 

�M�Å 
L �7 
I �# (2) 

where A is the entrance area of the REU, see Fig. 4. Due to the short distance of the calculation domain in 

the radial direction compared to the radius of a pilot-scale RPB, the cross section area along the radial 

direction in the REU is assumed constant and equal to A. 

According to the visualization study (Burns and Ramshaw, 1996), the flow pattern in the RPB could be 

a combination of droplet, film and pore flows at different conditions. Therefore, it is very difficult to pre-

set the liquid inlet boundary conditions to be the same as the actual flow patterns. Fortunately, 

investigations (Ding et al., 2018; Xu et al., 2014b) indicate that the liquid after flowing around an object 

will develop into different flow patterns within a short distance that mainly depends on the liquid flow rate, 

the surface properties of the object, etc. rather than the liquid inlet condition. Therefore, in this paper, the 

liquid is set such that is fed from several evenly distributed nozzles. After the liquid flows out of the 

nozzles, it interacts with the packings and then quickly develops into different flow patterns at different 

conditions. In addition, a distance is required to make the liquid flow develop into a pseudo steady state, 

and the effect of the liquid inlet configuration on the liquid distribution along the radial direction in the 

REU is discussed in Section 3.3. 

Many investigations indicate that the gas has little effect on the liquid flow below the flooding point 

(Chen et al., 2004; Guo et al., 2000; Lin et al., 2000), and this is mainly because the density of the gas is 

much lower than that of the liquid. In addition, due to the VOF model using a set of momentum equations 

for the gas-liquid two-phase flow, and it is not recommended to simulate the conditions for which the gas 

and liquid have a very large velocity difference. Therefore, the gas and liquid is set at a co-current 

configuration in the simulation, and the effects of the gas flow on the liquid flow characteristics are not 

precisely investigated in this paper. The setting of the inlet boundary conditions of the REU is 
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implemented through the user-defined functions (UDFs), where the liquid volume fraction is specified as 

unity in the liquid nozzle region, and zero in the rest of the inlet region, which is the gas inlet region (see 

Fig. 4). At the inlet, the gas and liquid are assumed to have the same circumferential velocity with the 

packing. The radial liquid inlet velocity is calculated based on the following equation: 

�Q�4 
L
�M�Å
�#�Ç

 (3) 

where AN is the total area of the liquid nozzles in the REU. The radial velocity of the gas is set as 20% of 

the radial liquid velocity in the gas inlet area to reduce the backflow from the outlet and accelerate 

convergence.  

For the surface of the packing, the no-slip boundary condition and the wall adhesion are specified. 

However, a given packing material may have different contact angles depending on the surface treatment 

technologies and the liquid properties, and for a given liquid, the contact angle also varies with different 

packing surfaces (Sebastia-Saez et al., 2018; Singh et al., 2016, 2018; Zhang et al., 2017). In addition, the 

contact angle of the expanded stainless steel packing surface corresponding to different solvents is not 

available in the literature. Therefore, a value of 75° is specified as the contact angle of the packing surface 

in the initial simulations since this is within the reasonable range for stainless steel (Sebastia-Saez et al., 

2018) and it is suitable for the packings used in RPBs (Zhang et al., 2017). Further, in order to investigate 

the effect of the contact angle on the flow pattern, liquid holdup and interfacial area, the contact angle 

ranging from 30° to 120° is studied in this paper. Due to the thickness of the REU being much smaller than 

the thickness of the bed in the axial direction, most of the liquid flow in the RPB is not effected by the 

sidewalls of the RPB, and the liquid flow is mainly dominated by the periodic packing structure. Therefore, 

the periodic boundaries are used for axial simplification. In addition, due to the REU being assumed to be 

repeatable in the circumferential directions of the RPB, the left and right surfaces of the REU as shown in 

Fig. 4 are set to be periodic boundaries as well. The outlet boundary is set as the pressure outlet and the 

pressure is equal to one standard atmospheric pressure.  

Aqueous MEA solutions are the typical absorbents employed for CO2 capture, and 30 wt% MEA 

aqueous solution is normally used in the packed columns for CO2 capture. The RPB has the advantage to 

deal with a highly concentrated MEA solution than packed columns because of the strong centrifugal field 

that can break the liquid and significantly increase the specific surface area of the solvent (Chen et al., 

2005). Therefore, simulations are performed with a variety of aqueous MEA solutions with the 
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concentration from 30 wt% to 90 wt%. In addition, for the model validation, water and glycerol solution 

are also adopted. The properties of the solvents used for the CFD simulations are listed in Table 2. The 

MEA is assumed to operate at a constant temperature of 40 oC, which is close to the real operation 

conditions of a CO2 absorber employed for PCC. 

Table 2. Physical properties of the solvents used for the CFD simulations. a 

Solvent Density/(kg/m
3
) Kinetic viscosity/(mm2/s) Surface tension/(N/m) 

Water 998.2 1.00 0.07280 
30 wt% MEA (Amundsen et al., 2009) 1003.4 1.66 0.05352 
50 wt% MEA (Amundsen et al., 2009) 1011.7 3.35 0.05069 
70 wt% MEA (Amundsen et al., 2009) 1015.5 6.85 0.04888 
90 wt% MEA (Amundsen et al., 2009) 1008.4 10.12 0.04725 
70 wt% glycerol (Yang et al., 2015a) 1173.0 15.77 0.06650 
a The properties of the aqueous MEA solutions are at 40 �( .  

2.3. Governing equations 

Gas and liquid in the REU are assumed to be incompressible fluids, and the VOF model, originally 

proposed by Hirt and Nichols (1981), is adopted to track the gas-liquid interface in this paper. This because 

it has been widely used in the CFD modelling of the detailed multiphase flow in the 3D packings of 

various packed beds (Guo et al., 2017; Li et al., 2016; Singh et al., 2017; Sun et al., 2013; Xu et al., 2014a). 

In the VOF model, a single set of momentum equations are shared by the two fluids, and the volume 

fraction of each of the fluids in each computational cell is tracked throughout the domain. In order to 

simulate the flow in the REU of the RPB, a rotational moving reference frame is employed (Xie et al., 

2017b). The governing equations of the fluid flows in the moving reference frame may be written as 

follows:  

The continuity equation and the volume fraction equation:  

�ò
�ò�P

�:�Ù�ß�é�ß�; 
E �Ï �®�:�Ù�ß�é�ß�R�&�ß�å���; 
L �r  (4) 

�Ù�Ú 
L �s 
F �Ù�ß  (5) 

The momentum conservation equation�ã�� 
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H �N�&�; 
L 
F�Ï�L 
E �Ï �® 
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k�Ï�R�&�å 
E �Ï�R�&�å
�Í 
o
g 
E �(�&

�é�â�ß 
(6) 

where �Ù�ß, �Ù�Ú is the volume fraction of the liquid phase and gas phase, respectively, and �R�&�ß�å is the relative 

velocity for liquid phase; (�t�ñ�,�,�&
H �R�&�å) and (�ñ�,�,�&
H �ñ�,�,�&
H �N�&) are the Coriolis acceleration and the centripetal 
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acceleration at the location r with a rotational speed �ñ, respectively. When the value �Ù�ß of a computational 

cell is equal to zero, it indicates that the cell is full of the gas phase, and when �Ù�ß=1, this means the cell is 

full of liquid, and when 0<�Ù�ß<1, the cell contains the gas-liquid interface. The interface is reconstructed by 

the Geometric-Reconstruction scheme (Youngs, 1982), which uses a piecewise-linear approach to 

represent the interface between the fluids. The fluid properties, such as density �é and dynamic viscosity �ä, 

take volume-averaged values of the two phases in each cell.  

The effect of the surface tension is introduced in this model through employing the CSF (Continuum 

Surface Force) model proposed by Brackbill et al. (1992), i.e. the surface tension force is transformed to a 

volume force source term �(�é�â�ß in the momentum equations. The localised volume force �(�é�â�ß��is calculated 

using the following equation: 

�(�é�â�ß
L �ê
�é�G�Ï�Ù�ß

�r�ä�w�:�é�ß
E �é�Ú�;
 

(7) 

where���ê is the surface tension coefficient, and �G is the gas-liquid interface curvature. In addition, the effect 

of the contact angle between the fluid and the wall is established within the framework of the CSF model 

by changing the unit surface normal at the grid next to the wall.  

Flow in the packing region is complicated. As described by Yan et al. (2014), although the Reynolds 

number based on the size of the pore/wire is usually low, part of the laminar liquid film flow near the 

packing surfaces develops into turbulence flow; therefore, partially turbulent flow could exist in the 

packing region. The SST k-�& model that was presented by Menter (1994) incorporates modifications for 

low-Reynolds number effects and it presents a good ability for describing the detailed flow in the RPB 

(Xie et al., 2017b). In addition, the turbulence parameters in the calculation domain have been checked in 

the preliminary studies, and it was found that the turbulent viscosity ratio is less than 0.5 in most of the 

region, and the largest turbulent viscosity ratio is about 2.5, which means that the level of the turbulence is 

weak in the calculation domain. Therefore, the SST k-�& model is adopted in this paper. It is worth 

mentioning that the turbulence modelling in packed materials is currently still a topic of much ongoing 

research.  

2.4. Numerical scheme 

Simulations are performed using the ANSYS Fluent 17.2 software that incorporates the in-house 

developed UDFs for setting the inlet boundaries. The pressure-velocity coupling is resolved by the 
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Pressure Implicit with Splitting of the Operators (PISO) algorithm and the Body Force Weighted scheme is 

employed for the pressure discretization. The gradient of the variables is calculated through using the least-

squares cell based method, and the warped-face gradient correction is enabled to improve the gradient 

accuracy for the complex unstructured grids (ANSYS Inc, 2016). The Geo-Reconstruct scheme is applied 

for the spatial discretization of the volume fraction equation, the second-order upwind scheme is employed 

for solving the momentum equations and turbulence equations. Due to the presence of large body forces 

(including centrifugal forces and surface tension force�V�����L�Q���W�K�H���F�D�O�F�X�O�D�W�L�R�Q���G�R�P�D�L�Q�����W�K�H���³�L�P�S�O�L�F�L�W���E�R�G�\���I�R�U�F�H�´��

is enabled for improving the solution convergence by accounting for the partial equilibrium of the pressure 

gradient and body forces in the momentum equations. In addition, in each calculation, the residuals in all 

the equations less than 1×10-4 are considered as the convergence criterion. Different time step sizes have 

been tested to check the effect of the time step size on the results. As a result, the time step size is set as 

5×10-7 s when the centrifugal acceleration is no more than 100 m/s2 and it is less than 3×10-7 s when the 

centrifugal acceleration is between 100 m/s2 to 300 m/s2. In addition, the maximum number of iterations of 

20 are performed per time step in order to achieve the calculation convergence. The instantaneous liquid 

holdup, wetted wall area and gas-liquid interfacial area are monitored for each simulation to ensure it 

achieves the pseudo steady state, and the average value of the parameters in each simulation are calculated 

based on the instantaneous value after the simulation achieves the pseudo steady state. Al l the simulations 

are performed using the High Performance Computing (HPC) cluster in the University of Sheffield.  

3. Model verification and validation 

3.1. Grid convergence analysis 

A verification study is undertaken to determine a reasonable computational grid size and to assess the 

error estimate (�/) and grid uncertainty (UG). Three different grids consisting of 0.92, 1.40 and 2.48 million 

cells have been employed to investigate the effect of the grid size on the effective interfacial area Ae 

(defined in Section 4.2.1). The test liquid is 50 wt% MEA and the superficial velocity employed in the test 

is 0.0106 m/s. The verification is performed at two centrifugal conditions, with the centrifugal acceleration 

of 74.0 m/s2 and 205.6 m/s2, which are equivalent to the centrifugal accelerations at r=0.3 m with the bed 

rotational speed of �0=150 rpm and 250 rpm, respectively. As shown in Fig. 5, Ae decreases with the 

increasing mesh numbers at the same centrifugal field, and this is mainly due to the false diffusion errors 
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near the gas-liquid interface decrease with the grid refinement. The UG analysis is performed through using 

the Richardson extrapolation method with the recommended factors of safety (FS0=2.45, FS1=1.6, FS2=6.9) 

(Xing and Stern, 2010, 2011). In the factor of safety (FS) method, the error estimate is �/=P*�/RE, where P is 

the distance metric to the asymptotic range and �/RE is the error estimate from the Richardson extrapolation 

method. The detailed calculation procedure can be found in the references (Xing and Stern, 2010, 2011) 

and the results of the grid convergence study are listed in Table 3. The convergence ratio RK is between 0 

and 1 both at g=74.0 m/s2 and g=205.6 m/s2, which means that monotonic convergence is achieved at the 

two typical test conditions. In addition, at the condition of 74.0 m/s2, �/=0.96 and the relative UG=3.42%. 

At the condition of 205.6 m/s2, �/=7.92 and the relative UG=26.07%. This indicates that at a higher 

centrifugal field, the dispersed liquid in the calculation domain becomes smaller, therefore, a fine grid is 

required in order to accurately capture the gas-liquid interface. However, a finer grid requires more 

computing memory and computing time. Both considering the computing efficiency and the simulation 

precision, the grid with 2.48M cells is used when the centrifugal acceleration is between 100 m/s2 and 300 

m/s2, and the grid with 1.40M cells is used when the centrifugal acceleration is less than 100.0 m/s2. 

g = 74m /s
2

g = 205.6m /s
2

0

100

200

300

400

500

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

A
e

(m
-1

)

T
h

e
 r

a
ti

o
 o

f
A e

 t
o

A
p

0 .9 2 M
1 .4 0 M
2 .4 8 M

 

Fig. 5. Predicted effective interfacial area using three different grids. 

 

Table 3. Grid convergence study for Ae at g=74 m/s2 and g=205.6 m/s2. 

  RK �/RE P �/ UG (%) 

g=74 m/s2 0.16 0.16 5.82 0.96 3.42% 

g=205.6 m/s2 0.34 2.08 3.81 7.92 26.07% 
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3.2. Comparing CFD results with experimental data 

In order to validate the CFD model then further experiments need to be undertaken for observing the 

liquid flow in the expanded stainless steel mesh packing under a centrifugal force. However, due to the 

strong limitations in the experimental measurements in the RPB when it is rotating, the CFD model 

validations are performed under the force of gravity. Fig. 6 depicts a schematic diagram of the 

experimental setup. Two pieces of tightly bound mesh sheets, supplied by The Expanded Metal Company 

in the UK are vertically fixed on a support, and the texture of the mesh is perpendicular to each other and 

this is the same as the arrangement of the mesh in the simulation. The liquid is supplied to the mesh from 

ten evenly distributed nozzles with 1 mm diameter, which are placed vertically above the mesh. The liquid 

flow rate is controlled by adjusting the liquid level in the tank over the mesh sheets. Several overflow 

drains are installed on the tank and the liquid level can be controlled at different heights by opening the 

different overflow drains. The liquid flow rate is measured by calculating the difference in the flow rates 

between the supply tank and the collecting tank. Water and 70 wt% glycerol solution are used in the 

experiments. In order to increase the visibility of the liquid when it flows through the mesh sheets, a small 

amount of blue ink (less than 2%) is added to the water. Due to the amount of blue ink being very small, its 

effect on the physical properties of the liquids is negligible. The experiments are carried out at ambient 

pressure (~1 atm) and room temperature (~20 �( ). The properties of the liquids are listed in Table 2. A 

digital camera (Casio Exilim F1, Japan) with the maximum speed of 60 frames per second and the 

maximum resolution of 6 million pixels is used to capture the details of the liquid flow by focusing on a 

small region of the mesh sheets as illustrated in Fig. 6.  
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Fig. 6. Schematic diagram of the experimental setup. 

 

Numerical simulations of the flow through the REU have been compared with experimental 

observations under gravitational conditions and with the same liquid flow rates. Fig. 7(a1) and (a2) show 

the water flowing in the mesh packing obtained by the simulation and experimental methods, respectively. 

Fig. 7(b1) and (b2) show the 70 wt% glycerol aqueous solution, which has a higher viscosity than water, 

flowing in the mesh packing. In both cases, the liquids are released from two nozzles with 1 mm diameter 

above the packing region and the jet velocity is controlled at 0.5 m/s. It is clearly observed that both the 

water and the glycerol solution flows through the interspace of the packing, which can be classified as the 

pore flow. However, the high viscosity of the glycerol solution reduces the liquid velocity and increases 

the thickness of the liquid films on the packing surface, and thus there is more glycerol solution held on the 

packing. Further, for performing a quantitative comparison between the CFD simulations and the 

experimental results, the characteristic liquid holdup, which is defined as the fraction of the liquid phase 

area to the total packing unit area from the photographic shooting direction is compared. The characteristic 

liquid holdup is obtained through processing the experimental snapshots and the contours of the liquid 

from the CFD simulations. For the experimental snapshots, due to the liquid being dyed by blue ink, the 

liquid phase area is identified by recognising the pixels in the blue colour. From the statistical point of 

view, the characteristic liquid holdup can reflect the amount of actual liquid holdup. The average 

characteristic liquid holdup over a period of time are shown in Fig. 8. The experimental uncertainties are 
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based on the standard deviation of the observed results. It shows that the characteristic liquid holdup from 

the CFD simulations is approximately the same as those obtained from the experimental results. This 

demonstrates that the CFD model has a reasonable accuracy to simulate the liquid flow in the packings 

with complicated structures. It is worth mentioning that, in the future, further validations of the CFD model 

under centrifugal fields should be performed based on improved experimental measurement technologies.  

 

 

 

Fig. 7. Liquid flow patterns in the expanded mesh packings: (a1) CFD simulation and (a2) experimental 

snapshot with water flow, v=0.5m/s, and (b1) CFD simulation and (b2) experimental snapshot with 70% 

glycerol, v=0.5m/s (VOF=0.5 is regarded as the gas/liquid interface).  
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Fig. 8. Comparison of the CFD simulation results of the average characteristic liquid holdup with the 

experimental data. 
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3.3. Effect of the liquid inlet configuration 

In order to assess the configuration of the liquid inlet on the liquid distribution in the REU, different 

numbers of evenly distributed nozzles with the same total liquid flow rate and the same diameter are 

investigated. The diameter of the nozzle is set as 1 mm, which is close to the diameter of the droplets in the 

RPB as observed in the experiments (Sang et al., 2017) and the number of nozzles tested ranges from 5 to 

14.  The calculation domain is divided evenly into 6 regions along the radial direction from the liquid inlet 

boundary to the outlet boundary. The average liquid holdup (�xL) and average specific surface area of the 

liquid (As) in each region are shown in Fig. 9(a) and Fig. 9(b), respectively. Close to the liquid inlet 

nozzles, �xL is the highest among all the regions and then it dramatically decreases in the second region. 

This is because the liquid impinges on the packing in the first region and accumulates here, and then it 

speeds up quickly under the centrifugal force. After a short distance, the centrifugal force is in balance 

with the drag force from the packing, and then the average speed of the liquid is almost constant. After 

impinging on the packing, the liquid is dispersed, and therefore As keeps increasing in the region that is 

close to the liquid entrance, as shown in Fig. 9(b). However, the liquid dispersion develops into a steady 

state within a short distance, therefore As remains almost constant in the region that is 15.81 mm away 

from the liquid entrance. Therefore, the flow patterns and data discussed in Section 4 are obtained from the 

region that is 15.81 mm away from the liquid entrance, which is half of the REU region away from the 

liquid inlet. In addition, with the increasing number of nozzles, the liquid holdup increases due to the 

decreasing liquid initial velocity, however, the increase in the liquid holdup becomes small when the 

number of nozzles is more than 12. Therefore, the nozzle number is set as 12 in the following 

investigations.  
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Fig. 9. Effect of the liquid inlet configuration on the on the liquid distribution along the radial direction in 

the REU: (a) Liquid holdup (�xL) and (b) specific surface area of the liquid (As) (g=205.6 m/s2, 

U=0.0106m/s, 50 wt% MEA, �Û 
L�y�w�¹). 

 

4. Results and discussion 

4.1. Liquid flow patterns in the REUs 

The simulated profiles (including the front, right and back views) of the liquid flows in the mesh 

packing with different centrifugal accelerations, liquid loads and viscosities are shown in Fig. 10. 

Generally, the liquids that flow in the interspace of the packing are mainly in the form of films, ligaments 

and droplets, which are similar to the experimental observations (Burns and Ramshaw, 1996; Guo et al., 

2000; Zhang et al., 2000). In addition, more liquid is attached to the longitudinal wires than the latitude 

wires in general. Further, the dynamic behaviour of the liquid in the RPB can be observed in the 

simulations, where the liquid film that attaches on the packing surface flows radially under the action of 

the inertial centrifugal force. When the direction of the wire is not aligned with the inertial centrifugal 

force, the liquid film has a trend to move away from the packing surface, and if the inertia of the film is 

strong enough to overcome the adhesive force from the packing, the liquid will separate from the packing 

surface and form droplets. Then, the free droplet will hit the wires downstream of the current wire and 

form a liquid film. The above dynamic process is repeated in the packing region, which promotes the 

surface renewal of the liquid and this is advantageous for the gas-liquid mass transfer. In addition, due to 

the direction of the latitude wires being perpendicular to the inertial centrifugal force, more droplets are 

detached from the latitude wires than the longitudinal wires. Therefore, a larger percentage of the latitude 
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wires leads to a larger percentage of droplets in the RPB, and a larger percentage of longitudinal wires 

generates more liquid films. However, it is worth mentioning that the influence of the packing structure 

and layout on the flow patterns still requires further investigations, and the use of the mesoscale CFD 

modelling method is a good way to perform the investigations. 

In addition, the effects of the operating parameters and liquid properties on the flow patterns have been 

investigated. For example, the effect of centrifugal acceleration g on the liquid flow pattern can be directly 

observed through comparing Fig. 10(a) and (b), where the values of the centrifugal acceleration are 74.0 

and 205.6 m/s2, respectively. As shown in Fig. 10(a), at a small centrifugal field (74.0 m/s2), the liquid is 

mainly in the state of thick liquid films that attach on the packing surface. Then, with the increasing of g, 

as shown in Fig. 10(b), the liquid films become elongated and thinner and the droplets become smaller. 

The effect of liquid load on the liquid flow pattern can be observed from comparing Fig. 10(a) and (c), 

where the values of the liquid superficial velocity (U) are 0.0106 and 0.0159 m/s, respectively. As can be 

seen, the liquid flow patterns are similar but the liquid volume increases with increasing U. On comparing 

Fig. 10(b) and (d), the effect of MEA concentration on the liquid flow pattern can be observed. The 90 wt% 

MEA, with a higher viscosity results in the thicker liquid films on the packing surface and the wetted wall 

area is larger than that of the 50 wt% MEA. 

 

Fig. 10. Liquid flow patterns in the REU at different conditions (�Û=75°).  
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4.2. Characteristic parameters of the liquid flow in the REU 

4.2.1 Definition of the characteristic parameters 

Characteristic parameters are very helpful in characterising the liquid flow in the REU. Several 

important parameters, such as liquid holdup (�Ý�Å), volume fraction of the droplets (Fd), effective interfacial 

area (Ae), wetted wall area (Aw), and specific surface area of the liquid (As), are defined in this section. 

The liquid holdup (�Ý�Å) is an essential parameter for gas-liquid reactors (Basic and Dudukovic, 1995). In 

the REU, it is defined as follows: 

�Ý�Å 
L
�8�ß
�8�ã

 
 

(8) 

where �8�ß is the liquid volume in the data source region of the REU (ref. Fig. 9), and it is obtained through 

integrating the volume fraction of the liquid phase in each cell; �8�ã is the packing volume of the data source 

region in the REU, which includes the volume occupied by the porous packing material and the flow space.  

The films that attach on the packing surface have very different flow dynamics and mass transfer 

mechanisms from the detached droplets. Therefore, distinguishing the droplets from the films in the REU 

is important for establishing an accurate mass transfer model, and the volume fraction of the detached 

droplets (Fd) is defined as follows:  

�(�× 
L
�8�×
�8�ß

 (9) 

where �8�× is the volume of the detached droplets in the data source region of the REU. 

The simulations are performed in two steps to calculate �8�×. In the first step, the time-dependent 

computation is conducted until the flow achieves a pseudo-steady state. Then, the mass transfer simulation 

is performed by setting a tracer concentration boundary condition on the packing surface and solving a 

convective-diffusive equation to make the tracer diffuse in the liquid films that are attached to the packing 

surface until the simulation reaches the quasi-steady state. In this way, the liquid films that are in contact 

with the packing surface are marked by the tracer concentration, while the detached liquids that are mainly 

in the form of droplets are not marked by the tracer concentration. Further, �8�× is calculated by integrating 

the volume of liquid that is not marked by the tracer concentration. It is worth noting that some droplets 

may also be in contact with the packing surface and the tracer may cause an unpredictable error. 

The effective interfacial area (Ae), which is used for calculating the mass transfer and gas-liquid drag 

force, is defined as follows: 
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�#�Ø
L
�#�Ú�?�ß

�8�ã
 (10) 

where �#�Ú�?�ß is the gas-liquid interfacial area in the data source region of the REU, and it is calculated 

through integrating the gas-liquid interfacial area in each cell (�=�Ú�?�ß) of the data source region in the REU. 

From the viewpoint of CFD (ANSYS Inc, 2016), �=�Ú�?�ß is calculated by using the gradient of the volume 

fraction in each computational cell as follows: 

�=�Ú�?�ß
L ���Ï�Ù�ß�� 
L �+�Ï�Ù�Ú�+ (11) 

which has been used to calculate the gas-liquid interfacial area in the VOF models (Sebastia-Saez et al., 

2015b; Xu et al., 2009). 

In addition, the wetted wall area (Aw), which is an important parameter for predicting the drag force 

between the packing and the liquid, is defined as follows: 

�#�ê 
L
�#�ß�?�æ

�8�ã
 (12) 

where �#�ß�?�æ is the liquid-solid interfacial area in the data source region of the REU. 

The specific surface area of the liquid (As) can be used to assess the degree of liquid dispersion, and it is 

defined as follows:  

�#�æ
L
�#�Ú�?�ß

�8�ß

L

�#�Ø

�Ý�Å
 (13) 

All the original data for calculating these parameters are accessed through writing UDFs. 

4.2.2 Effect of the centrifugal acceleration 

The centrifugal acceleration g in an RPB changes with the rotational speed �& and the radial position r of 

the RPB. 50 wt% MEA, with a nominal viscosity of 3.35 mm2/s, is used for simulating the typical liquid 

flow in an RPB for CO2 capture. The effect of the centrifugal acceleration g on the liquid holdup �Ý�Å is 

examined for two liquid flow rates and the superficial velocities are 0.0053 m/s and 0.0106 m/s, 

respectively, which are within the typical operational conditions of the RPB. The variation of �Ý�Å is shown 

in Fig. 11(a). On increasing g from 32.9 to 296.1 m/s2, �Ý�Å keeps decreasing, but the downtrend gradually 

becomes weaker after 150 m/s2. Variation of the droplet holdup and the volume fraction of the droplets Fd 

with the increasing of g are shown in Fig. 11(b). On increasing g, the inertia of the liquid increases and 

therefore more liquids are stripped from the packing surface and turn into the detached droplets. Fig. 11(c) 

shows the effect of g on the variation of the effective interfacial area Ae and the wetted wall area Aw. It is 
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observed that Ae slightly increases but Aw slightly decreases with the increasing of g. The slightly 

increasing of Ae is the composite effect of decreasing the liquid holdup but increasing the liquid dispersion 

(see Fig. 11 (a) and (d)). While, the slightly decreasing of Aw could be due to some liquid films changing 

into detached droplets. From the right Y-axial of Fig. 11(c), it is observed that Ae and Aw only take 30-40% 

and 10-20% of the specific surface area of the packing Ap, respectively. This demonstrates that Ae and Aw 

are not recommended to be regarded as Ap in the mass transfer calculations. Fig. 11(d) indicates that the 

specific surface area of the liquid As keeps increasing when g changes from 32.9 to 296.1 m/s2. Due to the 

change of Ae being very little with the increase in g, the increasing of As is mainly due to the reduced �Ý�Å. 
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Fig. 11. Effect of g on the characteristic parameters of the liquid flow in the REU: (a) liquid holdup �Ý�Å, (b) 

volume fraction of the droplets Fd, (c) effective interfacial area Ae and wetted wall area Aw, and (d) specific 

surface area of the liquid As. (50 wt% MEA, �Û 
L�y�w�¹) 

 

4.2.3 Effect of the liquid load 

According to Eq. (1), the liquid superficial velocity U in an RPB changes with the liquid flow rate Q 

and the radial position r of the RPB. The effect of U on the liquid flow characteristics is examined with g 

at 74.0 m/s2 and 205.6 m/s2 respectively, and the liquid is set as the 50 wt% MEA. As shown in Fig. 12(a), 
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�Ý�Å increases with the increase in U from 0.0053 m/s to 0.0159 m/s, and the growth rate is higher at a lower 

g. In addition, Fig. 12(b) shows that both Ae and Aw increase with increasing U. Due to the increasing rate 

of �Ý�Å being larger than the increasing rate of Ae at the same g, the specific surface area of the liquid As 

decreases with the increasing U, as shown in Fig. 12(c). This means that the degree of liquid dispersion 

decreases with increasing U.  
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Fig. 12. Effect of U on the characteristic parameters of the liquid flow in the REU: (a) liquid holdup �Ý�Å, (b) 

effective interfacial area Ae and wetted wall area Aw, and (c) specific surface area of the liquid As. (50 wt% 

MEA, �Û 
L�y�w�¹, the gas inlet velocity is set as 20% of the liquid inlet velocity) 
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4.2.4 Effect of the liquid viscosity 

With the increasing of the MEA concentration, the viscosity correspondingly increases and it has a large 

influence on the liquid flow in the RPB. The effect of the liquid viscosity (ranging from 1.66 mm2/s to 

10.12 mm2/s) on �Ý�Å and the volume fraction of the droplets Fd is shown in Fig. 13(a) and (b) respectively, 

which corresponds to the MEA concentration increasing from 30 wt% to 90 wt%. �Ý�Å increases with the 

increasing viscosity, but Fd decreases. This is mainly due to the increase in the thickness of the liquid film 

and the decrease in the velocity of the liquid flow. In addition, if droplets strip from the liquid film, they 

have to overcome a greater viscous force. From Fig. 13(c) and (d), both Ae and Aw slightly increase with 

the increasing viscosity, while As decreases with the increasing viscosity at the same g. This suggests that 

the increasing viscosity can weaken the liquid dispersion. Due to As being larger at a higher g, as shown in 

Fig. 13(d), increasing g could be a solution for increasing As when dealing with a high viscosity liquid.  
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Fig. 13. Effect of liquid viscosity on the characteristic parameters of the liquid flow in the REU: (a) liquid 

holdup �Ý�Å, (b) volume fraction of the droplets Fd, (c) effective interfacial area Ae and wetted wall area Aw, 

and (d) specific surface area of the liquid As. (U=0.0106 m/s, �Û 
L�y�w�¹) 

 

4.2.5 Effect of the contact angle 

The contact angle �Û of the packing surface is a sensitive parameter for influencing the liquid flow 

morphology and it further influences the mass transfer performance in a gas-liquid reactor (Sebastia-Saez 

et al., 2018). Stainless steel is usually hydrophilic but �Û is variable with different surface treatments (Zhang 

et al., 2017). In order to cover wide properties of the packing materials, the effect of �� ranged from 30° to 

150° on the liquid flow characteristics is investigated. Fig. 14 shows the liquid flow pattern in the REU for 

different values of ���Û. It demonstrates that the liquid flow pattern gradually changes from the film-

dominated flow to the droplet-dominated flow with increasing of �Û. This trend also can be obtained from 

Fig. 15(b), where the volume fraction of the droplets increases with increasing �Û. However, �Ý�Å reduces 

with increasing �Û, as shown in Fig. 15(a). This is because the packing has a weaker resistance to the 

droplets than films, and this makes the droplets have much higher velocities than the films. From Fig. 

15(c), Ae and Aw decrease with the increasing ��. The decreasing of Ae is partly due to the decrease in liquid 

holdup. The decreasing of Aw is mainly due to the less wettability of the surface with increasing �Û. In 

addition, as shown in Fig. 15(d), As increases with increasing �Û, and this is mainly because the liquid is 

easier to break into small droplets with a hydrophobic surface, which also has been observed in the 

experiments of Zheng et al. (2016) and Zhang et al. (2017). Moreover, a higher g combined with a higher �Û 

further promotes the breakup of the liquid. 

 

Fig. 14. Simulated profiles of the liquid flows in the mesh packing with different contact angles (50 wt% 

MEA, g=74.0 m/s2, U=0.0106 m/s). 
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Fig. 15. Effect of contact angle on the characteristic parameters of the liquid flow in the REU: (a) liquid 

holdup �Ý�Å, (b) volume fraction of the droplets Fd, (c) effective interfacial area Ae and wetted wall area Aw, 

and (d) specific surface area of the liquid As. (50 wt% MEA, U=0.0106 m/s) 

 

4.3. Correlations for �Ý�Å, �#�Ø and �#�æ 

4.3.1 Correlations from the CFD simulation data and validations 

Several correlations for the liquid holdup �Ý�Å (Basic and Dudukovic, 1995; Burns et al., 2000; Lin et al., 

2000; Yang et al., 2015a) and the effective interfacial area Ae (Luo et al., 2012; Luo et al., 2017; Rajan et 

al., 2011) in RPBs have been proposed. These correlations are mainly obtained using mathematical 

regression based on numerous sets of experimental data from certain RPBs and at certain operating 

conditions. However, the effect of the contact angle on the hydrodynamic parameters of the RPB has not 

been considered in the existing correlations. In addition, there are no correlations regressed from RPBs 

with the expanded stainless steel mesh packing and no correlations that focus on the concentration range of 

the MEA solutions that aimed at CO2 capture. Due to lack of experimental data at these conditions, 

generating correlations from CFD simulation data could be an effective and economical alternative to meet 
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the requirement of accurate prediction of the performance of the RPB for CO2 capture. Among the existing 

correlations, the Burns correlation (Burns et al., 2000) describes the relationship between liquid holdup (�Ý�Å) 

and the centrifugal acceleration (g), liquid superficial velocity (U) and viscosity (�å), which is concise and 

clear, and it has been adopted in many cases (Joel et al., 2015; Joel et al., 2014, 2017; Kang et al., 2014; 

Thiels et al., 2016). Therefore, a similar expression has been adopted to regress the correlations for �Ý�Å, Ae 

and As in the RPB with an expanded mesh packing based on the CFD simulation results. Due to the contact 

angle having a large influence on these parameters, it has been taken into account in this model as follows: 

�U 
L �= 
l
�C
�C�4


p
�à


l
�7
�7�4


p
�ä


l
�å
�å�4
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where �‰�4 
L �t�r�w�ä�x���•���•�6,�����4 
L �r�ä�r�s�r�x �•���•, �K�4 
L �u�ä�u�w�•�• �6 �•�¤ , �/�4 
L75° are the characteristic values for g, 

U, �å and �Û in a typical operating condition. y is �Ý�Å, Ae or As, and a, m, q, n, and p are the coefficients to be 

obtained from the regression analysis. First, this exponential function is transformed into a linear function 

through the logarithm operation; then the least squares regression (LSR) method is used for the regression 

analysis due to the weak collinearity among the independent variables (Wang, 1999; Yang et al., 2017). 

The regression equations are given as follows, which are based on the 31 sets of data gathered from the 

CFD simulations, and the data are provided in the supplementary materials. 

For the liquid holdup: 
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For the effective interfacial area:  
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For the specific surface area of the liquid:  
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The availability of these correlations to predict �Ý�Å, Ae and As at different radial positions of an RPB are 

examined. This is achieved through comparing the predicted results from the correlations with the new 

CFD simulation results, which are obtained by setting the REU at four radial positions (r=0.11, 0.3, 0.38, 

0.49 m) with three rotational speeds (N=150, 250, 300 rpm). The examination is conducted at the liquid 

flow rate of 14.4 m3/h, and 50% MEA are used as the liquid phase and the contact angle is set as 75°. The 
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test data are provided in the supplementary materials. From Fig. 16 (a1), (b1) and (c1), it can be seen that 

the correlations have a good performance to predict �Ý�Å, Ae and As with the radial position ranging from 0.1 

to 0.5 m. Further, both the 31 sets of training data and the 9 sets of test data of �Ý�Å, Ae and As are displayed 

in Fig. 16(a2), (b2) and (c2), and most of the data lie within ± 20% of the values  predicated by Eq. (15), 

(16) and (17), respectively. This demonstrates that the correlations are valid to predict �Ý�Å, Ae and As at 

different radial positions of an RPB. 

 

Fig. 16. Comparison of the characteristic parameters between the predicted values from the correlations 

and CFD: (a) liquid holdup �Ý�Å, (b) effective interfacial area Ae and (c) specific surface area of the liquid As.  

 

In order to further validate the proposed correlation, the exponents m, q, n of the corresponding 

independent variables g, U, �å in the �Ý�Å correlation Eq. (15) are compared with those obtained in previous 
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investigations, including the exponents in the Basic and Dudukovic correlation (Basic and Dudukovic, 

1995), Burns correlation (Burns et al., 2000) and two theoretical models (Burns et al., 2000), as listed in  

Table 4. From the theoretical model that is summarised in Burns et al. (2000), there are two extreme 

flow models: viscous flow and inertial flow. In the case of viscous flow, the liquid is assumed to flow as 

fully developed laminar films over the packing surface, then m= -0.33, q= 0.33 and n= 0.33. In the case of 

inertial flow, the kinetic energy of the flow is mainly lost by the frequent collisions with the packings, and 

it includes inertial film flow, pore flow and droplet flow, then m= -0.5, q= 1, n= 0. As can be seen in  

Table 4, the value of the exponents m, q and n that are derived from the CFD data are located between 

the limits of the two theoretical models. The absolute value of m is smaller but n is larger than the 

corresponding values in the Burns correlation, which suggests that there are more viscous film flows in the 

current investigation than in the investigation of Burns et al. (2000). This is probably caused by the 

different packing structures and different void fractions. The expanded stainless steel mesh packing is used 

in this paper while the reticulated foam packing is used in the experiments of Burns, and the void fraction 

(�Ý) of the packing that is used in this paper (0.84) is smaller than that in the experiments of Burns (0.953). 

In addition, the exponents from the current investigation are within the limits of the exponents from the 

experiments of Basic and Dudukovic (1995), which used glass beads packings with lower void fractions 

(0.348 and 0.466). The comparisons between the different investigations indicates that the essential flow 

mode should be similar in the RPBs, although the sensitivity of the investigated parameters that influence 

�Ý�Å is different for different packing structures and void fractions. The exponent of p for predicting the 

effect of the contact angle (�Û) appears to be very important for influencing �Ý�Å, but it has not been 

investigated in the previously mentioned investigations. Further, the new proposed correlation (Eq. (15)) 

has been used to predict the �Ý�Å in the experiments of Burns et al. (2000) and Yang et al. (2015a). The 

experimental data of �Ý�Å and the �Ý�Å predicted by Lu model (Lu et al., 2018) and the new proposed 

correlation (Eq. (15)) are plotted in Fig. 17 (a) and (b). It is observed that the predicted �Ý�Å is close to the 

experimental data and the predictions of the Lu model. 
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Table 4 Comparison of the exponents m, q, n and p for �Ý�Å. 

Data Source Packing type m (of g) q (of U) n (of���å) p (of���Û) 

�Ý�Å-CFD 

Expanded 
stainless steel 
mesh packing 

(�Ý=0.84) 
-0.4764 0.5716 0.3197 -0.7557 

�Ý�Å-Theoretical inertial model  -0.5 1.0 0 -- 

�Ý�Å-Theoretical viscous model  -0.33 0.33 0.33 -- 

�Ý�Å-Burns Reticulated 
foam (�Ý=0.953) 

-0.5 0.6 0.22 -- 

�Ý�Å-Basic and Dudukovic Glass beads 
(�Ý=0.348, 0.466) 

-0.48 ~ -0.36 0.57 ~ 0.64 0.23 ~ 0.51 -- 
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(b) 

Fig. 17. Comparison of the �Ý�Å between the new correlations, experimental data and existing model (Lu et 

al., 2018): (a) Burns case (�3�Å=1.75*10-5 m3/s) (Burns et al., 2000) and (b) Yang case (�3�Å=2.29*10-5 m3/s) 

(Yang et al., 2015a). 

 

4.3.2 Practical implications of the correlations 

In order that the correlations explicitly connect to the practical operations, the centrifugal acceleration �C 

is decomposed into the radial position r and the rotational speed �X based on the following equation: 

�C 
L �N�X�6 (18) 

Therefore, on substituting Eq. (1) and Eq. (18) into Eq. (14), then Eq. (14) becomes: 

�U 
L �'�ñ�6�à�3�Å
�ä�N�:�à�?�ä�;�å�á�Û�ã (19) 

where E is an empirically derived constant.  

The independent variables in Eq. (19) cover most of the important parameters in the operation and 

design of an RPB. For example,���ñ and �3�Å are the main operating parameters and both of them are highly 

relevant to the operating cost in the CO2 capture process. Further, r is the important structural parameter 

that is relevant to the volume and weight of the bed, �å is the physical property of the solvents that flows in 

the RPB, and �Û is the property of the packing materials. Therefore, analysing the exponents of these 

parameters has very important practical implications. 

Table 5 lists the exponents of �ñ, �3�Å, r, �å and �Û for predicting �Ý�Å, Ae and As. A positive exponent means 

the dependent variable has a positive correlation with the independent variable, and vice versa. In addition, 
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the absolute value of an exponent represents the sensitivity of the dependent variables to the change in the 

corresponding independent parameters.  

 

Table 5 Comparison of the exponents �ñ, �3�Å, r, �å and �Û for predicting �Ý�Å, Ae and As. 

Parameters 2m (of �ñ) q (of �3�Å) m-q (of���N) n (of���å) p (of���Û) 

�Ý�Å -0.9528 0.5716 -1.048 0.3197 -0.7557 

�#�Ø 0.0870 0.4275 -0.384 0.1200 -0.5856 

�#�æ 0.9892 -0.1515 0.6461 -0.2921 0.1658 

 

(i) For the liquid holdup �Ý�Å, the exponents of �3�Å, �å are positive, and the exponents of �ñ, r and �Û are 

negative, in addition, the sensitivity of the independent variables is ranked as follows: �N 
P �ñ 
P �Û 
P �3�Å
P

�å. This means that the viscosity���å is the weakest parameter while the radial position r is the strongest 

parameter for influencing �Ý�Å. Moreover, the exponent of r is approximately -1, which means �Ý�Å almost 

reduces inversely proportional to the local packing radius in an RPB. Therefore, for the scale up design of 

an industrial scale RPB for CO2 capture, the radial thickness of the rotating packed bed should not be too 

large in order to prevent the severe liquid maldistribution along the radial direction in the RPB. In addition, 

enlarging the RPB in the axial direction or the design of RPBs with multistage liquid nozzles along the 

radial directions could be the feasible solutions.  

(ii) For the effective interfacial area �#�Ø, the exponents of �ñ, �3�Å and �å are positive, and the exponents of 

r and �Û are negative. In addition, the sensitivity of the independent variables is ranked as follows: �Û 
P

�3�Å
P �N 
P �å 
P �ñ. This indicates that within the investigation conditions in this paper, in order to increase 

�#�Ø, decreasing the contact angle �Û could be the most effective option, while increasing the rotational speed 

�ñ is the most inefficient way. Therefore, a high rotational speed is not recommended in order to achieve a 

large Ae by both considering the performance of the RPB and the energy consumption for driving the RPB.  

(iii) For the specific surface area of the liquid �#�æ, the exponents of �ñ, r and �Û are positive, and the 

exponents of �3�Å and �å are negative. The sensitivity of the independent variables is ranked as follows: 

�ñ 
P �N 
P �å 
P �Û 
P �3�Å�ä This indicates that increasing �ñ is the most effective way to increase �#�æ. 

In addition optimizing a single characteristic parameter, multiple characteristic parameters should be 

considered for optimizing a particular application of the RPB. From the aspect of CO2 absorption 
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(Uchiyama et al., 2003), increasing Ae is the first choice to facilitate the CO2 absorption rate in the RPB. 

According to the correlation for Ae, both increasing �3�Å and decreasing �Û are two effective solutions to 

increase Ae. However, both of the two solutions have negative impacts on As, which reduces the utilization 

efficiency of the solvents. Due to As being very sensitive to �ñ, an appropriate increase in �ñ could reduce 

the side effects of increasing Ae which resulted from the increase in �3�Å and the decrease in �Û. In addition, 

using high-concentrated MEA aqueous solutions has good potential to reduce the volume ratio of the 

solvents to CO2, which can reduce the energy consumption in MEA regeneration. However, the increasing 

viscosity���å decreases As, which could decrease the utilization efficiency of MEA. Therefore, increasing �ñ 

and/or increasing �Û appropriately are possible solutions to deal with this issue through analyzing the 

exponents.  

5. Conclusions 

This paper proposes a new mesoscale 3D CFD model to investigate the liquid flow characteristics in the 

RPB. The model has been validated through comparing the results obtained with experimental 

observations. Detailed liquid flow patterns, liquid holdup, volume fraction of the droplets, effective 

interfacial area, wetted wall area and specific surface area of the liquid in the RPB are obtained 

numerically. The results show that the mesoscale CFD model is effective in analysing the local detailed 

liquid flow characteristics as well as the overall parameters of an RPB. The main conclusions are as 

follows: 

(i) Increasing the rotational speed dramatically reduces the liquid holdup and increases the specific 

surface area of the liquid but it has very weak positive effect on increasing the effective interfacial area in 

the RPB. 

(ii) Increasing liquid flow rate and/or increasing liquid viscosity improve both the liquid holdup and the 

effective interfacial area in the RPB, but they have a negative effect on the specific surface area of the 

liquid. Higher liquid flow rate and/or higher viscous MEA require higher rotational speed to maintain both 

the effective interfacial area and the specific surface area. 

(ii i) The flow pattern, liquid holdup and interfacial area are sensitive to the contact angle. Larger contact 

angles can generate more liquid droplets with larger specific surface area but the liquid holdup, the 
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effective interfacial area and the wetted wall area dramatically decrease. Surface modification of the 

packing is an important method to optimize the mass transfer efficiency in the RPB. 

(iv) The correlations for predicting the liquid holdup �Ý�Å, effective interfacial area �#�Ø,  and specific 

surface area �#�æ in the RPB are proposed. The sensitivities of the investigated effect parameters on �Ý�Å, �#�Ø 

and �#�æ respectively are as follows: For �Ý�Å, �N 
P �ñ 
P �Û 
P �3�Å
P �å; For �#�Ø, �Û 
P �3�Å
P �N 
P �å 
P �ñ; For �#�æ, 

�ñ 
P �N 
P �å 
P �Û 
P �3�Å. 

In general, a much better understanding of the liquid flow behaviours within the RPB has been achieved 

and the factors that influence the mass transfer has been analysed in depth. The proposed model provides a 

feasible way to predict the hydrodynamic performance of the RPB, which could help to optimize the 

design and operation of the RPBs. 
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Nomenclature  

A entrance area of the REU, m2 

�#�Ø effective interfacial area, m-1 

�#�Ú�?�ß gas-liquid interfacial area in the data source region of the REU, m2 

�#�ß�?�æ liquid-solid interfacial area in the data source region of the REU, m2 

�#�Ç total area of the liquid nozzles in the REU, m2 

�#�æ specific surface area of the liquid, m-1 

�#�ê  wetted wall area, m-1 
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�=�É surface area of the packing per unit volume of the bed, m-1 

�(�× volume fraction of the droplets 

h thickness of the packed bed, m 

�G curvature of the interface 

m exponent of  g 

N rotational speed, rpm 

n exponent of �å 

�J
ä unit normal vector 

P distance metric to the asymptotic range 

p exponent of �Û 

�3�Å volume flow rate of the liquid, m3/s 

�M�Å volume flow rate of the liquid for feeding the REU,  m3/s 

q exponent of �7 

RK convergence ratio 

Ri inner radius of the packing region, m 

Ro outer radius of the packing region, m 

r radial position in the RPB, m 

t time, s 

U liquid superficial velocity, m/s 

UG grid uncertainty 

�Q�4 liquid inlet velocity in the REU, m/s 

V volume, m3 

�8�× detached droplets volume in the data source region of the REU, m3 

�8�ß liquid volume in the data source region of the REU, m3 

�8�ã packing volume of the data source region in the REU, m3 

�R�å relative velocity, m/s 

Greek symbols 

�Ù volume fraction 

�Û contact angle, deg 

�Ü error estimate 

�/RE error estimate from the Richardson extrapolation method 

�Ý void fraction of packing 
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�Ý�Å liquid holdup 

�ä dynamic viscosity, Pa.s 

�å 

�ä

kinematic viscosity, mm2/s 

�U density, kg/m3 

�ê surface tension coefficient, N/m 

�ñ angular speed, rad/s 

Subscripts 

g gas phase 

l liquid phase 

Abbreviations 

CFD Computational fluid dynamics 

FS Factor of safety 

HPC High performance computing 

LFR Liquid flow rate 

LSR Least squares regression 

PCC Post-combustion capture 

PIV Particle image velocity 

REU Representative elementary unit 

RPB Rotating packed bed 

VOF Volume of fluid 
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Highlights 

�x A new mesoscale 3D CFD model is proposed to predict the liquid flow in an RPB. 

�x Detailed liquid flow patterns in the RPB are obtained. 

�x Liquid holdup, percentage of droplets and interfacial area in the RPB are analysed.  

�x New correlations for liquid holdup and effective interfacial area are developed. 

�x Parametric sensitivity analyses of the RPB for influencing CO2 capture are performed. 
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