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The impact of adding two types of layered double hydroxides (LDHs), commercial hydrotalcite (HT) and its thermally

treated form (CLDH), on the reaction kinetics and phase assemblage development of a sodium silicate-activated slag

cement was investigated. The reaction kinetics of LDH-modified cements was assessed by isothermal calorimetry,

and the results were correlated with in situ attenuated total reflection Fourier transform infrared spectroscopy

results collected over the first days of reaction, to identify the structural evolution of the main binding phase

forming in these cements: a sodium-containing calcium aluminosilicate hydrate (C-(N)-A-S-H)-type gel. The addition

of either HT or CLDH into sodium silicate-activated slag paste accelerates the precipitation of reaction products and

increases the formation of HT in these cements, without causing significant changes to the C-(N)-A-S-H binding

phase. This is extremely relevant in terms of the durability of alkali-activated slag cements, as a higher content of

the HT-like phase has the potential to reduce their chloride permeability and enhance carbonation resistance.

1. Introduction
Layered double hydroxides (LDHs), with the general formula of

[MII
1−xM

III
x(OH)2]

x+[Am−]x/m·nH2O (where MII represents divalent

metal cations, MIII represents trivalent metal cations, Am− represents

anions and 0 < x < 1), are a group of minerals that have a positively

charged layered structure due to the partial substitution of divalent by

trivalent cations in a brucite-like lattice structure, which brings a

capacity for anion exchange in the interlayer.1–3 Calcined layered

double hydroxides (CLDHs), produced from thermally treated LDHs,

can recrystallise to produce LDHs in an aqueous environment while

accommodating available anions from the solution into their

interlayers, including chloride (Cl−) and carbonate (CO3
2−).4–7 This

makes CLDH a promising chemical additive for improving the

durability of cement and concrete against both carbonation and

chloride ingress.7–9 The inclusion of CLDH in sulfoaluminate cement

and in Portland cement has shown the potential to slow down the

ingress of carbon dioxide (CO2) and chloride from the environment

into hardened monolithic samples,10,11 yielding a higher chloride and

carbon dioxide binding capacity.9

Alkali-activated cements are gaining interest as a sustainable and

technically sound alternative to traditional Portland cement for the

production of concretes.12,13 Alkali-activated slag cements are

formed by the reaction between blast-furnace slag and an alkaline

activator. Hydrotalcite (HT)-like (Mg,Al)-LDHs are commonly

identified as a reaction product which forms in these cements

when the magnesium oxide (MgO) content in the raw material is

higher than 5 wt.%, being generated along with the sodium-rich

calcium aluminosilicate hydrate (C-(N)-A-S-H)-type gels that

dominate the structure of these cements.14–16

Recent studies incorporating CLDH into alkali-activated slag

cements, using sodium carbonate as the activator, demonstrated that

this addition could efficiently accelerate the kinetics of the reaction of

these systems by increasing the pH of the pore solution, capturing

carbonate anions and aiding the increased formation of HT.17

This smart chemical additive also promotes compressive strength

development, refines the microstructure of the binder18 and

significantly increases the durability of these cements in terms of

carbonation and chloride ingress.18,19 The unique benefits of CLDH

addition in controlling the reaction kinetics and phase assemblage of

alkali-activated slag cements are due to the compatibility between

CLDH and these cements, which might also be the case when using

other alkali sources as activators, such as sodium silicate.

Sodium silicate-activated slag (AAS) cement is the most widely

produced and studied alkali-activated system. The formation of

HT-like phase in AAS cement is largely controlled by the

magnesium oxide content of the slag used.8,20 An HT-like phase

with hydroxide (OH−) as interlayer anions and a magnesium

(Mg)/aluminium (Al) ratio of around 2 is normally formed in

AAS cement binders,20,21 because of the absence of carbonate

ions in the sodium silicate activator. Therefore, the uptake of

dissolved carbonate ions by CLDH, which is the process by

which this additive accelerates the kinetics of reaction in sodium

carbonate-activated slag,17 cannot take place in an AAS system.

This might also suggest that for AAS cement, the addition of HT

could have a similar effect as that of the thermally treated HT

(CLDH). Since CLDH is normally produced from HT through

thermal processes,22,23 the use of HT instead of CLDH would be

a more energy-efficient option for AAS cement.
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In this study, 5 wt.% of either thermally treated HT (CLDH) or

commercial HT was added into sodium silicate-activated slag

pastes. The influence of both CLDH and HT on the kinetics of the

reaction and early-age structure evolution of these cements was

investigated. The phase assemblage of cements aged for up to

180 d was also investigated using X-ray diffraction (XRD) and

scanning electron microscopy, coupled with energy-dispersive X-

ray analysis (EDX).

2. Materials and methods

2.1 Materials and sample preparation

The composition of the ground granulated blast-furnace slag used

in this study is shown in Table 1. The Blaine fineness of this slag

was 5056 ± 22 cm2/g, and its average particle size determined by

laser diffraction, d50, was 11·2 mm. The sodium silicate activator

used in this study was prepared by pre-dissolving commercial

analytical grade sodium metasilicate (Na2SiO3) powder (Sigma-

Aldrich, sodium metasilicate ≥99·5%) into distilled water (H2O)

(cooled down to room temperature prior to use). Commercial HT

(Sigma-Aldrich) was used as the LDH addition into the mixes,

and calcined HT (CLDH) was prepared by thermally treating this

HT at 500°C, following the preparation method described in the

authors’ previous work.17

AAS pastes with the addition of either CLDH or HT were

produced according to the formulations shown in Table 2. This

mix design was chosen based on previous studies where the

activator dose and water-to-binder ratio were optimised.7,24 The

slag paste prepared without any chemical addition is referred to as

‘reference’ throughout the paper. Samples prepared with 5 wt.%

addition of CLDH or HT (by mass of anhydrous slag) are referred

to as modified samples. Samples were cured in sealed centrifuge

tubes at 20°C until testing (up to 180 d), unless otherwise noted.

2.2 Testing methods

The kinetics of the reaction of alkali-activated slag pastes was

evaluated by isothermal calorimetry using a TAM Air isothermal

calorimeter at a base temperature of 25 ± 0·02°C. The fresh cement

mix was prepared by external hand-mixing for 3 min, weighed into

an ampoule and immediately placed in the calorimeter to record

heat flow. Samples of approximately 20 g of paste were used, and

heat flow was recorded during the first 300 h of reaction.

The early-age evolution of the alkali-activated slag pastes was

studied using a PerkinElmer Frontier Mid Fourier transform

infrared spectroscopy (FTIR) spectrometer with an attenuated total

reflection (ATR) attachment, where freshly prepared pastes were

mounted onto the diamond ATR crystal, and spectra were

recorded at regular time intervals for 48 h. Spectra were taken in

the absorbance mode from 2000 to 600 cm−1 at a resolution of

1 cm−1. During the test, the paste samples were covered with cling

film to prevent drying and/or carbonation.

The phase assemblage of these cements was determined up to

180 d of curing. XRD patterns were collected using a Bruker D2

Phaser instrument with copper (Cu) Ka radiation and a nickel

filter. A step size of 0·02° and a counting time of 3 s/step, from 5

to 55° 2q, were used. The microstructure of the hardened pastes

was analysed by environmental scanning electron microscopy

(ESEM) and EDX, using a Hitachi benchtop ESEM TM3030

with a Bruker Quantax 70 X-ray microanalysis detector. An

acceleration voltage of 15 kV and a working distance of 8 mm

were applied. Polished but uncoated samples were used for both

backscattered electron (BSE) imaging and EDX analysis. Over 50

points (EDX spots) were recorded per sample at each age and

formulation.

3. Results

3.1 Kinetics of reaction

Figure 1 shows the heat flow and total heat release of AAS paste,

in comparison with those of pastes with 5 wt.% CLDH and 5 wt.%

HT, during the first 60 h of reaction. The heat evolution from the

samples prepared shows four distinct stages: a pre-induction period,

induction period, acceleration period and deceleration period. These

stages correspond respectively to the surface wetting of the slag

particle, the metastable dormant period, the onset of precipitation of

Table 1. Chemical composition of anhydrous ground granulated blast-furnace slag, determined by X-ray fluorescence

Calcium

oxide

(CaO)

Silicon

dioxide

(SiO2)

Aluminium

oxide

(Al2O3)

Magnesium

oxide

(MgO)

Sulfur

trioxide

(SO3)

Iron (III)

oxide

(Fe2O3)

Titanium

dioxide

(TiO2)

Manganese

(II) oxide

(MnO)

Potassium

oxide

(K2O)

Others LOI

Content: % 41·3 36·0 11·3 6·5 0·7 0·3 0·5 0·3 0·4 0·3 2·0

LOI, loss on ignition at 1000°C. All elements are represented on an oxide basis regardless of their oxidation state in the slag

Table 2. Mix designs of the pastes assessed

Sample ID Slag: g Sodium metasilicate: g Water: g CLDH: g HT: g w/ba

Reference 100 7 42·8 — — 0·40

5% CLDH 100 7 42·8 5 — 0·40

5% HT 100 7 42·8 — 5 0·40

a w/b, water/binder mass ratio (where binder is defined as slag + mass of sodium silicate)
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the main reaction products and the gradual slowing down of the

reaction rate after setting.8,25,26 The heat release from the AAS

paste assessed here showed reaction stages consistent with what

have been reported previously in the literature where a slag with a

similar chemical composition was used.8,26–28 However, a faster

reaction was reported where a much higher activator dose and/or

lower water-to-binder ratio was used,26,28 while a slower reaction

was observed where a lower activator dose was used.27 Because the

chemistry of the alkali-activation process is very different from that

of Portland cement hydration, it is difficult to draw detailed

mechanistic parallels between these two processes. The total heat

release corresponds to the cumulative reaction heat generated

during these four stages.

In Figure 1(a), it can be seen that the modified AAS pastes (with

CLDH or HT addition) present shorter induction periods and more

intense acceleration periods, compared with the reference AAS

pastes. Slight differences in the kinetics of reaction were identified

in pastes produced with CLDH and with HT, with higher

maximum heat flow rates observed when using 5% CLDH. This

is consistent with a higher degree of reaction, indicated by the

higher total heat release (Figure 1(b)), in CLDH-modified AAS

pastes compared with the other pastes tested. This higher total

heat release is attributed to the slightly increased rate of heat

release during both the pre-induction period and the deceleration

period, compared with the other specimens. The former is

associated with the reaction of CLDH with water during its

rehydration process,29 and the latter is most likely related to

interactions between the recrystallised CLDH and the reaction

product precipitated from dissolving slag particles.17

In a previous study,17 where CLDH and HT were incorporated in

sodium carbonate-activated slag cements, it was identified that the

addition of CLDH accelerates the kinetics of the reaction more

than the addition of HT does. This is attributed to the fact that the

recrystallisation of CLDH increases the concentration of

hydroxide ions and consumes carbonate ions, which leads to a

significant rise in the pore solution alkalinity. A similar

mechanism is not likely to take place in silicate-based AAS

systems, as the increase in hydroxide concentration due to

recrystallisation of CLDH in sodium silicate solution would have

much less effect on increasing its alkalinity, mainly due to the

complexity of the silica speciation in concentrated sodium silicate

solutions which buffers the apparent pH changes.30,31 Hence, the

changes in reaction kinetics identified in the modified AAS

cements assessed may be associated with a combination of filler-

type and nucleation templating effects, both speeding up the

reaction and favouring precipitation of larger amounts of reaction

products. However, to enable the clear identification of the roles

played by both CLDH and HT additions in the AAS system, it is

important to correlate the reaction kinetics with the reaction

products forming in these cements.

3.2 Early-day reaction product formation

The selected ATR-FTIR scans in Figure 2 show the structural

evolution of the main reaction product forming in these cements,

a C-(N)-A-S-H-type gel,15,32 during the initial 48 h after the

preparation of the pastes.

For all the samples assessed, the main differences observed in

the C-(N)-A-S-H-type gel structure over the time of reaction were
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Figure 1. Isothermal calorimetry data on (a) heat release flow and (b) total heat release, for AAS paste, as a function of the LDH addition.
The data are normalised by the total mass of the slag in the paste
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(a) a decrease in the intensity of the band centred at 1640 cm−1

assigned to the bending vibration of the H–O bond in water

associated with the AAS paste;33 (b) a decrease in the intensity of

the band centred at 1000 cm−1 characteristic of (Si,Al)–O bonds

of tetrahedral silicates in melilite-type phases,34 representing the

anhydrous slag; and (c) an increase in intensity, and broadening,

of the bands between 1000 and 800 cm−1 assigned to the

stretching, bending and asymmetric vibration of Si–O–(Si,Al)

bonds as well as Al–O within AlO4 groups
35–37 present in C-(N)-

A-S-H-type gels.

The decrease in the intensity of the broad band centred at

1640 cm−1, which contains contributions from vibration modes

of both chemically bonded (~1640 cm−1) and free water

(~1660 cm−1)38 present in the reaction products of these cements,

is consistent with the consumption of water during formation of

the C-(N)-A-S-H-type gel, as the reaction progresses.

Correlating these observations with the timescales of the

calorimetry results (Figure 1), it is clear that during the first hours

of reaction, negligible changes in the structure of the anhydrous

slag are taking place, consistent with the pre-induction period

identified in the heat release curves. After 17 h of reaction, both

AAS with 5% CLDH and AAS with 5% HT reached their

maximum heat flow rate, while in the AAS paste without these

additives, the acceleration period had just started at this time.

Despite the differences in the kinetics of the reaction, very similar

ATR-FTIR spectra were observed for the three samples measured

at this time (Figure 2), each featuring the initial formation of a

broad band between 900 and 1000 cm−1 corresponding to C-(N)-

A-S-H-type gels.

After 24 h of reaction, all of the samples presented deceleration of

heat release and started to set. At this time of the reaction, a sharp

and high-intensity band with a maximum at 944 cm−1, along with

a shoulder at about 895 cm−1, was observed in the ATR-FTIR

spectra of AAS with either 5% CLDH or 5% HT (Figures 2(b)

and 2(c)). These bands are mainly attributed to the Si–O–(Si,Al)

bonds in the chain-type silicate structure in the C-(N)-A-S-H-type

gel,39 and its identification is consistent with what has been
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Figure 2. ATR-FTIR spectra collected as a function of reaction time for (a) AAS paste (reference), (b) AAS paste with 5% CLDH and
(c) AAS paste with 5% HT
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reported in other studies for alkali-activated slag cements.36,40 The

fact that the distinctive band at 944 cm−1 is identified at earlier

times of the reaction in AAS with either 5% CLDH or 5% HT

compared to the reference sample demonstrates that the addition

of CLDH or HT expedites the kinetics of the reaction of AAS,

which is consistent with the trends observed by isothermal

calorimetry (Figure 1).

The addition of either CLDH or HT does not seem to alter the

main binding phase structure, as similar spectra were observed at

48 h for all three samples assessed, without notable shifting of the

vibrational modes. One significant difference between AAS with

CLDH (Figure 2(b)) and with HT (Figure 2(c)) was observed

between 1300 and 1500 cm−1, attributed to the antisymmetric

stretching vibration of the C=O bond in carbonates.41 The

distinctive band at 1370 cm−1 observed in Figure 2(c) corresponds

to the interlayer carbonate groups in the HT that was added into

this mix.41,42 This indicates that the incorporated HT has not

significantly dissolved or reacted with the activator solution at this

time of reaction. However, the same is not necessarily true of the

CLDH, and so it is important to understand the interaction of this

additive directly with the activator solution in order to determine

its influence on the overall reaction process.

Figure 3 shows the XRD patterns of CLDH that has been allowed

to recrystallise by immersion in the same sodium silicate solution

used for activating slag, compared with the diffraction patterns of

the commercial HT and the thermally prepared CLDH. After 7 d

of reaction, most of the CLDH recrystallised into an HT-like

phase with lower crystallinity than the commercial HT. The small

fraction of CLDH that remains unchanged consists mostly of

magnesium oxide. Thus, the magnesium/aluminium ratio in the

recrystallised HT-like phase formed could be lower than that of

the commercial HT.

The recrystallisation reaction of this CLDH in water or electrolyte

solutions is normally fast and approaches completion,7,17 and the

incomplete reaction of CLDH in sodium silicate activator

solutions might be related to its high viscosity, which hindered the

surface hydrolysis process.29,43,44 For the HT-like phase

recrystallised from CLDH in sodium silicate solution, the

interlayer species should be mainly hydroxyl groups and water

molecules. Intercalation of polymeric silicon (Si) groups in the

interlayers could be possible; however, it is not evident in this

study, as the polymerised silica groups would significantly

increase the basal spacing of the recrystallised product.45 The

concentration of the sodium silicate solution used as the activator

solution may be sufficiently high that the polymerised silica

groups formed in the aqueous phase46 become too large to be

accommodated into the interlayers of the HT-like phase.

3.3 Evolution of phase assemblage at later age

The phase assemblage after 90 d of curing of AAS with the

addition of either CLDH or HT is very similar to that of the

reference paste. As shown in Figure 4, the main reaction product

formed was a C-(N)-A-S-H-type gel, together with a significant

amount of the HT-like phase and traces of vaterite (due to

weathering during sample pre-conditioning prior to analytical

testing). Neither magnesium oxide nor brucite (Mg(OH)2) was

identified in samples after 90 d of curing (Figure 4). This indicates

that the magnesium oxide remaining after initial CLDH

rehydration (Figure 3) could potentially be incorporated into the

HT-like phase forming in these cements.

HT

HT HT
HT HT

HT

HT

CLDH in
Na2SiO3 solution

CLDH

10 20 30 40 50 60 70

2θ: º

Figure 3. XRD patterns of commercial HT, thermally treated HT
(CLDH) and the recrystallised HT-like phase formed after reacting
the CLDH for 7 d with the sodium silicate activator solution.
The grey dashed lines indicate the main reflections of periclase
(magnesium oxide, Powder Diffraction File (PDF) 01-071-1176)

HT

HT

Cs

Cs
HT

HT HT Cs

V
V

5% CLDH–180 d

5% HT–90 d

5% CLDH–90 d

Reference–180 d

Reference–90 d

Anhydrous slag

10 20 30 40 50
2θ: º

Figure 4. XRD patterns of anhydrous slag and AAS paste samples
after 90 d of curing, where Cs is C-(N)-A-S-H gel (an aluminium-
substituted tobermorite-like phase, PDF 00-019-0052), HT is
hydrotalcite (PDF 00-014-0525) and V is vaterite
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The main difference between HT-modified and CLDH-modified

samples according to XRD (Figure 4) was the crystallinity of the

HT-like phase formed. In the AAS samples with zero or 5%

CLDH addition, wide basal reflection peaks centred at around

11·6° (2q) were identified, consistent with the formation of low-

crystallinity HT-like phases previously identified in sodium

silicate-activated slag cements8,20 and in sodium carbonate-

activated slag cements with CLDH addition.17 However, in the

AAS sample with HT addition, a sharp and narrow reflection peak

was identified, indicating the presence of a highly crystalline HT-

like phase in this binder. This is attributed to the addition of HT

into this cement, which did not extensively dissolve or react with

the activator solution, as observed in Figure 2(c).

The BSE images of the AAS pastes after 90 d of ageing are

shown in Figure 5. The light grey angular particles are partially

reacted slag grains; the grey regions between the remnant slag

particles correspond to the main binding phase, consisting mainly

of C-(A)-S-H-type gel and additional reaction products such as

the HT-like phase.47 The regions darker in greyscale intensity than

the general binder are associated with phases containing lighter

elements (including pore space), and in alkali-activated slag

cement, such regions mostly correspond to regions rich in HT-like

phases.8,20 For AAS cements without LDH modification, the HT-

like rich regions are commonly seen as the inner reaction product

rims surrounding the partially reacted or fully reacted slag

particles,48,49 as observed in Figure 5(a). However, for samples

(a)

500 µm

(b)

500 µm

(c)

500 µm

Figure 5. BSE images of AAS pastes cured for 90 d: (a) reference; (b) with 5% CLDH; (c) with 5% HT
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incorporating either CLDH or HT, the dark grey regions observed

between the slag grains (Figures 5(b) and 5(c)) correspond to the

recrystallised HT-like phase from the added CLDH4,5 or the added

HT and appeared to be closely intermixed with the main binding

phase. However, between Figures 5(b) and 5(c), the

microstructures appear very similar, consistent with the XRD

results (Figure 4) showing comparable phase assemblages for

both of the LDH-containing samples.

Figure 6 shows the atomic ratio correlations calculated from

the EDX spots taken from the AAS pastes studied. The plot

of calcium/(silicon + aluminium) against aluminium/silicon

(Figure 6(a)) can be used to understand the bulk calcium/

(silicon + aluminium) ratio of C-(N)-A-S-H-type gels present in

the analysed region, while the magnesium/silicon against

aluminium/silicon plot (Figure 6(b)) is used to evaluate the overall

magnesium/aluminium ratios in the HT-like phases forming in

AAS.8,20 In Figure 6(a), the spreads of the data points from

different AAS samples were almost overlapping within the same

range of values, suggesting that the calcium/(silicon + aluminium)

ratio of the C-(A)-S-H-type gel forming in these cements is about

the same, even with 5 wt.% of either CLDH or HT added to the

mixtures. The calcium/(silicon + aluminium) ratios (Figure 6(a))

range between 0·6 and 1·2, and these values are generally

consistent with the reported chemical compositions of C-(N)-A-S-

H-type gels forming in AAS and in synthetic gels, whose bulk

calcium/(aluminium + silicon) ratios range from 0·7 to 1·3.50–52

There are also a few scattered data points with very low calcium/

(aluminium + silicon) ratios; these also have high aluminium/

silicon ratios and so are identified as regions in which LDH

phases are prominent and intermixed with the C-(N)-A-S-H-type

gel. In comparison with the data reported in the literature for AAS

cement with similar magnesium oxide content, the calcium/

(aluminium + silicon) ratio observed here is slightly higher.8,27,50

This might relate to the relatively high availability of calcium

oxide from the slag precursor used here, which has a calcium/

silicon molar ratio of 1·2.

In Figure 6(b), there is a linear trend in the data for all samples,

yielding a magnesium/aluminium ratio of around 2. This matches

the magnesium/aluminium ratio of the LDH phase that is

normally observed in long-term-cured alkali-activated slag

samples, which is around 2·1.20,53 This suggests that the addition

of either CLDH or HT does not seem to have any significant

impact on changing the layer cation compositions of the HT-like

phases forming in silicate-activated AAS, consistent with the

observations by XRD (Figure 4) for these cements.

4. Conclusions
Both HT and CLDH additives have a similar effect in accelerating

the kinetics of the reaction of AAS cement, shortening the

induction periods and accelerating the formation of C-(N)-A-S-H-

type gels. However, the incorporation of HT did not seem to

affect the total heat release compared with the reference mix,

which suggests that the changes in the kinetics of the reaction

induced by this additive are mainly associated with a filler effect.

Conversely, the incorporation of CLDH led to higher total heat

release, associated with incongruent dissolution of this compound

and its recrystallisation in hydrous (but carbonate-free) form.

Silicate substitution within the interlayer of Mg-Al LDH phases

Reference 5% CLDH 5% HT

1·2

0·8

0·4

0
0 0·2 0·4 0·6 0·8

Al/Si

(a)

C
a
/(
S
i+

A
l)

Reference 5% CLDH

Mg/Al = 2

5% HT

1·2

0·8

0·4

0
0 0·2 0·4 0·6 0·8

Al/Si

M
g
/S

i

(b)

Figure 6. Atomic elemental ratios calculated from EDX data for 90 d cured AAS paste (reference) and pastes with 5% CLDH and 5% HT,
respectively: (a) Ca/(Si+Al) plotted against Al/Si, (b) Mg/Si plotted against Al/Si
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was not observed here, even when the CLDH recrystallised within

a sodium silicate solution environment.

The crystallinity of HT-like phases in AAS is modified by the

incorporation of LDH. However, apart from this, the modified

AAS pastes showed very similar microstructural features and

phase compositions compared with those of non-modified

cements. Control of the kinetics of the reaction and an increase in

the HT content within AAS pastes are achievable by adding either

HT or CLDH.
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