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Abstract 

Computerized working-memory training (WM), despite typically yielding large practice effects 

in the training task, transfers reliably almost only to similar tasks and barely transfers to Fluid 

Intelligence (Gf).  We hypothesized that WM training tasks gradually become less related to Gf 

due to the development of task-specific skills that reduce reliance on WM.  As a result, what is 

being trained in the advanced stages of training is weakly related to WM and Gf.  This 

hypothesis leads to predicting that with training progression, there would be a gradual change in 

the rank-ordering of individuals (quasi-simplex) in the per-session scores of the training task 

coupled with a trend in reduction in Gf loadings of these scores. We reanalyzed individual 

differences in per-session scores in the training task from two moderately large-scale published 

studies.  Results show that, as predicted, the correlations between per-session scores decreased 

with increasing temporal distance between sessions, suggesting a quasi-simplex pattern 

indicative of a gradual change in the rank-ordering of individuals. However, contrary to the 

prediction, the training tasks maintained or even tended to increase their Gf loading with training 

progression.  We provide post-hoc accounts for these results, some which challenge prevalent 

assumptions beyond the attempt to improve Gf through improving WM.   

 

Keywords:  Working-memory, cognitive-enhancement, individual differences during 

training 
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Mechanisms of Working Memory Training: Insights from Individual Differences 

1. Introduction 

Working memory (WM), the ability to hold information available for complex cognition 

in the present moment (Oberauer & Hein, 2012) is relatively strongly correlated with fluid 

intelligence (Gf) (Shipstead, Harrison, & Engle, 2016). Therefore, it has been suggested that 

improving WM may enhance Gf.  Indeed, improving WM has become a target of intense 

research efforts, with tools ranging from pharmacological interventions (Coghill et al., 2014) to 

meditation (Gallant, 2016), to video-games (Sala, Tatlidil, & Gobet, 2018).  However, 

computerized training seems to remain as one of the most popular and most widely studied tools 

to improve WM (see von Bastian & Oberauer, 2014, for review).  

Computerized WM training involves the repetitive execution of tasks such as N-back 

(Jaeggi, Buschkuehl, Jonides, & Perrig, 2008) or updating (Dahlin, Neely, Larsson, Bäckman, & 

Nyberg, 2008), typically over the course of multiple sessions. In an effort to maximize reliance 

on WM, many WM training interventions adaptively adjust task difficulty to individual 

performance so that trainees are constantly challenged (Klingberg, 2010). This approach rests on 

the assumption  that a constant mismatch in task demand and ability would result in cognitive 

plasticity (Lövdén, Bäckman, Lindenberger, Schaefer, & Schmiedek, 2010; see von Bastian & 

Eschen, 2016, for evidence that it may be variability, not task difficulty, that challenges the 

flexibility of the cognitive system). For example, in WM training, task difficulty is typically 

raised by increasing the number of to-be-recalled items. As task difficulty is adjusted to 

individual performance, the stable increase in the level of difficulty with training progression is 

frequently used as indicator for training success.  
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The efficacy of WM training is usually assessed through transfer.  It is assumed that the 

larger that functional overlap between the training task and an untrained task, the stronger the 

expected transfer of training benefits to the untrained task would be. The literature differentiates 

between near transfer seen in tasks tapping the same ability as the training task, and far transfer 

seen in gains in different yet related abilities. For WM training, benefits in untrained WM tasks 

are considered near transfer, and training-related benefits in Gf tests are considered far transfer.  

Numerous meta-analyses summarize the large body of research on WM training and their 

conclusions are quite disappointing, with far-transfer benefits estimates ranging between 

complete absence (Melby-Lervåg, Redick, & Hulme, 2016; Sala et al., 2018), to very modest, 

perhaps almost negligible and short-lived (Au et al., 2014). Notably though, gains in the 

practiced tasks are consistently large, with trainees typically performing well above average by 

the end of training. For example, after 20 sessions of WM training, young adults can recall about 

eight items (e.g., von Bastian & Oberauer, 2013) – twice as many as the average cognitively 

healthy adult (Cowan, 2001). Even when controlling for baseline performance, task practice 

yields large gains with effect sizes (Cohen’s d) ranging between 1 and 2  

How can we explain the discrepancy between the absent or nearly absent far transfer 

effects on the one hand and the substantial improvements in the training tasks on the other hand?  

In this work, we examined the hypothesis (H1) that the initially strong correlation between Gf 

and WM training tasks declines in the course of training due to a gradual change in the makeup 

of abilities that contribute to WM training task success such as greater involvement in task-

specific skills and strategies that are only weakly related to Gf.  Hence, what is being trained in 

the advanced stages of WM training is, to a large extent, irrelevant to Gf.   Confirming this 
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hypothesis would suggest that future research might find a way to keep the high Gf relatedness 

throughout the course of training resulting in improved training transferability.  

Support for H1 comes from studies showing that performance may improve substantially 

through the development of task-specific skills and strategies that effectively reduce the WM 

demands of the training task.  For example, the N-Back task requires determining whether the 

current item has been presented n trials beforehand.  This decision can be made based on 

controlled recollection, that is, the actual retrieval of the item and its context, a process that relies 

on WM (Oberauer, 2005). However, it is also possible to answer correctly based solely on item 

familiarity by simply matching the probe against the memoranda whilst ignoring the context. 

This process does not involve (or barely involves) cognitive control (Jacoby, 1991) and, so, 

employing it reduces the WM demand of the N-Back task (Szmalec, Verbruggen, 

Vandierendonck, & Kemps, 2011). Thus, it is conceivable that training results in relatively 

greater or more efficient reliance on familiarity without improving recollection. Similarly, 

repeatedly practicing the same WM task could encourage participants to acquire task-specific 

strategies boosting performance in the training task without affecting the processes thought to be 

shared between WM and Gf. Indeed, there is now ample of evidence that trainees use strategies 

such as rehearsal or chunking during training that can lead to greater training task success (De 

Simoni & von Bastian, 2018; Dunning & Holmes, 2014; Laine, Fellman, Waris, & Nyman, 2018; 

Minear et al., 2016) but may arguably be weakly related to Gf.  

  H1 is in line with Rabbitt’s (2004) notion that “tasks cease to be effective tests of 

executive function as soon as they are performed more than once” (p. 8).  Along a similar line, 

recent theorizing (e.g., Kool & Botvinick, 2014) suggests that people generally try to avoid using 

cognitive effort as much as possible, and there is every reason to expect them to do so in WM 



INDIVIDUAL DIFFERENCES IN WORKING-MEMORY TRAINING 6 

training tasks as well. Hence, when repeatedly practicing the same task for several weeks,  it 

might actually encourage trainees to develop ways to reduce the need to use WM; for example 

by relying more strongly on familiarity-based processing (Szmalec et al., 2011) or by focusing 

on only a subset of memoranda (Atkinson, Baddeley, & Allen, 2017). Thus, the prediction 

following from H1 is of robust improvements in the training task which does not reflect 

improvement in the target ability but instead reflects the development of task-specific skills that 

reduce reliance on this ability.  As a result, little if any far-transfer is expected.  In fact, this is 

exactly what is frequently found.  

The notion that the makeup of abilities that contribute to success on a task may gradually 

change with practice is also discussed in the literature on individual differences during skill 

acquisition.  Two relevant issues from this literature are briefly reviewed below. 

1.1. Quasi-simplex 

The common finding when a task is administered multiple times (as do training tasks) is 

the quasi-simplex (Humphreys, 1960).  The quasi-simplex refers to a specific pattern in the 

correlation between the per-session (and more generally, per-administration) scores of the 

training task.  In this pattern, the highest correlations are seen between temporally adjacent 

sessions (e.g., between Test 1 and Test 2, Test 2 and Test 3, etc.) and these correlations decline 

with increasing temporal distance between sessions (e.g., the correlation between Test 1 and Test 

3 is lower than that between Test 2 and Test 3, with the correlation between Test 1 and Test 5 

being even lower than that). This finding shows that the rank-ordering of the individuals 

gradually changes.  Specifically, for a high correlation between measures (e.g., Test 1 and Test 2) 

to be found, the rank ordering of individuals should be very similar in the two measures.  

According to the quasi-simplex, this is true for adjacent sessions where, for example, individuals 
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who were especially successful in Test 1 tend to be the same individuals who were especially 

successful in Test 2.  However, since, according to the quasi-simplex, correlations become 

gradually lower with increasing temporal distance between sessions, this suggests that 

individuals who were especially successful in Test 1 would not necessarily be the same 

individuals who were successful in Test 8, for example. Note that, to our knowledge, the studies 

which examined quasi-simplex till now focused on tasks that do not tap on WM, especially the 

WM tasks that also involve adaptive difficulty.   

1.2. Which abilities dictate success on the task at different stages of training? 

The considerations above suggest a prediction of H1 that the impact that individual 

differences (as they were measured before training) have on task performance changes in the 

course of training.  For example, if late stages of skill acquisition involve memory retrieval, it 

seems to follow that individual differences at these stages will be dominated by memory-retrieval 

ability.  These issues have been examined in the skill-acquisition literature by testing the 

correlations between the abilities that were measured during pre-test and the per-session scores 

on the training task (for early studies, see Fleishman, 1972; Fleishman & Rich, 1963).  

According to Ackerman ( 1988), the initial stages of skill acquisition tax relatively general 

abilities such as declarative knowledge, spatial abilities, and notably: also working memory.  

Thus, initial performance on a task (and a cognitive test is typically a task) reflects general 

intelligence and similar broad abilities. With practice on the task, there is less and less reliance 

on the general abilities, and as a result, the correlation between the predictor (here, general 

abilities) and the outcome (here, performance on the training task) shows a declining pattern.  A 

subsequent meta-analysis (Keil & Cortina, 2001) supported the particular prediction regarding 

declining validity of general abilities, but failed to support other predictions of Ackerman’s 
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theory related to which abilities (e.g., perceptual speed) were predicted to show increased 

validities in more advanced stages of practice.   

There are two possible interpretations of the declining validity effect (Alvares & Hulin, 

1972; Dalal, Bhave, & Fiset, 2014).  The changing-task interpretation is central to the prediction 

of H1, that is, that the makeup of abilities that contribute to success on the task gradually 

changes with practice. According to the changing-person interpretation, the test-takers change 

gradually with the passage of time or with training.  Note that the changing-person perspective is 

not what H1 is about, but it is important to keep in mind the fact that declining validity has more 

than one interpretation.  We note however that the changing-task perspective gained compelling 

support from a recent study (Dahlke, Kostal, Sackett, & Kuncel, 2018) in which predictors 

(cognitive test scores) and performance criteria (college performance) were measured over 

multiple occasions rather than just once, thus making it possible to disentangle the two 

interpretations of declining validity.  This study showed that the validity changes were mostly 

due to the time at which the criterion was measured and were barely influenced by the time at 

which the predictor was assessed.  These results strongly support the changing-task 

interpretation, at least in some contexts.   

1.3. The present study 

In the present work, we reanalyzed the results from two moderate size WM training 

studies (De Simoni & von Bastian, 2018; Shahar et al., 2018, henceforth DSVB and SH) to 

investigate the quasi-simplex and the correlations between Gf and performance on the training 

task as a function of the training session. We used these analyses (and interpretations thereof) to 

shed light on the reasons for the very limited transferability of WM training to Gf that we found.  

We reasoned that WM training would result in the development of task-specific skills without a 
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change in the underlying WM ability.  These new skills that are unrelated to WM explain the 

performance improvement.  Thus, the WM training task is predicted to be relatively strongly 

related to Gf, but only in the initial stages of practice before the new skills have been developed.  

The gradual change in the makeup of abilities that contribute to task success would thus be 

reflected in a quasi-simplex pattern (here, interpreted as reflecting a changing-task pattern) 

combined with a declining trend of correlations between Gf and the WM-training task. 

The DSVB and SH data are optimally suited to test our predictions given that they 

comprised a moderately large number of sessions (but see Schmiedek, Lovden, & Lindenberger, 

2010, for a  training intervention with a much higher dosage), thus involving a sufficiently large 

number of per-session scores.  Importantly, the number of participants per group was relatively 

high, as required for the assessment of correlations as opposed to mean level of performance.  

Although our focus was on the training tasks, we capitalized on the fact that both studies 

involved an active-control group who performed visual search (Redick et al., 2013).  This feature 

enabled us to use the visual-search task as an important benchmark. 

2. Method 

Detailed methods are reported in the original studies. Both studies were approved by the 

relevant university ethics committees.  Here, we summarize only the key characteristics of each 

study.  

2.1. Participants 

Table 1 lists the participant demographics from the two studies included in the present 

work. Volunteers were recruited to participate in a “cognitive training study” through the 

participant pool (DSVB) or among students who took a preparatory course (SH). Inclusion 

criteria were being at least highly proficient in German (DSVB)/Hebrew (SH), normal or 
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corrected-to-normal vision, no color blindness, no current psychiatric or neurological disorders, 

and no psychotropic drug use. Participants were randomly assigned to groups, following double-

blind procedures (i.e., neither participants nor the experimenter administering the tests knew 

about the group allocation). The groups drawn from DSVB were compensated after study 

completion (CHF 120, approx. USD 120, or 10 course credits and CHF 20, approx. USD 20). In 

addition, participants received a bonus of up to CHF 50 (approx. USD 50) depending on the task 

level achieved by the end of training. The groups drawn from SH were also compensated after 

study completion (500 or 450 NIS, ~125-145$ USD).  

 

Table 1 

Demographic Data of Study Participants 

Group n included  Attrition n 

(withdrawn/excluded) 

Age (M, SD) Gender (f/m) 

DSVB 

Updating 59 22 (8/14) 22.61 (2.97) 40/19 

Binding 66 11 (6/5) 24.55 (4.05) 45/21 

Visual Search 72 3 (3/0) 23.81 (4.16) 49/23 

SH 

WM 72 1(1/0) 23.32 12/60 

Visual Search 71 0 23.63 12/59 

 

2.2. Cognitive Training Interventions 
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Training tasks are described in Table 2. Participants completed 20 training sessions (30-45 

min each) within 5 weeks (DSVB) or 12-14 training sessions (30-45 min each, in two cohorts) 

within 8-10 weeks (SH). Training was adaptive in both studies, with the level of task difficulty 

being stepwise adjusted to individual performance. In DSVB, training was self-administered at 

home using Tatool (von Bastian, Locher, & Ruflin, 2013), www.tatool.ch). After each session, 

training data were automatically uploaded to a webserver, allowing for constantly monitoring 

participants’ training performance and compliance. In SH, training was programmed with E-Prime 

and training sessions took place in a designated classroom located at Ben-Gurion University 

campus.  The class contained 14 testing positions, each comprising of a desk and a desktop 

computer.  

 

 

Table 2 

Training Tasks 

Group/Task Description 

DSVB 

Updating  

Digits Memorize a set of digits and update by applying simple arithmetic operations 

to them (Lewandowsky, Oberauer, Yang, & Ecker, 2010). 

Letters Memorize a set of letters and update by mentally shifting them up to three 

positions forward or backward in the alphabet (Lewandowsky et al., 2010).  

Arrows Memorize a set of arrows and update by rotating them for 45 degrees 

clockwise or counterclockwise (Harrison et al., 2013). 
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Locations Memorize the locations of a set of circles in a grid and update by mentally 

shifting them to an adjacent cell as indicated by an arrow (cf. Lewandowsky 

et al., 2010). 

  

Binding  

Noun-verb Memorize a series of associations between nouns and verbs (Wilhelm, 

Hildebrandt, & Oberauer, 2013). 

Symbol-

digit 

Memorize a series of associations between mathematical symbols and digits 

(cf. Wilhelm et al., 2013). 

Fractal-

location 

Memorize a series of associations between fractals and their location in a row 

of boxes on the grid (Oberauer, 2005). 

Color-

location 

Memorize a series of associations between colored circles and their locations 

in a 4 x 4 grid (cf. Oberauer, 2005). 

Visual Search  

Numbers Search for a “3” among horizontally and vertically presented “8”s (Kane, 

Poole, Tuholski, & Engle, 2006). 

Letters Search for a “T” among horizontally and vertically presented “I”s (cf. 

Harrison et al., 2013). 

Arrows Search for a single-headed arrow among double-headed arrows (cf. Kane et 

al., 2006).  

Circles Search for a circle with one gap among circles with two gaps (von Bastian, 

Langer, Jäncke, & Oberauer, 2013). 

SH 
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Procedural-

WM 

Combination of the Task-switching and N-back paradigm where participants 

switched between location and object classification, while reacting according 

to information presented in the Nth trial (Nitzan Shahar & Meiran, 2015) 

Visual Search Report whether a target letter ('F') placed among array of distractors is facing 

right or left (Redick et al., 2013). 

 

2.3. Cognitive Ability Tests 

To evaluate training effectiveness, participants completed 28 (DSVB) or 6 tasks (SH) 

before and after training. Table 3 lists descriptions and details of the tasks included in the present 

work.  

 

Table 3 

Cognitive Ability Tests 

Group/Task Description #Trials 

Time allowed 

DSVB 

Diagramming 

Relationships 

Determine the semantic relationship between three 

nouns and, out of five options, identify the Venn 

diagram that represents it best (Ekstrom, French, 

Harman, & Derman, 1976). 

30 

8 min 

Letter Sets Determine the logical pattern underlying a series of 

letter sets and identify the one set that deviates from the 

four others (Ekstrom et al., 1976). 

30 

14 min 
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Locations Test Determine the logical pattern underlying the spatial 

distribution of crosses spread across rows of dashes and 

select the correct location for placing the next cross out 

of five options (Ekstrom et al. 1976). 

28 

12 min 

RAPM Complete a pattern by choosing the correct piece out of 

eight options (Arthur & Day, 1994). 

28  

15 min 

SH 

Operation Span Memorizing letters while solving simple math equations 

(Unsworth, Heitz, Schrock, & Engle, 2005). 

15 (3 of set 

size 3-7) 

Symmetry Span Memorizing spatial locations while performing a 

symmetry judgement (Unsworth et al., 2005). 

12 (3 of set-

size 2-5) 

Comprehension Follow complex instructions (e.g., "In the following 

digit sequence, count how many times does the digit 7 

appear after an even number"), (Fischman, 1982).  

 

20 

7 min 

Locations Rule finding test - X mark is appearing in several 

location and participant should indicate the next X 

position according to a certain rule. (Ekstrom et al., 

1976)  

14 

6 min 

Choice RT 6-choice RT tasks performed on letters, digits, or shapes 

using arbitrary or non-arbitrary stimulus-response 

mapping (Shahar, Teodorescu, Usher, Pereg, & Meiran, 

2014) 

100 trials 

each 
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NEXT-task A task made on miniblocks.  In each, a novel set of 

instructions for a 2-choice task is presented.  

Afterwards, stimuli are presented in red color, and 

participants advance the screen by pressing a 

predetermined key.  When the stimuli appear in green 

(twice only), participants apply the novel instructions 

(Meiran, Pereg, Kessler, Cole, & Braver, 2015) 

55 

miniblocks 

 

We begin by examining the correlations between Gf, as assessed during pretest, and per-

session scores reflecting success in the training task. 

3. Correlations between Gf and success in the training task 

3.1. Analyses 

The correlations were assessed in two steps. First, using the full sample from each study, 

we assessed Gf by using Bayesian confirmatory factor analysis (BCFA).  We then estimated the 

factor loadings of the training tasks per session using a BCFA variant of extension analysis 

(Dwyer, 1937). This method was required for two reasons.  First, including the per-session scores 

in the pretest BCFA would have changed the meaning of Gf factors by confounding baseline 

ability with person/task related changes. Second, the extension analysis enabled us to use the 

entire sample within each study for the BCFA and not only the relatively smallish (for Structural 

Equations Modeling) sample of each experimental group. Hence, we could obtain a trustworthy 

factor solution with the relatively larger Ns from each study. As each group completed different 

training tasks, we estimated the factor loadings of the session scores separately for each group, 

where the Ns were considerably smaller. The fact that in each one of these within-group per-
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session analyses we only estimated the Session loading partly compensates for the inaccuracy 

associated with estimation based on a small N.  We report a more standard least-squares based 

extension analysis in Supplementary Materials online.  The qualitative conclusions were similar 

in the two sets of analyses.  

In all analyses, we employed the maximal number of participants with non-missing data 

(missing data were rare to begin with). All analyses were performed with R (R Core Team, 

2014). We used the ‘blavaan’ package (Merkle & Rosseel, 2018) for the present analyses and 

used the default priors. We used the ‘psych’ package (Revelle, 2017) for PCA using the 

principal() function, and the ‘bayesboot’ package (Bååth, 2016) for Bayesian bootstrapping to 

determine the 95% credible intervals. 

3.2. Results  

In SH, we estimated Gf using four reasoning tests, two from the pretest and two PET 

scores (Nevo & Oren, 1986, the Israeli SAT, serving as entrance scores for the University) that 

were provided by the participants.  In DSVB we used the four reasoning tests listed in Table 3.  

In both cases, we fitted three measurement models including M1: a single factor solution 

(tentatively labelled Gf); M2: a two correlated factor solution in which the factors were verbal 

and spatial; and M3: a single factor solution, in which the errors of the verbal/spatial tasks were 

correlated. The three models were evaluated using Bayesian Information Criterion (BIC, 

Schwarz, 1978). (Please keep in mind that we were mostly interested in finding a relatively 

reasonable assessment of Gf.) In DSVB, the BIC values were 2140.741, 2147.828, and 

2149.896, for M1 through M3, respectively.  These results favor the single factor solution (M1).  

In SH, the BIC values were 1961.171, 1958.330, and 1964.131, respectively.  Although M1 was 

slightly inferior relative to M2, the difference in BIC corresponds to a Bayes Factor of 4.139 (see 
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Neath & Cavanaugh, 2012, regarding the computation).  Given that (a) were interested in 

estimating Gf, and (b) that Gf has been found to be nearly perfectly correlated with g’, and (c) 

that M2 implies a hierarchical structure (with g’ at the top of the hierarchy) that could not be 

estimated here given the small number of indicators, we adopted M1 as the solution. Table 4 lists 

the factor pattern found in the two studies. The 95% Highest Posterior Density interval excluded 

zero for all loadings (meaning that the hypothesis concerning zero loading is not supported by 

the data).  Given that the tests all involved a significant reasoning aspect, we tentatively describe 

the single factor as Gf. We acknowledge the fact that, given the low loadings of ETS-Locations 

and Comprehension in SH, the single factor in that study is not an ideal estimate of the Gf 

construct, and it may be slightly biased towards PET, seemingly relying on a combination of 

problem-solving and crystalized abilities. 

Table 4 

Factor Pattern (Standardised loadings)   

Task Gf 

loading 

Lower 

HPD 

Upper 

HPD 

DSVB 

Relations .694 .545 .855 

Locations .549 .394 .706 

RAPM .616 .463 .769 

Letters .718 .564 .872 

SH 

Comprehension .369 .161 .579 

Locations .224 .034 .427 
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PET-V .716 .482 .968 

PET-Q .617 .401 .842 

Note. The factor pattern determined with the full sample of each study. Highest Posterior Density 

(HPD) interval is between 2.5% (Lower) and .975 (higher). 

Next, we evaluated how training performance loaded on the single factor. To reduce the 

very few missing values in DSVB (6 in Binding and one in VS), we computed session scores by 

averaging performance across the four training tasks that were included in each session in 

DSVB. Evaluation was based on series of BCFAs.  In each BCFA, there were five variables 

including the four variables used to define Gf, for which the loadings were fixed to those in 

Table 4, with the Session score’s loading being a free parameter.  The results are presented in 

Figures 1 and 2.  

As expected, Gf loadings of WM tasks were generally higher than those of visual search 

tasks which would be expected. In fact, this is actually why the visual search task has been used 

as the active control task (Redick et al., 2013). Importantly, in none of the five groups there was 

a systematic decline in loadings with training progression and the trends were either stable or 

even tended upward.  The only visible exception is the visual-search group in SH where the 

loadings initially declined but then returned to their original level.  
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Figure 1. Session Score Loadings on Gf – DSVB. Bands indicate 95% Highest Posterior Density 

Intervals. VS = visual search.  

 

 

Figure 2. Session Score Loadings on Gf – SH: Bands indicate Highest Posterior Density 

Intervals. VS = visual search; WM = procedural working memory. 

Since the loadings of observed variables might be influenced by reliability, we decided to 

estimate the reliability of the Session scores.  For this purpose, we correlated a given Session 
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score with that of the next Session score, with the correlation representing retest reliability, 

yielding k-1 reliability estimates for each study (k being the number of sessions).  Figures 3 and 4 

present these estimates (credible intervals were assessed using Bayesian bootstrapping with 

1,000 samples).  As can be seen, the reliability of Session scores was nearly perfect in DSVB 

while in SH it was moderate.  Additionally, in the visual-search group in SH, it showed a slight 

upward trend especially across the initial sessions.  Given the fact that the loadings of that group 

showed the opposite pattern in that range, this pattern of loadings is not easily explained as 

reflecting a change in reliability.  To summarize this analysis, the results show that the trends of 

the Gf loadings probably do not reflect changing reliability.  

 

Figure 3. Retest Reliability of Session Scores – DSVB: Each Reliability Estimate is the Pearson 

Correlation between the Given Session’s score and that of the Next Session.  Bands represent 

95% Credible Intervals estimated using Bayesian bootstrapping with 1,000 samples.  VS = visual 

search. 



INDIVIDUAL DIFFERENCES IN WORKING-MEMORY TRAINING 21 

 

Figure 4. Retest Reliability of Session Scores – SH: Each Reliability Estimate is the Pearson 

Correlation between the Given Session’s score and that of the Next Session.  Bands represent 

95% Credible Intervals estimated using Bayesian bootstrapping with 1,000 samples.  VS = visual 

search; WM = procedural working memory. 

To gain insight as to why the upward trend in Gf loadings occurred in DSVB, we used a 

novel method that capitalized on the fact that each session in DSVB involved four different 

tasks. Specifically, we assessed the similarity of the rank-ordering of the individual differences 

across the four tasks of a given session. To this end, we conducted a PCA on the four scores and 

examined the eigenvalue of the first unrotated component, which reflects the proportion of 

shared variance across the four scores. Given that there were four tasks, the maximal possible 

eigenvalue was 4. As illustrated in Figure 5, the results indicate that the individual differences in 

the four training tasks of each group became increasingly similar to one another with training 

progression, with non-overlapping credible intervals between the first and last session indicating 

a relatively clear-cut result. 
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Figure 5. The degree of similarity of individual differences (Eigenvalue, EV, maximal value is 4) 

across the four training tasks in DSVB as a function of Session.  Bands indicate 95% credible 

intervals estimated using Bayesian bootstrapping with 1,000 samples. VS = visual search. 

3.3. Summary 

To summarize, despite differences between studies, one conclusion emerges: We did not 

observe a pattern of decreasing Gf loadings of the WM training tasks.  Instead, we either found 

stability (SH) or even an increasing trend (DSVB).  Actually, there was no systematic decrease in 

loadings even in visual-search training.  It is unlikely that these trends emerged as a result of a 

change in the reliability of the Session scores, given the near perfect reliability in DSVB and the 

opposite-to-predicted trend in SH.  Last, we were able to show that the individual differences in 

the four training tasks used in each group in DSVB became increasingly similar over the course 

of training. 

Our next section addresses the quasi-simplex pattern of correlations. 

4. Quasi-Simplex 

4.1.Analyses  
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The quasi-simplex was evaluated by computing the mean correlation (through Fisher’s Z 

transformation, using the relevant functions in the ‘psych’ package, Revelle, 2017) between 

session scores as a function of the temporal distance between the sessions.  

4.2. Results 

Figures 6 and 7 visualize the quasi-simplex. The maximal possible distance between 

sessions was 19 (between Sessions 1 and 20) in DSVB and 11 (between Session 1 and Session 

12, the last session in one of the cohorts in that study) in SH. In this analysis, more correlations 

are averaged for the short distances than for the long distances, of course (e.g., in SH, for 

Distance = 1 these were the correlations between Sessions 1-2, Session 2-3 etc., i.e., 11 such 

pairs; however, for Distance = 11 it was only one correlation).  This should not systematically 

change the size of the correlations but should influence the stability of the estimates.  Indeed, the 

credible intervals are narrower for the shorter temporal distances.  As before, credible intervals 

were assessed by using Bayesian boostrapping with 1,000 samples. 

Most importantly, the results from all groups in both studies show a clear reduction in 

correlations between session scores with increasing temporal distance between the sessions.  This 

is seen in the fact that the mean correlation in the last sessions fall clearly outside the 95% 

credible interval of the first sessions and vice versa.  Note that the fact that the quasi-simplex 

replicates across studies is not influenced by the difference in the number of training sessions.  

Specifically, in DSVB, the mean correlation at Distance = 11 (the maximal distance in SH) and 

Distance = 1 falls outside the credible interval of one another, thus supporting the hypothesis that 

the mean correlation has changed. In summary, the results clearly indicate a quasi-simplex 

pattern in the correlations matrices. 

 



INDIVIDUAL DIFFERENCES IN WORKING-MEMORY TRAINING 24 

 

 

Figure 6. Quasi-simplex pattern - DSVB. Mean Pearson correlation between session scores 

(Mean_r) as a Function of the temporal distance between sessions. Bands indicate 95% credible 

intervals estimated using Bayesian bootstrapping with 1,000 samples. VS = visual search.  

 

Figure 7. Quasi-simplex pattern - SH. Mean Pearson correlation between session scores 

(Mean_r) as a Function of the temporal distance between sessions. Bands indicate 95% credible 
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intervals estimated using Bayesian bootstrapping with 1,000 samples. VS = visual search; WM = 

procedural working memory.  

5. General Discussion 

In the present work, we reanalyzed results from two published training studies. Our goal 

was to test individual-differences predictions associated with a hypothesis (H1) for explaining 

the discrepancy between robust improvements in WM training tasks coupled with absent or 

nearly absent far transfer effects to Gf.  According to H1, Gf and WM share cognitive processes, 

but this sharing of processes declines in the course of training because participants develop task-

specific skills that reduce the WM demand of the training task.  H1 predicts a quasi-simplex 

pattern combined with a declining pattern of Gf loadings of the per-session WM-training scores. 

Our results indicate a robust quasi-simplex pattern, as predicted. In other words, the 

correlations between per-session scores declined with increasing temporal distance between the 

sessions, indicating a gradual change in the rank-ordering of individuals.  Contrary to the 

predictions of H1, however, we observed stability or even an increase in the Gf loadings of the 

per-session scores of the training tasks.  Such a trend could potentially reflect changes in the 

reliability of the per-session scores, but this was not the case here.  We additionally found that 

with training progression, the four training tasks in DSVB became similar to one another in their 

individual differences. Below we consider two post hoc hypotheses (H2 and H3) that account for 

these results. 

According to H2, the bulk of evidence for shared processes between WM and Gf is 

correlational rather than reflecting causation and, thus, is open to alternative explanations. One 

alternative explanation is that Gf and WM performance both reflect executive attention, but 

differ in the specific emphasis imposed by their specific respective tasks, with WM tasks taxing 
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primarily maintenance and Gf tasks mainly demanding disengagement (Shipstead et al., 2016). 

In that scenario, the stable or even increasing Gf loadings of WM performance over the course of 

training could indicate that WM task practice leads to less reliance of the trained tasks on 

maintenance and a shift to stronger reliance on executive attention. To explain the lack of 

transfer we observed in SH and DSVB, we would then need to assume that executive attention 

was not trained, or the transfer tasks employed at posttest are not sensitive enough to pick up the 

improvements.   

Another alternative explanation is that the correlations reflect common factors having a 

biological basis that contribute to the development of these abilities rather than common 

cognitive processes (Garlick, 2002).  Specifically, Garlick suggests that the ability to form new 

synapses will help in the development of many skills even when these skills do not have any 

cognitive processes in common.  He actually suggested that this hypothesis reconciles the 

apparent contradiction between two lines of evidence.  One comes from the neuropsychological 

literature, indicating that brain damages may cause highly circumscribed deficiencies.  The other 

comes from research on intelligence, showing that all cognitive abilities are positively correlated. 

To appreciate this point concerning lack of causal relation, take for example a similar 

correlation in another domain: Individual differences in the grip strength of the right arm are 

highly (in the .90s) correlated with those in the left arm (Hanten et al., 1999).  Nonetheless, this 

does not lead to a clear prediction that training the right-hand grip would have a substantial 

influence on the strength of the left-hand grip. Instead, the intuitive prediction is that there would 

be hardly any transfer. Following this line of reasoning, improving performance in WM-tasks is 

not expected to (strongly) affect Gf.  It is expected to influence performance in similar yet 

untrained WM tasks, however (Harrison et al., 2013).  Notably, H2 contrasts with some classic 
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task analyses (e.g., Carpenter, Just, & Shell, 1990) indicating cognitive-process sharing between 

Gf and WM tasks.  Nonetheless, H2 gains support from more recent empirical work. 

Specifically, Salthouse and Pink (2008) showed that the pattern of correlations between WM and 

Gf did not follow the trend expected based on the shared-process idea, namely that the WM-Gf 

relation was independent of WM task demands (i.e., the correlations were roughly equally high 

for low-load and high-load WM items). 

Figure 8 presents a structural model that describes H3, another post-hoc hypothesis that 

integrates the findings.  According to H3, success in the training task in a given session is 

determined by both g’/Gf and specific abilities (S1-Sk).  The contribution of these abilities 

gradually changes, as reflected in the fact that the specific ability in a given session is influenced 

by the specific ability in the preceding session but also by new abilities.  Importantly, it is 

possible (perhaps even likely) that the new abilities that keep coming into play are not abilities 

that resulted from training, but instead, are pre-existing abilities demanded by the newly 

developed skill and which were not required beforehandi.   

What would S1-Sk may be?  We provide some speculations below.  The two first 

suggestions are related to the hypothesis that participants develop task specific skills that may be 

described as ‘strategies’.  Indeed, most participants in DSVB reported having used at least some 

strategy by the end of training. One suggestion regards a task-specific skill involving the 

retrieval of previous solutions from memory.  Relying on this skill implies a potential 

contribution of individual differences in the rate and fidelity in which previously stored solutions 

can be used towards task performance. This ability may therefore be one of the specific abilities 

in Figure 8.  Another ability involves whether one has identified the abstract common 

denominator in the four training tasks given to each group in DSVB.  Thus, the ability to identify 
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a common denominator and make use of this knowledge could be another specific ability.  Such 

ability may also explain the pattern of increased shared variance among the training tasks in 

SDVB.  It might also explain the trend of increasing Gf loadings seen in that study, given the 

definition of intelligence as reflecting, among other things, the ability to understand complex 

ideas (Neisser et al., 1996), which in the present case is the abstract common denominator among 

the training tasks.   

Our third speculation regarding the nature of S1-Sk is success motivation.  This trait 

might influence individual differences at relatively late stages of training.  Specifically, 

researchers who run relatively lengthy WM training studies are familiar with the fact that 

compliance with the training protocol demands commitment and motivation, and if serious steps 

are not taken, dropout rates may be high.  In the present studies, dropout rates were quite small.  

Nonetheless, it is conceivable that some of these participants who stayed in the study despite a 

wish to leave it may have nonetheless lost their success motivation and performed poorly.  Since 

success motivation may contribute to success on intelligence tests (Duckworth, Quinn, Lynam, 

Loeber, & Stouthamer-Loeber, 2011), it is conceivable that what differentiated between 

successful and less successful participants became gradually more motivation-related with 

training progression.  In an initial attempt to examine this motivation hypothesis, we took 

advantage of the fact that, in DSVB, motivation was assessed by self-reports.  However, the 

correlations between motivation and task success were generally very low, and more importantly, 

did not show the expected systematic gradual increase with training progression (see 

Supplemental Online Materials).   

The fact that the Gf loadings remained stable (or even tended to increase) in the course of 

training does not contradict the hypothesis outlined in Figure 8, since Gf explained up to about 



INDIVIDUAL DIFFERENCES IN WORKING-MEMORY TRAINING 29 

50% of the true variance in Session scores (Figure 1, DSVB).  This figure of ~50% is based on 

the estimated loadings coupled with lack of evidence for meaningful reliability attenuation of 

these loadings.  Specifically, one correlate, Gf was a latent variable and hence not contributing to 

reliability attenuation.  The other correlate(s) were the Session scores that were nearly perfectly 

reliable.  Given that the estimated loadings reached up to ~.70, this implies ~50% shared reliable 

variance.  Most importantly, this further implies that there were about 50% of reliable variance 

are explained by specific abilities, such as task-specific skills.  

 

 

Figure 8: A post-hoc interpretation of the results.  Session 1 till Session k represent success 

scores in the training task in the respective session.  S1, S2.. Sk represent specific (non-Gf) 

abilities.  NS=New Specific Ability.  See text for details. 

Before discussing some broader implications, we note several shortcomings of the 

present work.  Perhaps the most serious shortcomings include the fact that Gf was poorly 
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operationalized in SH, and the relatively small Ns as compared to usual applications of Structural 

Equation Modeling.  Another obvious limitation concerns the fact that we studied two specific 

training methods, and whether the conclusions extend to other training protocols is something 

that should be tested in future studies. 

In DSVB, we found a trend for increasing Gf loading in all the three groups.  

Furthermore, in that study, the results clearly supported the absence of training-related 

improvements in Gf. We therefore suggest that a better interpretation of the results is that with 

increasing training, the pre-existing individual differences in Gf became more visible, i.e., high 

Gf possibly contributed to the identification of a common abstract principle across four training 

tasks.  This suggestion is in line with the positive relationship between initial ability and rate of 

improvement over training (Guye, De Simoni, & von Bastian, 2017). Such a trend supports in 

turn a recent criticism of “correlated gains” analyses that are sometimes used to support WM 

training efficacy (Tidwell, Dougherty, Chrabaszcz, Thomas, & Mendoza, 2014).  Specifically, 

according to correlated-gains, success in far transfer is inferred from the fact that participants 

who showed large improvements in the training task also tended to show increased pre-to-post 

improvement.  The criticism of correlated-gains analysis is precisely that individual differences 

in gains merely reveal pre-existing ability differences. Our results add another aspect to this 

criticism.  Specifically, gain scores are based on subtraction (e.g., success in the last training 

session minus that in the first training session). Such subtraction may be justified if the session 

scores reflected the same makeup of abilities. However, the quasi-simplex shows this is not the 

case, making the difference difficult to interpret.  A recent study (Sabah, Dolk, Meiran, & 

Dreisbach, 2018) indeed shows that examining training gains leads to paradoxical results, 
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whereby groups who have not showed improvement during training showed less near-transfer 

costs than groups who improved during training. 

Perhaps the most important implication is that the present results point to the possibility 

that the attempt to improve Gf by improving WM rests on an assumption (regarding sharing of 

cognitive processes between Gf and WM) that is at best, unwarranted.  We wish to emphasize the 

fact that we do not argue against the attempt to improve WM, which is worthwhile in its own 

right.  We only suggest that the hope for such distant transferability that would reach Gf may 

prove unrealistic. 

In conclusion, the present work addressed the question why WM training fails (or nearly 

fails) to transfer to Gf tasks.  Re-analyses of results from two training studies indicate stable 

pattern or even an increasing pattern of Gf loadings with training progression. We additionally 

found that the correlations between session scores on the training task declined with increasing 

temporal distance between the sessions, reflecting a quasi-simplex pattern.  These results 

contradict our a-priori H1: the hypothesis that WM training fails to generalize to Gf because 

performance on the training tasks gradually becomes less Gf-related. In fact, our findings point 

to the possibility that no such cognitive process-sharing exists in the first place (H2 and to some 

extent also H3). This conclusion suggests that the attempt to improve Gf through improving WM 

may be doomed to fail because it rests on unwarranted assumptions.  
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i The fit of the model presented in Figure 6 to the data could be estimated by using 

Structural Equations Modeling, for example.  However, these analyses require much larger 

samples than we had, typically exceeding N = 200, which is why we had to settle for less direct 

analyses. 

                                                 

 


