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Abstract.

This study investigates the impact of halogens on atmospheric chemistry in the tropical troposphere and explores the sensi-

tivity of this to uncertainties in the �uxes of halogens to the atmosphere and the chemical processing. To do this the regional

chemistry transport model WRF-Chem has been extended, for the �rst time, to include halogen chemistry (bromine, chlorine

and iodine chemistry), including heterogeneous recycling reactions involving sea-salt aerosol and other particles, reactions of5

Br with volatile organic compounds (VOCs), along with oceanic emissions of halocarbons, VOCs and inorganic iodine. The

study focuses on the tropical East Paci�c using �eld observations from the TORERO campaign (January-February 2012) to

evaluate the model performance.

Including all the new processes, the model does a reasonable job reproducing the observed mixing ratios of BrO and IO,

albeit with some discrepancies, some of which can be attributed to dif�culties in the model's ability to reproduce the observed10

halocarbons. This is somewhat expected given the large uncertainties in the air-sea �uxes of the halocarbons in a region

where there are few observations of seawater concentrations. We see a considerable impact on the Bry partitioning when

heterogeneous chemistry is included, with a greater proportion of the Bry in active forms such as BrO, HOBr and dihalogens.

Including debromination of sea-salt increases BrO slightly throughout the free troposphere, but in the tropical marine boundary

layer, where the sea-salt particles are plentiful and relatively acidic, debromination leads to overestimation of the observed BrO.15

However, it should be noted that the modelled BrO was extremely sensitive to the inclusion of reactions between Br and the

VOCs, which convert Br to HBr, a far less reactive form of Bry . Excluding these reactions leads to modelled BrO mixing ratios

greater than observed. The reactions between Br and aldehydes were found to be particularly important, despite the model

underestimating the amount of aldehydes observed in the atmosphere. There are only small changes to Iy partitioning and IO

when the heterogeneous reactions, primarly on sea-salt, are included.20
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Our model results show that the tropospheric Ox loss due to halogens is 31%. This loss is mostly due to I (16%) and Br

(14%) and it is in good agreement with other estimates from state-of-the-art atmospheric chemistry models.

1 Introduction

Reactive halogens cause ozone (O3) destruction, change the HOX (HO2 + OH) and NOX (NO2 + NO) partitioning, affect

the oxidation of VOCs and mercury, reduce the lifetime of methane, and take part in new particle formation (Chameides and5

Davis, 1980; von Glasow et al., 2004; Saiz-Lopez and von Glasow, 2012). Halogen species are known to play an important

role in the oxidising capacity of the troposphere. The atmospheric oxidation capacity is to a large extent determined by the

hydroxyl radical (OH), O3 and their budgets and cycling; globally most tropospheric OH is found in the tropics (Bloss et al.,

2005). Therefore a quantitative understanding of the composition and chemistry of the tropical marine atmosphere is essential

to examine the atmospheric oxidative capacity and climate forcing.10

In the troposphere, reactive halogen species catalyse ozone destruction cycles:

O3 + X ! XO + O 2 (R1)

HO2 + XO ! HOX + O 2 (R2)

HOX + hv ! OH + X (R3)

where X= Cl, Br, I.15

Numerical models predict that reactive halogen compounds account for 30% of O3 destruction in the MBL (von Glasow

et al., 2002b, 2004; Saiz-Lopez et al., 2015; Sherwen et al., 2016b) and 5-20% globally (Yang et al., 2005; Saiz-Lopez et al.,

2015, 2012a; Sherwen et al., 2016b). Up to 34% of O3 loss is calculated to be due to I and Br combined in the tropical East

Paci�c (Wang et al., 2015). In the past, tropospheric halogen chemistry has been studied using a number of box models and

1D models (Sander and Crutzen, 1996; von Glasow et al., 2002a; Saiz-Lopez et al., 2006; Simpson et al., 2015; Lowe et al.,20

2009; Sommariva and von Glasow, 2012). Currently, there are several global models that have been used to study tropospheric

halogens (Hossaini et al., 2010; Ordóñez et al., 2012; Saiz-Lopez et al., 2012a; Fernandez et al., 2014; Saiz-Lopez et al., 2015;

Sherwen et al., 2016b; Schmidt et al., 2016). However, there are only a few regional models that have studied tropospheric

halogens. Chlorine chemistry was implemented into the WRF-Chem model (Lowe et al., 2015; Li et al., 2016) and into the

CMAQ model (Sarwar et al., 2014) to study the formation of nitryl chloride (ClNO2) from the uptake of dinitrogen pentoxide25

(N2O5) on aerosols containing chloride. Moreover, bromine and iodine chemistry was implemented in CMAQ in Gantt et al.

(2017) and Sarwar et al. (2015), where the impact of iodide-mediated O3 deposition on surface ozone concentrations was

studied, and in the recent work of Muñiz-Unamunzaga et al. (2017), that concluded that oceanic halogens and dimethyl sul�de

(DMS) emissions need to be included into the regional models to accurately reproduce the air quality in coastal cities.

Oceanic emissions provide Very Short Lived Halocarbons (VSLH) to the atmosphere, mainly in the form of bromoform30

(CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). Once in the atmosphere, VSLH (and their degradation prod-
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ucts) can ascend into the lower stratosphere (LS) where they can contribute to the inorganic bromine (Bry ) and lead to ozone

depletion. Several emissions inventories for the VSLH have been evaluated at a global scale (Bell et al., 2002; Ziska et al.,

2013; Ordóñez et al., 2012; Hossaini et al., 2013; Lennartz et al., 2015). Lennartz et al. (2015) presents a comparison of two

simulations using the chemistry climate model EMAC. The �rst simulation computes the oceanic emissions online, mainly

driven by the surface water concentrations and modelled meteorological variables, and the second uses prescribed emissions.5

These results reveal that calculating the air-sea �uxes online leads, in most cases, to more accurate atmospheric mixing ratios

in the model in comparison with the simulation using prescribed emissions. Emissions of inorganic iodine compounds (HOI

and I2) have been recognised as a signi�cant source required to reproduce iodine oxide (IO) measurements over the open ocean

(Mahajan et al., 2012; Carpenter et al., 2013) and have been included in some global models (Saiz-Lopez et al., 2014; Sherwen

et al., 2016b).10

There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related.

Model calculations suggest aldehydes are an important sink for bromine atoms and hence compete with the formation of BrO

(Br + O3 ! BrO). This illustrates a link between the cycles of halogens and OVOCs in the marine atmosphere (Sommariva

and von Glasow, 2012; Toyota et al., 2004).

Recent studies have highlighted the key role that heterogeneous chemistry plays in explaining observations of BrO and IO15

abundances in the tropical troposphere. Cycling of Br and I through HOBr, BrNO3, HOI and INO3 is very slow in the gas-

phase, making it necessary to include heterogeneous reactions to reproduce observed BrO and IO abundances (von Glasow

et al., 2004; Saiz-Lopez et al., 2015; Sherwen et al., 2016a). Another source for reactive inorganic bromine in the troposphere

is the release of bromine radicals by oxidation of bromide in sea-salt, known as debromination. This source has been included

in several atmospheric models (Yang et al., 2005; Parrella et al., 2012; Ordóñez et al., 2012; Schmidt et al., 2016; Long et al.,20

2014). However, this process is poorly understood and its inclusion into the models can cause inconsistent levels of bromine

species (Schmidt et al., 2016).

Atmospheric models remain largely untested due to lack of �eld observations of halogen species. However, during the last

few years there have been four campaigns that provided vertically resolved measurements of halogen radicals: the Tropical

Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO; Volkamer et al., 2015; Wang25

et al., 2015; Dix et al., 2016), the CONvective TRansport of Active Species in the Tropics (CONTRAST; Pan et al., 2017;

Koenig et al., 2017), the Coordinated Airborne Studies in the Tropics (CAST; Harris et al., 2017) and Airborne Tropical

TRopopause EXperiment (ATTREX; Jensen et al., 2017).

The main objective of this study is to investigate the atmospheric chemistry in the tropical East Paci�c with a focus on

reactive halogens using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem; Grell et al., 2005)30

and �eld data from the TORERO campaign (Volkamer et al., 2015; Wang et al., 2015). Our reaction mechanism in WRF-Chem

is based on the MOZART-4 mechanism (Emmons et al., 2010; Knote et al., 2014) and has been extended to include halogen

chemistry. Heterogeneous recycling reactions have been included into the model, along with oceanic emissions of relevant

VOCs and halocarbons. The observational data is described in Sec. 2. Model developments are described in Sec. 3. The model

3
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setup and the description of different sensitivity runs are in Sec. 4. The results of the model performance are discussed in Sec.

5. The last section summarizes the conclusions of this work.

2 Observational data

The TORERO campaign (Volkamer et al., 2015; Wang et al., 2015), from 15 January to 1 March 2012, was used to evaluate the

model. Data on halocarbons are available from the TORERO ship cruise (Andrews et al., 2015) and �ights, whilst observations5

of O3, BrO, IO and oxygenated VOCs (OVOCs) are available from the �ights. The TORERO cruise aboard the NOAA RV

Ka'imimoana (KA-12-01) took place from Honolulu, HI, to Puntarenas, Costa Rica, between 27 January and 1 March 2012.

BrO and IO were further measured aboard the NSF/NCAR GV aircraft with typical detection limits of 0.5 pptv for BrO, and

0.05 pptv for IO (Volkamer et al., 2015; Dix et al., 2016). 13 �ights provide O3 data and 16 �ights provide BrO and IO data.

Fig. 1 displays the location of all the observational data with an orange line for the cruise track, red lines for the �ights in the10

tropics and green lines for the �ights in the sub-tropics.

3 Model description

WRF-Chem (Grell et al., 2005) is a highly �exible community model for atmospheric research where aerosol-radiation-cloud

feedback processes are taken into account. Version 3.7.1 is used in this study.

3.1 Oceanic �uxes15

The oceanic emission of inorganic iodine (HOI and I2) follows the deposition of O3 to the surface ocean and reaction with

iodide (I� ) (Carpenter et al., 2013). We use Eqs. 19 and 20 in Carpenter et al. (2013) for the calculation of these emissions.

Ocean surface I� is parameterized using MacDonald et al. (2014) (see Fig. S1 in the supplementary information). Fig. 2 shows

the average oceanic emission for inorganic iodine (I2 in the left and HOI in the middle panels) during January and February

2012. Higher emissions for inorganic iodine occurs in the tropics with HOI being the dominant species.20

Two different approaches for the marine emissions of the halocarbons (CHBr3, CH2Br2, CH3I, CH2BrCl, CHBrCl2, CHBr2Cl,

CH2I2, CH2IBr and CH2ICl) are examined in this model. The �rst approach uses prescribed monthly average oceanic �uxes

from Ziska et al. (2013) and the second computes the oceanic �uxes online. Computing the emissions online accounts for an

interaction between the modelled atmosphere and the ocean at each time step. Thus, this approach can respond to changes in

meteorological parameters, like surface temperature and surface wind speed. The two-layer model (Liss and Slater, 1974) is25

used to calculate the halocarbons air-sea �uxes:

F = � K a � (Cg � K H � C l ) (1)

where Ka is the transfer velocity of the gas (s� 1), Cg (ppm) and Cl (nM) are the bulk gas and liquid-phase concentrations and

KH is the Henry's law constant. Ka is parameterized following Johnson (2010) which is mainly a function of wind speed and

4
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sea surface temperature (SST) taken from the model at each time-step. Cg is also taken from the model. Halocarbon sea-water

concentrations Cl are taken from Ziska et al. (2013). Fig. 3 shows the average air-sea �uxes for CHBr3, CH2Br2 and CH3I

during January and February 2012 for the two approaches. Note that, the online calculation could increase, decrease or even

reverse the �uxes in comparison with the prescribed emissions. This is the case for the online �uxes of CHBr3 over the tropics

where the model calculates negative �uxes whereas the prescribed �uxes are positive.5

Recent studies suggest that the ocean is an important source of OVOCs (Coburn et al., 2014; Lawson et al., 2015; Mahajan

et al., 2014; Myriokefalitakis et al., 2008; Sinreich et al., 2010; Volkamer et al., 2015) that the models do not consider or are

not able to capture (Millet et al., 2010; Sherwen et al., 2016a). Thus, oceanic �uxes of several VOCs have been included into

the model. The same online approach is done for three OVOCs (acetaldehyde (CH3CHO), ethanol (C2H6O) and methanol

(CH3OH)) where their sea-water concentrations are taken from Yang et al. (2014). Emissions for alkenes and alkanes (C2H4,10

C3H6, C2H6, C3H8) are prescribed and based on the POET (Granier et al., 2005) global inventory.

Deposition over the ocean for the halocarbons and OVOCs is included in the air-sea �uxes described above. For the rest of

the species, dry deposition is calculated with the Wesely scheme (Wesely, 1989), which is used over land for several species.

Washout of gases by precipitation is simulated using the scheme included in WRF-Chem (Grell and Dévényi, 2002; Zaveri

et al., 2008) which was modi�ed to include the Henry's law constants for the halogens shown in Table 1.15

The sea-salt aerosol emissions parameterization used in this study is described in Archer-Nicholls et al. (2014). This param-

eterization is mainly a function of wind speed from the model.

3.2 Gas-phase chemistry scheme

Our reaction mechanism is based on the MOZART-4 mechanism (Emmons et al., 2010; Knote et al., 2014). This mechanism

has been extended to include bromine, chlorine and iodine chemistry and has been coupled with the MOSAIC 4-bin aerosol20

module (Zaveri et al., 2008). A total of 48 species and 159 halogen reactions have been included (see Tables 2, 3 and 4

for details). Most of these reactions come from the 1D model MISTRA (Sommariva and von Glasow, 2012) which includes

inorganic, organic and inter-halogens reactions. Production and loss reactions of the higher order of iodine oxides (I2OX , where

X=2,3,4) reactions have been included into the model. Photochemistry of I2OX species is still an aera of high uncertainty in

atmospheric iodine chemistry (Sommariva et al., 2012; Saiz-Lopez et al., 2012b). Chemical loss of VSLH through oxidation25

by the hydroxyl radical (OH) and by photolysis is included using data from Sander et al. (2011b).

A schematic representation of the main bromine and iodine chemistry implemented in the model is shown in Fig 4. Chlorine

chemistry is also included into the model, however, since our results are mainly focused on reactive bromine and iodine, we do

not include chlorine chemistry in Fig 4.

Photolysis reactions included in the mechanism are listed in Table 4. To compute the photolysis rates the Fast Tropospheric30

Ultraviolet-Visible (FTUV) online scheme (Tie et al., 2003) is used. The quantum yields and cross section for the photolytic

reactions of halogens are from JPL 10-6 (Sander et al., 2011b) and have been linearly interpolated onto the 17 bins used by

FTUV. For I2OX we use the quantum yield and cross section data from Gómez Martín et al. (2005).

5
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3.2.1 Halogens and VOCs reactions

Reactions between halogens and VOCs can be important for regulating reactive halogen chemistry in the MBL by promoting

the conversion of Cl and Br atoms into HCl and HBr or more stable organic halogenated intermediates. The oxidation of

methane (CH4), formaldehyde (CH2O), acetaldehyde (CH3CHO), methanol (CH3OH), methyl hydroperoxide (CH3OOH),

methylperoxy (CH3O2), ethane (C2H6), ethene (C2H4) and propene (C3H6) by Cl is included in the chemical mechanism. In5

addition, the oxidation of CH2O and CH3CHO by bromine is also included in the chemical mechanism. A simpli�ed version

of the chemical scheme presented in Toyota et al. (2004) for reactions of bromine with alkenes is included:

Br + C 2H4 + O 2 ! BrRO2 (R4)

Br + C 3H6 + O 2 ! BrRO2 (R5)

where BrRO2 is a brominated peroxy radical.10

The decay of BrRO2 is de�ned as:

BrRO2 + NO ! xHBr + (1 � x)Br + CH 3CO3 + NO 2 + 0 :5CH2O + HO 2 (R6)

BrRO2 + CH 3O2 ! xHBr + (1 � x)Br + CH 3CO3 + HO 2 + CH 2O (R7)

BrRO2 + HO 2 ! BrOR + H 2O (R8)

The decay of BrOR is de�ned as:15

BrOR + OH ! 0:5(xHBr + (1 � x)Br) + 0 :5BrRO2 + 0 :5OH + 0:5CH3CHO (R9)

BrOR + h� ! xHBr + (1 � x)BrOH + HO 2 + CH 3CO3 + 0 :5CH2O (R10)

where BrOR is a brominated organic specie andx is a number between 0 and 1.

Reaction rates for these reactions and deposition velocities are taken from Toyota et al. (2004). Kinetic data for these

reactions is poor, and the partitioning of the products (HBr/Br) is not clear. Based on the Toyota et al. (2004) description, it is20

assumed thatx = 0 :2 such that the partitioning for HBr/Br is 1/4 (Toyota, pers. comm., 2017).

3.3 Heterogeneous chemistry

Heterogeneous reactions on particle surfaces involving halogens are summarised in Table 5. The heterogeneous chemistry is

assumed to take place between a gas-phase species and an adsorbed species. Uptake coef�cients are used to calculate �rst-order

rate constants for heterogeneous loss of the gas-phase to the adsorbing surface (Jacob, 2000). Thus, the reaction rate constants,25

K (s� 1), are given by:

K =

4

� S � A (2)

6
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where is the uptake coef�cient, S is the root-mean-square molecular speed (m s� 1) and A is the total available aerosol

surface area density (cm2 cm� 3). Second-order reaction rate constants are calculated by dividing the �rst-order rate constant

by the concentrations of the adsorbed species. Heterogeneous halogen activation is very ef�cient under cold or stratospheric

conditions as compared to moderate temperatures. For this reason, we have made a distinction between moderate (> 243.15

K) and cold temperatures (< 243.15 K) in some reactions. Uptake coef�cients for reactions in Table 5 are based on literature5

values where available (Jacob, 2000; Sander et al., 2006; Ordóñez et al., 2012).

Bulk aqueous phase chemistry in sea-salt aerosols is not treated in this study. Instead, we use a free molecular transfer regime

approximation following McFiggans et al. (2000), where the reaction rate is the �rst-order rate constant computed as described

above. There are 6 reactions implemented for sea-salt particles. The sea-salt surface area is calculated in the following way: 1)

using the mass of Na and Cl and the associated H2O for each bin and the individual dry densities (for Na, Cl and H2O) the total10

volume of those particles for each bin is calculated and then, 2) assuming that sea-salt aerosols are spheres, the total surface

area is calculated for each bin using this volume and the radius of aerosols in each bin.

It is known that the chemistry involving the release of bromine from the sea-salt aerosol is strongly pH dependent, being

more ef�cient for acidi�ed aerosol especially with a pH < 5.5 (Keene et al., 1998). For this reason, we apply a pH dependence

for debromination reactions in sea-salt considering two cases: when the pH > 5.5 and when the pH < 5.5. The pH value of15

the aerosol particles is calculated in the model for each size bin (see Zaveri et al. (2008) for further description of the pH

calculation). Thus, the following debromination reactions in sea-salt are only considered if the pH < 5.5:

BrNO 3 ! 0:6Br2 + HNO 3 (R11)

BrNO 2 ! 0:6Br2 + HNO 3 (R12)

HOBr ! 0:6Br2 (R13)20

INO3 ! 0:5IBr + 0 :5ICl + HNO 3 (R14)

INO2 ! 0:5IBr + 0 :5ICl + HNO 3 (R15)

HOI ! 0:5IBr + 0 :5ICl (R16)

When the pH > 5.5 the following reactions are considered:

INO3 ! 0:5I2 + HNO 3 (R17)25

INO2 ! 0:5I2 + HNO 3 (R18)

HOI ! 0:5I2 (R19)

These reactions change the iodine speciation and add a net source for bromine if the marine aerosol is acidic.

7
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Due to the high uncertainty in the debromination process, the fraction of Br2 formed on reactions R11-R13 was chosen

arbitrarily in order to add an extra bromine source in a simple way. A value of 0.6 was chosen. Fig. 2 shows the column-

integrated �uxes for inorganic bromine (Br2, right panel) during January and February 2012.

In addition, the heterogeneous uptake of N2O5 onto aerosol particles that contain Cl� to form ClNO2 is considered in the

model (see Lowe et al. (2015) for further description).5

4 Model setup

The model is set up with a horizontal grid spacing of 30 km x 30 km and 30 vertical layers up to 50 hPa. Simulations that

study the oxidation of VOCs by Br over the tropical area (described in Sec. 4.1) are performed with more vertical layers than

the standard case in order to capture the vertical mixing in this area. Thus, 52 vertical layers up to 50h Pa are used in this case.

The meteorological initial and lateral boundary conditions were determined using the ERA-Interim (Dee et al., 2011) data and10

the meteorology was reinitialized every 3 days to reproduce the observed transport. Chemical initial and boundary conditions

(IC/BCs) are from the global atmospheric model GEOS-Chem described in Sherwen et al. (2016b). We conducted WRF-Chem

simulations for January and February 2012 covering the TORERO domain (see Fig. 1). We performed a spin-up of 20 days.

Table 6 describes the main con�guration of the model.

4.1 Sensitivity studies15

Eight different simulations were performed in this study. Our base simulation, WRF-DEBROM, considered all main processes

involving halogen chemistry (sea-salt debromination, heterogeneous chemistry and reactions between halogens and VOCs) and

computes the oceanic halocarbons �uxes online. The WRF-ZIS simulation is the same as WRF-DEBROM but uses prescribed

oceanic emissions for the halocarbons. To account for the importance of the debromination in sea-salt particles, we run WRF-

NODEBROM which is the same as WRF-DEBROM simulation but without debromination. WRF-NOHET simulation is the20

same as WRF-NODEBROM but without heterogeneous chemistry. A simulation with no halogen chemistry, WRF-NOHAL,

is performed to study the effect of halogens on the tropospheric chemistry. All simulations except WRF-NOHAL use IC/BCs

from the GEOS-Chem model that include halogens. WRF-NOHAL simulation uses IC/BCs from the GEOS-Chem model with

no halogen chemistry. Finally, to study the oxidation of VOCs by Br three simulations have been performed: 1) a simulation

without the reactions of bromine reactions with alkenes (WRF-NOALKE), 2) a simulation without the reactions of bromine25

with aldehydes (WRF-NOALD) and �nally a simulation without the reactions of bromine with VOCs, therefore neither alkenes

nor aldehydes (WRF-NOVOCS). See Table 7 for a summary of all these simulations.

8
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5 Model results

This section presents the model evaluation with observations of relevant trace gases. The model output is sampled at the nearest

timestamp and grid box to the measurements. An ocean mask neglecting grid-boxes above land was applied to compute all

model results.

5.1 Oceanic emissions: Halocarbons5

Fig. 5 shows the time series of CHBr3 (top-left panel), CH2Br2 (top-right panel) and CH3I (bottom-left panel) mixing ratios

(in ppt) for the WRF-ZIS (green line) and WRF-DEBROM (black line) runs. In addition, the modelled wind speed (black line)

is also shown in Fig. 5 (bottom-right panel). Measurements for the halocarbons and wind speed are represented by the solid

red lines. Fig. 6 presents the time series of CHBr3, CH2Br2 and CH3I water concentration (in pmol/L) from the measurements

(dashed red lines) and from the Ziska et al. (2013) climatology (dashed blue lines) used to compute both the prescribed and10

online �uxes.

In general, both simulations reproduce the concentrations of the halocarbons to the right order of magnitude, although there

are speci�c periods with a negative bias. We see a tendency to underestimate CHBr3 for both model simulations during most

of the period. This result is similar to the study of Hossaini et al. (2016) who compared eleven global models using different

emissions inventories. The majority of the models do not reproduce the observed concentrations in the tropical marine boundary15

layer. Over the tropics, high emissions observed are associated with tropical upwelling and active planktonic production (Class

and Ballschmiter, 1988; Atlas et al., 1993). One reason for low CHBr3 concentrations in our model simulations might be that

the sea-water concentrations are too low in this area (see Fig. 6 for CHBr3) and then the �uxes are also low (see Fig. S2 in the

supplementary information). Note that Ziska et al. (2013) used only a very limited amount of data to compute the sea-water

concentration for the halocarbons in a our domain, giving uncertainty in this input data when the �uxes are calculated. CH2Br220

is in good agreement with the observations despite a negative bias (� -0.5ppt) between days 6-10 and 22-25 of February for both

simulations. Bromocarbon concentrations in WRF-DEBROM agree better with the measurements, where the bias is decreased

for speci�c periods (e.g. 20th February for CHBr3 and 10th and 22nd February for CH2Br2) in comparison with WRF-ZIS.

Moreover, the differences in correlation coef�cients between simulations are: 0.48 and 0.3 for CH2Br2 and CHBr3 in the case

of WRF-ZIS and 0.65 and 0.43 for CH2Br2 and CHBr3 in the case of WRF-DEBROM. Modelled CH3I concentrations show25

a similar trend to the observations, although, like the bromocarbons, both simulations present a negative bias during speci�c

periods (days 6-10 and 18-28 of February). This underestimation is more prominent in the WRF-DEBROM simulation. One

reason for that could be that the wind speed from WRF-Chem is lower than the wind speed used to calculate the prescribed

emissions, producing lower online �uxes. The correlation coef�cients changes for CH3I, where 0.19 is calculated for the

WRF-ZIS and 0.40 for the WRF-DEBROM simulation.30

Speci�c periods of negative bias for both simulations demand further attention. A possible explanation for the underestima-

tion in halocarbon atmospheric concentrations might be due to the input data (e.g. wind speed, SST, sea-water concentration)

that we used to compute these �uxes. In the case of the online �uxes, between days 6-8 of February the model underestimates
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wind speed and this is directly accompanied by an underestimation for all three halocarbons atmospheric concentrations. Ziska

et al. (2013) demonstrate that changes in the input parameters, especially wind speed and SST, affect the �uxes calculation.

The same study suggests that CH3I emissions are mainly in�uenced by variations of the wind speed. Moreover, the study of

Lennartz et al. (2015), that uses the same sea-water concentration as our study, suggests that the negative bias in the modelled

atmospheric concentrations could indicate regions where the sea-water concentration from the climatologies lacks hotspots,5

thus, missing an oceanic source regions. This is clearly seen for the sea-water concentrations of CHBr3 (during most of the

period), CH2Br2 (peaks around 15th February) and CH3I (peaks around 20th February) used in this study that seem to be too

low in comparison with the observations (see Fig. 6). More data on the sea-water concentrations of these halocarbons in this

region are required to better constrain the oceanic �ux data sets available to models and so to improve the representation of

these gases in the atmosphere.10

5.2 Gas phase and heterogeneous chemistry: bromine and iodine partitioning

Fig. 7 compares model results sampled along 16 �ight tracks with the observations for BrO (ppt) separating tropical from sub-

tropical �ights for the three simulations WRF-NOHET, WRF-NODEBROM and WRF-DEBROM. Results indicate that there

is an improvement of the modelled BrO throughout the troposphere in both the tropics and subtropics when the heterogeneous

chemistry is included in both tropics and subtropics.15

In the subtropics, higher values of BrO are found in altitudes ranges 11-13 km due to the lower altitude of the tropopause.

Some data points in this altitude range will be in the lower stratosphere. There is really good agreement with the observations

particularly in the middle and upper troposphere where the model is able to capture the higher values of BrO. Within the model,

aerosols over the subtropical area tend to be alkaline, thus, BrO does not increase in this area when sea-salt debromination is

included. Over the tropics, where the aerosol is more acidic, elevated BrO is seen with the inclusion of the debromination20

(WRF-DEBROM) in the MBL where the sea-salt aerosols are mostly located (see emissions of Br2 in Fig. 2). Debromination

improves the simulation of BrO concentrations in the middle troposphere although it excessively increases BrO levels up to 1

ppt in the MBL. This overestimation is also seen in other modelling studies that include this process (Schmidt et al., 2016).

Signi�cant uncertainties still exist in sea-salt debromination processes and the parameterisations used here might be too simple

to represent them.25

In addition, the conversion of BrO to HBr is dominated by the reaction between Br and VOCs, such that the BrO overestima-

tion seen in the MBL could be reduced if the modelled aldehydes concentrations increase (discussed in section 5.3). However,

a reduction in the debromination would also reduce BrO concentrations. Thus, in order to capture the BrO concentrations in

the MBL the right balance between these two chemical processes is needed. BrO is underestimated in the model by 1 ppt in

the upper troposphere over the tropics. The breakdown of bromocarbons, such as CHBr3, contributes to BrO concentrations30

in the UT, thus, a good representation of bromocarbons is needed. CHBr3 is underestimated in the middle and upper tropo-

sphere especially over the tropics (see Fig. S3 in the supplementary information). The reason for that could be a combination

of different factors: underestimation of the boundary conditions used in this study for CHBr3, underestimation in the oceanic

�uxes (see Fig. S2 in the supplementary information) and overestimation of the loss rates. Moreover, an underestimation in the
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heterogeneous chemistry or uncertainties in the reactions between the halogens and VOCs (discussed in section 5.3) can also

contribute to the underestimation of BrO in the UT over the tropics.

Fig. 8 shows the vertical pro�le distribution for inorganic bromine (Bry in ppt) for the three simulations WRF-NOHET (left

panels), WRF-NODEBROM (middle panels) and WRF-DEBROM (right panels) over the subtropics (top panels) and tropics

(bottom panels). Inorganic bromine concentrations increase with altitude with a maximum of 8 ppt at 14 km in the subtropical5

area for all three simulations. This re�ects the lifetime of the bromocarbon species that breakdown and release Br in the UT and

LS. Over the tropical area, inorganic bromine concentrations have a peak in the middle troposphere at 6 km and then decrease

until 12 km then start to increase again. A big impact on the vertical Bry partitioning is seen between the three simulations.

With the inclusion of the heterogeneous chemistry, there is a decrease of HBr and an increase of more reactive species: di-

halogens (BrCl, Br2 and BrI) and BrO. HOBr increases and BrNO3 decreases in the UT due to BrNO3 hydrolysis. Over the10

tropics, Bry increases in the MBL (� 4ppt) when debromination is included (WRF-DEBROM). This enhancement is seen for

all inorganic species with a maximum in the surface where the concentration of sea-salt aerosols is higher. Over the subtropical

area, little differences are seen between WRF-NODEBROM and WRF-DEBROM.

Fig. 9 compares model results sampled along 16 �ight tracks with the observations for IO separating tropical from sub-

tropical �ights for the three simulations WRF-NOHET, WRF-NODEBROM and WRF-DEBROM. No clear impact is seen15

with the inclusion of the heterogeneous chemistry. At the surface, simulations with heterogeneous chemistry (WRF-DEBROM

and WRF-NODEBROM) have slightly lower IO concentrations than the simulation without heterogeneous chemistry (WRF-

NOHET). The main reason for that reduction is the sink for the iodine oxides (Ix Oy ) included in the heterogeneous chemistry.

Over the tropical region, the model overestimated surface IO. This overestimation might be explained by the higher inorganic

iodine oceanic �uxes in this area. Over the subtropics, IO enhancements observed below 4 km are not captured by the model.20

Some studies suggest that there is abiotic CH3I production when dust contacts seawater containing iodide (Williams et al.,

2007). Implementing this chemistry into the model is out of the scope of this paper and further investigation is needed to ex-

plain whether the production of CH3I enhances the IO concentration or if there are other missing IO precursors. Gómez Martín

et al. (2013) presented an analysis of observations of several gas-phase iodine species observations made during a �eld cam-

paign in the eastern Paci�c marine boundary layer and suggested that the presence of elevated CH3I does not have a big impact25

on the IOx concentrations due to CH3I in the MBL having a long lifetime (� 2 days at the equator). An overestimation of

modelled IO in the UT needs further investigation. This overestimation is similar to other modelling studies Sherwen et al.

(2016a).

Fig. 10 shows the vertical pro�le distribution for inorganic iodine (Iy ) for the three simulations WRF-NOHET (left panels),

WRF-NODEBROM (middle panels) and WRF-DEBROM (right panels) over the subtropics (top panels) and tropics (bottom30

panels). Iy is higher in the MBL where it is emitted, especially in the tropical region, with HOI being the dominant species.

Concentrations start to decrease above the MBL due to the removal of soluble species by the wet deposition. Unlike Bry , we

do not see a big impact on the vertical partitioning distribution of Iy with the inclusion of the heterogeneous chemistry. The

only differences are the Iy decreases in the surface with the inclusion of the heterogeneous chemistry, due to the removal of the

iodine oxides, and the production of more di-halogens in the MBL, specially when debromination is included.35
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5.3 Impact on VOCs

Several VOCs oceanic �uxes have been included in the model (see section 3.2.1) as well as the oxidation of VOCs by halogens.

In order to see the impact of halogen reactions with the VOCs, average loss rates of all organic compounds due to the Cl and

Br families are calculated as % of the total tropospheric losses over the ocean for the WRF-DEBROM simulation. Bromine

accounts for 9.2% of the oxidation of CH3CHO, 1.4% of CH2O, 0.8% of C2H4 and 4.1% of C3H6. Chlorine accounts for5

0.6% of the oxidation of CH3CHO, 0.3% of CH2O, 7.7% of CH3OH, 0.8% of CH3OOH, 0.6% of CH3O2, 35.5% of C2H6 and

10.5% of C3H8.

A sub-set of 9 �ights from the TORERO campaign over the tropics is compared with the WRF-DEBROM, WRF-NOVOCS,

WRF-NOALKE and WRF-NOALD simulations for BrO (ppt) in Fig. 11. Comparisons between WRF-DEBROM and WRF-

NOVOCS simulations show a clear difference (1-4 ppt) throughout the whole troposphere. VOCs play an important role in10

the MBL regulating the reactive halogens. Without the bromine reactions with the VOCs, the model clearly overestimates

BrO in the MBL. In the middle and upper troposphere, where VOCs emitted from the ocean and large forests are transported

by convection, the model underestimates the levels of BrO when these reactions have been considered. The results obtained

indicate that the conversion of reactive into more stable species by these reactions might be too effective in these upper layers

of the model.15

In order to understand which families of VOCs have a higher impact on the BrO concentrations, the oxidation of alkenes and

aldehydes by Br have been studied separately in WRF-NOALKE and WRF-NOALD simulations. Differences between WRF-

DEBROM and WRF-NOALD are seen in the whole troposphere with higher differences in the MBL up to 2ppt, where the

concentrations of both bromine and aldehydes are high. Aldehydes concentrations are underestimated by the model, especially

for CH3CHO, meaning that BrO modelled concentrations would be even lower if the modelled aldehydes concentrations were20

reconciled with the observations. Small differences are observed between WRF-DEBROM and WRF-NOALKE. However,

differences up to 2 ppt between WRF-NOVOCS and WRF-NOALD are clearly seen especially in the MBL.

These �ndings suggest that when aldehyde oxidation by Br is included, BrY is reduced considerable, thus, limiting the

amount of alkenes oxidation by Br (difference between WRF-DEBROM and WRF-NOALKE). However, when the oxidation

of aldehydes is included, there is suf�cient BrY present for the oxidation of alkenes by Br to have an impact on the BrO25

(difference between WRF-NOALD and WRF-NOVOCS).

From this, we concluded that VOCs have an important role in the reactive bromine concentrations and VOCs marine emis-

sions as well as halogen reactions with VOCs need to be included into the models. However, uncertainty still exists in some of

these reactions (see Sec. 3.2.1).

5.4 Impact on O3 and Ox30

Fig. 12 (left panel) presents a comparison of 2 model simulations (WRF-DEBROM, WRF-NOHAL) sampled along 13 �ight

tracks with the observations for O3 (ppb). The model is in line with the observations, capturing the O3 gradient and variability

of data throughout the troposphere. The average difference between the two simulations throughout the troposphere is 6.7 ppb.
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In the MBL, high concentrations of halogens due to ocean emissions destroy O3 and contribute to a negative bias up to 8 ppb.

In the middle troposphere, the model results improve with the inclusion of halogens, where the average bias is reduced from

4. to -2.4 ppb. In the upper troposphere, where the differences between the two simulations are mainly driven by the boundary

conditions used for each simulation, both simulations underestimate the ozone concentrations.

Fig. 12 (middle and right panels) shows the regional effects of halogen chemistry on simulated O3 concentrations at the sur-5

face. Surface mean bias (ppb) and relative mean bias (%) between the simulation with no halogen chemistry (WRF-NOHAL)

and with halogen chemistry (WRF-DEBROM) for the simulation period are presented. We �nd that the regional O3 concen-

trations are reduced between 2-18 ppb, corresponding to 25-70%, with the inclusion of the halogens. Over the tropics, there is

a substantial decrease of O3 (> 8ppb, > 40%). As we see in Fig. 2 and 3, there are high iodine and bromocarbon emissions and

especially high bromine produced from debromination over this area. These destroy ozone and contribute to higher difference10

in O3 concentrations in this area.

The odd oxygen Ox is de�ned as:

Ox = O(3P) + O(2D) + O3 + NO2 + 2� NO3 + HNO3 + HO2NO2 + 3� N2O5 + PAN + MPAN+ ONIT + ONITR+ ISOPNO3

+ PBZNIT + MBONO3O2+ XO + HOX+ XNO2+ 2� XNO3 + 2� OIO + 2� I2O2 + 3� I2O3 + 4� I2O4 + 2� OClO,

where X=Cl, Br and I; PAN= peroxyacetyl nitrate, MPAN= methacryloyl peroxynitrate; ONIT= organic nitrate; ONITR=15

lumped isoprene nitrate; ISOPNO3= peroxy radical from NO3+ISOP; PBZNIT= peroxybenzoyl nitrate; MBONO3O2= peroxy

radical from NO3 + 2 methyl-3-buten-2-ol.

The Ox loss is divided by ozone depleting families (Ox , HOx , NOy , VOCs, Br, Cl and I). Note that to calculate the Ox loss

due to the Ox depleting family we only consider reactions involving O(3P), O(2D) and O3. The average tropospheric vertical

Ox loss grouped by ozone depleting families for the WRF-DEBROM simulation is given in Fig. 13. Table 8 summarises the20

relative contribution of each family averaged at different altitude intervals.

The regional average Ox percentage loss due to the halogens in our model domain is 34%, 18% and 40% in the MBL

(p>900hPa), FT (350<p<900hPa) and UT (350hPa<p<trop), respectively. The MBL Ox loss is in good agreement with Sherwen

et al. (2016b) that reported 33% and Prados-Roman et al. (2015) reported 31%. The tropospheric Ox loss due to the bromine,

iodine and chlorine is 14%, 16%, 1%, respectively. The very fast catalytic reactions of iodine species make the iodine loss25

higher than for bromine and chlorine, especially in the MBL (19%). With the inclusion of the sea-salt debromination, Ox loss

due to the bromine is 14% in the MBL. In the upper troposphere, iodine contributes 21% and bromine 19% to the total Ox

loss. Thus, the overall impact of halogen chemistry on the tropospheric Ox loss is 31%. This value is comparable with other

studies that reported 28% over the tropics (Saiz-Lopez et al., 2015) and 21.4% at the global scale (Sherwen et al., 2016b).

Moreover, our results are in agreement with Wang et al. (2015), that used a box model and concluded that bromine and iodine30

are responsible for 34% of the column-integrated loss of tropospheric O3. The tropospheric Ox loss due to the iodine is higher

than the box model study of Dix et al. (2013), that concluded that the fraction of iodine-induced ozone loss generally is around

10%.
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6 Conclusions

We have presented a regional 3D tropospheric model that includes halogen chemistry (bromine, iodine and chlorine). A com-

prehensive description has been provided for the halogen gas-phase chemistry, the heterogeneous recycling reactions in sea-salt

aerosol and other particles, reactions of Br with volatile organic compounds (VOCs) and the oceanic emissions of halocarbons,

inorganic iodine and several VOCs. It is the �rst time that a halogen chemistry mechanism has been implemented into the5

online WRF-Chem model. Our results provide useful insight regarding the potential importance of reactive halogens in the

tropical marine atmosphere. Field data from the TORERO campaign (Jan-Feb 2012) has been used in the model evaluation.

Two different approaches to compute marine emissions, online and prescribed, for the very short-lived halocarbons are dis-

cussed here. There is an improvement using online �uxes, WRF-DEBROM, in comparison with prescribed �uxes, WRF-ZIS,

especially for CH2Br2 and CHBr3, where the bias is decreased for speci�c periods. During the whole period, an underestima-10

tion is seen for both simulations for CHBr3. This underestimation is similar to other modelling studies, which indicates the

oceanic �uxes for CHBr3 in this region are not well determined. Results indicate that the input data (especially wind-speed and

water concentrations) used in this study to calculate marine �uxes underestimate halocarbon concentrations.

Three sensitivity studies are compared in order to understand the impact of the heterogeneous chemistry for bromine and

iodine species. Results show that the inclusion of heterogeneous chemistry on marine aerosol has a considerable impact on15

the Bry partitioning, increasing reactive species like BrO. An increase of Bry is seen in the tropical MBL when debromination

processes are included, due to the presence of relatively acidic particles. The oxidation of alkenes and aldehydes by bromine

have been studies in three different sensitivity runs. These runs suggest that reactions of bromine with VOCs have a big impact

on the BrO concentrations. The reactions between Br and aldehydes were found to be particularly important, despite the model

underestimating the amount of aldehydes observed in the atmosphere.20

The model shows an overall good agreement for the IO vertical pro�le. Higher modelled concentrations in the surface are

seen over the tropics indicating that inorganic iodine emissions might be too high in this area. The model is not able to capture

the IO enhancements sometimes seen below 4 km over the subtropical area. Unlike, Bry , the Iy partitioning is found to be

relatively insensitive to inclusion of the heterogeneous chemistry.

Halogens constitute 31% of the overall tropospheric Ox loss. This value is comparable with other studies. The tropospheric25

Ox loss due to the bromine, iodine, and chlorine is 14%, 16%, 1%, respectively. The model captures the O3 vertical pro�le in

the free troposphere. However, a negative bias (< 8 ppb) is seen in the MBL, where the oceanic emissions of the halogenated

species are higher. Over the tropics, the regional surface O3 concentrations are reduced between 2-18 ppb with the inclusion

of the halogens.

Large uncertainties in the halogen chemistry still exists: uptake coef�cients in the heterogeneous chemistry, debromination30

process de�nition, photolytic rates (especially for the higher order of iodine oxides), wet scavenging and dry deposition of

halogenated species, the chemical mechanism for the repartitioning of Bry resulting from the reactions of Br with VOCs,

inputs to calculate the oceanic �uxes (e.g. sea-water concentration), etc. Some of these processes counteract each other, e.g.

inclusion of debromination increases BrO, whilst reactions between Br and VOCs decrease BrO, making it dif�cult to assess
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through evaluation against observations of a limited number of chemical species if any one process improves the modelled

representation of the chemistry, or not. More data is required at the process level from laboratory studies along with �eld

observations of, for example, more Bry and Iy species, to better constrain the modelled representation of these processes and

to verify if halogens really do have such a large impact on Ox in the tropical troposphere. This is important given that the

oxidising capacity of this region of the atmosphere has a large impact on the lifetime of many pollutants including methane, a5

key greenhouse gas.
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Figure 1. Flight and cruise tracks from the TORERO campaign (January-February 2012). Cruise track is represented by an light orange line.

Flights are grouped by the following regions: tropical (red lines) and subtropical (green lines). Two different domains where de�ned: domain

to evaluate the cruises (dark orange square) and domain to evaluate aircrafts (green square).
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Figure 5. Time series of CHBr3 (top left), CH2Br2 (top right) and CH3 I (bottom left) mixing rations (in ppt) for the WRF-ZIS (green line)

and WRF-DEBROM (black line) runs during the period of the TORERO campaign in 2012. On the bottom-right, the wind speed (m s� 1) of

the model is shown with a black line. Measurements during the TORERO campaign are depicted with red lines.
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Figure 7. Mean vertical pro�le of BrO (ppt) over the subtropics (left) and tropics (right). An average over 16 �ights of the TORERO

campaign (red line) are compared to the 3 different WRF-Chem simulations: WRF-NOHET (blue line), WRF-NODEBROM (green line) and

WRF-DEBROM (black line). Orange and grey horizontal bars indicate the 25th-75th quartile interval for the observations of the TORERO

campaign and WRF-DEBROM simulation, respectively. Values are considered in 0.5 km bins and the aircraft measurement points for each

altitude is given on the right side of each plot.
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Figure 9. Mean vertical pro�le of IO (ppt) over the subtropics (left) and tropics (right). An average over 16 �ights of the TORERO cam-

paign (red line) are compared to the 3 different WRF-Chem simulations: WRF-NOHET (blue line), WRF-NODEBROM (green line) and

WRF-DEBROM (black line). Orange and grey horizontal bars indicate the 25th-75th quartile interval for the observations of the TORERO

campaign and WRF-DEBROM simulation, respectively. Values are considered in 0.5 km bin and the aircraft measurement points for each

altitude is given on the right side of each plot.
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Figure 13.Regional average percentage contribution of each ozone depleting family to the total tropospheric vertical odd oxygen loss (Ox )

for the WRF-DEBROM simulation.

28

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-903
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 November 2017
c Author(s) 2017. CC BY 4.0 License.



Table 1. Henry's Law constant for relevant halogen species implemented in WRF-Chem. INO2 Henry's law constant is assumed equal to

that of BrNO2 . Iodine oxides ( I2OX ) Henry's law constants are assumed to be in�nity by analogy with INO3 . Virtually in�nity solubility is

represented by using a very large number (2.69� 1015 ).

Species

Henry's Law Con-

stant (H) at 298K

(M atm� 1)

d( lnH )
d(1 =T ) (K) Reference

ClNO3 1 - Sander (2015)

BrNO3 1 - Sander (2015)

INO3 1 - Sander et al. (2006)

HOCl 6.5� 102 5900 Sander (2015)

HOBr 1.9� 103 - Sander (2015)

HOI 4.5� 102 - Sander et al. (2011a)

HCla 7.1� 1015 5900 Sander (2015)

HBra 7.5� 1013 10200 Frenzel et al. (1998); Schweitzer et al. (2000)

HIa 7.43� 1013 3190 Sander (2015); Sander et al. (2006)

BrCl 0.9 5600 Sander (2015)

IBr 2.4� 101 - Sander (2015)

ICl 1.1� 102 - Sander (2015)

BrNO2 3.� 10� 1 - Sander (2015)

ClNO2 4� 10� 2 - Sander (2015)

INO2 3.� 10� 1 - see caption text

I2 2.63 4600 Sander (2015)

Br2 0.8 4000 Sander (2015)

I2O2 1 - see caption text

I2O3 1 - see caption text

I2O4 1 - see caption text
a Effective Henry's law of HX is calculated for acid conditions (pH = 4.5):K �

H (T ) = K H (T ) � (1 + K a
[H + ]

) , where X= Cl,

I or Br andK a = 1 � 109 M is the acid dissociation constant (Bell, 1973).

29

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-903
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 November 2017
c Author(s) 2017. CC BY 4.0 License.



Table 2.Bimolecular and thermal decomposition halogen reactions included in WRF-Chem. These reactions are given in the Arrhenius form

with the rate equal toA � e
� Ea
RT .

Reactions A (cm3 molecules� 1 s� 1) Ea
R (K) Reference

Cl + O3 ! ClO + O2 2.8� 10� 11 250 Atkinson et al. (2007)

Cl + HO2 ! HCL + O2 7.8� 10� 11 620 Atkinson et al. (2007)

Cl + HO2 ! CLO + OH 7.8� 10� 11 620 Atkinson et al. (2007)

Cl + H2O2 ! HCl + HO2 1.1� 10� 11 980 Atkinson et al. (2007)

Cl + H2 + O2 ! HCl + HO2 3.9� 10� 11 2310 Atkinson et al. (2007)

ClO + OH! Cl + HO2 6.8� 10� 12 -300 Atkinson et al. (2007)

ClO + OH! HCl 4.38� 10� 13 -300 Atkinson et al. (2007)

ClO + HO2 ! HOCl 2.2� 10� 12 -340 Atkinson et al. (2007)

ClO + O3 ! Cl + 2O2 1.5� 10� 17 - Atkinson et al. (2007)

ClO + NO! Cl + NO2 6.2� 10� 12 -295 Atkinson et al. (2007)

HCl + OH ! Cl + H2O 1.7� 10� 12 230 Atkinson et al. (2007)

HOCl + OH! ClO + H2O 3.0� 10� 12 500 Burkholder et al. (2015)

Cl + ClNO3 ! Cl2 + NO3 6.2� 10� 12 -145 Atkinson et al. (2007)

ClNO3 + OH ! 0.5ClO + 0.5HNO3 + 0.5HOCl + 0.5NO3 1.2� 10� 12 330 Atkinson et al. (2007)

ClNO2 + OH ! HOCl + NO2 2.4� 10� 12 1250 Sander et al. (2011b)

ClO + ClO! Cl2 + O2 1.0� 10� 12 1590 Sander et al. (2011b)

ClO + ClO! OClO + Cl 3.5� 10� 13 1370 Sander et al. (2011b)

ClO + ClO! 2Cl 3.0� 10� 11 2450 Sander et al. (2011b)

Cl + CH4 ! HCl + CH3O2 6.6� 10� 12 1240 Atkinson et al. (2006)

Cl + CH2O ! HCl + HO2 + CO 8.1� 10� 11 34 Atkinson et al. (2006)

Cl + CH3CHO! HCl + CH3CO3 8.0� 10� 11 - Atkinson et al. (2006)

Cl + CH3OH ! HCl + HO2 + CH2O 5.5� 10� 11 - Atkinson et al. (2006)

Cl + CH3OOH! HCl + CH3O2 + OH 5.7� 10� 11 - Atkinson et al. (2006)
Cl + CH3O2 ! 0.5CH2O + 0.5CO + 0.5H2O + 0.5HO2 +

0.5HCl+ 0.5ClO
1.6� 10� 10 - Burkholder et al. (2015)

ClO + CH3O2 ! Cl + CH2O + HO2 3.3� 10� 12 115 Atkinson et al. (2008)

Cl + C2H6 (+ O2) ! HCl + C2H5O2 7.2� 10� 11 70 Sander et al. (2011b)

Cl + C3H8 (+ O2) ! HCl + C3H7O2 7.85� 10� 11 80 Sander et al. (2011b)

Cl + C3H6 (+ O2) ! HCl + PO2 3.6� 10� 12 Sander et al. (2011b)

CH3Cl + Cl ! HO2 + CO + 2HCl 3.20� 10� 11 1250 Sander et al. (2011b)

CH3Cl + OH ! Cl + H2O + HO2 2.40� 10� 12 12509 Sander et al. (2011b)
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Reactions A (cm3 molecules� 1 s� 1) Ea
R (K) Reference

Br + O3 ! BrO + O2 1.7� 10� 11 800 Atkinson et al. (2007)

Br + HO2 ! HBr + O2 7.7� 10� 12 450 Atkinson et al. (2007)

BrO + OH! Br + HO2 1.8� 10� 11 -250 Atkinson et al. (2007)

BrO + HO2 ! HOBr + O2 4.5� 10� 12 -500 Atkinson et al. (2007)

BrO + NO! Br + NO2 8.7� 10� 12 -260 Atkinson et al. (2007)

BrO + BrO! 2Br + O2 2.4� 10� 12 -40 Sander et al. (2011b)

BrO + BrO! Br2 + O2 2.8� 10� 14 -840 Sander et al. (2011b)

HBr + OH ! Br + H2O 6.7� 10� 12 -155 Atkinson et al. (2007)

BrNO3 + Br ! Br2 + NO3 4.9� 10� 11 - Orlando and Tyndall (1996)

Br + NO3 ! BrO + NO2 1.6� 10� 11 - Sander et al. (2011b)

Br2 + OH ! HOBr + Br 2.1� 10� 11 -240 Sander et al. (2011b)

Br + CH2O ! HBr + CO + HO2 1.7� 10� 11 800 Sander et al. (2011b))

Br + CH3CHO! HBr + CH3CO3 1.8� 10� 11 460 Atkinson et al. (2006)

Br + C2H4 (+ O2) ! BrRO2 1.3� 10� 13 - Atkinson et al. (2006)

Br + C3H6 (+ O2) ! BrRO2 3.6� 10� 12 - Atkinson et al. (2006)
BrRO2 + NO ! 0.2 HBr + 0.8 Br + CH3CO3 + NO2 + 0.5

CH2O + HO2
4.06� 10� 12 -360 Toyota et al. (2004)

BrRO2 + CH3O2 ! 0.2 HBr + 0.8 Br + CH3CO3 + HO2 +

CH2O
1.48� 10� 12 - Toyota et al. (2004)

BrRO2 + HO2 ! BrOR + H2O 7.5� 10� 12 - Toyota et al. (2004)

CH3Br + OH ! Br + H2O+ HO2 2.35� 10� 12 1300 Sander et al. (2006)

CH2Br2 + OH ! 2Br 2.0� 10� 12 840 Sander et al. (2006)

CH2BrCl + OH ! Br + Cl 2.4� 10� 12 920 Sander et al. (2006)

CHBrCl2 + OH ! Br + 2Cl 9.0� 10� 13 600 Sander et al. (2006)

CHBr2Cl + OH ! 2Br + Cl 9.0� 10� 13 600 Sander et al. (2006)

CHBr3 + OH ! 3Br 1.35� 10� 12 600 Sander et al. (2006)

I + O3 ! IO (+ O2) 2.1� 10� 11 830 Atkinson et al. (2007)

I + HO2 ! HI (+ O2) 1.5� 10� 11 1090 Atkinson et al. (2007)

I + NO3 ! IO + NO2 1.0� 10� 10 - Atkinson et al. (2007)

I2 + OH ! HOI + I 1.8� 10� 10 - Burkholder et al., (2015)

IO + HO2 ! HOI (+ O2) 1.4� 10� 11 -540 Atkinson et al. (2007)

IO + NO ! I + NO2 7.15� 10� 12 -300 Atkinson et al. (2007)

IO + IO ! I + OIO 2.16� 10� 11 -180 Atkinson et al. (2007)

IO + IO ! I2O2 3.24� 10� 11 -180 Atkinson et al. (2007)

OIO + NO! NO2 + IO 1.1� 10� 12 -542 Atkinson et al. (2007)
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Reactions A (cm3 molecules� 1 s� 1) Ea
R (K) Reference

OIO + OIO! I2O4 1.5� 10� 10 - Gómez Martín et al. (2007)

IO + OIO ! I2O3 1.5� 10� 10 - Gómez Martín et al. (2007)

I2O2 ! IO + IO 1� 10� 12 9770 Ordóñez et al. (2012)

I2O2 ! OIO + I 2.5� 10� 14 9770 Ordóñez et al. (2012)

I2O4 ! 2OIO 3.8� 10� 2 - Kaltsoyannis and Plane 2008

HI + OH ! I + H2O 1.6� 10� 11 -440 Atkinson et al. (2007)

HOI + OH ! IO + H2O 5.0� 10� 12 - Riffault et al., 2005

INO2 (+M) ! I + NO2 9.94� 1017 11859 McFiggans et al. (2000)

INO3 ! IO + NO2 1.1� 1015 12060 Atkinson et al. (2007)

INO + INO ! I2 + 2NO 8.4� 10� 11 2620 Atkinson et al. (2007)

INO2 + INO2 ! I2 + 2NO2 4.7� 10� 12 1670 Atkinson et al. (2007)

I2 + NO3 ! I + INO3 1.5� 10� 12 Atkinson et al. (2007)

INO3 + I ! I2 + NO3 9.1� 10� 11 146 Kaltsoyannis and Plane 2008

IO + CH3O2 + O2 ! CH2O + HO2 + I + 0.5O2 2.0� 10� 12 - Dillon et al., 2006

I + BrO ! IO + Br 1.2� 10� 11 - Sander et al. (2011b)

IO + Br ! I + BrO 2.7� 10� 11 - Bedjanina et al. 1997

BrO + ClO! Br + OClO 1.6� 10� 12 -430 Atkinson et al. (2007)

BrO + ClO! Br + Cl + O2 2.9� 10� 12 -220 Atkinson et al. (2007)

BrO + ClO! BrCl + O2 5.8� 10� 13 -170 Atkinson et al. (2007)
IO + ClO ! 0.33ICl + 0.67I + 0.33Cl + 0.33OClO +

0.67O2
9.4� 10� 13 -280 Atkinson et al. (2007)

IO + BrO ! Br + I + 0.5O2 3.0� 10� 12 -510 Atkinson et al. (2007)

IO + BrO ! Br + OIO 1.2� 10� 11 -510 Atkinson et al. (2007)

CH3 I + OH ! I + H2O + HO2 2.9� 10� 12 1100 Sander et al. (2011b)
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Table 3. Termolecular reactions for halogens species included in WRF-Chem. The lower pressure limit rate (K0) is given byA0 � ( T
300 )a .

The high pressure limit (K1 ) is given byB0 � ( 300
T )b. Fc describes the fall of curve of the reaction described by Atkinson et al. (2007). Then

the reaction rate (k) is de�ned as K0 [M]/(1+ K 0 [M ]
K 1

) � Fn
c and n as (1+ (log10

K 0 [M ]
K 1

)2)� 1 .

Termolecular reactions A0 a B0 b Fc Reference

Cl + NO2
M! ClNO2 1.8� 10� 31 -2 1.0� 10� 10 -1 0.6 Sander et al. (2011b)

ClO + NO2
M! ClNO3 1.8� 10� 31 -3.4 1.5� 10� 11 -1.9 0.4 Sander et al. (2011b)

Br + NO2
M! BrNO2 4.2� 10� 31 -2.4 2.7� 10� 11 0.0 0.55 Sander et al. (2011b)

BrO + NO2
M! BrNO3 5.2� 10� 31 -3.2 6.9� 10� 12 -2.9 0.6 Sander et al. (2011b)

I + NO M! INO 1.8� 10� 32 -1 1.7� 10� 11 0.0 0.6 Atkinson et al. (2007)

I + NO2
M! INO2 3.0� 10� 31 -1 6.6� 10� 11 0.0 0.63 Atkinson et al. (2007)

IO + NO2
M! INO3 7.7� 10� 31 -5 1.6� 10� 11 0.0 0.4 Atkinson et al. (2007)
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Table 4.Photolytic reactions of halogens included in WRF-Chem.

Photolysis reactions

Cl2
hv! 2 Cl

OClO (+O2) hv! O3 + ClO

HOCl hv! Cl + OH

ClNO2
hv! Cl + NO2

ClNO3
hv! Cl + NO3

ClNO3
hv! ClO + NO2

Br2
hv! 2 Br

BrO hv! Br (+O3)

HOBr hv! Br +OH

BrNO2
hv! Br + NO2

BrNO3
hv! Br + NO3

BrNO3
hv! BrO + NO2

I2
hv! 2 I

IO (+O2) hv! I (+ O3)

I2O4
hv! OIO + OIO

OIO hv! I (+ O2)

I2O2
hv! I + OIO

HOI hv! I + OH

INO hv! I + NO

INO2
hv! I + NO2

INO3
hv! I + NO3

I2O3
hv! OIO + IO

IBr hv! I + Br

ICl hv! I + Cl

BrCl hv! Br + Cl

CHBr3 (+O2) hv! 3 Br

CH3Br hv! Br + CH3O2

CH2Br2
hv! 2Br

CH2BrCl hv! Br + Cl

CHBrCl2
hv! Br + 2 Cl

CHBr2Cl hv! 2Br + Cl

CH2 I2 + (O2) hv! 2 I

CH3 I hv! I + CH3O2

CH2ClI hv! I + Cl + 2 HO2 + CO

CH2 IBr hv! Br + I

34

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-903
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 November 2017
c Author(s) 2017. CC BY 4.0 License.



Table 5.Halogen heterogeneous reactions implemented in WRF-Chem.

Heterogeneous reactions Note Uptake coef�cient

INO3 ! 0.5 IBr + 0.5 ICl + HNO3 Sea salt only if pH < 5.5 0.01

INO3 ! 0.5 I2 + HNO3 Sea salt only if pH > 5.5 0.01

INO2 ! 0.5 IBr + 0.5 ICl + HNO3 Sea salt only if pH < 5.5 0.02

INO2 ! 0.5 I2 + HNO3 Sea salt only if pH > 5.5 0.02

HOI ! 0.5 IBr + 0.5 ICl Sea salt only if pH < 5.5 0.06

HOI ! 0.5 I2 Sea salt only if pH > 5.5 0.06

BrNO3 ! 0.6 Br2 + HNO3 Sea salt only if pH < 5.5 0.08

BrNO2 ! 0.6 Br2 + HNO3 Sea salt only if pH < 5.5 0.04

HOBr ! 0.6 Br2 Sea salt only if pH < 5.5 0.1

I2O2 ! I(aerosol) 0.02

I2O3 ! I(aerosol) 0.02

I2O4 ! I(aerosol) 0.02

ClNO3 ! HOCl + HNO3 Hydrolysis 0.001a/0.01b

BrNO3 ! HOBr + HNO3 Hydrolysis 0.03a/0.8b

ClNO3 + HCl ! Cl2 + HNO3 0.1

ClNO3 + HBr ! BrCl + HNO3 0.1

HOBr + HBr ! Br2 + H2O 0.1

HOBr + HCl ! BrCl + H2O 0.1
a Uptake coef�cient for moderate temperature

b Uptake coef�cient for cold temperatures
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Table 6.Model details and experiment con�guration

Chemistry

Chemical mechanism MOZART-4 (Emmons et al., 2010; Knote et al., 2014)

Halogen chemical mechanism MISTRA (Sommariva and von Glasow, 2012)

Photolysis scheme FTUV (Tie et al., 2003)

Dry deposition Wesely (1989)

Wet deposition Grell and Dévényi (2002)

Biogenic emissions MEGAN (Guenther et al., 2006)

Halocarbons and OVOCs air-sea �uxes Online calculation (Liss and Slater, 1974; Johnson, 2010)

Alkenes and alkanes oceanic emissions POET (Granier et al., 2005)

Sea-salt emissions seas_opt = 4 , Archer-Nicholls et al. (2014)

N2O5 heterogeneous chemistry n2o5_hetchem = 2 , Lowe et al. (2015)

Resolution and Initial conditions

Horizontal resolution 30 km x 30 km

Vertical layers 30 or 52

Top of the atmosphere 50 hPa

Chemical initial condition GEOS-Chem (Sherwen et al., 2016b)

Meteorological initial condition Era-Interim (Dee et al., 2011)

Chemistry spin-up 20 days

Table 7.Summary of all the simulations to investigate the main processes involving reactions between halogen chemistry.

Simulation name Oceanic �uxes Debromination Heterogeneous Br-Alkenes Br-Aldehydes Halogens

WRF-DEBROM Online
p p p p p

WRF-ZIS Prescribed
p p p p p

WRF-NODEBROM Online
p p p p

WRF-NOHET Online
p p p

WRF-NOALKE Online
p p p p

WRF-NOALD Online
p p p p

WRF-NOVOCS Online
p p p

WRF-NOHAL -
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Table 8. Integrated odd oxygen loss rates for each O3 depleting halogen family within the troposphere at different altitude levels: MBL

(surface - 900 hPa), FT (900 hPa- 350 hPa) and UT (350 hPa- Tropopause).

Family MBL FT UT Troposphere

BrOx cycles (%) 14.1 8.7 18.9 13.8

ClOx cycles (%) 0.9 0.6 0.6 0.7

IOx cycles (%) 18.8 9.0 20.6 16.0

Halogen cycles (%) 33.8 18.3 40.1 30.5
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