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a  b  s  t  r a  c t

The analytical  performance  of low  cost  air pollution sensors  under  real-world  conditions  is a key fac-

tor  that  will  influence their future  uses  and  adoption.  In  this  study five  different  electrochemical  gas

sensors  (O3,  SO2,  CO,  NO,  NO2) are  tested  for  their  performance  when challenged with  cross  interfer-

ences  of water vapour  and  other  gaseous co-pollutants. These experiments  were  conducted  under  both

controlled  laboratory conditions  and  during  ambient air  monitoring  in urban background  air at a  site in

York,  UK. Signal outputs  for  O3,  SO2 and  CO  showed  a positive  linear  dependence on  relative  humidity

(RH).  The output for  the  NO sensor showed  a negative correlation. The output  for the  NO2 sensor  showed

no  trend  with  RH.  Potential  co-pollutants  (O3,  SO2, CO,  NO2, NO  and CO2)  were  introduced under  con-

trolled  conditions  using gas  standards  and  delivered  to each  sensor in series  along  with  variable RH.  A

matrix of cross-interference sensitivities were  established  which  could  be  used  to correct  sensor  signals.

Interference-corrected  sensor responses  were  compared  against  reference  observations  over an  18-day

period. Once  cross  interferences  had  been  removed  the  corrected  5 min averaging  data for  O3, CO,  NO  and

NO2 sensors showed  good agreement  with  the  reference techniques  with  r2 values  of 0.89,  0.76,  0.72, and

0.69,  respectively.  The SO2 sensor  could  not be  evaluated  in ambient air  since ambient SO2 was below

the sensor  limit  of detection.
©  2018 The Author(s).  Published  by  Elsevier B.V.  This is an open  access article  under  the  CC

BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Poor air quality is linked to over seven million premature deaths

each year [1] and 96% of urban citizens are exposed to higher levels

of air pollution than is recommended [2]. The public are increas-

ingly aware of the health effects of air pollution but even in  the

most developed cities spatially resolved urban air quality mea-

surements are currently limited. Low cost gas sensors have been

presented as a technology that may  bridge spatial gaps in air quality

observations. Gas sensors take observations into new challenging

environments and offer a  potential means to monitor air  pollution

exposure on a person. [3,4]. Some recent air pollution sensor appli-

cations include the use of commercial semiconducting oxide ozone

sensors for surface O3 monitoring in  a  high spatial density in a val-

ley of New Zealand [5]. The sensor data in  that case were simply

judged to be valid if the data passed three scientific criteria, where

∗ Corresponding author.

E-mail address: pangxbyuanj@163.com (X.  Pang).

no further treatments were conducted to correct those data. As a

result the differences between sensors and reference analysers had

a  standard deviation of 6 ppb in  the field over several months [5].

Portable gas sensors were used to  capture the spatial variability

of traffic-related air pollutants through measurements at 76  sen-

sor sites in a Canadian city [6]. It  was  found that sensors tended to

overestimate the NO2 and O3 concentrations and the sensor data

were corrected based on the correction equations between sensor

and a  reference analyser in fixed-station [6]. A custom, compact,

laser-based methane sensor was  coupled to an unmanned aerial

vehicle to quantify fugitive methane emissions above a  compressor

station of natural gas [7]. Side-by-side intercomparison of the laser-

based CH4 sensor on aircraft and a ground-based reference analyser

showed a  good agreement between the instruments, which implied

that the optical gas sensors would be less interfered by  ambient

environment factors. A black carbon sensor combined with a  smart-

phone with GPS has been employed to  estimate personal exposures

to  residential air pollution and public transportation emissions [8].

The above-mentioned examples show potential applications and

pollutants, but data biases arising from sensors has not been fully

https://doi.org/10.1016/j.snb.2018.03.144

0925-4005/© 2018 The Author(s). Published by  Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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Fig. 1. Schematic diagram of sensor box and the  experimental setup for the performance tests of the sensor box. Panel a:  the photograph of sensor box, panel b: the schematic

diagram  of sensor box with sensor locations and its sampling gas flows, panel c: the experimental setup of sensor box and reference instruments in  air quality monitoring.

described, and this is considered a source of uncertainty that act

currently as a barrier to  more widespread adoption.

A key requirement in  the future development of low cost sen-

sors and related applications is  an appropriate knowledge base

on their performance and their fit to particular purposes [9].  The

rapid rate of technological evolution by  some manufacturers makes

this challenging for the academic community to keep pace with,

since regular updates to sensor technologies occur. Of the vari-

ous classes of gaseous air  pollution sensor being used in higher

specification/higher quality commercial devices, electrochemical

sensors are probably the most common. The potential limitation of

electrochemical gas sensors when used in  ambient air monitoring

is their chemical selectivity to the measurand, and this is  some-

times lower than the existing recognised reference measurement

techniques [10,11]. Previous studies have showed for example a

cross-interference from ambient O3 to certain electrochemical NO2

sensors (NO2-B42, Alphasense, UK) and the baseline responses of

the sensors have been seen to  be  influenced by  meteorological con-

ditions including air  temperature and humidity [12–14]. The degree

of interference from variable atmospheric CO2 when presented as

a co-pollutant to  a  group of O3, SO2, NO, and NO2 sensors was

reported in [11].  Calibration responses of gas sensors tested in  the

lab and in the field have been reported to be often different, with

relationships observed in  the field that are only applicable to  a  par-

ticular location/chemical climatology and also for a limited period

of time [15].

Methodologies that can correct for interferences to sensor

responses in complex real ambient air  are available including

machine learning methods, and through more traditional analyt-

ical regressions of sensor response [9,11,12,16]. Inaccuracies in  gas

sensor detection of air pollution can potentially arise are due to

the diffusion into the sensor cell of other chemicals which may

either generate additional electrical signals or suppress response.

To obtain a more true sensor measure of the target gas requires

an estimation of the cumulative interference signals (both positive

and negative) and their removal from the raw sensor signal [17,18].

In this study the effects of relative humidity and several other

trace atmospheric components including O3,  SO2, CO, CO2, NO and

NO2 on five commonly used electrochemical gas sensors (O3, SO2,

CO, NO, and NO2) were determined as cross-sensitivities in the lab-

oratory. Those sensors were further deployed in an 18-day field trial

alongside with some reference air  pollution apparatus. Using the

cross–sensitivity values we  managed to  correct sensor signals to

eliminate the potential interferences from co-pollutants with the

help of reference instruments.

2. Experimental

2.1. Gas sensors

Five commercially available electrochemical gas sensors were

all purchased from Alphasense Ltd (Essex, UK) CO (CO-B4), O3

(OX-B431), NO (NO-B4), NO2 (NO2-B42) and SO2 (SO2-B4). These

sensors are based on electrochemical reactions that take place

within the sensor between gases and a  certain electrolyte. The elec-

trochemical sensor has working electrode (WE), auxiliary electrode

(AE) and counter electrode (CE). The AE  is used to correct for zero

potential changes. The resulting voltage between WE  and CE is the

signal potential from the target gas measurement. An individual

sensor board (ISB) is  preconfigured for each individual sensor with

fixed zero and electronic gain (sensitivity in voltage/ppb). The cir-

cuit board provides buffered voltage outputs from both WE and

AE  with lowest noise. All  sensors were housed into a homemade

flow cell device (Fig. 1a and b), through which the calibration gas

or ambient air were introduced to the sensor heads simultaneously

under controlled conditions. All gas lines were ¼” (inch) PTFE (Poly-

tetrafluoroethylene) tubing with stainless steel fittings (Swagelok,

USA). A  LM35 temperature sensor (Texas Instruments), a  HIH-4000-

001 humidity probe (Honeywell) and a MPX4200A absolute pres-

sure sensor (Freescale Ltd) was  employed to measure the inline

temperature, relative humidity, and atmospheric pressure, respec-

tively (Fig. 1c). The sensor box was kept inside the laboratory, in

which air temperature was  controlled and stable at 20 ±  1 ◦C dur-

ing the periods of both the laboratory study and the ambient air

monitoring exercise.



676 X. Pang et al. / Sensors and  Actuators B  266 (2018) 674–684

2.2.  Data acquisition

All sensor boards were connected through a  LabJack data-

acquisition (DAQ) device (U6 Series, LabJack Corporation, USA) to

our  in-house designed LabVIEW DAQ software (LabVIEW 2012,

National Instrument, USA) (Fig. 1c). Through this software the WE

and AE potentials of each sensor were monitored and converted

into gas mixing ratios (ppb). The detailed description can be seen

in our previous paper [13].

2.3. Interferences from humidity and cross interferences in air

In this study the influence of humidity on the gas sensors was

initially investigated through testing the variations of sensor WE

and AE potentials in  clean ‘zero air’ at different controlled relative

humidity (RH, 15%, 30%, 45%, 60%, 75% and 80%). A pure air  genera-

tor (PAG003, Eco-physics) was used to create the initially dry zero

air in this experiment. The zero air from the generator contained

less than 10 ppt NO, NO2,  O3, SO2 and CO. The humidity of zero

air was then adjusted to target values using a  dew point genera-

tor (DG-3, Michell Instruments, UK). The period of testing for each

RH set-point varied from 5 min  to  10 min  as shown in Fig. 2 and

after each test period the RH changed in a step-wise manner. The

sensor signals in zero air  were seen to change significantly with

RH variations and these effects were then quantified as a  sensor

cross-sensitivities with the unit of volts/% RH).

The sensors were then calibrated to their target gases, and

simultaneously to the other five co-pollutants, at five different RHs

(15%, 45%, 60%, 75% and 85%). The slopes of those sensor responses

were then used to determine the sensitivities to target gases and the

cross-sensitivities to  the co-pollutants. The mole fractions chosen

for sensor calibrations were:

0, 25, and 50 ppb for CO,

0, 50, 100, 150 ppb for O3,

0, 20, 40, 80, and 160 ppb for NO,

0,  80, 140, 280, and 360 ppb for NO2,

50, 75, 100, 125 ppm for CO2 and,

0, 50, 100, 150, and 200 ppb for SO2.

The different blends of NO, NO2, SO2, CO, and CO2 in zero air

were generated by directly diluting binary standard mixtures at

high mixing ratios (5  ppm NO, 5 ppm NO2, 10 ppm SO2, 500 ppb CO

and 10 ppm CO2) from BOC (Guildford, UK), with zero air using a

gas dilution device (Multi-gas calibrator, S6100, Monitor Europe).

A multi-gas calibrator with an internal O3 generator was  used to

produce O3 gas in air in  different mixing ratios for the sensor cali-

brations.

2.4. Sensors and reference instruments in air quality monitoring

For a comparison of sensors in  external air, samples were drawn

from a building height manifold into reference instruments housed

in the same lab as the sensors. A UV photometric O3 analyser (Model

49C, Thermo Electron Corporation, USA) was used for the reference

measurement for O3.  The calibration of the instrument was  car-

ried out using an Ozone Primary Standard (Model 49i-PS, Thermo

Fisher Scientific Inc., USA), which itself is certified yearly by the

UK National Physical Laboratory (NPL). Reference measurements

for  NOX were made using a  high sensitivity NOX instrument (Air

Quality Design Inc). A more detailed description of the NOX instru-

ment can be found in  a previous study [19]. A SO2-H2S analyser

(Model 450i, Thermo Electron Corporation, USA) was used as the

reference measurement for SO2.  The reference apparatus for CO2

was an SRI 8610C gas chromatograph (Torrance, USA) with a flame

ionisation detector (FID) with a  time resolution of 5 min. The ref-

erence measurements for H2 and CO were by  TA3000R RGD gas

analyser (AMETEK Process Instruments, Swindon, UK). The above-

mentioned reference analysers were the same instruments as those

deployed in the standard gas measurements during the laboratory

experiments of sensor sensitivities and cross-sensitivities.

To evaluate the real-world applicability of the lab-derived cor-

rection factors and sensor performance, the sensors were deployed

for ambient air  quality monitoring alongside the reference instru-

ments during an 18-day monitoring exercise (from 7th to  25th

August 2015). The sampling site was the campus of University of

York, UK and the air  sample was drawn from 10 m above ground

level using a  stainless-steel diaphragm metal bellow pump (Senior

Aerospace, MB302) at a  flow rate of 1.0 L/min to  the gas hood of

each sensor through a ¼”  PTFE tubing. Sensor data and reference

measurement data were averaged to 5-min intervals and evaluated

over the 18-day period.

Average mixing ratios of atmospheric compositions in  ambient

air  measured during the whole campaign period by the reference

methods were 23 ± 12 (average ± SD)  ppb for O3,  1.3 ±  7.2 ppb for

NO, 5 ± 0.2 ppb for NO2, 0.2 ±  0.1 ppb for SO2, 106 ±  24 ppb for CO,

676 ± 161 ppb for H2 and 389 ± 24 ppm for CO2, respectively. The

minute-averaged temperature and the relative humidity in the

sampled air  were 20.2 ± 0.7 ◦C (average ±  SD)  and 59 ± 12.1% (aver-

age ±  SD)  during the field campaign (Fig. 3).

3. Results and discussion

3.1. Interferences to electrochemical sensors

Although ambient temperature is  known to be a major fac-

tor that can affect sensor response performance, in  this study the

effects of temperature are not explored further, and all experiments

are conducted under a single set of controlled conditions. The inline

gas temperatures and sensor body temperatures were both stable

at 20 ± 1 ◦C. As Fig. 3 shows the variation of RH is considerable dur-

ing  two weeks from less than 40% to more than 80% though inline

gas temperature kept at a  fixed value.

3.1.1. Relative humidity effects

Fig.  2a,c,e,g, and i show the electrode voltages of WE and AE

of each sensor when exposed to  zero air in the presence of  vary-

ing RH. These experiments are used to first demonstrate that the

‘zero’ value used for this set of sensors is  not constant, but  needs

adjustment to reflect ambient RH. This is  significant since several

approaches for field calibration of sensors have proposed boot-

strapping ambient sensor measurements to either nearby reference

instruments or the sensor ensemble, but such an approach must

assume a  constant zero value to deliver a  calibration slope. The

resulting signal voltages (WE-AE) of sensors show a  range of rela-

tionship with the RH in sample air, (Fig. 2b,d,f,h, and j as well as

their calibration equations). The slopes of those zero air baselines

to  RH are reported in  the unit of V  (RH%) −1 or mV (RH%)−1.

As an example, Fig. 2a shows the sensor voltages of WE and AE

for the O3 sensor increasing with RH. The increases in WE are sig-

nificantly greater than those of AE, which results in the corrected

sensor zero signal outputs (WE-AE) displaying a positive correla-

tion with RH with R2 of 0.85 (Fig.  2b) and a  slope of 0.56 mV (RH%)
−1. We note that over very short timescales voltages of  WE can

rapidly jump (in the example to 0.26 V from 0.18 V) and then slowly

decrease to  a stable value of 0.22 V over a  period of 60 s during the

initial period of RH change to 30% from 15% (Fig. 2a). In  the ambient

atmosphere, such rapid changes in  RH would not often occur, but

this rate of change could well be experienced if a  sensor was  carried

on a person from outdoors to in, or vice versa.

For  the CO sensor, the voltage of WE  slightly increased to  0.47 V

at RH of 85% from 0.42 V at RH of 15% whilst AE had a  negative rela-

tionship with the RH increment decreasing to 0.31 V at 85% RH from
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Fig. 2. RH effects on the sensor work electrode (WE) and analogue electrode (AE) signals (voltage) for OX-B431O3 (panel a), CO-B4 (panel c), NO-B4(panel e), NO2-B4(panel

g),  and SO2-B4 (panel i) sensors. The approximate relationship (black line) between sensor signal outputs (WE − RE) and RH for OX-B431O3 (panel b), CO-B4 (panel d), NO-B4

(panel  f), NO2-B4 (panel h), and SO2-B4 (panel i) sensors, respectively.

0.34 V at 15% RH (Fig.  2c and d). The sensor signal output, voltage

of (WE-AE), showed a  positive correlation with RH increment with

R2 of 0.90 and a slope of 1.1 mV  (RH%)−1.

For the NO sensor, the AE voltage varied little during the period

of RH variation whilst the WE  voltage gradually decreased with RH

increments from 0.34 V at RH 15% to  0.32 V at RH 85% (Fig. 2e). The

sensor voltage showed a  negative correlation with RH increment

with R2 of 0.56 and a slope of – 0.3 mV  (RH%)−1 (Fig. 2f).  Similar to

the ozone sensor WE  voltages showed rapid short-term drops dur-

ing the initial RH change and recovered to a stable level  in  around

30 s.

For the NO2 sensor, the AE voltage remained constant during

the RH variations. The WE signal output increased significantly in

the first 1 min  of each RH increment and gradually recovered to
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Fig. 3. Measured variations of temperatures and relative humidity (RH) in ambient air during the field campaign from 7 August 2015–25 August 2015. Temperature sensor

was  in a  laboratory.

the stable value (Fig. 2g and h). The voltage of (WE-AE) at RH 15%

was the same as the final value at RH 75% after 20 min  recovery

time indicating that at typical RH values this sensor zero value has

relatively low sensitivity to RH.

For the SO2 sensor, the AE voltage varied little during the period

of RH change while the WE voltage gradually increased with the RH

increments and jumped to a  higher level at the beginning of each

RH increment (Fig. 2i).  The voltage of (WE-AE), showed a  positive

correlation with RH increment (Fig. 2j).

3.1.2. Influences from co-pollutants under controlled conditions

The response of an electrochemical gas sensor to gaseous

species, other than the measurand, can be thought of as a  cross-

sensitivity. Since ambient air is  a  complex and variable matrix it is

essential to quantify any cross-sensitivities and develop strategies

to remove those signals before reporting a  mixing ratio. In this study

the cross-sensitivities of the sensors to five common co-pollutants

are established using a  fixed calibration gas composition containing

the measurand, and then variable quantities of each co-pollutant,

with each experiment then tested at four different RH values.

An ‘ideal’ selective sensor would show no change in response

when presented with a  constant mixing ratio of the measurand

and a vary amount of either co-pollutant or RH, or both together.

As is shown in Fig. 2,  we already anticipate that there will be a

different response for variable RH, so these experiments then test

the additional effects of the co-pollutant.

This type of multi-dimensional experiment generates consid-

erable data, and we only show plots and extended detail for one

sensor, CO. The detailed calibration results for the CO sensor are

shown in Fig. 4. In this experiment the sensor is  exposed to  a  series

of CO mole fractions in zero air, and then co-pollutants to  CO sen-

sor are varied over typical urban values. Fig. 4a is  essentially the

classical calibration plot from which CO sensor sensitivity per ppb

can be derived from the slope. In Fig. 4b CO sensor responds to the

increased mixing ratios of co-pollutant NO2.  The WE value from the

CO sensor increases as the NO2 increases −  an artefact signal. There

is no response of the CO sensor to increasing NO, slight upwards

signals associated with CO2 and  O3,  and a  negative response in  the

presence of increasing SO2. Superimposed different lines are these

cross-interference effects when the co-pollutant experiments are

performed under different RH conditions. In general the behaviours

of  the CO when exposed to  different pollutants are similar in at least

sign, but the y-intercept values vary considerably due to different

RH.

The detailed sensitivities and cross-sensitivities of all sensors

and co-pollutants are summarised in  Table 1 and the calibration

curves were shown in  the figures in supporting material. We  would

stress that the individual sensor sensitivities to their measurand gas

at typical atmospheric mixing ratios is considerably higher than

the sensor cross-sensitivities to other co-pollutants −  typically by

a  factor of between 10–100 times. The exception is for the O3 sen-

sor which shows similar sensitivities to  its target gas O3 and the

co-pollutant NO2–a known phenomenon reported anecdotally by

others[12].

The CO sensor shows small positive responses to O3 and NO2

and negative responses to  CO2 and SO2 whilst demonstrating little

cross-sensitivity to NO (Fig. 4). The SO2 sensor displays some sig-

nificant negative cross-sensitivity to O3 and NO2.  The NO2 sensor

shows high selectivity since it has generally low cross-sensitivities

to  co-pollutants, although at the highest RH values and lower NO2,

elevated urban mixing ratios of CO2 may  induce an artefact sig-

nal. The NO sensor shows negative responses to O3 and NO2 at all

RHs and a  slight positive correlation to CO and SO2.  The O3 sensor

shows similar cross-sensitivities to O3 and NO2, which means NO2

generates a  large interference in  the sensor. The O3 sensor responds

positively to the co-pollutants CO and CO2 whilst negatively to  SO2

and NO. Compared with other three gas sensors, CO and NO2 sen-

sors show higher specificity to their target gases based on their

lower values of cross-sensitivities. It  should be noted the NO2-B42F

series electrochemical sensor is of a particular manufacturing gen-

eration and has since been replaced with the Alphasense NO2-B43F

series sensor which is less prone to this effect. The same type of

caveat can be applied to all sensors − these experiments were con-

ducted using the off-the-shelf devices available at the time, and

later versions may  well have different response characteristics.

3.2. Correction for interferences

Interferences effects from ambient co-pollutants and RH

appears unavoidable with the current generation of electrochem-

ical sensor devices, although may  of course improve with future

technologies. With knowledge of those effects, the next question

is whether they can be removed through co-measurement and

post-processing of data? According to the working principles of

electrochemical gas sensors, the concentration (mixing ratio with

unit of ppb) of target gas has a  relationship with sensor signal and

sensor sensitivity as shown in the equation of Eq. (1) [13].  Sensor

signal is the voltage output from the sensor with unit of V, which
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Fig. 4. CO-B4 sensor sensitivity to  CO: slope of the calibration curve between sensor signal (voltage) and CO mixing ratio (panel a) and its cross-sensitivities for different

exposure  to NO2 (panel b), NO (panel c), CO2 (panel d), O3 (panel e) and SO2 (panel f) gases, and for different RHs of 15%,  30%, 45% and 60%.

is equal to the difference between voltage of working electrode

(WE) and voltage of auxiliary electrode (AE). The sensor signal in

Eq. (2) contains the interfering signals and should be corrected.

The interfering signals from co-pollutants can be eliminated from

the sensor signal as shown in  Eq.  (2), which are calculated by the

products between sensor cross sensitivities with unit of V/ppb to

co-pollutants and the co-pollutant mixing ratios with unit of ppb as

illustrated in Eq. (3).  The amount of co-pollutant species (n)  in  Eq.

(3) is in theory equal to the number of co-existing gaseous species

in the air where the gas sensor is  deployed [11].

(Gas Concentration) =
sensor signal

Sensitivity
=

(WE  − AE)

Sensitivity
(1)

(Gas Concentration)corrected =
(Signal)corrected

Sensitivity

=
(Sensor Signal − Interfering signal)

Sensitivity
(2)

Interferingsignal =

n∑

i=0

MixingRatiocopollutanti ∗ (CrossSensitivity)i (3)

We evaluated the scale of co-pollutant interferences and cor-

rected the raw sensor data by removing the interference signals

through a simple linear correction during the sensor deployments

in  an 18-day campaign of air  quality monitoring. The assumption is

that all interferences act in a  step-wise manner and no non-linear

additive or  suppressive effects occur. The ambient RH (%) was mea-

sured by the humidity sensor while the mixing ratios (ppb) of SO2,

NO, NO2,  CO2, CO and O3, in the ambient air were provided by the

high-quality reference instruments used in  the lab  calibrations.

The cross-sensitivities of each sensor to the co-pollutants are

chosen from the values in Table 1 at the appropriate RH, which is

close to  the ambient RH. The corrected data after the subtraction of

each co-pollutant effect from NO, NO2,  CO, CO2, SO2, and O3 sensors

are shown in Fig. 5.  For  the O3 sensor the raw O3 mixing ratios vary-

ing from 150 to  200 ppb (blue dots in Fig. 5a) are over 5–10  times

higher than the final corrected data, which are  mainly in  the range
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Fig. 5. Corrections of raw data (5-min averages) from OX-B431O3 sensor (panel a), CO-B4 sensor (panel b), NO-B4 sensor (panel c), and NO2-B4  (panel d), based on ambient

air  measurements during a field campaign (from 7 August 2015–25 August 2015).
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Table  1

Sensor sensitivities to their target species (the data in grey shade in table, in units 10−3 V ppb−1) and their cross-sensitivities to  other copollutants (in 10−3 V ppb−1 for  O3 ,

NO,  NO2 ,  SO2 and 10−3 V ppm−1 for CO2) under four different RH  conditions of 15%, 30%, 45% and 60%.

of 20–50 ppb (black dots in  Fig. 5a). The humidity and CO2 were

the predominant interferences to O3 sensor whilst the influence

from ambient NO and NO2 were insignificant (Fig.  5a). For the CO

sensor RH and CO2 were the predominant interferences (Fig. 5b).

In previous study gaseous H2 was found to  be  another important

interference to the CO sensor [9].

For the NO sensor, the corrected data after each correction of co-

pollutant interference increased gradually from the initial estimate

of concentration since the cross-interferences from RH, CO2,  O3 and

NO2 are negative values (Fig. 5c). The uncorrected data from the

NO sensor varied in  the range of −30 to  −10  ppb whilst the final

corrected data increased to  the range of −5 to 10 ppb.

For the NO2 sensor, only CO2 interference was a  major factor.

The CO2 interference for NO and O3 was relatively insignificant.

These can be seen in the corrected data shown in Fig. 5d.

3.3. Comparisons between corrected sensor data and reference

data

The interference-corrected air quality monitoring sensor data is

shown in Fig. 6 (black dots in  panels) alongside with the reference

data (red dots in panels). A linear regression was  applied between

the corrected sensor data, and the reference analyser data and the

scatter plots of their correlation relationships are shown in  Fig. 7

with the regression equations with intercepts and correlation coef-

ficients (R-square). The R-square values imply that  the corrected

data from O3,  CO, NO and NO2 sensors show good consistency with

their reference measurements although the corrected values are

a little lower than those from the reference instruments. The rea-

son for the lower corrected sensor data may  be the baseline of the

sensors decreased gradually with the deployments, which was  not

corrected using this one-time correction method. The sensors may

have to  be corrected regularly with zero air to  recover their base-

lines and standard gases and to check the sensitivities after a  certain

time deployment. The results in Figs. 6 and 7 indicate O3,  CO, NO and

NO2 sensor performances to  be good and perfectly reasonable for

general qualitative air  quality monitoring after these corrections.

The performance of SO2 sensor is  an exception and shown to be

noisy compared with reference data (Fig. 6e).  The SO2 sensor could

not be reasonably evaluated in  the ambient air comparison since

typical UK SO2 mixing ratios in  ambient air  ( < 1ppb) were below to

the sensor detection limit of 5 ppb.

4. Conclusions

A comprehensive evaluation of five electrochemical gas sensors

often used in lower cost air quality monitors was performed using

controlled exposure to co-pollutants in  the lab and in a  side-by-

side ambient air test. The cross-interference from humidity and the

co-pollutants in air on O3,  CO, NO, NO2, and SO2 sensors were quan-

titatively evaluated across a plausible range of mole fractions that

might be found in polluted urban air. The interference sensitivity

from co-pollutants was  typically in  the range 10 −  1% of the mea-

surand under ambient conditions and showed a  range of both signal

enhancing and suppressing effects. For identical co-pollutant and

measurand mixing ratios the effect of different RH was  profound,

often a  much larger effect than the co-pollutant cross-sensitivity.

Using simple linear regressions it was possible to recreate refer-

ence measurements reasonably well when the sensors were tested

side-by-side over an 18-day summer field experiment. The inter-

ference signals from co-pollutants were calculated as the product

of the cross-sensitivities and their mixing ratios and were removed
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Fig. 6. Comparisons between the corrected sensor data (5-min average) (black dots) and the reference data (5-min average) (grey dots) during the 18-day field campaign.

Panel  a: OX-B431O3 sensor and a UV photometric O3 analyser; panel b: CO-B4 sensor and a  TA3000R RGD CO gas analyser; panel c: NO-B4 sensor and a  NOX instrument;

panel  d: NO2-B4 sensor and a reference NOX instrument; panel e: SO2-B4 sensor and a Thermo SO2 Analyzer.
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Fig. 7. The scatter plots of the correlation relationship between corrected sensor data and reference analyser data. The regression equations with intercepts and correlation

coefficients are shown as well in the scatter plots.

from the sensor raw signals. The corrected sensor data for O3,  CO,

NO and NO2 sensors showed good overall agreements with the ref-

erence measurements, however ambient SO2 mixing ratios were

below the sensor detection limit and could not be evaluated. These

results suggest that when used in isolation there remains consid-

erable potential for sensor-reported air pollution mixing ratios to

be  affected by cross-sensitivities to other, often atmospherically

correlated pollutants and to changes in  RH. However, if reference

measurements are available for comparison, for example where

sensors are used to augment an existing urban network, then

corrections can be made. It should be noted that  the correction

approach tested here uses a  single factor for cross-interference

that is applied over a  short and fixed time scale (18 days). We  have

no evidence from these experiments that these correction factors

would hold for longer periods of sensor deployment in the field,

and this is an uncertainty that  needs resolving in  the future.
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