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Abstract  

A 2
2
 full factorial design of experiment is used to investigate the effects of two machining platforms (5-

axis elevated gantry versus 6-axis articulated robotic system) and two cutting tool designs (burr 

versus herringbone) on surface metrics and flexural strength of a 14 ply T300 2x2 carbon fibre 

reinforced polymer. 

A range of areal metrics were considered to characterise the surface with Sal  and Stdi  best 

able to represent differences due to the choice of robotic system or overhead gantry.  The robotic 

system produces coupons with flexural strengths up to 26% higher than the overhead gantry. The 

choice of tool has a less significant effect however machine-tool interactions do play a role in the 

flexural strength.  

Analysis using scanning electron microscopy shows that defects may be obscured by 

smeared matrix which may contribute to overall flexural strength differences.  
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1. Introduction 

Carbon fibre reinforced polymer (CFRP) composites are becoming more prevalent due to their 

superior strength-to-weight and stiffness-to-weight ratios, as aerospace [1-3] and automotive [4, 5] 

industries are pursuing more structurally efficient components in a drive to reduce weight and 

increase fuel efficiency. However, a number of issues remain in CFRP manufacturing, such as the 

difficulty in obtaining the required part tolerances and high cost of process consumables. The 

manufacturing process for CFRPs often necessitates the use of an edge trimming operation around 

the periphery of a net shape to achieve the final part geometry. Processes such as pre-preg layup 

require trimming as the bagging technique causes thickness decreases around the periphery of the 

laminate where the bag forces the edges to become rounded which is unwanted in the final part. In 

addition, the resin transfer moulding (RTM) process such as the one used in this experiment often has 

a fibre gap at the periphery of the press to ensure the fibres do not interrupt the mould seal in addition 

to loose fibres which are not consolidated and need to be removed. The surface generated through 

subtractive machining for CFRPs cannot be empirically determined due to the complexity of 

machining CFRPs and current methods rely on experimental data to provide this information. This 

makes linking machining to surface quality difficult and the basic relationship between the surface and 

the component in-service mechanical performance of the composite are not fully understood. 

Typically, industry has strict tolerances for machined edge quality. For metallic parts there is a 

clear need for a surface roughness measurement due to the link between surface micro-defects and 

failure due to crack propagation [6-10]. Ra, the arithmetic mean of the micro-scale peaks and valleys 

of a surface (see Supplement for a full list of definitions), is most frequently used to measure such 

metallic surface defects [11, 12]. The same Ra measurement parameter has been used for edge 

trimmed CFRP parts due to availability of equipment and understanding of tribological aspects of Ra 

[13]. Montoya, Calamaz, Gehin and Girot [14] note that industry typically require a machined surface 

Ra of 3.2 μm or less for machined CFRP parts. These CFRP parts do not behave in the same way as 

metallic parts due to the use of two differing material phases (fibre and resin) and the combination of 

these in an anisotropic manner, for example in a 2x2 twill, multi-directional laminate. This fundamental 

material difference poses the question of whether Ra is an adequate surface measurement parameter 

and if it is able to correctly capture complex defects that are apparent in edge trimmed components 

such as aircraft engine coverings, fan blades, internal structural members and external shear panels. 
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Recent studies have compared the use of areal 3D versus 2D parameters and found that 3D offers 

more appropriate data whilst also able to fully replicate data given in 2D stylus analyses [15, 16]. The 

high number of parameters available makes the down-selection of a single useful metric more 

challenging but increases the chances of a 3D metric being able to link mechanical properties where 

2D metrics have previously failed.  

The effect on static or dynamic mechanical performance of an edge trimmed composite has not 

been fully explored due to the assumption that composites are able to arrest any crack growth and 

links of either Ra or another surface metric to mechanical properties are not fully understood [17]. In 

one of the few studies to link mechanical performance to surface metrics, Arola and Ramulu [18] 

performed four point bend testing for abrasive waterjet, diamond disc and PCD edge milled CFRPs in 

a [(0/90/45/-45)2(0/90)]s lay-up and found that no bulk strength difference was apparent. However, the 

data presented in this study does show a difference in peak load obtained during bend testing. A later 

study by Arola and Ramulu [19] notes that machining defects are a cause of differing mechanical 

performance with -45° plies being the point of failure within a laminate when flexurally loaded. These 

and other studies [20-24] all note that Ra does not fully characterise the machined edge which offers a 

significant opportunity for further assessment using 3D areal methods to determine if a link between 

surface tolerance and mechanical property can be made. 

Generating different surfaces in terms of Ra has been previously completed using different tool 

geometries [25-30] with most tools having simple geometries such as orthogonal or single helix 

angles compared to available products and those used in industry. The herringbone design is 

intended to direct cutting forces to the centre of the composite instead of directing it towards a single 

edge which can cause significant delamination of the top plies of the laminate [31, 32]. Burr style tools 

are also being introduced to reduce cutting forces and improve feed rates, particularly during roughing 

operations. This experiment will use the complex herringbone and burr tool geometries to present 

more industrially relevant cutting forces compared to orthogonal milling trials and therefore more 

industrially relevant surfaces. 

As more industrially relevant tooling is being considered, it is also necessary to consider more 

industrially relevant machines. If modern robotic machining is to be considered as a replacement for 

traditional elevated gantry style milling machines, there is a clear need to understand the differences 

between the surface tolerances achieved using both methods, and more fundamentally, any 
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differences in mechanical performance of the machined product. Whilst some work has been 

conducted to investigate dimensional errors when machining with robotic machines [33, 34], Slamani, 

Gauthier and Chatelain [35] are the only authors to specifically address the effect of surface 

roughness when comparing surfaces generated from robotic and gantry style machining, noting that 

Ra surface roughness did not differ between machines. The study did not extend to using 3D surface 

parameters which may provide additional information for edge trimmed CFRPs nor assess the effects 

on mechanical performance.  

This paper presents an observation of the effect of two different machines and tools on a range of 

surface metrics which are measured through focus variation and scanning electron microscopy (SEM) 

to observe both surface and sub-surface defects. The edge milled samples are flexurally tested using 

a four point bending rig to observe links between machine stability, tool geometry and hence surface 

metrics on flexural strength. 

2. Method 

2.1. CFRP panel manufacture and characterisation 

Four, 300 x 300 x 3 mm CFRP panels were manufactured by a Hypaject Mk I RTM system with 

diglycidyl-ether-of-bisphenol-F (DGEBF) PY306 epoxy (Huntsman, UK), triethylenetetramine (TETA) 

hardener (Sigma Aldrich, UK) and T300, 2x2 twill, 200gsm, TC3091000 fibres (Sigmatex, UK). The 

DGEBF and TETA were mixed at the specified stoichiometric ratio of 100 parts epoxy to 15 parts 

hardener by mass. 14 plies were stacked symmetrically about the mid-plane in a balanced manner to 

give [((0,90)/(+45,-45))3/(0,90)]s. This lay-up was chosen to provide quasi-isotropic strength 

properties. The RTM mould was coated with 227CE release agent (Marbocoat, UK). 

Mixed resin was drawn into the RTM machine and left under vacuum for 5 minutes to remove 

air from the mixture. The RTM tool was then injected at 2 bar for 30 minutes, 4 bar for 10 minutes, 5 

bar for 10 minutes and 6 bar for 5 minutes. Panels were cured for 2 hours in the mould tool at 60°C 

and then post cured for 2 hours at 130°C following removal from the mould (± 1 °C error). All curing 

used a ramp rate of 2 °C/min. 

Following cure, the CFRP panels were machined into snapshot coupons using an Erbauer 

diamond disc tile saw. These snapshot coupons were then loaded into the edge trimming fixture using 

a randomisation process generated via Minitab from a design of experiment (DOE) where machine 

and tool were set as two-level factors as per Table 1. Eight replicates per machine and tool 
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combination were used within this study with the exception of the ABB, DIA-HBC4 combination where 

9 replicates were used. 

Heslehurst [36] notes that most defects present in composite components appear during the 

manufacturing stage and that any defect starting from material processing will affect the long term 

mechanical performance of the part. In an effort to minimise variables during manufacture, the glass 

transition temperature (Tg), degree of cure, fibre, resin and void content were all measured. This also 

ensures that differences between manufactured panels are known to be at a minimum level. 

A Perkin Elmer Diamond DSC was used to calculate Δh values of each manufactured panel 

to define degree of cure for the resin system. This ensures that the same amount of resin/hardener 

cross-linking has occurred between each manufactured panel which may ultimately effect the strength 

of the material. The resin samples were heated from 30 °C to 300 °C at 10 °C/min and then cooled at 

the same rate. The cycle was repeated to ensure full cure.  

A Perkin Elmer DMA800 machine was used to conduct DMA analysis and provide a tan δ 

derived Tg for each of the three panels. Ensuring a low level of Tg variation across panels is 

important as temperature is known to have an effect on machining properties as noted by Kerrigan 

and O’Donnell [37]. Potentially lower Tg’s may allow more matrix smearing and change cutting forces. 

A three point bend test utilising a free length of 17.5 mm and a width of 5 mm was completed to a 

maximum temperature of 160 °C at a ramp rate of 2 °C/min at a frequency of 1 Hz. 

A single section from each panel was collected to determine fibre, resin and void volume prior to 

machining and to ensure similar content across all panels. The samples were mounted in Epocolor 

resin (Buehler, UK). Samples were polished using a Buehler Automet to the schedule defined in 

Ashworth, Rongong, Wilson and Meredith [38]. Inspection was performed using a Qioptiq Fusion 

optical system with a 5 MP Paxcam camera and Pax-it software to determine fibre, resin and void 

content through contrast analysis of five areas of the sample to give a full thickness account of 

content.  

2.2. Milling equipment 

The 2
2
 full factorial DOE, as shown in Table 1, utilises ‘machine’ as a variable with two levels; the 

MAG Cincinnati FTV5, an overhead gantry style 5-axis milling machine and a floor-mounted ABB 

IRB6660–205/3.1 6-axis robotic system with an adapted spindle referred to as FTV and ABB 

respectively henceforth shown in Figure 1.  



  

6 

 

The FTV uses a HSK63A spindle with a Sandvik Coromant 392.41014-63 40 120B tool holder 

with tool extender and an ER collet. The ABB uses a HSK-50E spindle type with a Nikken HSK50E-

SK16C-120P tool holder and an SK16-6A collet. Milling with both machines was completed using 

conventional milling with parameters recommended as per manufacturer’s instructions given in Table 

2 without coolant and a Karcher 001 NT 35/1 Tact Te H extraction system to remove hazardous dust 

with the extraction nozzle placed locally to capture chip ejection. In order to generate defects the 

manufacturers recommended cutting speed of 100-180 m/min was significantly exceeded. 

2.2.1. Milling machine characterisation 

Static modal tap tests were performed to assess and compare the stability of the FTV and 

ABB machines. A Kistler 8778A500 accelerometer with a sensitivity of 10.390 mV/g was positioned at 

the tip of the tool and a steel tipped Kistler 9726A5000 impulse force hammer with a sensitivity of 

1.125 mV/N was used to strike the tool. A National Instruments NI 9234 data acquisition device (DAQ) 

recorded the input voltages from the accelerometer and impact hammer. MalTf software was used to 

process results and create magnitude versus frequency plots to show the differences in machine 

stiffness. Coherence of 0.8 - 1.0 was obtained for all readings to ensure reliable results, where a 

value of 1 indicates the input (hammer) and output (accelerometer value) is unified. 

2.2.2. Milling tools 

The DOE as shown in Table 1, uses tool as a factor with two factor levels; DIA-BNC (burr 

style) and DIA-HBC4 (herringbone style) diamond coated carbide tools (OSG Corporation, UK). DIA-

BNC is a fine nicked router designed for CFRP trimming with the nick and flute form designed to 

eliminate uncut fibres and delamination. The DIA-HBC4 is a herringbone style router designed for 

high feed rates and excellent surface finishes and features a compression cutting mechanism, which 

neutralises cutting forces in the z axis (the length of the tool) to prevent delamination on both top and 

bottom laminates. The DIA-BNC tool is aimed at roughing operations where high removal rates are 

required whilst the DIA-HBC4 tool is aimed at finishing. Details of the geometry of the tools used for 

full slot milling are given in Table 3. A new tool was used for each machine and in addition, the tools 

were changed after 1.5 m of machining to minimise the effects of tool wear. Whilst 1.5m is well within 

recommended tool change interval of 60m recommended by the manufacturer [39], the effects of tool 

wear have been assessed through ANOVA where cumulative cutting distance (a measurement of the 

linear distance traversed by the tool) is measured against responses ranging from flexural strength 
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and Sa to all other surface metrics used within this experiment. All p-values from this study showed no 

statistical correlation (p-value > 0.05) to cumulative distance travelled by the tool and hence tool wear 

can be deemed as not a factor within this study.  

 The herringbone helix intersection, 6mm from the tool tip, was set to the mid-point of the 

CFRP coupons whilst the burr style was set to cut the CFRP 4mm upwards from the tip of the tool. 

2.2.3. Milling fixture 

A toggle clamp fixture, each with a 300N vertical force loading limit, was used to secure 

snapshot coupons for edge trimming as shown in Figure 2. Two spacers were used to move the 

snapshot coupon into an overhanging position for both edges and to prevent motion in the y-direction. 

A CFRP pad was used between the clamp and the snapshot coupon to distribute the local clamp 

force, preventing coupon motion in the z-direction close to the overhang zone. Movement in the x-

direction is limited by the use of two sliding clamps attached to the fixture by M4 bolts. A dial test 

indicator gauge was used to ensure squareness in the direction of cutting during setup. Following 

trimming of one side, the coupon was removed, rotated by 180° and the second edge trimmed. 

2.2.4. Dynamometer 

To validate spindle speed, feed rate and to calculate a total power value for each machining 

operation, a Kistler 9139AA dynamometer was used to collect force data in the x, y and z direction 

(see Figure 2). The dynamometer was set to a sampling rate of 20 kHz and a 0-1 kN measuring 

range. The dynamometer was connected to a Kistler 5070A12100 8 channel charge amplifier and 

DAQ system. A rigid setup was created by using the fixture clamps to hold the workpiece whilst the 

fixture was attached to the dynamometer by four M10 bolts. The dynamometer in turn was rigidly 

clamped to the t-slot bed of the milling machines. Matlab post-processing was used to compensate for 

dynamometer load cell drift during post-processing. 

Typically cutting/radial and tangential forces can be calculated. For composites this is more 

complex, especially for multi-directional laminates and complex tool geometries with dual and 

opposing helixes due to the need to calculate specific cutting energy coefficients through experiment 

for each of the plies and use mechanistic models to summate these forces [40]. The use of radial or 

tangential forces does not include z force components (along the length of the tool) which are also a 

significant factor when using tools with helix angles which direct forces into the tool axis. An 

alternative used within this experiment to allow for comparison of machines and tools is to calculate a 
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total power value for each cut. This takes the raw force data in the x, y and z direction from the 

dynamometer from start to the end of the cut. A specific algebraic sum of forces (Nm) is calculated as 

the integral of force as a function of distance cut within Matlab. This is then divided by the total 

volume of material removed to provide the total power of the tool and workpiece interaction, UT 

(N/mm
2
). Using this method also has the added advantage of accounting for slight thickness 

variations found in the samples (3.4 ± 0.2 mm) as well as capturing heat elements of work which 

would otherwise not be possible. Whilst a dial test indicator (DTI) has been used to align the cutting 

edge with the cutting axis of the machine, DTI error may result in small amounts of cross-talk in the x 

and y channels of the dynamometer. By capturing all the forces, any cross-talk due outstanding minor 

alignment issues can be ignored. The total power is defined below;                       i 

Where    is the total power (N/mm
2
),        are the forces recorded by the dynamometer (N),   is the 

distance of the cut (mm) and V is the volume of material removed (mm
3
).  

2.3. Post machining assessment 

2.3.1. Focus variation assessment 

Areal surface scanning was conducted using an Alicona InfiniteFocus SL focus variation 

system using 10 x magnification. Exposure was set to 7.25 ms and contrast set to 0.7 with vertical 

resolution and lateral resolution set to 200 nm and 1 μm respectively. A scanning area of 5 x 3 mm 

(complete thickness of sample) was taken (see Figure 2 c)). A λc filter value of 0.8 mm was applied to 

the image before volumetric, spatial, bearing area and autocorrelation textural parameters were 

collected from Alicona IF-Measurement Suite software in accordance with ISO 25178 [41]. λc is the 

cut-off wavelength which determines the amount of waviness removed from the measurement to 

visualise high-spatial frequency roughness parameters. 

As Ra is widely used within industry, a comparison between 2D to 3D data is necessary. In 

addition to more advanced parameter collection using areal techniques, Ra data was collected and 

measured to ISO 4288 [42] and ISO 3274 [43] specifications with a cut-off wavelength of 0.8 mm and 

a tip radius of 5 μm. It is known that taking measurements along the length of each ply of the laminate 

in the direction of cutting, i.e. along only 0, ±45 and 90° fibre directions produces very different 

surface roughness values [15]. Therefore five measurements were taken in the transverse fibre 
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direction across the full thickness of the specimen/transverse to the direction of cutting, incorporating 

all laminate fibre orientations as shown in Figure 2 c) for comparison to Sa values. 

2.3.2. Scanning electron microscopy 

A ThermoFisher Scientific FEI Inspect F SEM was used to assess damage at high 

magnification on the machined edge (see Figure 2 c)). Sputter gold-coated samples were mounted on 

32 mm diameter stubs using Electrodag 1415 silver conducting adhesive (Agar Scientific, UK). A 5kV 

accelerometer voltage and a level 3 spot size were used to view the CFRP material. 

2.4. Flexural testing 

Four point static bending to ASTM D6272 [44] using one half support span was completed for all 

machined specimens using a Tinius Olsen H5K-T tensile/compression test rig to assess differences in 

mechanical performance. Four point bending was chosen based on previous successful attempts to 

link surfaces to mechanical performance [18, 19] whereby a large portion of the edge can be placed 

under loading conditions to exacerbate the edge condition which is due to machine and/or tool. A 

Tinius Olsen 500LC laser extensometer was used to determine mid-point deflection with one half, 

rather than one third, support span used to enable the maximum amount of machined surface to be 

‘active’ and in shear. Flexural modulus was taken as an average of five gradients taken from the load-

displacement curve. As per the specification, individual crosshead rates were used to account for 

minor dimensional differences between specimens. Flexural testing has also been chosen due to the 

small specimen size. It is known that robotic machining can have dimensional tolerance issues [33, 

34] so by limiting the movement of the robot to a small area, large scale dimensional errors can be 

potentially avoided. Flexural strength values are also a function of specimen width and thickness so 

any small dimensional errors produced by robotic machining can be accounted for.  

3. Results and discussion 

3.1. Characterisation of manufactured panels 

DSC results show that a 99.99 % cure was achieved using the given cure schedule. This 

indicates the stoichiometric mixing regime is correct and the DGEBF freely reacts with the TETA 

hardener without a need for additional post curing or chemical additions such as accelerators. 

DMA analysis gives an average tan δ Tg of 115 °C for all four panels with a standard deviation of 

0.63 °C which indicates that the panel manufacturing process is repeatable.  
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Optical microscopy shows that all panels have the correct number and orientation of plies. Table 4 

shows the fibre, resin and void content for all manufactured panels. The void content for all panels is 

low (0.36 % average) which is indicative of the RTM process. 

Overall it has been shown that the manufacturing process has minimised variables in such a way 

to improve panel consistency which reduces errors which could potentially provide misleading 

information during machining and post-processing. 

3.2. Milling equipment 

3.2.1. Static modal tap testing of machines 

Figure 3 shows the frequency versus magnitude plot for the FTV and ABB machines at the 

point of initial tool engagement with the workpiece. There is a clear difference in machine stability 

inferred from the frequency response result shown in Figure 3. Practically this means that the FTV is 

more rigid than the ABB which is expected due to the 3 joints within the robotic system compared to 

the relatively stable overhead gantry about which the FTV machine moves. 

3.2.2. Dynamometer 

Performing an FFT to dynamometer data showed that the correct speed of 14,400 RPM was 

achieved on both platforms. The cutting speed of 271 m/min was confirmed separately by observing 

raw dynamometer forces in the time domain. Figure 4 shows that the average UT for the FTV is higher 

than the ABB machine.  

This suggests that the tool is held more rigidly against the workpiece for the FTV therefore 

more energy can be transferred to the CFRP. This is in agreement with stability analysis that 

demonstrates the FTV enables a more rigid setup than the ABB machine. The graph also shows that 

UT for the DIA-HBC4 tool is higher than the DIA-BNC tool. This fits with the feed per tooth (FPT) 

values of the tools used where the DIA-HBC4 tool FPT is double the DIA-BNC tool. 

In order to establish the significance of measured parameters to factorial responses of 

machine and tool, Minitab has been used to analyse the factorial design against various parameters. 

In order to understand the importance of each variable (UT, Sa, Sq etc.) to the response (machine, 

tool, machine-tool) further analysis has been completed by creating Pareto plots, highlighting the 

relative importance of each response if a relationship to the variable is present. The Pareto 

classification of each variable with respect to machine and tool factors is given in terms of primary, 

secondary and tertiary relationship. 
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The ANOVA for UT with respect to machine, tool and machine-tool interactions is shown in Table 5. 

This shows that there is a statistical link between both machine and tool to UT where machine has the 

primary Pareto effect. This is in agreement with Figure 4 and the above discussions. 

3.3. Post machining assessment 

3.3.1. Focus variation assessment results 

Figure 5 shows depth profiles obtained through focus variation and the sections of tools used 

to cut specimens for each machine. It can be seen that the tools impart their geometries onto the 

surfaces of the CFRP specimens. The DIA-HBC4 tool presents an obvious herringbone pattern on the 

machined surface with an intersection where the two opposing helixes meet. The DIA-BNC tool 

shows bands of teeth which are present only in the ABB machine. This suggests that the reduced 

stiffness of the robotic process not only in the x/y plane but also in z which results in a greater 

opportunity for non-linear trocoidal motion in the tool path. Whilst the stiffness of the robot is known to 

be highly transient when reaching larger points in the working envelope, this result suggests that even 

minor positional changes result in a degree of flexibility. 

As well as imparting the tool geometry on the surface of the CFRP, the images show the 

underlying fibre structure in particular the -45° orientation which is due to the chip formation 

mechanisms involved in machining this fibre orientation which manifests as fibre pull-out seen as low 

areas coloured blue in Figure 5. 

Complete ANOVA results for focus variation assessments are given in Table 6. When 

considering statistical links between variable and DOE factors, only the Sal autocorrelation metric is 

able to statistically determine surface differences due to the machine (p-value = 0.007). Stdi (texture 

direction index) is also able to statistically show differences between machines however this is a 

tertiary Pareto effect and the tool has greater effect on the Stdi parameter (p-value = 0.014). The Stdi 

metric also shows tool and machine-tool factors have larger effects (p-value < 0.001 and 0.007 

respectively).  

As machine is the main contributor to the total power of the edge cut, UT, the Sal metric may 

be able to identify changes in total power. As Sal is a metric which is more biased towards waviness 

changes than smaller scale roughness, it is able to show the difference in the machine stability 

(presented in Figure 3). A higher Sal value means that the surface is dominated by low frequency, 

long wavelength components whereas for a lower Sal value, the opposite is true (high frequency, low 
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wavelength). The FTV has a higher mean Sal value than the ABB (72.50 versus 65.33 µm, 

respectively) meaning that the stiffer FTV 5-axis elevated gantry milling machine generates a lower 

frequency, longer wavelength topography structure compared to the 6-axis articulated robotic ABB 

system, a difference which is statistically significant between the two machines (p-value = 0.007 as 

per Table 6).  

ANOVA results for the machine response also show that Sa, a widely used parameter, is not a 

statistically significant (p-value = 0.928). This 3D metric analysis is in agreement with Slamani, 

Gauthier and Chatelain [35] who note that the 2D measurement, Ra, is not different between the two 

machines used in their study.  The cutting tool and machine-tool combination are statistically 

significant with p-values of 0.004 and < 0.001 respectively. Whilst there is a stability difference 

between the two machines, Sa is not able to differentiate between samples cut by the two machines.  

When visually examined, each tool imparts a different topography (see Figure 5). The results 

in Table 6 confirm that this geometry difference is recognised only by Sa, Sq, Sp, Sv, Sz, S10z, Ssk, Sdq, 

Sdr, Str, Stdi, Svk, Smr1, Smr2, Vvv and Vvc/Vmc parameters (p-value < 0.05).  

In addition to using ANOVA to attain links between the measured surface metrics and the 

DOE factors (Table 5 and Table 6), linear regression analysis has been completed to provide links 

between UT and flexural strength responses to measured surface metric variables (Table 7) where 

machine and tool groups are combined.  

Table 7 shows that for UT, the surface metrics Sz, Ssk, Sku, Sal, Spk, Smr1, Vmp and Vvc/Vmc have 

p-values < 0.05, showing a statistical link between the total power generated and the given surface 

metrics. Sz, an extreme parameter that notes the average of the five highest peaks and five lowest 

valleys, decreases as total power increases. This suggests that there are less extreme peaks and 

valleys on the machined surface as power increases. Sku, the Kurtosis, also decreases with an 

increase in power suggesting less sharpness in the overall peaks and valleys of the surface 

topography. The Sz and Sku responses are shown in Figure 6. All other responses increase as power, 

UT, increases. 

An analysis of 2D versus 3D parameters for ABB machined coupons elucidated that the 2D 

parameters show the same trend as the 3D parameters, for example the DIA-BNC tool provides a 

rougher surface with a higher Sa and Ra than the DIA-HBC4 tool. It is noted that 3D parameters give 

larger values than the 2D counterparts (Table 8) which is expected due to the increase in measured -
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45° fibres which have a chip formation method that leaves very rough surfaces. A traditional stylus 

would not be able to capture the full amount of damage present due to its limited tip size and the 

direction of measurement which could potentially fail to capture the roughness in -45° fibres. Sa and 

Sq give similar results to Ra and Rq whilst other amplitidue parameters, S10z, Sp and Sv give much 

larger differences (from 142 to 208 % increases) indicating a higher sensitivity to spatial features such 

as sections of removed fibre. As the 3D parameters take into account the full specimen thickness 

across a 5 mm width and the 2D evaluation is taken from an average of five readings taken normal to 

the fibre direction across the full thickness of the specimen, the data demonstrates that the 3D value 

is more representative of the surface and the 2D measurements underestimate the surface roughness 

which aligns with findings of previous literature by Duboust et. al. [15]. 

If Sa were to be widely adopted by industry as a replacement for Ra, the acceptable limit 

should be increased by a certain factor. For example the acceptable Ra limit of a trimmed surface 

given by Montoya, Calamaz, Gehin and Girot [14] is 3.2 µm. In order to have a suitable Sa equivalent, 

the Ra value should be increased by 16 % (the average increase between the two tools from Table 8) 

to 3.71 µm. Only the FTV machine with the DIA-HBC4 tool would be able to meet this new Sa criterion 

with all other machine tool combinations above the 3.71 µm limit using the 271 m/min cutting speed of 

this experiment. This highlights the importance of following manufacturer’s guidelines with the 

recommended cutting speed of 100-180 m/min likely to yield a much lower Sa value within acceptable 

limits. 

3.3.2. Scanning electron microscopy results 

Figure 7 shows a comparison of the specimens with the highest Sa value from each cutting 

tool and machine sample set for half the specimen thickness along its midline.  

As noted previously in Figure 5, the ply orientation with respect to the cutting edge has a 

significant effect on the surface structure. Whilst the global view is in line with expected surfaces from 

literature sources [27-29, 40, 45] there is significant matrix smearing across all fibre orientations as 

shown in Figure 8 with the exception of -45° plies. In accordance with Sheikh-Ahmed [40] the cutting 

mechanics can be conveniently grouped as Type I, III, IV and V chip formation methods for different 

ply orientations. Type I chip formation describes 0° fibre cut through crack propagation ahead of the 

tool where the peeled layer then bends and fractures. This can be seen as some fibres have been 

bent and not fully snapped or held in place with resin as shown in Figure 8. The fibre tows also show 
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signs of matrix de-bonding where the matrix has been removed from around the fibre bundles. Type 

III and IV chip formation for 45° and 90° fibres respectively occurs through compression induced 

shear across the axis of the fibres followed by interlaminar shear fracture along the fibre matrix 

interface. Figure 8 shows that the matrix smearing is so significant that no fibres in the 90° orientation 

can be viewed. Whilst matrix smearing has occurred for the 45° fibre orientations, the underlying 

rough surface created by the Type III chip formation appears to be present. Type V chip formation 

mechanism occurs through macro-fracture ahead of the tool for -45° orientated fibres. Compressive 

stresses ahead of the cutting tool edge cause fibres and matrix to crack and form a long 

discontinuous chip. Type V chip formation causes the largest surface defects which can be seen in 

both Figure 7 and Figure 8. These images support existing theory [27-29] that notes that whole tows 

instead of individual fibres are bent and removed. The existence of the pull-out in the -45° direction 

accounts for the increase in 3D parameters compared to 2D parameters given in Table 4. Smr1 and 

Rmr1 (which account for the fraction of surface that consists of peaks above the core material) are the 

exception to this where the change from 2D to 3D results in a decreased value suggesting that less 

peaks are above the core material. This can be explained by an increase in available data and 

therefore the Smr1 value is more realistic.  

Matrix smearing is evident in all but -45° plies for all machine and tool combinations which 

suggests that the thermoset epoxy Tg is exceeded during continuous tool contact. This is highly 

significant as smearing may mask potential sub-surface defects, an observation also made by 

Kerrigan and O’Donnell [37]. This is also likely as the Tg of the DGEBF/TETA measured by DMA was 

noted as 115 °C, a temperature which is likely to have been exceeded during machining. The need for 

subsurface inspection is therefore critical and may offer an explanation to differing flexural strengths; 

given that the UT is different between two machines this may have created differing levels of sub-

surface defects which are then hidden from view. 

3.4. Flexural Testing Results 

Figure 9 shows the results of flexural testing between the machine and tool DOE variables. 

Through ANOVA, it can be seen that flexural strength varies between machines which, as noted in 

Table 9, has a statistically significant relationship (p-value < 0.001). Whilst there are some minor 

differences due to tools, DOE analysis has shown this to be statistically non-correlated (p-value of > 

0.05). Whilst there is no statistical link between flexural strength and tool, there is a link between 
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flexural strength and machine-tool interactions (p-value < 0.001) suggesting that tools do play a role in 

the flexural strength but the effect is only apparent in conjunction with machines of different rigidity.  

Previously calculated ANOVA results in Table 5 show that the total power is statistically 

different for both machines (p-value < 0.001). The ABB shows a lower measured total power during 

cutting than the FTV which can be explained by the stiffness of the machines; the ABB has 3 

mechanical joints, each with a degree of compliance, which absorb some of the forces instead of 

transferring to the workpiece. Due to the full immersion nature of the cutting completed, the 

compliance is likely to be in the direction of cutting due to support from the carbon fibre in the 

direction normal to cutting. This in turn produces surfaces which lead to higher flexural strengths than 

the FTV machine.  

Figure 9 also shows that flexural modulus does not change for machines and tools which is 

an expected result as the stress and strain rates of the material remain the same during bending and 

it is only the onset of failure which changes for samples cut by different machines and to a lesser 

extent by different tools. The point of failure is different between samples from different machines and 

it is this difference that has been captured through focus variation methods.  

Using the Birmingham 14 parameters defined by Blunt and Jiang [46] it can be seen that of the 

types of s-parameters (defined as being height amplitude and spacing based), only the amplitude 

parameters are statistically correlated to flexural strength. Spacing parameters, based on spatial 

properties, hybrid parameters, based on both amplitude and spatial properties and extreme properties 

based on highest peaks and depths as well as texture direction do not correlate to flexural strength. 

All sub types within v-parameters (defined as being a function of material void and volume within 

peak, core and valley zones) show statistical significance showing that the v-parameters offer a rich 

wealth of statistical information which correlates to flexural strength. 

Further analysis through linear regression fitting to show correlation between flexural strength and 

UT is shown in Table 10. It can be seen that flexural strength and UT are statistically linked. By 

observing the results from Figure 4, it can be seen that the lower power of the ABB machine produces 

higher flexural results. Conversely, the high power experienced in the FTV machine produced 

specimens which exhibited lower flexural strength. 
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4. Conclusions 

 The flexural strength of coupons machined on the robotic arm is up to 25.9% (147.5 MPa) 

greater than those machined on the elevated gantry (p-value < 0.001). ANOVA shows that 

the machine and machine-tool interactions are statistically significant (p-value < 0.001). 

Therefore it is proposed that the damping within the 3 joints of the robotic machine causes 

lower total power transfer, UT, from the tool to workpiece than the overhead gantry which 

manifest in a differing surface topography where more power transfer adversely affects the 

flexural strength. 

 The tool geometry does play a role in the total power of the machining process (p-value < 

0.001) but it does not influence the flexural strength (p-value > 0.05) directly. However the 

machine-tool interaction was shown to be statistically significant (p-value < 0.001). The tool 

geometry does play a role in generating different surface metrics with Sa, Sq, Sp, Sv, Sz, S10z, 

Ssk, Sdq, Sdr%, Str, Stdi, Svk, Smr1, Smr2, Vvv and Vvc/Vmc metrics all reporting p-values < 0.05 

where the response is surface metric and the variable is the burr and herringbone tool. 

 A comparison of 2D and 3D surface parameters shows that 3D parameters follow the same 

trends as 2D parameters but report larger values due to the increased observation area. If 

Sa were to be widely adopted instead of Ra, the Ra value should be increased by 16 %. 

 Total power during machining should be kept to a minimum where possible to improve 

flexural strength. Results show that an increase in total power corresponds to a lower 

flexural strength values. Practically this can be achieved by lowering feed and speed 

however there may be an lower limit which leads to a drop-off in flexural performance which 

has not yet been explored. The choice of machine is also an important factor for total power 

between tool and workpiece with the robotic system providing lower total power overall. 

 Through use of a DOE where machine and tool are set as variables, Sal and Stdi metrics 

were able to show the difference in surface topography due to the machine (p-value < 0.001 

and < 0.05 respectively) with mean results suggesting that the robotic machine generates a 

higher frequency, lower wavelength topography structure compared to the robotic machine 

(72.50 versus 65.33 µm) which matches expectations as the robotic system was shown to 

be less stable through static modal tap testing.  
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 SEM analysis concludes that matrix smearing is present due to the low Tg of the material 

which may be obscuring defects as well as influencing focus variation results.  

5. Further work 

Whilst this study has shown that there is a link between flexural strength and surfaces generated 

through edge trimming using different machines and tools, further work is required to capture the 

failure mechanisms at the point of rupture which would allow the exact nature of the failure defect to 

be traced and ultimately provide a more detailed link between surface metrics and defects.  
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8. Figure Captions 

Figure 1 – Milling machines a) FTV 5-axis elevated gantry and b) ABB 6-axis articulated robotic 

system 

Figure 2 – a) flexural sample resulting from full slot milling, b) coupon arrangement in the fixture with 

dynamometer and fixture layout and c) post slot milling inspection areas 

Figure 3 – Frequency versus magnitude plot showing differences in machine stability 

Figure 4 – Comparison of UT for machines and tools displaying mean value and ± 1 standard 

deviation error bars from a minimum of 8 samples per tool 

Figure 5 – Tools and tool geometry corresponding to surface depth images for edge trimmed 

specimens a) ABB, DIA-BNC b) ABB, DIA-HBC4 c) FTV, DIA-BNC and d) FTV-HBC4 

Figure 6 – Linear regression fitted plots of Ut versus Sz and Sku 

Figure 7 – SEM micrographs for highest Sa samples from a) FTV, DIA-BNC b) FTV, DIA-HBC4 c) 

ABB, DIA-BNC and d) ABB, DIA-HBC4 machine and tool combinations 

Figure 8 – High magnification micrographs of ply orientation defects typical of both ABB and FTV 

machines and DIA-BNC and DIA-HBC4 tools 

Figure 9 – Comparison of flexural strength and flexural modulus for different machines and tools 

displaying mean value and ± 1 standard deviation error bar from a minimum of 8 samples per tool, per 

machine 
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9. Tables 

Table 1 – Experimental design of experiment with low and high text levels 

Factor Low High Replicates* 

Machine FTV ABB 8 

Tool DIA-BNC DIA-HBC4 8 

 
*9 used for ABB, DIA-HBC4 combination 

 

Table 2 – Cutting parameters used in experiment 

Tool 
No. 

Teeth 
Tool diameter 

(mm) 
Cutting speed 

(m/min) 
FPT 

(mm/tooth) 
Feed per revolution 

(mm/rev) 

DIA-BNC 8 6 271 0.0082 0.066 

DIA-HBC4 4 6 271 0.0165 0.066 

 

Table 3 – Tool parameters 

Tool Helix Direction Helix Angle (°) Relief Angle (°) Rake Angle (°) 

DIA-BNC Right 15 18 8 

DIA-HBC4 Right & Left  30 18 9 

 

Table 4 – Laminate content 

Fibre Content (%) Resin Content (%) Void Content (%) 

Panel 1 52.63 46.98 0.39 

Panel 2 57.13 42.74 0.13 

Panel 3 55.16 44.38 0.46 

Panel 4 54.42 45.12 0.46 

 

Table 5 – ANOVA p-value results and Pareto classification for UT with respect to machine and tool 

factors 

Key    

Significant (<0.05)  p-value from DOE ANOVA 

Primary Pareto effect  Parameter (Variable) Machine Tool Machine/Tool 

Secondary Pareto effect  UT <0.001 <0.001 0.098 

Tertiary Pareto effect      
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Table 6 – ANOVA p-value results and Pareto classification for surface metric variables with respect to 

machine and tool factors (key as per Table 5) 

p-value from DOE ANOVA 

Parameter Group Sub-Group 
Parameter 
(Variable) 

Machine Tool Machine/Tool 

S-Parameters 
(based on height 

and spacing) 

Amplitude 

Sa (µm) 0.928 0.004 <0.001 

Sq (µm) 0.575 <0.001 <0.001 

Sp (µm) 0.207 0.007 0.001 

Sv (µm) 0.052 <0.001 0.001 

Sz (µm) 0.035 <0.001 <0.001 

S10z (µm) 0.085 <0.001 <0.001 

Ssk 0.075 <0.001 0.037 

Sku 0.231 0.024 0.007 

Hybrid 
Sdq 0.244 <0.001 0.008 

Sdr (%) 0.390 <0.001 0.006 

Spacing 
Sal (μm) 0.007 0.065 0.102 

Str 0.060 0.006 0.029 

Miscellaneous Stdi 0.014 <0.001 0.007 

V-Parameters 
(based on Abbott-
Firestone Curve) 

Linear areal 
material ratio 

curve 

Sk (µm) 0.817 0.133 <0.001 

Spk (µm) 0.191 0.153 0.052 

Svk (µm) 0.141 <0.001 0.060 

Smr1 (%) 0.084 0.001 0.794 

Smr2 (%) 0.778 0.001 0.056 

Material 
volume 

Vmp (ml/m²) 0.212 0.287 0.045 

Vmc (ml/m²) 0.923 0.090 <0.001 

Void volume 

Vvc (ml/m²) 0.628 0.896 <0.001 

Vvv (ml/m²) 0.229 <0.001 0.033 

Vvc/Vmc 0.110 <0.001 0.910 
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Table 7 - Linear regression p-value results for UT and flexural strength responses where surface 

metric parameters are variables 

Key 

Significant (<0.05) 

 

   
Regression P-

value 

Parameter Group Sub-Group 
Parameter 
(Variable) 

UT 
Flexural 
Strength 

S-Parameters 
(based on height 

and spacing) 

Amplitude 

Sa (µm) 0.920 0.015 

Sq (µm) 0.583 0.059 

Sp (µm) 0.166 0.273 

Sv (µm) 0.060 0.701 

Sz (µm) 0.046 0.414 

S10z (µm) 0.113 0.381 

Ssk 0.004 0.023 

Sku 0.015 0.006 

Hybrid 
Sdq 0.084 0.596 

Sdr (%) 0.130 0.504 

Spacing 
Sal (μm) <0.001 0.094 

Str 0.229 0.319 

Miscellaneous Stdi 0.060 0.238 

V-Parameters 
(based on Abbott-
Firestone Curve) 

Linear areal 
material ratio 

curve 

Sk (µm) 0.797 0.02 

Spk (µm) 0.023 0.005 

Svk (µm) 0.063 0.799 

Smr1 (%) 0.005 0.081 

Smr2 (%) 0.461 0.707 

Material 
volume 

Vmp (ml/m²) 0.027 0.004 

Vmc (ml/m²) 0.634 0.009 

Void volume 

Vvc (ml/m²) 0.316 0.009 

Vvv (ml/m²) 0.123 0.521 

Vvc/Vmc 0.014 0.15 
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Table 8 – 3D versus 2D parameter comparison (for all ABB samples) 

Parameter Increase from 2D to 3D (%) 

2D 3D DIA-BNC DIA-HBC4 

Ra Sa 17 15 

Rq Sq 19 18 

Rt S10z 142 156 

Rp Sp 208 172 

Rv Sv 154 201 

Rsk Ssk 39 74 

Rku Sku 59 74 

Rdq Sdq 48 50 

Rk Sk 31 24 

Rpk Spk 15 15 

Rvk Svk 15 14 

Rmr1 Smr1 -9 -13 

Rmr2 Smr2 2 1 

 

Table 9 - ANOVA p-value results and Pareto classification for flexural strength with respect to 

machine and tool factors (Key as per Table 5) 

 
p-value from DOE ANOVA 

Parameter (Variable) Machine Tool Machine/Tool 

Flexural strength <0.001 0.700 <0.001 

 

Table 10 – Linear regression p-value results for UT and flexural strength interactions (key as per 

Table 7) 

 
Regression P-value 

Parameter (Variable) UT 

Flexural Strength <0.001 

 

 

 

 



  



  



  



  



  



  



  



  



  


