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A B S T R A C T

The ability of medium-resolution (10–30m) satellite imagery to delineate the size and persistence of ponds on
debris-covered glaciers is a topic of recent interest as it has become apparent through the use of fine-resolution
products that smaller ponds have often been neglected. In this study, we performed a quantitative analysis of
pond detection using a normalised difference water index (NDWI) applied to several widely used satellite sen-
sors, which offer multispectral information at high radiometric precision. These data include: RapidEye (5m
spatial resolution), Sentinel-2 Multispectral Instrument (MSI) (10–20m), and Landsat 8 Operational Land Imager
(OLI) multispectral imagery (30m). We demonstrate a method to derive an optimum NDWI value for pond
classification using a subset reference dataset of 285 ponds classified using fine-resolution (0.5 m) imagery. We
then applied the optimised NDWI (NDWI-O) to the remaining images to assess pond classification accuracy
against a broader reference dataset of 898 ponds. NDWI values calculated using Sentinel-2 imagery showed the
best spectral contrast between water and surrounding debris cover, and the strongest relationship with pixel
water content (R2= 0.56), followed by the RapidEye NDWI (R2=0.45). We conclude that RapidEye and
Sentinel-2 imagery is best suited for accurate pond classification using a multispectral classification approach,
which is important for quantifying their role in glacier ablation, meltwater regulation, and lake development. By
comparison, the impact of using coarse-resolution Landsat 8 imagery to characterise surface water dynamics is
minimised when applied to large glacier lakes, where the area-to-perimeter ratio is greater.

1. Introduction

Supraglacial ponds can coalesce on low-gradient, stagnating debris-
covered glaciers to form large proglacial lakes (Reynolds, 2000;
Quincey et al., 2007; Benn et al., 2012). Proglacial lake development is
a concern due to the risk of potential glacial lake outburst floods
(GLOFs) (Worni et al., 2014; Rounce et al., 2017), and because ac-
celerated ice loss occurs when lakes are in contact with a glacier ter-
minus (Sakai et al., 2009; Benn et al., 2012; Carrivick and Tweed,
2013). The accurate classification of supraglacial ponds is required to
reveal decadal, multi-annual, and seasonal changes in pond area, and to
determine the onset of a trajectory towards proglacial lake develop-
ment. Additionally, studies have shown that supraglacial ponds are
often associated with ice cliffs where they promote thermo-erosional
undercutting and ice-cliff retreat (Sakai et al., 2009; Buri et al., 2016;
Thompson et al., 2016; Miles E et al., 2017; Watson et al., 2017b, c).
This pond-cliff interaction is correlated with high rates of surface
lowering on debris-covered glaciers (e.g. Immerzeel et al., 2014;

Ragettli et al., 2016; Thompson et al., 2016; Watson et al., 2017a),
leading to a positive feedback that promotes further ponding and ulti-
mately glacial lake formation (Benn et al., 2012). Ponds regulate glacier
runoff (Irvine-Fynn et al., 2017) and draining ponds can also contribute
to internal ablation via thermal erosion (Miles et al., 2016a; Thompson
et al., 2016; Miles E et al., 2017; Watson et al., 2017b). However, the
contribution of surface and englacial hydrological processes to the
glacier ablation budget remains relatively unknown.

Studies quantifying supraglacial pond and proglacial lake dynamics
have typically exploited the long temporal archive of Landsat satellite
imagery to classify water bodies using the normalised difference water
index (NDWI) or object-based image analysis (OBIA) (McFeeters, 1996;
Huggel et al., 2002; Gardelle et al., 2011; Liu et al., 2015; Miles et al.,
2016b; Narama et al., 2017). However, the impact of image resolution
on pond classification accuracy has only been investigated theoretically
(e.g. Salerno et al., 2012), or using knowledge of pond size distributions
derived from fine-resolution satellite imagery (e.g. Miles et al., 2016b;
Watson et al., 2016). Watson et al. (2016) revealed that classification
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omissions of pond area on the order of 15–88% could occur when using
medium-resolution imagery (e.g. 30m Landsat 8), compared to fine-
resolution (e.g. 0.5 m) imagery. The NDWI value used to produce a
binary classification of water vs. non-water is most often derived by
visual inspection (e.g. Gardelle et al., 2011; Miles et al., 2016b; Miles K
et al., 2017), and the sensitivity of this value can only be evaluated with
a fine-resolution reference dataset (Ji et al., 2009) or using pond peri-
meters from field data. Therefore, due to the irregularity of supraglacial
ponds' shorelines, the classification of such ponds using medium-re-
solution imagery requires consideration of two major issues: (1) mixed
pixels along the shoreline comprising both water and debris cover,
which could be assigned to either class based on a user-defined NDWI
value; and (2) the omission of ponds smaller than a minimum areal
threshold, which is at least one pixel but potentially at least four pixels
to ensure robust pond identification (Gardelle et al., 2011).

In this study, we quantify the relationship between the NDWI
classification accuracy of supraglacial ponds and the resolution of the
satellite imagery used. Specifically we: (1) demonstrate a method to
optimise NDWI pond classification with RapidEye, Sentinel-2, and
Landsat 8 imagery using a calibration dataset derived from fine-re-
solution imagery; (2) quantify the relationship between pixel water
content and an NDWI applied to RapidEye, Sentinel-2, and Landsat 8
imagery; (3) quantify the omissions and commissions of supraglacial
ponds expected when using the NDWI to classify ponds on satellite
imagery of different resolution; and (4) discuss the optimum scenarios
for supraglacial pond classification.

2. Study area and data

We focus our study on eight debris-covered glaciers in the Everest
region of Nepal (Fig. 1). The glaciers have exhibited a negative mass
balance in recent years (Benn et al., 2012; King et al., 2017) due to
warming temperatures and reduced precipitation (Shrestha and Aryal,

2011; Salerno et al., 2015). Mass loss is leading to glacier stagnation
(Quincey et al., 2009; Watson and King, 2018) and increased but
variable supraglacial water storage, both across glaciers and through
time (Watson et al., 2016). Supraglacial ponds form on the debris-
covered ablation zones and often expand during the melt season until
they establish an efficient englacial connection (Benn et al., 2012; Miles
et al., 2016b, Miles E et al., 2017; Watson et al., 2017b).

We first analyse a set of imagery acquired during November 2016
with a maximum time separation of 16 days (Table 1). To assess re-
producibility, we then applied the same methods to an imagery set from
2017, which was acquired in November and December 2017, with a
maximum time separation of 19 days. Winter images are generally
cloud-free, in contrast to those acquired during the Indian Summer
Monsoon. We assumed each image captured the same distribution of
ponds in these winter months (e.g. Fig. 2), since ponds are most dy-
namic during the summer melt season (Miles et al., 2016b; Watson
et al., 2017b). The surface of these lakes is also likely to be freezing over
during these months (Watson et al., 2017b). We excluded the large lake
present on Changri Nup Glacier from our analysis due to prevalent
shadows in the imagery, which can cause erroneous classification under
the NDWI approach (e.g. Miles et al., 2016b).

3. Methods

3.1. Imagery pre-processing and NDWI generation

All satellite imagery was captured during clear-sky conditions. The
panchromatic Pléiades image was captured as a stereo pair by the
Pléiades-1A satellite and was orthorectified in the ERDAS IMAGINE
Leica Photogrammetry Suite with a DEM generated from the stereo
imagery. RapidEye imagery was processed to surface reflectance using
the GRASS GIS i.atcorr tool, which uses the 6S radiative transfer algo-
rithm (Vermote et al., 1997; Kotchenova et al., 2006; Kotchenova and

Fig. 1. Study glaciers in the Everest region of Nepal. Glacier outlines were modified from the Randolph Glacier Inventory 6.0 (RGI Consortium, 2017) to separate
Changri Nup and Changri Shar glaciers and to add omitted debris-covered areas of Lobuche and Khumbu Glaciers. Backdrop: Sentinel-2 false-colour composite (NIR,
green, and blue) 29th November 2016. Grid: UTM 45N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Vermote, 2007). We input the ASTER GDEM2 and the RapidEye me-
tadata supplied by Planet Labs (Planet Team, 2017). The default Ra-
pidEye parameters were used to process the blue and red bands; how-
ever, these produced an erroneous result for the green and NIR bands.
We therefore used Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
parameters, which were of similar spectral characteristics in the green
and NIR bands (Chander et al., 2013). We used the midlatitude winter
atmospheric model and continental aerosol model. The only constituent
specified was aerosol optical depth, which was derived from Moderate
Resolution Imaging Spectroradiometer monthly data interpolated to the
image centre (NASA Earth Observations, 2018). The Sentinel-2 imagery
was delivered as a Level-2A (atmospherically corrected bottom-of-at-
mosphere product) surface reflectance product from the data service
platform implemented by the University of Natural Resources and Life
Science, BOKU (Vuolo et al., 2016). The Landsat 8 imagery was deliv-
ered as a surface reflectance product from the USGS Earth Resources
Observation and Science (EROS) Center Science Processing Archi-
tecture (ESPA) On Demand Interface.

NDWI images were derived using combinations of the NIR and
green bands (e.g. Gardelle et al., 2011; Nie et al., 2013) and SWIR and
green bands (Eqs. (1)–(4)). SWIR bands were used for Sentinel-2 and
Landsat 8 since studies have shown improved water classification
compared to the NIR band (Ji et al., 2009; Li et al., 2013; Du et al.,
2014). The NIR band of Sentinel-2 was acquired at 10m resolution,
whereas the SWIR band is 20m resolution, therefore we derived two
NDWIs for the Sentinel-2 product hereafter referred to as Sentinel-2NIR
and Sentinel-2SWIR.
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3.2. Reference pond datasets

To derive the 2016 reference pond dataset, supraglacial ponds were
semi-automatically classified on all study glaciers using the orthor-
ectified panchromatic Pléiades image and OBIA following Watson et al.
(2016). Here, the panchromatic band was segmented and the polygons
were exported. Pond polygons were extracted manually from the seg-
mentation with supplementary reference to the multispectral RapidEye
image. Pond boundaries were manually corrected where required (e.g.
in areas of shadow beneath ice cliffs), or manually digitised if they were
not accurately segmented. The reference pond dataset for the 2017
imagery set was derived using a NDWI (NIR and green bands) applied
to a 3m resolution PlanetScope image. Ponds were extracted using a
user-defined threshold and manually inspected and corrected similar to
the 2016 reference dataset.

A± 0.5 pixel buffer applied to pond or lake boundaries is com-
monly used for uncertainty assessments (Fujita et al., 2009; Salerno
et al., 2012). However, since our analysis assumed coincident imagery
acquisition, which was not the case, we opted to use one-pixel buffers to
represent uncertainty in our reference datasets to account for potential
pond expansion or contraction between the acquisitions.

3.3. NDWI calibration and pond classification

We present a method that uses a reference dataset of supraglacial
ponds on Khumbu Glacier to optimise NDWI values that are used to
produce a binary classification of ponds. This method derives the NDWITa
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value, which we term the optimised NDWI value (NDWI-O), which is
necessary to correctly account for the total pond area of the reference
dataset. The NDWI-O is then applied to the whole satellite image to
classify ponds on all study glaciers. Here we hypothesise that ponds on

Khumbu Glacier, which vary in size and turbidity, are sufficient to
characterise an NDWI-O that can be used to classify all other ponds in
the satellite image. The method follows a seven-step process (Fig. 3a–g)
and is semi-automated within the GIS environment. Data export and

Fig. 2. The lower terminus of Khumbu
Glacier shown with the satellite imagery
products used in this study. (a) Pléiades
panchromatic image with classified su-
praglacial ponds outlined in blue derived
through OBIA following Watson et al.
(2016). (b) RapidEye FCC (NIR, green, and
blue). (c) Sentinel-2 FCC (NIR, green, and
blue). (d) Landsat 8 FCC (NIR, green, and
blue). Red boxes in the top panels are
shown with magnification in the bottom
panels for visualisation purposes. (For in-
terpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Calibration of the NDWI using a fine-resolution (Pléiades) pond dataset (a). (b) The rasterised ponds were aggregated to the required sensor resolution (e.g.
10m for Sentinel-2). Here, the maximum number of 0.25m2 pixels within the aggregated 100m2 pixel is 400, which represents 100% pixel water content. The
maximum value would be 100 for RapidEye or 3600 for Landsat. (c) NDWI derived from the Sentinel-2 NIR and green bands. (d) The relationship between the
aggregated pixel water content and the Sentinel-2 NDWI values with a 3rd order polynomial fit. (e) The area of pixels was cumulatively summed for an increasing
NDWI value, which is used to derive the NDWI-O value (f) that provides the correct glacier-scale pond area for Khumbu Glacier known from the reference dataset
(192,412 m2). (g) The NDWI-O was applied to the NDWI in (c), to produce a binary classification of ponds.
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user intervention is required at (e) to derive the optimum NDWI value:

(a) A fine-resolution pond dataset was created over the region of in-
terest and rasterised. This is referred to as the reference dataset and
provides the total glacier-scale pond area for each study glacier. In
this study we derived the reference pond dataset (Section 3.2) for
all study glaciers to quantitatively assess the optimised NDWI per-
formance; however, we only used ponds on Khumbu Glacier
(number= 285) to derive the NDWI-O.

(b) The raster pond data were aggregated by summation to the pixel
resolution of the image to be calibrated (e.g. 10m for the Sentinel-
2NIR), which was carried out using the Aggregate tool in ArcGIS.

(c) The NDWI was calculated using a band ratio (e.g. Eqs. (1)–(4)).
(d) The number of water-covered pixels as defined by the reference

dataset within the aggregated pixels is known from (b). This was
converted to the percentage water content of each pixel. All on-
glacier pixels in (b) and (c) were sampled to derive the relationship
between pixel water content and the NDWI. However, this step is
not required to derive the NDWI-O.

(e) The total area of all reference ponds on Khumbu Glacier (glacier-
scale pond area) was used to find the NDWI value that would
produce a binary classification with an area equal to 100% of the
reference glacier-scale pond area (NDWI-O).

(f) In this process, the area of pixels is cumulatively summed for an
increasing NDWI value (i.e. progressively lower water content),
until the area of pixels equals the glacier-scale pond area.

(g) The NDWI-O is applied across the whole image to produce a binary
classification of supraglacial ponds, which were clipped to the
debris-covered area of the study glaciers and compared to the re-
ference dataset. No manual corrections were applied to the NDWI-O
derived ponds.

We used masks corresponding to the reference pond dataset and the
debris-covered area of all study glaciers to sample each NDWI output
(Eqs. (1)–(4)). These statistics quantified the range of NDWI values
encountered for ponds and debris, and hence the spectral separation
between the two feature classes (Fig. 4b). We also investigated the re-
lationship between NDWI outputs and the blue index, which is a proxy
for pond turbidity (Kraaijenbrink et al., 2016). The blue index was
calculated for RapidEye, Sentinel-2 and Landsat 8 imagery using the
band ratio:

=

+

Blue index(BI) Blue
Red Green (5)

A low BI indicates ponds with a higher suspended sediment con-
centration, whereas a high BI indicates bluer ponds with a lower sus-
pended sediment concentration (Kraaijenbrink et al., 2016).

4. Results

The 2016 reference pond dataset derived from the Pléiades image
comprised 898 supraglacial ponds across the eight study glaciers. Ponds
ranged in size from 3 to 28,179m2, with a mean size of 563m2 (one
standard deviation of 1954m2). Ponds ≤300m2 represented 72% of
the total number of ponds and 12% of the total pond area (Fig. 4a). The
2017 reference pond dataset derived from a PlanetScope image com-
prised 623 ponds, with a range of 9–30,635m2 and a mean size of
654m2 (one standard deviation of 1967m2).

4.1. Pixel water content and NDWI relationships

The size distribution of supraglacial ponds (Fig. 4a, Fig. S1) de-
termines the performance of each sensor when resolving water pixels,
such that a higher frequency of smaller ponds decreases the suitability
of using coarser-resolution imagery for their classification (Salerno
et al., 2012). NDWI values extracted for ponds and debris cover in 2016

revealed the range of NDWI values for each band ratio, and the spectral
separation between these classes. The separation of median NDWI va-
lues for debris and ponds was 0.26 (RapidEye), 0.28 (Sentinel-2NIR),
0.36 (Sentinel-2SWIR), and 0.22 (Landsat 8) (Fig. 4b). Pond NDWI values
for Sentinel-2SWIR and Landsat 8 had the largest range of 1.3 and 1.4
respectively, compared to RapidEye and Sentinel-2NIR, which had
ranges of 0.9 and 1.1 respectively (Fig. 4b). Therefore, Sentinel-2SWIR

and Landsat 8 had the weakest relationships between NDWI values and
pixel water content (Fig. 4e, f). By contrast, the relationship between
NDWI and pixel water content was stronger for RapidEye and Sentinel-
2NIR (R2= 0.45 and 0.56 respectively, p < 0.05) (Fig. 4c, d). Since
Sentinel-2NIR performed better than Sentinel-2SWIR, we only applied the
NDWI optimisation to the former.

4.2. NDWI-O classified ponds

The NDWI-Os derived using reference pond datasets on Khumbu
Glacier, were applied to RapidEye, Sentinel-2SWIR, Sentinel-2NIR and
Landsat 8 images to classify supraglacial ponds across the eight study
glaciers. The classification of these ponds was evaluated against the
2016 and 2017 reference datasets. The derived relationship between
pixel water content and the Sentinel-2NIR NDWI for Khumbu Glacier
(Fig. 3d) was similar to the relationship across all study glaciers
(Fig. 4d). This supported the use of reference ponds on Khumbu Glacier
for deriving NDWI-Os, which were then applied across all study gla-
ciers.

In 2016, pond area delineated by the reference dataset was best
classified by Sentinel-2NIR for five glaciers, Landsat 8 for two, and
RapidEye for one (Fig. 5a). By contrast, the number of ponds in the
reference dataset was best derived using RapidEye, followed by Sen-
tinel-2 and Landsat 8, with the notable exception of Ama Dablam
Glacier (Fig. 5b). In 2017, the pond area delineated by the reference
dataset was best classified by RapidEye for four glaciers, Sentinel-2NIR
for three, and Landsat 8 for one (Fig. 5c). The number of ponds were
best derived with Sentinel-2NIR, whereas RapidEye generally over-
estimated the number of ponds (Fig. 5d).

Comparisons of spatially coincident ponds for each NDWI-O (Fig. 6)
revealed a stronger correlation for RapidEye (R2=0.98, root-mean-
square error (RMSE)=424m2) and Sentinel-2NIR (R2= 0.97,
RMSE=446m2), compared to Landsat 8 (R2=0.79,
RMSE=2489m2). All correlations were statistically significant
(p < 0.05). Additionally, the area of ponds<~5000m2 was poorly
classified by Landsat 8 (Fig. 6c). The notable area underestimation of a
reference pond (28,224m2) by Landsat 8 (Fig. 6c) was the network of
connected pond basins shown in the expanded insets of Fig. 2.

Our results show that the optimised NDWI-O performs better on
some glaciers than others (Fig. 5). Additionally, the area and number of
ponds was still generally underestimated for Landsat 8. These errors are
related to the presence of omissions and commissions, which are dis-
cussed in the following section and are linked to the pond size dis-
tribution for each glacier. For example, ponds on Lobuche and Ama
Dablam Glaciers tended to be larger than on other glaciers (Fig. S1),
which corresponds with improved Landsat 8 classification of the
number of ponds (Fig. 5b). The variable turbidity of ponds also likely
exerts some influence over classification ability. However, we found no
clear relationship between Blue index and NDWI values (Fig. S2),
suggesting that pond turbidity is generally consistent across the study
glaciers, although some outliers existed.

4.3. Omissions and commissions

The omissions and commissions reported in Table 2 represent a
complete omission or commission, i.e. where a pond was present in the
reference dataset but not in the NDWI dataset (omission), or where a
pond was not present in the reference dataset but was falsely delineated
in the NDWI dataset (commission). The commission of Landsat 8 pond
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area in 2016 was twice that of Sentinel-2NIR and greater than RapidEye
(Table 2). These trends were similar in 2017. Landsat 8 omissions were
three times greater than Sentinel-2 and five times greater than Rapi-
dEye (Table 2). Again, the trends were similar in 2017.

The net difference between the total area of NDWI-O classified
ponds and the 2016 reference dataset pond area was −1% for Sentinel-
2NIR and RapidEye, and −11% for Landsat 8 (Table 3). RapidEye
produced the lowest net difference (−2%) in total pond number com-
pared to the reference dataset. However, it is clear that commissions
and omissions of individual ponds are large and partially offset each

other (Table 2) to produce a more accurate glacier-scale result, and that
there is variability in the classification accuracy between glaciers. The
theoretical omissions from using a sensor of specific pixel size can be
approximated by quantifying the area and number of ponds falling
below the area of one pixel for each sensor (Table 3). In 2016, ponds
falling below the area of one pixel were< 1% of the total by number
and area for RapidEye (25m2) imagery (Table 3). By contrast, 87% and
26% of ponds by number and area respectively were below the size of
one Landsat 8 pixel (900m2), and 48% and 4% for Sentinel-2NIR
(100m2). The omissions we observed during pond classification always

Fig. 4. (a) Cumulative distribution of pond area and number (300m2 bins) from the 2016 reference dataset. (b) NDWI values for ponds and debris-covered zones
showing the median, interquartile range and data range for ponds and debris. (c–f) Relationship between pixel water content and NDWI values for RapidEye (c),
Sentinel-2NIR (d), Sentinel-2SWIR (e), and Landsat 8 (f) respectively. 3rd order polynomial trends are fitted (p < 0.05).
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exceeded the theoretical omissions and were largest for Landsat 8,
followed by Sentinel-2 NIR and RapidEye (Table 3). Notably, despite a
theoretical pond number omission of< 1% for RapidEye, the actual
omissions were 48% of the true number of ponds.

Classification accuracy was variable across glaciers (Fig. 5), and key
features contributed to the observed omissions and commissions
(Fig. 7). Omissions were prevalent in areas of small ponds, such as on
Lhotse Glacier for Sentinel-2NIR (Fig. 7b); however, omissions were
widespread for Landsat 8. Supraglacial meltwater channels were no-
table areas of commission, especially for RapidEye and Sentinel-2NIR,
where the narrow channels are better resolved. Ice cliffs, which are
predominantly northerly-facing (Watson et al., 2017a), caused notable
commissions for RapidEye due to shadowing (Fig. 7a).

4.4. Classification sensitivity to NDWI values

NDWI values that delineated 80% and 120% of the true reference
dataset pond area were derived to demonstrate the sensitivity of pond
classification to the NDWI value used. Such variation around the op-
timum NDWI value could result from a user-defined value that was
selected through manual inspection (Gardelle et al., 2011). Sentinel-
2NIR and Landsat 8 NDWI values displayed the same sensitivity to over-
or under-estimation of glacier-scale pond area by± 20% in 2016;

however, NDWI values were variable in 2017 (Table 4). The larger
uncertainty values in 2017 reflect the coarser resolution (3m Planet-
Scope) reference pond dataset, compared to the 0.5 m Pléiades imagery
used in 2016.

5. Discussion

The accurate classification of supraglacial ponds on debris-covered
glaciers is required to quantify their role towards meltwater generation
and storage, and glacial lake development. However, the ability of
different spatial resolution satellite imagery to discriminate ponds has
received little attention.

Our reference datasets showed that supraglacial ponds are generally
small, with ponds ≤300m2 representing 72% of the total number of
ponds and 12% of the total pond area in 2016 (Fig. 4a). Similarly, the
total pond area less than one Landsat 8 pixel (900m2) was 26%, which
is in agreement with the range observed by Watson et al. (2016)
(15–40%) on nine glaciers in the Everest region, including five of the
glaciers featured in this study (Khumbu, Nuptse, Lhotse Nup, Lhotse,
and Ama Dablam). In comparison, Miles et al. (2016b) observed that
pond area less than one Landsat 8 pixel (900m2) was 7% of the total in
the Langtang region, revealing that glacier pond size distributions are
spatially variable between glaciers (Fig. S1), and regionally.

Fig. 5. The area and number of ponds delineated for each sensor as a percentage of the reference dataset in 2016 (a, b) and 2017 (c, d).
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5.1. Pixel water content and NDWI relationships

We quantified the relationship between pixel water content, which
was derived from the reference dataset, and NDWI values. Both
RapidEye and Sentinel-2NIR NDWI images featured good spectral se-
paration of ponds and debris cover (Fig. 4b), and the strongest corre-
lations between NDWI values and pixel water content (Fig. 4c, d). The

lower correlation for Sentinel-2SWIR was likely because the NDWI was
produced at the resolution of the green band (10m), which over-
sampled the SWIR band (20m) (Fig. 4e). Sentinel-2NIR had a larger
NDWI separation between ponds and debris cover compared to Rapi-
dEye imagery, and a stronger relationship with pixel water content
(Sentinel-2NIR R2=0.56, RapidEye R2= 0.45) despite a larger pixel
size. We expect that the variable off-nadir viewing angle of RapidEye
acts to extenuate predominantly northerly-facing ice cliff shadows (e.g.
Watson et al., 2017a), which were notable areas of commission
(Fig. 7a). Notably, the NDWI values for ponds and debris overlap for all
sensors (Fig. 4b), which highlights why the classification of ponds on
debris-covered glaciers is a non-trivial task. The area of individual
ponds delineated with the RapidEye and Sentinel-2NIR NDWI-Os was
strongly correlated with those of the reference pond dataset, and this
relationship was closer to a linear direct fit than the Landsat 8 NDWI-O
(Fig. 6).

5.2. Classification of supraglacial ponds

The large temporal archive and spatial coverage of Landsat imagery
means that the product is already suitable for analysing long-term
temporal trends in pond area (e.g. Gardelle et al., 2011; Miles et al.,
2016b). However, the use of Sentinel-2 imagery is limited by its young
age as a sufficient archive develops, although image acquisition in-
creased towards the ends of 2017 with the launch of Sentinel-2B
(Fig. 8). The finer resolution of RapidEye and Sentinel-2 imagery offers
greater suitability for supraglacial pond classification compared to
Landsat 8, owing to the prevalence of small ponds (Watson et al., 2016).

We observed high pond area classification accuracy across our study
area, with a net difference between the total area of classified ponds
and the 2016 reference dataset pond area of −1% for Sentinel-2NIR and
RapidEye, and −11% for Landsat 8 (Table 3). However, the classifi-
cation accuracy was variable across glaciers (Figs. 5, 7), which reflects
the balance of omissions and commissions and different pond size dis-
tributions across the study glaciers (cf. Watson et al., 2016, their Fig. 8
and our Fig. S1). Glaciers with a larger proportion of smaller ponds such
as Lhotse Glacier featured poorer classification accuracy using Landsat
8, in contrast to those with larger ponds such as Lobuche and Ama
Dablam Glaciers.

Omissions and commissions of pond area were 34% and 16% re-
spectively for the 2016 Landsat 8 NDWI-O. Therefore, while Landsat 8
underestimated the total pond area on our study glaciers by 11%, the
errors at the scale of individual ponds were greater. Commissions can
offset omissions, leading to a more accurate prediction of the total pond
area by virtue of these errors for all sensors (Table 2). However, the
increased spatial resolution of RapidEye and Sentinel-2 leads to im-
proved classification accuracy for both pond area and number. The area
of individual ponds was also best resolved using RapidEye and Sentinel-
2 with RMSEs of 424m2 and 446m2 respectively, compared to Landsat
8 (RMSE=2489m2) (Fig. 6).

5.3. Optimal classification of supraglacial ponds

Our results demonstrate that imagery ≤10m resolution is suitable
for pond- and glacier-scale analyses such as deriving area-volume re-
lationships (Watson et al., 2017b), assessing meltwater storage and
transmission (Irvine-Fynn et al., 2017; Miles E et al., 2017), and
quantifying the role of ponds as ‘hot spots’ of glacier melt (Thompson
et al., 2016). By comparison, Landsat 8 NDWIs can be optimised to
estimate regional water storage, but large omissions and commissions
are present at glacier scales. Therefore, Landsat 8 imagery is better
suited to mapping proglacial lakes where shoreline mixed pixels con-
stitute a lower proportion of the total lake area (Gardelle et al., 2011;
Nie et al., 2013).

Images approaching winter are often selected to quantify ponds at
the end of the ablation season, however; pond mapping becomes more

Fig. 6. Comparison of NDWI-O and reference pond areas in 2016 for (a)
RapidEye, (b) Sentinel-2, and (c) Landsat 8. Ordinary least squares regressions
lines are shown dashed (p < 0.05). Linear direct lines are solid black.
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difficult when the surface begins to freeze (Miles et al., 2016b). We
observed a stronger relationship (R2=0.40) between NDWI and
Landsat 8 pixel water content for an image acquired on 10th June 2015
(Figs. S3 and S4), compared to the November image (R2=0.26)
(Fig. 4f). This reflects fully thawed supraglacial ponds in June, com-
pared to partially frozen ponds in November. Summer images are often
unsuitable due to the prevalence of cloud cover during the monsoon
(e.g. Fig. 8). However, the five-day revisit frequency of Sentinel-2 and
near-daily temporal resolution offered by PlanetScope provides new
opportunities to investigate cloud-free periods during the ablation
season. Nonetheless, to analyse seasonal pond dynamics requires de-
termination of an NDWI threshold without validation data (e.g. Miles
et al., 2016b; Narama et al., 2017). Our results suggest that such ana-
lyses need to implement more advanced techniques to identify ponded
water, such as spectral unmixing (Alcântara et al., 2009) or iterative
histogram-based thresholding (Cooley et al., 2017) to reliably resolve
supraglacial ponds. Additionally, future work could include an inter-
comparison with other methods of optimised decision making such as
the Receiver operating characteristics (ROC) analysis (Fawcett, 2006).

5.4. Broader relevance

Our method of optimising NDWI values is applicable across the
Himalayas and to other regions containing debris-covered glaciers such
as in Alaska or New Zealand, where the size of supraglacial ponds are
the same order of magnitude as those in this study (Kirkbride, 1993;
Rohl, 2008). By comparison, the larger size of supraglacial lakes on the
Greenland Ice Sheet are suited to mapping with Landsat or coarser-
resolution imagery (e.g. Sundal et al., 2009; Leeson et al., 2013; Miles K
et al., 2017; Williamson et al., 2017). Additionally, the spectral het-
erogeneity of the debris-covered glacier surface makes finding the op-
timal NDWI value more difficult compared to a more distinct ice and
water separation.

6. Conclusion

We performed a quantitative analysis of the performance of fine- to
medium-resolution satellite imagery products for classifying supragla-
cial ponds on debris-covered glaciers in the Everest region of Nepal. We
investigated the relationship between calculated NDWI values and pixel
water content using fine-resolution reference pond datasets for
RapidEye, Sentinel-2 and Landsat 8 imagery. We then derived the op-
timum NDWI value for pond area classification on Khumbu Glacier,
which was applied to and evaluated on seven other debris-covered
glaciers.

NDWI values calculated using Sentinel-2 imagery showed the
greatest spectral difference between water and surrounding debris
cover, and a NDWI calculated using the NIR and green bands displayed
the strongest relationship with pixel water content (R2= 0.56), fol-
lowed by RapidEye NDWI (R2= 0.45). By optimising NDWI values
using a reference pond dataset, RapidEye and Sentinel-2NIR NDWI-Os
correctly accounted for 99% of the 2016 reference dataset's total pond
area, whereas the Landsat 8 NDWI-O accounted for only 89%. However,
the apparent accuracy of Landsat 8 was a net result of large omissions
and commissions and the classification accuracy was variable amongst
individual glaciers. At the scale of individual ponds, comparisons be-
tween classified and reference dataset ponds had the highest correla-
tions and lowest RMSE for RapidEye (424m2) and Sentinel-2NIR.
(446m2), and the highest RMSE for Landsat 8 (2489m2).

Our findings suggest that imagery≤10m resolution is well suited to
supraglacial pond analysis on debris-covered glaciers where the role of
individual ponds is important. NDWI-based semi-automated classifica-
tion methods benefit from using a fine-resolution reference dataset to
optimise the NDWI value used to classify ponds, and to quantify
omissions and commissions in the classification. Therefore, our method
of supraglacial pond classification can help develop a more detailed
understanding of debris-covered glacier water storage and ponds' evo-
lution towards glacial lake development, which require monitoring for
emerging GLOF risks.

Table 2
Omission and commission of supraglacial ponds.

RapidEye commission RapidEye omission Sentinel-2NIR commission Sentinel-2NIR omission Landsat 8 commission Landsat 8 omission

2016 Pond area (m2) 56,000 33,706 32,300 48,727 80,100 173,435
Number of ponds 379 428 128 497 36 796

2017 Pond area (m2) 71,150 31,843 39,500 38,587 100,800 130,444
Number of ponds 533 272 126 313 43 523

2016 total reference pond area=507,642m2 and number=898.
2017 total reference pond area=423,692m2 and number=663.

Table 3
Theoretical and observed supraglacial pond omissions using the 2016 imagery set.

Sensor Pixel
area
(m2)

Reference pond
area < one pixel
(theoretical omissions) (%
of total)

Observed pond
area omission (%
of total)

Reference pond
number < one pixel
(theoretical omission) (% of
total)

Observed pond
number omission
(% of total)

Observed pond
area net difference
(%)b

Observed pond
number net
difference (%)b

PlanetScopea 9 <1 – <1 – – –
RapidEye 25 <1 7 <1 48 −1 −2
Sentinel-2NIR 100 4 10 48 55 −1 −37
ASTERa 225 9 – 67 – – –
Sentinel-2SWIR 400 15 – 77 – – –
Landsat 8 900 26 34 87 88 −11 −86

a PlanetScope (3m spatial resolution) and ASTER (15m spatial resolution) imagery were not used in the 2016 analysis, but are included for comparison.
b Compared to the area and number of ponds in reference dataset when accounting for commissions and omissions.
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Fig. 7. Omissions and commissions of supraglacial ponds in 2016 for (a) RapidEye, (b) Sentinel-2NIR, and (c) Landsat 8. Features causing the differences are
highlighted. Glacier outlines are the same as Fig. 1. An enlarged version of this figure is available in Supplementary information.
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Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2018.08.020.
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