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Forests play a critical role in the global carbon budget, either acting as a sink of carbon from

growth processes (e.g., regrowth, afforestation, reforestation) or releasing carbon to the atmosphere

via disturbances such as deforestation and degradation [1]. Therefore, it is of the utmost importance

to have a good understanding of the distribution and magnitude of all processes leading to forest

cover change.

Data obtained from Earth Observation (EO) platforms are critical in providing a systematic

and temporally resolved assessment of forest cover change. The current availability of long-term

Landsat data and the launch of Sentinel-1 and Sentinel-2 constellations are fostering the development

of improved methods to characterise forest cover change. Furthermore, advances on high performance

and cloud computing, machine learning, high-quality temporal datasets (e.g., Landsat collection 1),

as well as the development of datacube formats, are increasingly facilitating the analysis of forest cover

change and the temporal dynamics of forest biophysical parameters.

In this special issue, most studies used data acquired by optical sensors to characterise forest

disturbances over a range of biomes. Rengarajan and Schott [2] provide a very interesting evaluation

of the interoperability of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 Multispectral

Instrument (MSI) data, taking into account different sensor characteristics and environmental

conditions and their implications for time series analysis. They simulated a deciduous forest canopy

and estimated Landsat 8 OLI and Sentinel-2 MSI responses according to different sensor configurations

and modelled atmospheres and its impacts on normalised difference vegetation index (NDVI) products.

They concluded that the uncertainty in NDVI products generated from both sensors could be impacted

by several factors and reach quite high values. Mainly as a consequence of not correcting for

atmospheric effects (40%), not compensating for different spectral response curves (20%), view angle

differences (40%) and solar zenith angle differences (10%). Langner et al. [3] presented an approach to

monitor forest canopy disturbance in evergreen forests of continental Southeast Asia based on temporal

differences of a modified normalised burn ratio (NBR) index applied to Landsat 8 data. The method

to discriminate disturbance from no disturbance was validated using very high-resolution optical

imagery and resulted in detection rates of 46–52%. Hassan et al. [4] used Sentinel-2 MSI imagery and a

machine learning algorithm to quantify the territorial expansion of Rohingya refugee settlements in

Bangladesh. The overall classification accuracy was 95% in 2016 and 2017 when discriminating four

classes: Forest, refugee camp, non-forest and water bodies. The comparison of the two land cover maps

showed a net growth rate of the area occupied by refugee camps in the order of ~800%. Silva et al. [5]

used Landsat data, census information, and landscape metrics to assess large-scale land use and land

cover change over an area of agricultural expansion in the Brazilian Atlantic Forest in two separate

periods: 1995–2006 and 2006–2013. Independent validation resulted in overall accuracies of 83%
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(1995–2006) and 84% (2006–2013), with the transition non-forest to planted forest showing classification

errors of 46% and 74% in 1995–2006 and 2006–2013 respectively, mostly from misclassification as

planted forest (1995–2006) or forest remnants (2006–2013). Forest cover increased 18% between the

two periods, mostly as conversion from non-forest to planted forest and conservation of planted

forests. Housman et al. [6] used Landsat or MODIS data to generate forest disturbance products

to improve the detection of areas impacted by insects and diseases and compared against existing

products relying on surveys (Insect and Disease Survey programme) or coarse resolution imagery

(MODIS Real-Time Forest Disturbance programme). The overall accuracy for all products ranged from

72% to 93% in the Southern New England site and 63% to 79% in the Rio Grande National Forest

area. However, omission and commission errors of the change class ranged from 5-86% and 28-70%,

respectively, in the Southern New England study area and 16-93% and 13-63%, respectively, in the Rio

Grande National Forest region. They concluded the differences amongst products were not statistically

significant. Chen et al. [7] used a time-series of Landsat images (1987–2015) over Hainan Island (China)

to identify the establishment year of rubber plantations. They generated maps of plantation start

year with a root mean square error of 2.34 yr and 0.54 yr at pixel and plantation scale, respectively.

Rubber plantations from the mid-1980s were established mainly over old rubber plantations; although,

croplands and evergreen forests were also significantly converted to plantations. McCarthy et al. [8]

used a combination of aerial photos, Landsat and WorldView-2 images to assess forest decline in the

Big Bend region of Florida’s Gulf of Mexico coast (USA) since the early 1980s. Results show a forest

decline of 0.6% in the period 1982-2003 but increasing to 7.4% between 2010 and 2017. They were able

to track this decline to acute cold snap events since 2010, which leveraged existing stress factors such

as sea-level rise and saltwater intrusion.

Two studies dealt with mapping forest disturbance using Synthetic Aperture Radar (SAR) data.

Berninger et al. [9] estimated forest aboveground biomass (AGB) over Kalimantan (Indonesia) in

2007, 2009, and 2016 using Sentinel-1 (C-band SAR), Advanced Land Observing Satellite (ALOS)

Phased Array L-band SAR (PALSAR) and ALOS-2 PALSAR-2 (L-band SARs). Validation results of the

individual AGB maps showed a root mean square error (RMSE) ranging between 53 t/ha and 57 t/ha

(relative RMSE = 31–38%) and absolute bias in the range 5–10 t/ha, with the latter highly dependent of

the AGB class but clearly showing overestimation for AGB values up to 250 t/ha and underestimation

for AGB values above 250 t/ha. The authors mapped forest disturbance by comparing AGB maps at

several time steps (2007–2009, 2009–2016 and 2007–2016). Bouvet et al. [10] used Sentinel-1 C-band

SAR data in a highly innovative way to detect forest loss. The authors based their method on the

assumption that SAR shadow forms at the border of a deforested area, which could be tracked by

analysing high-frequency time series of Sentinel-1 data. The method was tested and validated in an

evergreen rain and seasonal deciduous forest region in Peru with a detection rate of 80% (using pixel

count statistics).

The articles published in this special issue cover a wide range of topics on the field of forest

cover dynamics such as disturbance mapping, biomass change and forest health, using innovative

approaches to study the rich information content of EO time-series datasets. It also stresses the

potential as well as the challenges of EO data to monitor the different forest ecosystem dynamics

efficiently and transparently.
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