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1 Introduction

The partition algebra and its Brauer and Temperley–Lieb (TL) subalgebras [10,50,69] have
many applications and a rich representation theory. See for example [12,34,43,51,59,71]. In
particular the representation theory of each of these algebras has an intriguing geometric
characterisation [19,37,48,58]. The TL case can be understood in terms of Lie Theoretic
notions of alcove geometry and geometric linkage [37], via generalised Schur–Weyl duality,
and indeed Ringel duality [26,49]. However the Brauer case is much richer, for example in
that, as the rank gets large, there are cell modules of arbitrarily large Loewy depth and width
[6] even over the complex field [55]; and, although its complex representation theory is now
intrinsically well-understood, the paradigm for the corresponding alcove geometric notions
is more intriguing. Beautiful links with alcove geometry are implicit in the generalisation to
the orthosymplectic case [5] (cf. for example [14,68]) of Brauer’s original orthogonal group
duality [10]; and appear explicitly in recent work of Ehrig and Stroppel [27–29]. But this is
not a straightforward generalisation of the TL case, and the partition algebra case is again
different [58].

Here we introduce, for each l ∈ {−1, 0, 1, 2, . . .}, a tower of algebras Jl,n (n ∈ N0).
Varying l interpolates between the TL algebras, case l = −1, and the Brauer algebras, case
l = ∞. (A general indication of this interpolation is given by comparing the dimensions
of the algebras in low rank—see Fig. 1.) A particular aim is to study the geometry in their
representation theory by lifting this new connection to the representation theory level. To
this end we investigate the representation theory of the new algebras using their amenability
to tower of recollement (ToR) [18] and monoid methods [64]. The representation theory for
large l, n eventually becomes very hard, but we are able to prove a number of useful general
results, and results over the complex field. For example we obtain the ‘generic’ semisimple
structure in the sense of [17].

By way of further motivation (although we will not develop the point here) we note that
both the Brauer and TL algebras provide solutions to the Yang–Baxter (YB) equations [4,65],
and hence in principle integrable models in statistical mechanics [48]. In addition to their
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Fig. 1 Table of dimensions of
algebras Jl,n

n = 0 1 2 3 4 5 6
l = −1 1 1 2 5 14 42 132

0 1 1 3 11 43 173 707
1 1 1 3 15 87 525
2 1 1 3 15 105 849
3 1 1 3 15 105 945 9795

∞ 1 1 3 15 105 945 10395

interest from a representation theory perspective, our new algebras can be seen as ways to
address the problem of construction of natural solutions to the boundary YB equations in the
TL setting (generalising the blob approach and so on—see e.g. [23] and references therein).
A paradigm here is the XXZ spin chain—a ‘toy’ model of quantum mechanical interacting
spins on a 1-dimensional spacial lattice derived from the Heisenberg model [7]; see e.g.
[46, Ch.6] or [14]. The motivation here would be to study spin chains with special physical
boundary conditions—conditions penetrating in a way controlled by the parameter l at one
end (or both ends) of the chain of length n.

An outline of the paper is as follows. The partition category has a basis of set parti-
tions, and the Brauer and Temperley–Lieb categories are subcategories with bases of certain
restricted partitions. In particular the Temperley–Lieb category has a basis of non-crossing
partitions. (There are two distinct such realisations—see [48, §6.2.1]. We will mainly focus
on the realisation by non-crossing partitions into pairs.) Here we provide a classification of
partitions generalising the plane-geometrical notion of non-crossing. Many such games are
possible in principle (see e.g. [15]), but we show that our classification (like non-crossing) is
preserved under the partition category composition. This closure theorem allows us to define
a sequence of new subcategories. Next we turn towards our motivating aim: investigation of
the representation theory of algebras contained in these categories. We focus in particular
here on the extensions of the Temperley–Lieb category in the Brauer category. In this paper
we establish a framework for modular representation theory of the corresponding towers of
algebras. In particular we construct for each algebra a set of modules over a suitable integral
ground ring that, on base change to the corresponding field of fractions, are a complete set
of simple modules. In the case that is modular over C in the sense of [11] we prove that the
algebras are generically semisimple. We observe an intriguing subset of parameter values
for which they are not semisimple, distinct from both TL and Brauer cases. We conclude
by determining branching rules, and hence give combinatorial constructions for the ranks of
these algebras. Finally in Sect. 6 we note some open problems.

The TL algebra has a sequence of known generalisations using its characterisation via
an embedding of pair partitions in the plane—the blob algebras and the contour algebras
[56]; as well as various beautiful generalisations due to Green et al. [30,33], tom Dieck
[70] and others. The blob algebra also has a rich geometrically-characterised representation
theory [58]. However none of the previously known cases serve to interpolate between the
TL algebra and the Brauer algebra.

1.1 Preliminary definitions and pictures for set partitions

We need to recall a pictorial realisation of the partition algebra (i.e. of set partitions). This
realisation is in common use (see e.g. [51]), but we will need to develop it more formally.

(1.1) A partition of a set T is a set of subsets of T such that the subsets are pairwise disjoint,
and their union is T . Let P(T ) denote the set of partitions of set T .
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Fig. 2 Graphs for the partition {{1, 3, 1′}, {2, 4}, {2′}} of the set {1, 2, 3, 4, 1′, 2′}

Noting the standard bijection between P(T ) and the set of equivalence relations on T we
write a ∼p b when a, b in the same part in p ∈ P(T ).

Suppose that p ∈ P(T ) and S ⊂ T . Write p|S for the restriction of p to S. Write
fS(p) := #{π ∈ p | π ∩ S = ∅}, the number of parts of p that do not intersect S. (Here
we follow [50, Def. 20]. See also e.g. [53].)

(1.2) Let G denote the class of graphs; G(V ) the subclass of graphs on finite vertex set V ;
and G[S] the subclass of G of graphs whose vertex set contains set S. Define

� : G(V ) → P(V )

by v ∼�(g) v′ if v, v′ are in the same connected component in the graph g. Define

�S : G[S] → P(S)

by �S(g) = �(g)|S . Note that additional edges between vertices joined by an edge in g
have no effect on �S(g).

(1.3)We shall use drawings to represent graphs in a conventional way: vertices by points and
edges by polygonal arcs between vertex points, as in Fig. 2 or Fig. 3. We shall refer to these
polygonal arcs as lines for brevity.

A picture d of a graph is thus (i) a rectangular region R of the plane; (ii) an injective
map from a finite set into R (hence a finite subset of points identified with vertices); and
(iii) a subset of R that is the union of lines. Line crossings are not generally avoidable (in
representing a given graph in this way), but we stipulate ‘line regularity’: that, endpoints
apart, lines touch only at points in the interior of straight segments; and that a line does
not touch any vertex point except its endpoints, or the boundary of R except possibly at its
endpoints.

Note: (I) Any finite graph can be represented this way (indeed with the vertices in any
position, see e.g. [20]). (II) The regularity condition ensures that a picture gives the path of
each line unambiguously. Thus no two distinct graphs have the same picture, and indeed the
process of following the path of each line gives us a map ‘back’ from pictures to graphs.

For g ∈ G[S] one thinks of S as a set of ‘external’ vertices, and draws them on the
horizontal part of the rectangle boundary. Interior vertices (v /∈ S) will generally not need to
be explicitly labelled here (the choice of label will be unimportant).

By (I) and (II), via �S , we can use a picture of g ∈ G[S] to represent a partition. The
drawings in Fig. 2 all represent the same partition, when regarded as pictures of set partitions
of S = {1, 2, 3, 4, 1′, 2′}. Specifically in each case �S(g) = {{1, 3, 1′}, {2, 4}, {2′}}.
(1.4)A vacuum bubble in g ∈ G[S] is a purely interior connected component [9] (cf. Fig. 3).
The vacuum bubble number is

�
f
S (g) = fS(�(g)) = #{π ∈ �(g) | π ∩ S = ∅}.

123



1250 Z. Kádár et al.

2’ 3’ 4’ 5’1’
2’ 3’ 4’ 5’1’

1

1’ 2’ 3’

321

1

Fig. 3 Picture stacking composition

(1.5) Let n := {1, 2, . . . , n} and n′ := {1′, 2′, . . . , n′}, and so on. Let

P(n, m) := P(n ∪ m′).

(1.6) An (n, m)-graph is an element of G(n, m) := G[n ∪ m′]. We draw them as in Figs. 2
and 3. We define �n,m = �n∪m′ , so

�n,m : G(n, m) → P(n, m). (1)

(1.7)Next we recall the partition categoryP, as defined in [50, §7].We first fix a commutative
ring k say, and δ ∈ k. The object set in P is N0. The arrow set P(n, m) is the free k-module
with basis P(n, m). Noting (1) this means that elements of P(n, m) could be represented as
formal k-linear combinations of (n, m)-graphs. In fact one generalises this slightly. In P an
(n, m)-graph [as in (1.6)] maps to an element of k P(n, m) via:

�P : g �→ δ�
f
n,m (g)�n,m(g).

For example the upper picture on the left in Fig. 3 encodes δ1{{1, 2′}, {1′, 3′}}.
The composition p∗q inP can be defined and computed in naive set theory [50]. But it can

also be computed by representing composed partitions as stacks of corresponding pictures
of graphs, as in Fig. 3. First a composition ◦ : G(n, m) ×G(m, l) → G(n, l) is defined: a ◦ b
is the combination of graphs with m vertex subsets identified and de-labelled as indicated
in Fig. 3. Here we only use the pictures as a convenience to indicate the vertex assignments
in the new graph. However by stacking pictures of a and b so that the m vertex sets in each
meet and are identified as in the figure, we do get a picture of a ◦ b. Then

p ∗ q = �P(a ◦ b)

for suitable a, b. For example, in case p = {{1, 2′}, {1′, 3′}} in P(1, 3) and q =
{{1, 5′}, {2, 4′}, {3, 1′}, {2′, 3′}} in P(3, 5) then the composition δ p ∗ q , or more explicitly

δ{{1, 2′}, {1′, 3′}} ∗ {{1, 5′}, {2, 4′}, {3, 1′}, {2′, 3′}} = δ{{1, 4′}, {1′, 5′}, {2′, 3′}}
can be verified via Fig. 3. The independence of p∗q on the choice ofa, b such that�P(a) = p
and �P(b) = q follows since connected components in a ◦ b are chains of paths in a and b,
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but any a′ ∈ �−1
P (p) has a path between two vertices if and only if a has one. Denoting the

stack of pictures for a ◦ b by d|d ′, top to bottom, then we can write

p ∗ q = �P(d|d ′) (2)

for any d, d ′ such that p = �P(d) and q = �P(d ′). To check associativity of ∗ note that
a ∗ (b ∗ c) becomes a stack identical to that for (a ∗ b) ∗ c. We have defined the category

P = (N0, k P(n, m), ∗).

This is equivalent to the original set theoretic definition [50].

Remark From this partition category perspective the pictures constitute a mild modification
of the plane projection of arrows in the tangle category, in which arrows (‘morphisms’) are
certain collections of non-intersecting polygonal arcs in a 3D box (see later, or e.g. [39]).

Write J (n, m) ⊂ P(n, m) for the subset of partitions of n ∪ m′ into pairs; and

B = (N0, k J (n, m), ∗)

for the corresponding Brauer subcategory of P (see e.g. [53, §5.1] or [44]).

1.2 Overview of the paper

We start with a heuristic overview and summary. Later, in order to prove the main Theorems,
we will give more formal definitions.

Besides the representation of a set partition p by a graph g, the task of constructing a
picture d of p contains another layer—the embedding and depiction of the graph g in the
plane. Both stages of the representation of set partitions are highly non-unique. However,
they lead to some remarkable and useful invariants. To describe these invariants we will need
a little preparation.

Suppose we have a picture d of a partition of this kind. Then each polygonal arc l of d
partitions the rectangle R into various parts: one or more connected components of R\l; and
l itself. Overall, a picture d subdivides R into a number of connected components, called
alcoves, of R\d (regarding d as the union of its polygonal arcs), together with d itself.

(1.8) Given a picture d , the distance dd(x, y) from point x to y is the minimum number of
polygonal arc segments crossed by a continuous path from x to y, among all such paths.
Examples (the second picture shows distances to y from points in various alcoves):

1’ 2’

1 2 3 4

y

x

d(x,y)=3

1’ 2’

1 2 3 4

21

2

1

y

3

0

Note that there is a well-defined distance between a point and an alcove; or between alcoves.
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(1.9) The height, or left-height, of a point in d is defined to be the distance from the leftmost
alcove. (By symmetry there is a corresponding notion of rightmost alcove; and right-height
may then be defined similarly to (left-)height.)

Given a picture d , a crossing point is a point where two polygonal arc segments cross.
Note that these points in particular have heights. For example the upper of the two crossing
points in the picture above has height 1, and the other has height 0.

The height ht(d) of a picture d with crossing points is defined to be the maximum height
among the heights of its crossing points. We shall say that the height of a picture without
crossings is −1.

(1.10) Although the picture d of a partition p is non-unique, we can ask, for example, if
it is possible to draw p without arc crossings—i.e. if among the drawings d of p there is
one without crossings. If it is not possible to draw p without crossings, we can ask what is
the minimum height needed—that is, among all the pictures d representing p, what is the
minimum picture height? We call this minimum the height of partition p.

(1.11) Returning to the partition category P = (N0, k P(n, m), ∗), the existence of a
Temperley-Lieb subcategory in P (see e.g. [48, §6.2], [53, §5.1]) corresponds to the obser-
vation that the product p ∗ p′ in P of two partitions of height −1 (i.e. non-crossing) gives
rise to a partition that is again height −1. Our first main observation is a generalisation of
this:
The height of p ∗ p′ in P does not exceed the maximum of the heights of p, p′. Thus:
For each l ∈ N− := {−1, 0, 1, 2, . . .} there is a subcategory spanned by the partitions of
height at most l.

We first prove this result. This requires formal definitions of ‘left-height’ and so on, and
then some mildly geometrical arguments. Recall that J (n, m) ⊂ P(n, m) is the subset of
partitions of n∪m′ into pairs; and that the partitions of this form span the Brauer subcategory:
B = (N0, k J (n, m), ∗). The construction above induces a sequence of subcategories here
too. The rest of the paper is concerned with the representation theory of the tower of algebras
associated to each of these categories, that is, the algebras that are the End-sets in each of
these categories.

2 Formal definitions and notations

We start with a formal definition of a picture, a drawing as in (1.3). Notation is taken largely
from Moise [60] and Crowell–Fox [20].

(2.1) Given a manifold M we write ∂ M for the manifold-theoretic boundary; and (M) =
M\∂ M for the interior [60, §0].

(2.2) A polygonal arc is an embedding l of [0, 1] in R3 consisting of finitely many straight-
line segments. The open arc (l) of l is the corresponding embedding of (0, 1). An arc-vertex
in l is the meeting point of two maximal straight segments.

(2.3)A polygonal graph is (i) an embedding ε of the vertex set V of some g ∈ G(V ) as points
in R3; and (ii) for graph edges E a polygonal embedding ε : �e∈E (0, 1) ↪→ R

3\ε(V ) such
that the closure points of (0, 1)e agree with the endpoints of e.

(2.4) Note that every g has an embedding for every choice of ε : V ↪→ R
3.

(2.5) In our construction the vertex labels in a graph g are important data, but edge labels are
unimportant. Note that if the edge labels are unimportant then we can recover the original
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graph from the map ε : V (labeling graph vertex points) and the image ε(g). Note well the
distinction between graph vertices ε(v ∈ V ) and polygonal arc-vertices.

(2.6) Fix a coordinate system onR3. A polygonal graph G = ε(g) is regular (in the rectangle
R ⊂ R

2) if

(i) the projection p(x, y, z) = (x, y) is injective on vertices;
(ii) for k ∈ G\ε(V ) then |p−1(p(k))| ≤ 2;
(iii) |p−1(p(k))| = 1 if k an arc-vertex;
(iv) for k ∈ G, p(k) ∈ p(ε(V )) implies k ∈ ε(V );
(v) p(G) ⊂ R and p(k) ∈ ∂ R implies k ∈ ε(V ).

(2.7) A picture is a triple d = (V , λ, L) consisting of a set V , an injective map λ : V ↪→ R
2

and a subset L ⊂ R
2 such that λ = p ◦ε|V for some regular polygonal graph with g ∈ G(V );

and L is the image L = p(ε(g)). (The datum also includes the containing rectangle R, but
notationally we leave this implicit.)

The point here is that such a d , consisting only of labeled points and a subset of R,
determines a graph g; and every graph has a picture. Note that d also determines the set of
points where |p−1(p(k))| = 2 in (2.6)(ii)—the set χ(d) of crossing points.

(2.8) Let us consider pictures with R oriented so that its edges lie in the x and y directions. If
the vertex points on the northern (respectively southern) edge of R are not labelled explicitly
then they may be understood to be labeled 1, 2, . . . (respectively 1′, 2′, . . .) in the natural
order from left to right.

In particular such a frame-drawn picture without any vertex point labels determines a
graph in some G[n ∪ m′] up to labelling of the other ‘interior’ vertices.

We identify pictures differing only by an overall vertical shift. Given our vertex labelling
convention above we could also identify under horizontal shifts, but the horizontal coordinate
will be a useful tool in proofs later, so we keep it for now.

2.1 Stack composition of pictures

Here we follow the usual construction of ‘diagram categories’ (e.g. as in [50, §7]), but take
care to emphasise specific geometrical features that we will need later.

(2.9)Given d = (V , λ, L) in rectangle R writen(d) for the subset ofR giving the intersection
of L with the northern edge of R (thus by (2.6)(v) the collection of x-values of ‘northern’
exterior vertex points, or ‘marked points’). Write s(d) for the corresponding southern set.

Write h0(a, b) for the class of pictures d with n(d) = a and s(d) = b, and L not
intersecting the two vertical edges of the containing rectangle.

(2.10) Note that for d ∈ h0(a, b) there is an essentially identical picture with R wider. Thus
any two such pictures may be taken to have the same (unspecified, finite) interval ofR as their
northern edges, and southern edges. The juxtaposition of rectangles, R, R′ say, by vertical
stacking of R over R′ thus produces a rectangle, denoted R|R′. This is almost a disjoint
union, except that the southern edge of R is identified with the northern edge of R′.

Given a pair of pictures d and d ′, stack R|R′ induces a corresponding pair of subsets
λ(V )|λ′(V ′) and L|L ′ in the obvious way. For example see Fig. 3.

Proposition 2.11 The stack juxtaposition of a picture d in h0(a, b) over a picture d ′ in
h0(b, c) defines a picture d|d ′ in h0(a, c).
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Proof As noted, the stack R|R′ induces a corresponding pair of subsets λ(V )|λ′(V ′) and
L|L ′. The former is a union of finite point sets which clearly agrees with a and c on the
relevant edges of R|R′. The latter is a union of lines, and the only new meetings are at the
marked points in b (as it were). These are now interior marked points. Conditions (2.6)(i–v)
hold by construction. ��
Remark 2.12 Recall from (2.8) that we identify pictures differing by overall vertical shift,
but not up to isotopy here. Note also that for d ∈ h0(a, a) with a non-empty then d has at
least 2|a| vertices (the northern and southern exterior vertices), unless we allow rectangles of
zero vertical extent. Consider d, d ′ ∈ h0(a, a). If d has ν vertices and d ′ has ν′ vertices then
d|d ′ has ν + ν′ − |a| vertices. Thus stack composition of pictures of non-zero vertical extent
always produces a picture with more (internal) vertices than either. Thus no such picture can
be an identity of stack composition. On the other hand, allowing rectangles of zero vertical
extent in any h0(a, a) allows for an identity element 1a of stack composition in h0(a, a).
Write h0 for the ‘picture category’.

Proposition 2.13 For finite subsets a and b of R, there is a surjection

πe : h0(a, b) → P(|a|, |b|) (3)

given by counting the elements of a (resp. b) from left to right and hence passing to a graph
by (2.8), and then using �n,m from (1). ��
Proposition 2.14 Fix a commutative ring k and δ ∈ k, and let πp denote the general-
isation of πe corresponding to �P from (1.7). Let d ∈ h0(a, b), d ′ ∈ h0(b, c). Then
πp(d|d ′) = πp(d) ∗ πp(d ′), where the product on the right is in the partition category
P = (N0, k P(n, m), ∗) as in (1.7).

Proof Note from (2.7) and (2.8) that we have a well-defined map from pictures to graphs,
and hence in particular maps κ : h0(a, b) → G(|a|, |b|). In (1.7) P is defined using these
graph sets G(n, m) and the map �P. By construction we have πp = �P ◦ κ , that is, πp

factors through G(n, m). ��
(2.15) If d ∈ h0(a, b) is a picture as above, let d∗ ∈ h0(b, a) denote the picture obtained by
flipping d top-to-bottom.

Let p ∈ P(n, m). Write p∗ for the element of P(m, n) obtained by swapping primed and
unprimed elements of the underlying set.

Note that if d is a picture of p ∈ P(n, m) then d∗ is a picture of p∗ ∈ P(m, n). Further-
more, this ∗ is a contravariant functor between the corresponding partition categories.

(2.16) Note that for any picture in the category h0 with distinct northern and southern edge
we can vertically rescale to arbitrary finite separation of these edges. Thus we can make any
two pictures have the same separation. For two such pictures d, d ′ there is a picture d ⊗ d ′
obtained by side-by-side juxtaposition.

(2.17) We call a picture a chain picture if every exterior marked point [as in (2.9)] is an
endpoint of precisely one line, and every interior marked point is an endpoint of precisely
two lines (e.g. as in Fig. 3). Write h2

0(a, b) ⊂ h0(a, b) for the subset of chain pictures. Note
that every p ∈ J (n, m) has a chain picture. We have the following.

Lemma 2.18 The stack composition Proposition 2.11 closes on the subset of chain pictures
(i.e. if d, d ′ are chain pictures then so is d|d ′). This gives a subcategory of the category in
Remark 2.12. The corresponding πp-quotient category (as in Proposition 2.14) coincides
with the Brauer category B = (N0, k J (n, m), ∗) from (1.7). ��
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(2.19) A pair partition is plane if it has a frame drawn picture [as in (2.8)] without crossings
of lines. We write T (n, m) for the subset of plane pair partitions (TL partitions) and T =
(N0, kT (n, m), ∗) for the corresponding Temperley–Lieb subcategory of B.

2.2 Paths and the height of a picture/a partition

Remark 2.20 Fix a rectangle R. Each non-self-crossing line l with exterior endpoints in R can
be considered to define a separation of R into three parts—the component of R\l containing
the left edge of R; the other component of R\l; and l.

(2.21) An alcove of picture (V , λ, L) is a connected component of R\L .

(2.22) A simple point of a subset U of R2 is a point having a neighbourhood in U that is an
open straight segment. (For example in some picture d = (V , λ, L), with L = p(ε(g)), the
non-simple points of L\λ(V ) are the arc-vertices and crossing points.)

Given a picture (V , λ, L), a path in (V , λ, L) is a line l in R such that every k ∈ (l) ∩ L
is a simple point of (l) and also a simple point of L\λ(V ).

Thus a path l in (V , λ, L) has a well-defined number of line crossings, dL(l).

Lemma 2.23 Given a path l in picture d connecting points x, y ∈ R and a distinct point
z ∈ (l), there is a path l ′ connecting x, y that does not contain z.

Proof Since z ∈ (l) it has a neighbourhood either containing only a segment of l; or only a
crossing of l with a straight segment of L (by the simple point condition on path l). If we
modify the path inside the neighbourhood by a small polygonal detour around z then the
modification is a path in d and does not contain z. ��
Lemma 2.24 For each picture d and x, y ∈ R there is a path in d from x to y.

Proof Draw a small straight line l1 from x to a point x ′ in an adjacent alcove, choosing x ′ so
that the tangent of the straight line x ′ − y is not in the finite set of tangents of segments of
lines of L; and the line does not contain any element of the finite set of crossing points of d .
Then x − x ′ − y is a path. ��

(2.25) By (2.22) and Lemma 2.24 we have established that the notion of distance dd(x, y)

in (1.8) is well-defined. For our notion of height we will need only distances from a certain
reference point. Given a picture d = (V , λ, L), and points r , x in R, the x-height dd(r , x)

(or dL(r , x)) of r is the minimum value of dL(l), as defined in (2.22), over paths l in d from
r to x .

We suppose that L does not intersect the left edge RL of R. The (left)-height htL(r) =
dL(r , x) in case x is any point on RL . (Note that this is well-defined.)

The (left)-height of an alcove A is the left-height of a point in A. See Fig. 4 for examples.

(2.26) Given a picture d = (V , λ, L), recall χ(d) is the set of crossing points of lines in
d [recall from (1.3) that, vertex points aside, lines in d only meet at crossing points]. The
left-height ht(d) is the greatest of the left-heights of the points x ∈ χ(d); or is defined to be
−1 if there are no crossings.

For example, d1 in Fig. 4 has left-height 2; and d2 has left-height −1.

(2.27) Finally we say that a partition p ∈ P(n, m) has left-height ht(p) = l if it has a frame
drawn picture of left-height l, and no such picture of lower left-height. For example, both
pictures in Fig. 4 give the same partition p, so ht(p) = −1.
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d1 =

0

1 2

1

1

2

2
3

2

2

3

d2 =

0

1

1

Fig. 4 Example pictures with left-heights of alcoves. (Remark: By [60, §6] piecewise linear and piecewise
smooth lines are effectively indistinguishable as far as physically drawn figures are concerned)

Since every p has a picture, it will now be clear that p → ht(p) defines a function

ht : P(n, m) → {−1, 0, 1, 2, . . .}.
A path realising the left-height of a point in a picture is called a low-height path. A picture

realising the left-height of a partition is called a low-height picture.

(2.28) Define Pl(n, m) as the subset of partitions in P(n, m) of left-height l, and

P≤l(n, m) =
⋃

j≤l

Pj (n, m).

Define Jl(n, m) as the corresponding subset of J (n, m), and J≤l(n, m) analogously.

Example 2.29 Here we give the Jl(3, 3) subsets of J (3, 3). Each element is represented by
a low-height picture (of course, other pictures could have been chosen instead). Note that it
is a Proposition that a given picture is low-height. (In our examples this can be proved using
the Jordan curve Theorem. In general it is not so easy, but we will only need existence of
low-height pictures, which is clear.) One should keep in mind that the elements of Jl(3, 3)
are pair partitions, not pictures!

J−1(3, 3) = { , , , , }

J0(3, 3) = { , , , , , }

J1(3, 3) = { , , , }

More generally the Brauer algebra identity element 1n ∈ J−1(n, n); the symmetric group
Coxeter generator σ1 ∈ J0(n, n); σi ∈ Ji−1(n, n);

J1(9, 9) ; J2(10, 10)

J2(10, 10)

Remark 2.30 Observe that for p ∈ J (n, n), ht(p) ≤ n −2. Hence, in particular, J≤r (n, n) =
J≤n−2(n, n) for any n − 2 < r < ∞.
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Lemma 2.31 Removing part or all of a line from a picture cannot produce a picture with
higher height.

Proof The number of crossings of a path cannot be increased by removing a line. Let d ′ come
from d by removing a line. Each crossing point that occurs in d ′ was in d , and so its height
cannot increase. ��

(2.32) In particular, if a line has a self-crossing then we can ‘short-circuit’ the path without
increasing the height, or changing the partition. The self-crossing point becomes an arc-vertex
with a regular neighbourhood, so the regularity of the picture remains to hold. Thus for each
low-height picture there is a low-height picture without line self-crossings.

3 Algebraic structures over J≤l(n,n)

We denote by k the commutative ring k = Z[δ], where δ is an indeterminate; and k =
Z[δ, δ−1].
(3.1) Recall the Brauer category B from (1.7) and consider the case of the ground ring
k. Thus for each n we have the Brauer k-algebra Bk

n = kJ (n, n). Recall (e.g. from [10]
or Lemma 2.18) that the multiplication in Bk

n may be defined via vertical juxtaposition of
representative diagrams.

(3.2)Define J k
l,n as the k-subalgebra of Bk

n generated by J≤l(n, n). For k a fixed commutative
ring and δc ∈ k we write Jl,n = Jl,n(δc) for the base-change:

Jl,n(δc) := k ⊗k J k
l,n (4)

(i.e., regarding k as a k-algebra in which δ acts as δc). For example Jl,n(1) is the monoid
k-algebra for the submonoid of the Brauer monoid associated to Bn(1) [59].

(3.3) Define Jl as the subcategory of B generated by the sets J≤l(n, m), over all n, m ∈ N0

(that is, the smallest k-linear subcategory such that the collection of arrowsJl(n, m) contains
J≤l(n, m) for each n, m).

Note that the smallest possible height for a crossing is 0. Thus, noting (2.26), J−1(n, m)

denotes the subsetwith no crossings. That is J−1(n, m) = T (n, m) from (2.19). Itwill be clear
then that J k−1,n is the Temperley–Lieb algebra. Complementarily, J≤∞(n, m) = J (n, m), so

J k
n−2,n (= J k∞,n , by Remark 2.30) is the Brauer algebra. Next we will show (our first main

theorem) that the ‘interpolation’ by varying l between these is proper in the following sense:

Theorem 3.4 (I) The sets J≤l(n, m) form a basis for the k-linear category Jl . That is, Jl =
(N0, kJ≤l(n, m), ∗). (II) The set J≤l(n, n) is a k-basis for J k

l,n.

Proof (I) Recall from definition (3.3) that the n, m-arrow set inJl is generated by J≤l(n, m).
Note that J≤l(n, m) is linearly independent over k in Jl , as it is linearly independent in the
Brauer category B. It is thus enough to show that J≤l(n, m) × J≤l(m, j) maps to kJ≤l(n, j)
under the Brauer category product. For this, we need to show that for every pair of pair-
partitions (p1, p2) ∈ J≤l(n, m) × J≤l(m, j), determining a partition p3 ∈ J (n, j), we
have p3 ∈ J≤l(n, j). By (2.27) the pair-partitions p1, p2 have composable minimum-height
pictures, denoted by d1, d2, respectively. By Proposition 2.14 their vertical juxtaposition
d1|d2 gives p3, so it is sufficient to show that ht(d1|d2) ≤ l.
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Fig. 5 Examples with heights shown

Observe that by construction the set of crossing points of d1|d2 is precisely the disjoint
union of those of d1 and d2. Now, also by construction a low-height path from any point x in
d1 remains a (not necessarily of low height) path in d1|d2. See the path from x in the figure
below for example.

x x
x

Thus, the left-height of a point (in d1 or d2) cannot increase after concatenation. Hence
ht(d1|d2) ≤ l. (II) follows immediately. ��
Remark 3.5 As illustrated in Fig. 5, the left-height of d|d ′ may be smaller than that of d and
d ′, due to paths in d|d ′, which are not paths in either d or d ′.

Theorem 3.6 The triple Pl = (N0, kP≤l(n, m), ∗) is a subcategory of P.

Proof The proof of Theorem 3.4 works mutatis mutandis. ��
We will discuss connections with known constructions in Sect. 6.2.

4 Representation theory of Jl,n

We now begin to examine the representation theory of Jl,n . We broadly follow a tower of
recollement (ToR) approach [18], extending this as in [32, §6] and [55].

A part in p ∈ P(n, m) is propagating if it contains both primed and unprimed elements
of n ∪ m′ (see e.g. [48,50]). Write P(n, l, m) for the subset of P(n, m) of partitions with l
propagating parts; and similarly J (n, l, m). Define

Jl(n, r , m) = Jl(n, m) ∩ J (n, r , m).

We write #p(p) for the propagating number—the number of propagating parts.
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Define u as the unique element in J (2, 0). Note that P and B are isomorphic to their
respective opposite categories via the opposite mapping c �→ c∗. Thus u∗ is the unique
element in J (0, 2). Define U to be the pair partition in J (2, 2) determined by the following
picture.

We use ⊗ to denote the monoidal/tensor category composition in P (that is, the image of
the side-by-side concatenation of pictures from (2.16), extended k-linearly). For any given
n ≥ 2, set e = en where

(5)

Given a partition p in P(n, n) we write p|n−2 for the natural restriction to a partition in
P(n − 2, n − 2). (Note that this restriction does not take J (n, n) to J (n − 2, n − 2).)

4.1 Index sets for simple Jl,n-modules

Here we assume we have base-changed as in (4) to an algebraically closed field k. We write
Jl,n for Jl,n(δc) if we do not need to emphasise δc. Write k× for the group of units.

Proposition 4.1 Suppose δ ∈ k× or n > 2. There is a k-module map

 : eJl,ne ∼= Jl,n−2

given by  : ede �→ ede|n−2. For δ ∈ k× this  is an algebra isomorphism.
Let f = 1n−3 ⊗U ⊗11 (cf. (5)) and h = ef. Then efe = e and eJl,nef = efJl,nef = hJl,nh.

For n > 2, and any δ, there is an algebra isomorphism hJl,nh ∼= Jl,n−2.

Proof Note ede = d ′ ⊗ U for some d ′ ∈ Jl,n−2, so (ede) = d ′ so the map is injective
(just as in the ordinary Brauer case). To show surjectivity in case δ ∈ k× consider d ′ in Jl,n

by the natural inclusion of Jl,n−2 ↪→ Jl,n (the key point here is that the natural inclusion
Jn−2 ↪→ Jn takes Jl,n−2 ↪→ Jl,n since the embedding does not change the height of crossings
in the d ′ part, as it were, and does not introduce further crossings), so (ed ′e) = δd ′ for any
d ′ ∈ Jl,n−2. Other cases are similar. ��
Corollary 4.2 Suppose that �(Jl,n) denotes an index set for classes of simple modules of Jl,n,

for any n. Then for n > 2 the set of classes of simple modules S of Jl,n such that eS �= 0 may
be indexed by �(Jl,n−2).

Proof Note that δ−1e (respectively ef) is idempotent and apply Green’s Theorem in [32,
§6.2]. ��
Corollary 4.3 For n > 2 the index set �(Jl,n) may be chosen so that

�(Jl,n)\�(Jl,n−2) = �(Jl,n/(Jl,neJl,n))

where �(Jl,n/(Jl,neJl,n)) is an index set for simple modules of the quotient algebra by
the relation e = 0 (i.e. the quotient by the ideal Jl,neJl,n). In other words �(Jl,n) ∼=
�(Jl,n−2)��(Jl,n/(Jl,neJl,n)) and the sets {�(Jl,n)}n are determined iteratively by the sets
{�(Jl,n/(Jl,neJl,n))}n. ��
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Fig. 6 Writing p ∝ p′ep′′

Define Jl(n,< m, n) = ∪r<m Jl(n, r , n) and so on (e.g. J≤l(n,< n, n) includes every
pair partition in J≤l(n, n) with submaximal number of propagating lines).

Proposition 4.4 The ideal Jl,neJl,n = k J≤l(n,< n, n) as a k-vector space.

Proof Let p ∈ J≤l(n, n) have submaximal number of propagating lines, that is #p(p) ≤ n−2
(see page 1258), so that it has at least one northern and one southern pair. Let d be a low-height
picture of p. We will use d to show that p ∈ Jl,neJl,n .

For X some subset of {N , S}, let d[−X ] denote the picture obtained from d by deleting
the lines from north to north (N ), south to south (S), or both. Thus d[−S] is a picture of
some pt ∈ J (n, j, j) where j = #p(p). Similarly, abusing notation slightly by writing u∗
for some low-height picture of u∗, then d[−S]⊗u∗ is a picture of some p′ ∈ J (n, j, j +2).

By the Deletion Lemma 2.31 the height of d[−N ] does not exceed that of d , and similarly
for d[−N S] and d[−S]. Note that, since d[−N S] is a picture of a permutation (of the
propagating lines); and d[−N S]∗ is a picture of the inverse, we have that in the picture
category (Proposition 2.11),

d ′ = d[−S] | d[−N S]∗ | d[−N ] (6)

is another picture for p. (An example is provided by Fig. 6: the original picture of p is on
the left, whereas d[−S] | d[−N S]∗ | d[−N ] is on the center-left.)

Next, observe that one can add some loops on the right of this picture, (red circles in
the example Fig. 6) with no change to the height of the picture, or the resulting partition p.
Thus, up to an overall factor of a power of δ, p can be expressed in the form p′ep′′ where a
picture for p′ is (d[−S] | d[−N S]∗)⊗(u∗)⊗(n− j)/2 (a picture of height≤ l by construction),
and p′′ is d[−N ] ⊗ u⊗(n− j)/2, and hence p′, p′′ ∈ Jl,n . Finally note that the red loops can
be replaced by suitable non-crossing deformations of lines from above and below (cf. the
rightmost picture in example Fig. 6). ��

(4.5) By Proposition 4.4 the quotient algebra Jl,n/(Jl,neJl,n) has a basis which is the image
of J≤l(n, n, n). Note that these elements of Jl,n form a subgroup as well as their image
spanning a quotient algebra.
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For n < l +2 this group is isomorphic to Sn ; otherwise it is isomorphic to Sl+2 (since there
can be no crossings after the first l + 2 lines). The quotient itself is then the corresponding
group algebra. That is, �(Jl,n/(Jl,neJl,n)) ∼= �(kSmin(n,l+2)), where �(kSn) denotes an
index set for simple kSn-modules, which we can take to be the set of char.k-regular integer
partitions [35]. Combining with Proposition 4.3, we thus have the following.

Theorem 4.6 Let �n denote the set of integer partitions of n and �n,k the subset of char.k-
regular partitions as in [35] (so that �(CSn) = �n for any n and �(kSn) = �n,k for any

k). Let �
(p)
n := {p} × �n (so that �

(1)
n and �

(2)
n are disjoint copies of �n), and similarly

for �n,k . Define �n = {n, n − 2, . . . , 1/0}. Then, with δ �= 0,

�(Jl,n) =
⋃

p∈�n

�
(p)

min(p,l+2),k

and specifically over k = C, with δ �= 0,

�(Jl,n)
k=C=

⋃

p∈�n

�
(p)

min(p,l+2)
∼=

⎛

⎝
l+1⋃

p=0

′
�p

⎞

⎠ ∪
⎛

⎝
n⊔

p=l+2

′
�l+2

⎞

⎠

where
⋃′

p denotes a range including only p congruent to n mod. 2; and
⊔

p
′
�l+2 denotes

disjoint copies of �l+2 with the same constraint on the range. For δ = 0 the result is the
same except to omit the integer partition of 0 when n is even.

Proof The cases not covered by Proposition 4.3 are for n ≤ 2 (in particular when δ = 0).
These are simple direct calculations (cf. [55]). ��

(4.7)Let J ||(n, l, m)denote the subset of J (n, l, m)of elements p having a pictured forwhich
d[−N S] has no crossings. Recall (e.g. from [55]) the polar decomposition of an element
of J (n, m, n): the inverse of the map ν : J ||(n, m, m) × J (m, m, m) × J ||(m, m, n)

∼→
J (n, m, n), given by the category composition. Note that if p ∈ J≤l(n, m, n) then l bounds
the height of all three factors in the polar decomposition. (The argument is analogous to the
argument at (6). Firstly note that if d is a low-height picture of p then d[−S] | d[−N S]∗ is
a picture of the northern polar factor of no higher height. The other factors are similar.) That
is, the restriction ν−1 : J≤l(n, m, n) ↪→ J ||

≤l(n, m, m) × J≤l(m, m, m) × J ||
≤l(m, m, n). On

the other hand the image of ν on this codomain lies in J≤l(n, m, n) by Theorem 3.4, so the
restriction as given is a bijection.

4.2 On quasihereditary cases of Jl,n

The proof of themain result of this section (Theorem 4.12) follows closely the Brauer algebra
case, as for example in [19]. We focus mainly on the new features required for the present
case.

(4.8) For n ≥ 2t define en,t = 1n−2t ⊗ U⊗t and (when δ ∈ k×) e′
n,t = δ−t en,t . Note that

en,t ∈ J−1(n, n − 2t, n). For example e = en,1 and

We have the following useful corollary to the proof of Proposition 4.4.
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Corollary 4.9 The ideal Jl,nen,t Jl,n = k J≤l(n,≤ n − 2t, n) as a k-vector space.

Proof The proof is the same as for Proposition 4.4 except that we use a different ‘meandering’
deformation of the path in the final stage of the construction of d ∈ Jl(n,≤ n − 2t, n), as
in Fig. 6. This is needed to avoid closed loops in the construction using en,t . Specifically we
change, for example, from the first to the second here:

Note that there is room for enough meanders because of the bound on the number of propa-
gating lines in d . ��

(4.10) Define the quotient algebra

Jl,n,t = Jl,n/Jl,nen,t+1 Jl,n

By Corollary 4.9 this algebra has basis J≤l(n,≥ n − 2t, n).

Proposition 4.11 For each triple n, l, t the following hold when δ ∈ k×.

(i) The algebra A = en,t Jl,n,t en,t is isomorphic to kSmin(n−2t,l+2).

(ii) The multiplication map Jl,n,t en,t ⊗A en,t Jl,n,t
μ→ Jl,n,t en,t Jl,n,t is a bijection of

(Jl,n,t , Jl,n,t )-bimodules.

Proof (i) The number of propagating lines must be at least n − 2t , but with the en,t ’s present
this is also the most it can be, so every propagating line in en,t is propagating in A, and indeed
A is isomorphic to the group algebra of a symmetric group. The group is Smin(n−2t,l+2) by
the height condition.

(ii) The map is clearly surjective. We construct an inverse using the polar decomposition
(4.7). Note that Jl,n,t en,t has a basis in bijection with J≤l(n, n − 2t, n − 2t) ∼= J ||

≤l(n, n −
2t, n − 2t) × J≤l(n − 2t, n − 2t, n − 2t). Subset en,t Jl,n,t can be treated similarly. It then
follows from the definition of the tensor product that the left-hand side has a spanning set
whose image is independent on the right. ��
Theorem 4.12 If δ invertible in k = C then Jl,n is quasihereditary, with heredity chain given
by (1, e′

n,1, e′
n,2, . . .) as defined in (4.8).

Proof Noting that CSmin(n−2t,l+2) is semisimple, this follows immediately from Proposi-
tion4.11. SpecificallyProposition4.11 shows, via e.g. [22, Statement 7], that (1, e′

n,1, e′
n,2, . . .)

gives a heredity chain in the sense of [16,21] (to strictly match their conventions, one reverses
the order of elements). Cf. e.g. [19,24]. ��

4.3 Aside: slick proof of quasiheredity in themonoid case

Note that for a ∈ J (n, n) we have aa∗a = a in Jl,n . Since the height of a∗ is the same as a
we have the following.
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Proposition 4.13 The algebra Jl,n(1) is a regular-monoid k-algebra (i.e. a ∈ a Jl,na for all
a ∈ Jl(n, n)). ��
Corollary 4.14 The algebra Jl,n(1) is quasihereditary when k = C.

Proof Use Putcha’s Theorem [64], that a regular-monoid C-algebra is quasihereditary. ��

4.4 Standardmodules of Jl,n

Wemay construct a complete set of ‘standard modules’ for each Jl,n as follows. The modules
we construct are ‘standard’ with respect to a number of different compatible axiomatisations
(the general idea of standardmodules, when such exist, is that they interpolate between simple
and indecomposable projective modules). For example (I) we can construct quasihereditary
standard modules by enhancing the heredity chain in Theorem 4.12 to a maximal chain cf.
[24]; (II) we can construct the modular reductions of lifts of ‘generic’ irreducible modules
in a modular system cf. [6]; (III) we can construct globalisations of suitable modules from
lower ranks cf. [42,51,55]. We are mainly interested in a useful upper-unitriangular property
of decomposition matrices that we establish in Proposition 4.27.

(4.15)Note that k J≤l(n, m), withm ≤ n say, is a left Jl,n right Jl,m-bimodule, by the category
composition. By the bottleneck principle it has a sequence of submodules:

k J≤l(n, m) = k J≤l(n,≤ m, m) ⊃ k J≤l(n,≤ m − 2, m) ⊃ · · ·
For given l, each section

Jp
n,m := k J≤l(n,≤ p, m)/k J≤l(n,≤ p − 2, m)

thus has basis J≤l(n, p, m). In particular the top section has basis J≤l(n, m, m).

(4.16) The above holds in particular for the case m = n, where our sequence is an ideal
filtration of the algebra, cf. Corollary 4.9. Define the quotient algebra

J /p
l,n = Jl,n/k Jl(n,≤ p, n).

Note that this is the same as Jl,n,t with p + 2 = n − 2t (but now without restriction on δ).
The index p tells us that partitions with p or fewer propagating lines are congruent to zero
in the quotient.

(4.17) In particular, as noted in (4.5), J /n−2
l,n

∼= kSmin(n,l+2). Specifically J /n−2
l,n has basis

J≤l(n, n, n), which is of the form J (l +2, l +2, l +2)⊗1n−(l+2), i.e. Sl+2 ⊗1n−(l+2), when
n > l + 2 (since there can be no crossing lines after the first l + 2 in this case).

(4.18) Note that Jp
n,m is also a left J /p−2

l,n right J /p−2
l,m bimodule. Thus we have a functor

Jp
n,m ⊗

J /p−2
l,m

− : J /p−2
l,m − mod → J /p−2

l,n − mod

and in particular a functor

Jp
n,p ⊗kSp − : kSp − mod → J /p−2

l,n − mod (p ≤ l + 2)

Jp
n,p ⊗kSl+2 − : kSl+2 − mod → J /p−2

l,n − mod (p > l + 2)

(in case p > l+2, the right action of kSpl = kSl+2 in the form kSl+2⊗1p−l−2 is understood).
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(4.19) With this functor in mind we recall some facts about the symmetric groups. For any
symmetric group Sm and a partition λ � m, let Sλ denote the corresponding Specht module
of Sm—see e.g. [35,36]. Recall that there is an element ελ in kSm such that Sλ = kSmελ. If
k ⊃ Q then ελ may be chosen idempotent. Example: The element ε(2) ∈ kS2 is unique up to
scalars: ε(2) = 12 + σ1 (in the obvious notation). Thus a basis for S(2) is b(2) = {ε(2)}.
(4.20) Recall that, for given k, �(Jl,n) denotes the index set for simple modules as in Theo-
rem 4.6. Let us also define a set

�−(Jl,n) :=
⋃

p∈�n

�
(p)

min(p,l+2),k

as in Theorem 4.6, independently of k. (Note that for k = C and δ �= 0 we have �(Jl,n) =
�−(Jl,n).)

For given l define pl := min(p, l+2). For any p andλ � pl , that is for (p, λ) ∈ �−(Jl,n),
we define a global-standard Jl,n-module using (4.18)

�n
p,λ = �p,λ = Jp

n,p ⊗kSpl
Sλ.

(4.21) For given l, p let λ � pl . We can consider kSpl ↪→ k J (pl , pl), indeed kSpl

∼→
k J≤l(pl , pl , pl) by the inclusion in (4.5), and hence ελ ∈ k J≤l(pl , pl , pl). Thus

En(p, λ) := ελ ⊗ 1p−pl ⊗ U⊗(n−p)/2

lies in Jl,n . For any ελ we may write the image in P schematically as λ with 2× |λ| legs;
e.g. (2) with two pairs of legs. Thus for example with l = 1 we have:

Define another Jl,n-module by

Dp,λ = J /p−2
l,n En(p, λ).

Proposition If k ⊃ Q and δ ∈ k× then the elements En(p, λ) are (unnormalised) idem-
potents serving to refine the chain (1, e′

n,1, e′
n,2, . . .) in Theorem 4.12 and {Dp,λ | (p, λ) ∈

�(Jl,n)} are the quasihereditary-standard modules [24, §A1] of the quasihereditary structure
in Theorem 4.12. ��
Proof Let A be a quasihereditary algebra with heredity chain e− = (e1, e2, . . . , ei , . . . , el);
and define Ai = A/Aei+1A. To refine towards a maximal heredity chain from heredity chain
e− we first decompose each ei into a primitive idempotent decomposition of it regarded as
the identity in ei Ai ei (cf. e.g. [24, §A3]). Let eλ be any idempotent in this decomposition
(λ labeling a simple module of ei Ai ei ) that lifts from Ai to A. Then the lift eλ can be
the first idempotent in the refinement at ‘level’ i (again cf. [24]). In our case, comparing
the construction with Proposition 4.11 we see that each of the En(p, λ)’s provides such an
idempotent.

Subsequent steps in a full chain refinement involve partial sums of such idempotents. But
since any order may be used to introducing these into the chain (within level i), and �(λ)

is independent of this choice [24], then �(λ) = Ai eλ may be taken to be the corresponding
standard module. ��
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Example For any l, a basis of D2,(2) for n = 4 is in bijection with J ||
≤l(4, 2, 2) (as in 4.7).

Indeed, omitting an arc in the bottom-right that is irrelevant to the algebra action:

(7)

the full basis for l > 0 may be depicted:

(8)

Note that the action of the algebra in this depiction is from above. Note that, if l = 0, then
J ||
≤0(4, 2, 2) is smaller.

Proposition 4.22 Let (p, λ) ∈ �−(Jl,n), so λ � pl , and fix a basis bλ for Sλ = kSpl ελ, as
in [35, §4]. Let

Bp,λ = {x(y ⊗ 1p−pl ) | x ∈ J ||
≤l(n, p, p); y ∈ bλ}

regarded as a subset of Jp
n,p. Then Bp,λ gives a basis for the Jl,n-module Dp,λ up to isomor-

phism (in which (n − p)/2 irrelevant arcs are omitted as in (7)).

Proof By definition Dp,λ = J /p−2
l,n En(p, λ) is spanned by elements x(y ⊗ 1p−pl ) as in

Bp,λ except with x ∈ J≤l(n, p, p) (again ignoring irrelevant arcs in the bottom-right). Thus
we need to show that we can omit x’s with crossing propagating lines without breaking the
spanning property. Some example elements of D5,λ with p > l + 2 (in case p = 5, l = 1)
provide a useful visualisation here:

First note that a basis element must have p propagating lines by the quotient. Any crossing
in the first min(p, l + 2) of these can be ‘absorbed’ by the bλ part of the basis. There cannot
be a crossing in any remaining propagating lines by the height restriction, cf. (4.7). ��
Corollary 4.23 Dp,λ

∼= �p,λ.

Proof Compare our basis Bp,λ in (4.22) above with the construction for �p,λ in (4.20). The
main difference is combination via⊗kSpl

rather thanmultiplication. This gives us a surjective
map right to left. One then compares dimensions. ��
Proposition 4.24 Suppose k ⊇ Q and either δ �= 0 or p �= 0. Then for given l,
En(p, λ) J /p−2

l,n En(p, λ) = k En(p, λ).

Proof Pictorially/schematically we have:
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That is, firstly

(ελ ⊗ 1p−pl ⊗ U⊗(n−p)/2)J /p−2
l,n (ελ ⊗ 1p−pl ⊗ U⊗(n−p)/2)

= ((ελ ⊗ 1p−pl )J /p−2
l,p (ελ ⊗ 1p−pl )) ⊗ U⊗(n−p)/2

by Proposition 4.1. But then J /p−2
l,p

∼= kSmin(p,l+2) by (4.17). Finally ελkSmin(p,l+2)ελ = kελ

by the Specht property (4.19) [36], which implies that ελ is primitive idempotent in kS|λ|
when kS|λ| is semisimple (and so for example when k ⊇ Q). ��
Corollary 4.25 Suppose k ⊇ Q and either δ �= 0 or p �= 0. Then for (p, λ) ∈ �(Jl,n), Dp,λ

is indecomposable projective as a J /p−2
l,n -module; and hence indecomposable with simple

head as a Jl,n-module. ��
Note the natural inclusion of Jl,n−2 in Jl,n . Note that this Jl,n−2 commutes with en .

Thus given a left Jl,n-module M then en M is a left Jl,n−2-module, and similarly on the
right. In particular Jl,nen is a right-Jl,n−2-module (isomorphic as such to k J≤l(n, n − 2)).
Alternatively, using Proposition 4.1 both Jl,nen (when δ �= 0) and Jl,nh (when n > 2) are
right Jl,n−2-modules by ‘idempotent inclusion’. The two right-module structures on Jl,nen

are isomorphic, when the second is defined. First using Jl,nen then, for each n we have also
the pair of functors

Jl,n−2 − mod
Ge

Jl,n − mod
Fe

given by Ge M = Jl,nen ⊗Jl,n−2 M and Fe N = en N . Similarly for n − 2 > 0 we have
functors Gh and Fh. By Proposition 4.1 and [32, §6] the pair (Gh, Fh) is adjoint; and the
pair (Ge, Fe) is adjoint when δ �= 0.

Proposition 4.26 For δ ∈ k×, and for δ = 0 with (n, p) �= (2, 0),

Ge�
n
p,λ

∼= �n+2
p,λ . (9)

For δ ∈ k×, and for δ = 0 with (n, p, λ) �= (0, 2, (2)),

Fe�
n+2
p,λ

∼=
{

�n
p,λ p ≤ n

0 p = n + 2
(10)

For n > 0 and any δ ∈ k the functors Gh and Fh act as in (9) and (10) respectively.

Proof Consider the functor Gn
m : Jl,m −mod → Jl,n −mod given by M �→ k J≤l(n, m)⊗Jl,m

M . By Corollary 4.23 we have that �n
p,λ

∼= Gn
pSλ (with Sλ understood as a Jl,p-module in

the obvious way). From the definition of the Ge functor note then that the first result follows
if the multiplication map k J≤l(n, m) ⊗Jl,m k J≤l(m, p) → k J≤l(n, p) is an isomorphism
for n > m > p. This holds, by a routine calculation, except in case m = 2 with δ = 0.
(These manipulations are essentially the same as in the Brauer case, see e.g. [19,54,55]. In
this proposition our new geometrical constraints do not affect the argument.) The Gh and F
cases are similar. ��

Note that Gh is right exact and preserves projectivity and indecomposability (see e.g. [32,
§6]). It follows that it preserves the simple-head property. Iterating, it follows that �p,λ is
indecomposable when Sλ is, i.e. when char.k �= 2 [35, cor.13.18]. Similarly it follows that
�p,λ has simple head when Sλ has, i.e. when λ is char.k-regular (in the sense of [35]). The
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case not covered by Gh or Ge is λ = ∅ when δ = 0 and n = 2. But here �0,∅ is simple and
hence simple head by direct calculation (one proceeds by direct analogy with [55]).

For k as in (4), a field that is a k-algebra by giving a value δ ∈ k, let �k(Jl,n) denote the
subset of�−(Jl,n) of pairs (p, λ) in which λ is char.k-regular (and if δ = 0 then p �= 0). Thus

�(Jl,n) = �k(Jl,n) for any given k, by Theorem 4.6, and in particular �C(Jl,n) = �−(Jl,n)

(when δ �= 0). Fixing k, for (p, λ) ∈ �k(Jl,n) we can now write L p,λ = head (�p,λ) for
the simple head (see e.g. [6, §1.2]). Note from (10) that these are pairwise non-isomorphic.
Write [�p,λ : L p′,λ′ ] for the multiplicity of L p′,λ′ as a composition factor in �p,λ; and
C� = ([�p,λ : L p′,λ′ ])(p,λ),(p′,λ′) for the corresponding decomposition matrix.

Proposition 4.27 (I) The modules {�p,λ} are a complete set of standard modules of Jl,n in
the quasihereditary algebra cases (δ invertible and char.k > l + 2, for example k = C). (II)
The simple decomposition matrix C� for this set of modules is upper unitriangular (when
written out in any order so that (p, λ) > (p′, λ′) when p > p′). (III) More generally C�

may be written in the form

C� n even=

⎛

⎜⎜⎜⎝

D0 · · ·
D2 · ·

. . . ·
Dmin(n,l+2)

⎞

⎟⎟⎟⎠ , C� n odd=

⎛

⎜⎜⎜⎝

D1 · · ·
D3 · ·

. . . ·
Dmin(n,l+2)

⎞

⎟⎟⎟⎠

where Dn is the decomposition matrix for the Specht modules of kSn (in our case it is natural
to order integer partitions in increasing dictionary order, cf. [35]) and D0 = (1); blank
block-entries denote zero blocks, and dot block-entries are not necessarily zero. If δ = 0
then the D0 row is omitted.

Proof (I) Follows fromCorollary 4.23 and (4.21) Proposition, and the proof of Theorem 4.12.
For (II) and (III) note that Proposition 4.26 implies, cf. [32, §6.6], that the composition factors
with the same label in �n

p,λ and �n+2
p,λ have the same multiplicity. The only possible new

factors in�n+2
p,λ have the property en+2S = 0. Applying this iteratively on n gives the claimed

result. ��

4.5 Towards the Cartan decompositionmatrices

TheCartan decompositionmatrix encodes the fundamental invariants of an algebra [6]. Given
the difficulty experienced in computing them in case l = −1 and particularly l = ∞ [55]
we can anticipate that they will not be easy to determine in general. However, the main tools
used in cases l = −1 and l = ∞ can be developed in general, as we show next. We start
with a corollary to Proposition 4.27(I–II).

For each �p,λ we will use a contravariant form as in [32, §2.7]. The form here is the
analogue of the usual form for the Brauer algebra with respect to the involutive antiauto-
morphism ∗ [34,55]. That is, for ei , e j ∈ �p,λ, a suitable inner product 〈ei , e j 〉 is given by
e∗

i e j = 〈ei , e j 〉En(p, λ). This is well-defined for k ⊇ Q by Proposition 4.24. The form
rank is given by the matrix rank of the Gram matrix over a basis.
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Example A basis for �4
2,(2) is given in (8). In particular then (with λ = (2)):

so 〈e3, e4〉 = 1 (noting that σ1ε(2) = ε(2)).

The form can be generalised to arbitrary k, but then the final stage of reduction uses the
form on Specht modules from [35], which introduces an integer factor. These factors can be
computed, but in our example we focus on characteristic zero.

Corollary 4.28 Fix k = C and δ ∈ k. Module �p,λ has a contravariant form (with respect to
∗) that is unique up to scalars. The rank of this form determines the dimension of the simple
module L p,λ.

Proof The space of contravariant forms is in bijection with the space of module maps from
�p,λ to its contravariant dual (the analogous right-module En(p, λ)J /p−2

l,n treated as a left-
module via ordinary duality). But by the upper-unitriangular property Proposition 4.27 this
space is spanned by any single map from the head to the socle. ��

In our �4
2,(2) example, setting fi, j := 〈ei , e j 〉, one computes the Gram matrix

f =

⎛

⎜⎜⎜⎜⎜⎜⎝

δ 1 0 1 1 1
1 δ 1 1 1 0
0 1 δ 1 1 1
1 1 1 δ 0 1
1 1 1 0 δ 1
1 0 1 1 1 δ

⎞

⎟⎟⎟⎟⎟⎟⎠
(11)

The lines in (11) indicates the restrictions to a basis {ei , i = 1, 2, 3} for �4
2,(1) for l = −1

(by a mild abuse of notation); and the basis {ei , i = 1, 2, 3, 4} for l = 0.
As noted, when the determinant vanishes (e.g. as a polynomial in δ) then the indecompos-

able module � contains a proper submodule L . Thus this gives the cases where the algebra
is non-semisimple. The roots in the example are given by

δ =
⎧
⎨

⎩

0,±√
2 if l = −1

0, 1, ±√
17−1
2 if l = 0

0, 0, 0,−4, 2, 2 if l = 1.

The ‘classical’ first and last cases are known (they may be determined from [48,55]
respectively), but the middle case shows that new features appear for intermediate l. The
details of this example are therefore most intriguing. Here, however, we note only that it will
be clear that every such Gram matrix is a finite polynomial in δ. It follows that, with k = C

say, the rank of the form is submaximal only on a Zariski-closed subset of δ-parameter space.
In other words:
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Theorem 4.29 For each l, Jl,n(δ) is generically semisimple over C, and non-semisimple in
finitely many δ-values. ��

The example shows that non-semisimple cases exist. But computing Gram determinants is
not easy in general. In the classical cases they aremost efficiently calculated using translation
functors, which combine use of the F and G functors with an alcove-geometric structure
obtained via induction and restriction. We begin to address this in Sect. 5 by looking at
branching rules.

Remark The semisimplicity condition for the Brauer algebra cases are given explicitly in,
for example, [2,67].

5 Standard Bratteli diagrams

(5.1)Given a pair of semisimple algebras A ⊃ B, with simple modules labelled by sets�(A)

and �(B) respectively, then the Bratteli diagram is the graph with vertices �(A) � �(B),
and an edge (of multiplicity m) μ → ν whenever simple B-module Lμ is a composition
factor of the restriction ResA

B Lν of simple A-module Lν , of composition multiplicity m (see
e.g. [47] for a review and references).

If A0 ⊃ A1 ⊃ A2 ⊃ · · · is a sequence of subalgebras then the pairwise Bratteli diagrams
may be chained together in the obvious way. This is the Bratteli diagram for the sequence.

(5.2) More generally, suppose that A ⊃ B (or a sequence as above) are quasihereditary
algebras, and that the restrictions to B of the standard modules of A have filtrations by the
standard modules of B (NB such filtrations, if they exist, have unique multiplicities of factors
up to isomorphism, since standardmodules are a basis for theGrothendieck group [16]). Then
the standard Bratteli diagram encodes the standard filtration multiplicities in the same way
as the ordinary Bratteli diagram.

Proposition 5.3 Fix l. There is a standard Bratteli diagram for the tower {Jl,n ⊂ Jl,n+1}n∈N
(inclusion by adding a line on the right). The standard restriction rules for the Jl,n+1-modules
�p,λ are given as follows.

For p < l + 2 we have a short exact sequence:
0 → ⊕i�

(n)
p−1,λ−ei

→ Res
Jl,n+1
Jl,n

�
(n+1)
p,λ → ⊕i�

(n)
p+1,λ+ei

→ 0

where the sums are over addable/removable boxes of the Young diagram—hence λ − ei

denotes λ with the i-th removable box removed and so on (we have noted the value of n
explicitly when different values appear in the same sequence).
For p = l + 2:

0 → ⊕i�
(n)
p−1,λ−ei

→ Res
Jl,n+1
Jl,n

�
(n+1)
p,λ → �

(n)
p+1,λ → 0

For p > l + 2:
0 → �

(n)
p−1,λ → Resn+1

n �
(n+1)
p,λ → �

(n)
p+1,λ → 0.

Proof The proof closely follows [50, Prop.13] or [51]. The main differences are due to the
fact that here we are working, for p > l +2, with ‘inflations’ of a subgroup Sl+2 of Sp , rather
than inflations of Sp itself.
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First note that, combinatorially, we may separate the basis Bp,λ into two subsets: (I) ele-

ments in which the component x from J ||
l (n, p, p) has the last line propagating (i.e. northern

marked-point n is connected to southern marked-point p′); and (II) elements in which it does
not (i.e. northern marked-point n is connected to some earlier northern marked-point). For
example, in (8) the first three elements have the last line propagating:

Next note that the subset in (I) is indeed a basis of a submodule with regard to the Jl,n−1

action (which acts trivially on the last line). For p > l + 2 it is isomorphic, as it were, to
the basis of �

(n)
p−1,λ. Furthermore (II) spans a submodule modulo (I)—i.e. it is a basis for the

quotient. It is easy to check that this quotient module is�
(n)
p+1,λ, noting again that the last line

acts trivially, so that there is an isomorphism obtained by ‘deforming’ the last marked-point
from the top to the bottom of the picture (effectively adding another propagating line).

The p ≤ l + 2 cases are similar, except that the deformation takes the ‘seed’ S|λ|-module,
in the sense of (4.18), from the Specht module Sλ to the induction of this module to S|λ|+1:

One thus lifts the induction (and in case (I) the restriction) rules for symmetric group Specht
modules. Cf. e.g. [50, Prop.13], [25]. ��

(5.4) Note in particular that the restriction is multiplicity free here; and is essentially inde-
pendent of n. The standard Bratteli diagram in the l = 1 case and in the l = 2 case is
encoded in Fig. 7, in the form of the corresponding Rollet diagram Rl . Rollet diagrams
are described, for example, in [47] (and cf. [31]). In brief, a Rollet diagram arises when
there is a global (large n) limit for the index set for standard or simple modules of a tower
of algebras (such as Jl,n , n = 0, 1, 2, 3, . . .), induced in the manner of Proposition 4.1;
and also for the corresponding restriction rules. Often, as here, there is a global limit for
the index sets for odd and even n sequences of algebras separately (localisation and glob-
alisation change n in steps of 2). The Rollet graph is an encoding of all the data in the
Bratteli diagram on a vertex set consisting just of the union of the odd and even global
limits. One takes this vertex set, and an edge of multiplicity m from λ to μ whenever restric-
tion of �λ contains m copies of �μ—this being well-defined by the independence-of-n
property.

In particular Rl is an undirected bipartite graph in our case (cf. the directed Bratteli graph).
That is, it is multiplicity free, andwhenever there is an edge there is an edge in both directions.
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Fig. 7 The Jl,n ⊂ Jl,n+1 standard Rollet diagram in case l = 1 and case l = 2

(5.5) Note that this gives a beautiful combinatorial approach to the dimensions of standard
modules, and of the various algebras (cf. [43,47]), and in particular the following.

Theorem 5.6 Let W n
p,λ(l) denote the set of walks of length n on Rl from vertex ∅ to vertex

(p, λ) (the vertex with label λ at distance p from ∅). Then dim(�n
p,λ) = |W n

p,λ(l)| and

dim(Jl,n) = |W 2n
0,∅(l)|. ��

6 Discussion

The construction ofJl andPl raises many interesting collateral questions. In this section we
assemble some brief general observations on our construction, on further developments and
on open problems (we defer full details to a separate note [38]).

6.1 Next steps in reductive representation theory of Jl,n

The next steps parallel the program for the Brauer algebra used in [55], but now for each l
in turn. Essentially we should compute the blocks, and construct ‘translation functors’; and
then construct corresponding analogues of Kazhdan–Lusztig polynomials, cf. [19,27,29,55].

We write Ind− for the induction functor adjoint to Res− as in Proposition 5.3 above. The
precursor of translation functors in the Brauer case is the natural isomorphism of functors
expressed as Ind ∼= Res G. The general setup here is as follows.

Lemma 6.1 Suppose we have a sequence of unital algebras A ⊃ B ⊃ C and an idempotent
e in A such that eAe ∼= C. Write IndB

C : C − mod → B − mod for the induction functor
corresponding to C ↪→ B; similarly for restriction; and G A

C : C − mod → A − mod for the
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functor given by Ae⊗C − (cf. Ge defined as in Proposition 4.26). If B and Ae are isomorphic
as left-B right-C-modules then functors IndB

C
∼= ResA

B G A
C .

Proof We have IndB
C− = BC ⊗C − and G A

C− = Ae ⊗C −. ��
In the Brauer case we have the ‘disk lemma’: Consider a partition in J (n + 1, n + 1).

Replacing the vertex n+1′ with a vertex n+2 defines amap η : J (n+1, n+1) → J (n+2, n).
One easily checks that this is a bijection; and an isomorphism of n + 1, n-bimodules. On the
other hand Bn+2e has a basis of partitions in J (n + 2, n + 2) with a pair {n + 1′, n + 2′}.
There is a natural bijection of this basis with J (n + 2, n) (simply omit the indicated pair).
Altogether then, Bn+1 and Bn+2e are isomorphic as bimodules. In our case we have the
following.

Lemma 6.2 There is a well-defined restriction of η to a map η : Jl,n+1 → Jl,n+2e; and this
is an isomorphism of left-Jl,n+1 right-Jl,n-modules.

Proof One checks that η does not change height. ��
Thus we have the following.

Proposition 6.3 Fix any l. Then for all n we have Ind ∼= Res G. ��
This is a powerful result since, for example, the Ind− functor takes projectives to projec-

tives, while Proposition 5.3 tells us what Res− does to standard modules. Thus we have an
iterative scheme for computing the �-content of projective modules, cf. [55].

(6.4) Closely related to Proposition 6.3, a generalised Jones Basic Construction [47] applies
here (cf. the original Jones Basic Construction [31]). It is analogous to the case in [52].

(6.5)We can use the graphs Rl from (5.4) to give an explicit construction for the basis states of
the standard modules; and indeed of the entire algebra—a generalised Robinson–Schensted
correspondence [41]. See [38] for details.

6.2 Remarks on Jl,n construction

TheJl construction is amenable to several intriguing generalisations.Herewebrieflymention
just one particular such generalisation, which case makes a contact with existing studies.

(6.6) The first case with crossings, Jl=0,n , is connected to the blob algebra [57]:
We say a picture is left-simple if the intersection of the 0-alcove (as for example in Fig. 4)

with the frame of R is connected. A partition is left-simple if every picture of it is left-simple.
(For instance the identity in Bn is left-simple, while the example in Fig. 4 is not.) Define
J 1≤l(n, m) as the subset of J≤l(n, m) of left-simple partitions.

Remark 6.7 The subspace k J 1≤0(n, n) is a subalgebra of J0,n . This subalgebra is isomorphic
to the blob algebra bn−1(q, q ′), with q, q ′ determined by δ as follows. Parameterising (as
in [57]) with x = q + q−1 as the undecorated loop parameter; and y = q ′ + q ′−1 as the
decorated loop parameter, we have x = δ and y = δ+1

2 .

Proof (Outline) It is easy to check that the subspace is a subalgebra. It is also easy to show
a bijection between J 1≤0(n, m) and the set of (n − 1, m − 1)-blob diagrams. This does not
lift to an algebra map, but shows the dimensions are the same. A heuristic for the algebra
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isomorphism is to note that the intersection of the propagating number zero ideal (4.16) with
the subset of left-simple partitions is empty, so there is no �0,∅ representation. With this
node removed, the Rollet diagram from Sect. 5 becomes a (‘doubly-infinite’) chain, which
is the same as for the blob algebra. See [38] for an explicit proof.

(6.8)On the other hand one can check using Sect. 5 that higher l cases such as the algebra gen-
erated by J 1≤1(n, n) do not coincide with the higher contour algebras [56] or the constructions
in [30,33,70].

(6.9) Diagram bases may be used to do graded representation theory (in the general sense,
for example, of [13]) for graded blob and TL algebras (see e.g. [63]), regarded as quotients
of graded cyclotomic Hecke algebras. It would be interesting to try to generalise [63] to
Jl,n . Of course given an algebra defined via a specific basis as here, there is no reason why
the underlying homogeneous basis for a given grading should be the same. There is not a
canonical lift of the Plaza–Ryom-Hansen construction to the full Brundan–Kleshchev Hecke
algebra [13], and there now exist graded versions of the Brauer algebras [27,29,45] that again
do not use the basis of set partitions from this paper. The interpolation Jl,n is thus intriguing
also from this perspective.

(6.10) As noted (cf. (1.7), (2.16) and (2.19)), P,B,T are monoidal categories with object
monoid (N,+) and monoid composition visualised by lateral (as opposed to vertical) jux-
taposition of diagrams. Note however that the categories Jl , Pl do not directly inherit this
structure (except in cases J−1 = T and J∞ = B).

6.3 Recent developments and further open problems

There have been several further exciting developments onBrauer algebras since thisworkwas
first reported (in arXiv:1401.1774). One should mention again some beautiful new develop-
ments on gradings of Brauer algebras, such as the works of Li [45], and Ehring and Stroppel
[29]. In particular [29], together with [27], relate Brauer algebras with geometry and alcove
geometry. Furthermore both give an answer, for the Brauer algebra, to the problem addressed
in (6.9) here.

Also potentially related are Lehrer and Zhang’s treatment of duality with orthosymplectic
groups [44] and Ehrig and Stroppel’s treatment [28] of the Lie superalgebra case (both of
which follow on from Benkart et al. [5]). The restriction of this ‘super’ construction to the
corresponding TL algebra has been considered [53], but the general l case is open.

For TL there is a module defined over a suitable integral ground ring that base-changes to a
full-tiltingmodule in every quasihereditary specialisation. Indeed in this case the Schur–Weyl
duality provides such a module [24,49,66]. It would be interesting to have such a uniform
construction for full-tilting modules for all the Brauer algebras, so the Jl,n interpolation is
interesting from this perspective.

Related to the last point, it is very interesting to ask if there is a lift of our construction to
generalisations such as the Birman–Murakami–Wenzl (BMW) algebra [8,40,61,62,72]. See
also e.g. [1,3,65].
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