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abSTracT
The vast majority of studies on urban travel demand focus on the effect on the demand of one travel 
mode given a change in the characteristics of that same transport mode, for example, own-elasticities. 
comparatively little is known about cross-elasticities of demand. In particular, there is a need for a bet-
ter understanding of the underlying mechanisms of modal substitution, that is a better understanding of 
cross-modal diversion factors (Dfs) defined as the proportion of people who leave mode a and switch 
to mode b. The purpose of this article is to investigate what factors explain variations in Dfs across 
transport modes, submarkets and policy measures. using a recently developed empirical travel mode 
choice model for the Oslo area, we simulate over 10,000 different Dfs by systematically changing the 
underlying transport modes, submarkets and policies (size, direction and type of change). With descrip-
tive statistics, we show how the Dfs vary on a general level. most results are immediately intuitive, for 
example that car drivers mostly substitute to walk for short-distance trips but that those Dfs diminish 
rapidly with increasing distance. Interestingly, we find rather high Dfs across different forms of public 
transportation. With successive regression analyses we show that the number of available alternatives 
and relative market shares significantly affect Dfs.
Keywords: cross-model substitution, diversion factors, nested logit model, sample enumeration

1 INTrODucTION
It is safe to say that urban passenger cross-modal substitution is not very well understood. 
Intermodal interaction was identified by Dodgson [1] back in 1991 as an issue in need of 
further research. This remains the case. It is widely accepted that it is difficult to generalize 
results and establish ‘rules of thumb’ because – as opposed to direct effects (own-elasticities) –  
cross-modal substitution (cross-elasticities) is very context dependent. This is because the 
availability and quality of travel alternatives differ greatly between study areas. a cross-
elasticity towards metro, say, may be very low in city a compared to city b, not just because 
travellers’ preferences may differ, but because the metro service may be relatively poor in 
city a. a related factor that adds to the variation across studies with regard to cross-elastic-
ities is the fact that relative market shares (of altered and affected mode) directly affect the 
absolute value of cross-elasticities (see [2]). Surprisingly, market shares are seldom reported 
alongside cross-elasticities in the literature [3]. Without controlling for market shares, it is 
often difficult to explain variation in reported cross-elasticities.

In this article, we take a closer look at the underlying mechanisms of modal substitution 
by studying cross-modal diversion factors (Df). The notion of Df is straightforward. for 
example, say 100 persons stop travelling by car as a result of a gas price increase and that 
20 of them will walk instead, 10 switch to cycling, 30 to bus, 20 to metro, 10 to train and 10 
stay home and do not travel. Dfs will then be 10%, 30%, 20%, 10% and 10%, respectively.

as opposed to cross-elasticities, Dfs are independent of the relative market shares of the 
altered mode – at least as a first-order effect – and can therefore be expected to be more 
stable across studies [4]. Still, differences in availability and quality of alternative travel 
modes across studies remain a challenge when aiming for generalizable results. also, the 
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composition of trips (distribution of trip distance, trip purposes, etc.) in the empirical data is 
likely to affect overall results. for example, in dense cities, travel distance will be shorter on 
average and that will, all else being equal, cause Dfs towards walking to be higher than in 
more spread-out cities.

another element that can affect the comparison of evidence of cross-modal substitution is 
differences in the methods of data collection and modelling used. cross-elasticities and Dfs 
can be measured/predicted by different approaches including – among others – before–after 
studies [5], time series regression models [6–10] and cross-sectional choice modelling based 
on either stated preference [11–13] or revealed preference (rP) [14–17]. little is known how 
the methodological approach may impact on study results.

The literature on Dfs is limited. Some key contributions include the following. acutt and 
Dodgson [18] asked 25 experts and operators for their opinion on Dfs between car and train/
metro/bus following fare reductions, that is, the proportion of new train/metro/bus passengers 
that previously used car. Dfs ranged from 1% (london, car to bus) to 25% (intercity, car to 
train). Storchmann [19] estimated Dfs from car to public transport resulting from changes in 
fuel taxes in germany for various trip purposes. Dfs ranged from zero percent for business, 
holiday and leisure trips to 100% for education trips. adler and van Ommeren [20] studied 
the effects of public transport strikes during 2003–2011 in rotterdam and found Dfs from 
public transport to car and cycling of 27–29%. Prud’homme et al. [21] did an ex-post survey 
among 1,000 passengers on a Paris tramline that had been converted from bus, coinciding 
with a capacity reduction on a parallel road link. Their results suggest that most tram passen-
gers were diverted from other public transport (bus 57% and subway 38%). Only 3% of the 
tram passengers used car previously. murphy and usher [22] surveyed the users of Dublin’s 
inner-city bike sharing scheme and found that its users were diverted from walk (46%), bus 
(26%), car (20%) and train (9%). The Norwegian empirical evidence is very limited. fearn-
ley and Nossum [23] evaluated the Norwegian ministry of Transport’s 1990s urban public 
transport policy packages and found that 42.7% of passengers on new or improved bus ser-
vices would otherwise have generated a car trip. fearnley [24] reviewed experiences around 
the world with free local public transport and concluded that typically, a very low proportion 
of generated patronage stems from car. New passengers are more likely to generate traffic and 
divert from walk and cycle.

as seen from this brief literature review, the range of estimated Dfs is substantial. It is 
likely that various factors relating to the context of the study and/or the applied method affect 
the empirical values.

To tackle the challenge of producing transferable results, our general approach in this arti-
cle is laid out as follows: first, we control for the general context by keeping the analysis 
within one study area: the greater Oslo area. Second, we base our results on one general type 
of model: the travel mode choice model mPm23 [25]. Third, we simulate Dfs for different 
submarkets and different policy measures with the aim of learning how the (a) availability 
of modes, (b) quality of modes, (c) trip distance, (d) trip purpose, (e) type of policy, (f) size 
of policy change affect the simulated Dfs from and towards different transport modes (car, 
train, bus, metro/tram, walk and cycle).

This analytical method can be referred to as model-internal meta-analysis as the same 
model is applied for a large range of policies and submarkets, and subsequent regression 
analysis is performed on the simulated results in a similar way as in a typical (formal) meta-
analysis. Thus, the feature of ‘model-internal meta-analysis’ (compared to regular meta-
analysis) is that the dependent variable in the regression models (Dfs) is coming not from 
different studies found in the literature but from the same geographical context and modelling 
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approach. Similar methodologic approaches have earlier been applied in analysing the ‘pack-
age’ approach to transport policy, whereby strategic or tactical models are run many times 
and the results are then subject to further analysis (see [26–29]).

2 The DIVerSION facTOr: SOme meaSureS, TheOry aND PrOPerTIeS
In several studies, Dfs are established based on survey data. They may take the form of direct 
questions on how respondents would behave if their current mode became unavailable (e.g. 
[30]), or of transfer time (and cost) questions on intended behaviour of the form ‘how much 
would your journey cost have to increase before you switch to another mode/don’t make this 
trip?’ (e.g. [31]). Dfs are calculated as the proportion who states that they would switch to 
each mode (or not travel).

another way to obtain Dfs is to observe the change in demand for mode j and the propor-
tion that diverts to mode i. formally, this would be calculated as

 Df
ji
 = (Q

T1 i
 – Q

T0 i
)/(Q

T1 j 
– Q

T0 j
) (1)

where Q is demand (number of passengers); T0 and T1 are time periods or scenarios. In typi-
cal scenario analysis (e.g. two model runs), j is the transport mode that is altered in attributes, 
while i remains unchanged. Df

ji
 is then referred to as Df from mode j towards mode i (given 

a change in mode j). This is the standard procedure for deriving Dfs from discrete choice 
models or transport models. a base scenario (T0) is compared with an intervention scenario 
(T1) where one (or several) attribute is (are) changed. The resulting Qs are then plotted in the 
above formula in order to obtain Dfs.

Dfs can also be calculated ‘backwards’ from known cross-elasticities, known own-elas-
ticities and known market shares. We have the following relationship, which defines cross-
elasticities of demand [2]:
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When inserting the definition of linear-arc-elasticities in eqn (3), it is straightforward to 
show that eqn (3) is mathematically equivalent with eqn (1).

Note that the sum of Dfs from mode j to all other transport modes i adds up to 100% 
when travel mode choice is the only behaviour dimension in the modelling framework. When 
trip generation is included (or the choice model includes an option for ‘not travelling’), the 
sum of Df towards a transport mode which is improved can be smaller than 100% when the 
improvement creates generated traffic (or a worsening leads to suppressed transport). When 
transport modes are substitutes (the usual case), Dfs are non-negative. for complementary 
modes, Df can be negative. In this case, for two complementary modes, it can be that Df 
towards a third mode is above 100%. for example, consider a measure that yields an increase 
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in train ridership of 100 persons. assume that metro is – on average – a complement to train 
and every 10th new train user generates one additional metro trip. assume this makes 110 
fewer bus trips; then the Df from train to bus would be 110%.

Dfs are ‘directional’, i.e. Df
ji
 ≠ Df

ij
 in general. It is worth noting that, in the literature, 

Dfs are sometimes defined interchangeably as ‘proportion of travellers that leave mode i and 
switch to mode j’ on the one side, or as ‘proportion of new travellers on mode j that switched 
from mode i’. There is no reason at all for these to be the same quantum: To say that 20% of 
new bus passengers previously used car is in fact essentially different from saying that 20% 
of motorists who leave the car would switch to bus. The fact that this is often treated as the 
same phenomenon in the literature may relate to a failure to understand bayes’s theorem and 
conditional probabilities.

Note that Df may also be non-symmetric for a given altered mode j, for example can price 
increase of mode j make a higher proportion substitute to mode i, than a price reduction would 
attract from mode i. This is intuitive in real life and an important question relates to which 
methods would allow to preserve/capture such a non-symmetry. as a point estimate, Df

ab
 

should be the same quantum whether it be ‘the proportion of traffic lost to j which switches 
to i if j gets worse’ or ‘the proportion of j’s new traffic which has come from i if j gets better’. 
for Dfs that are calculated as in eqn (1), this may not be the case when the underlying model 
is nonlinear in attributes. for instance, when quantities are predicted with logit models a cer-
tain non-symmetry is expected given the S-shape of the logit model. however, if changes in 
attributes are small (e.g. 1% and −1% changes) results will tend to be close to symmetrical.

In the introduction section, it was mentioned that Dfs are independent of the relative 
market shares at a first-order effect. That is, eqn (1) does not involve market shares of i and 
j. however, it is likely that market shares represent the competitiveness of travel alterna-
tives and are therefore likely to influence the changes in quantities in eqn (1). for instance,  
(Q

T1 i
−Q

T0 i
) is likely to be great in absolute terms when mode i is a highly competitive trans-

port mode and therefore a likely substitute to mode j.
furthermore, when quantities in eqn (1) are predicted on the basis of multinomial logit 

models we can establish a direct relationship (see the appendix for the derivation):

 Df
ij
 = P

j
 /(1−P

i
) (4)

where P
j, 
P

i
 are (individual) choice probabilities for mode j and i, respectively.

equation (4) holds true on an individual level, in which case Df
ji
 is interpreted by rel-

ative probabilities to switch from mode j to mode i. aggregating over (heterogeneous) 
individuals (as done in this article by means of sample enumeration), eqn (4) does not 
necessarily hold on a market level, in which case P represent market shares. Note also that 
for nested logit models, eqn (4) applies only for modes of the same lowest level nest. The 
relationship between market shares and Dfs is empirically investigated in the later analysis 
of this article.

3 meThODOlOgIcal aPPrOach
recently, flügel et al. [25] established a travel mode choice model, referred to as mPm23, 
for short-distance trips within Norway’s capital Oslo and the surrounding county akershus. 
mPm23 is a nested logit model that calculates choice probabilities of nine alternatives that 
are structured into four nests: car (includes choice alternatives: car driver and car passen-
ger), walk, cycle and PT (includes choice alternatives: train, bus, metro/tram, combinations 
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with train and combination of bus and metro/tram). model parameters are estimated from 
travel surveys, where respondents reported trip diaries of the day before the interview was 
conducted. respondents do only report their actual behaviours (chosen transport mode, trip 
purpose, etc.), that is rP data. The model includes the usual level-of-service (loS) attributes 
as well as several dummy variables that calibrate the choice probabilities for different sub-
markets. Trip frequency is not modelled, nor is destination choice or traffic assignment.

The estimated model is implemented in microsoft excel with an intuitive user interface 
for stylized scenario analysis. users can specify changes in loS variables in percent of the 
base values. The model predicts new market shares by sample enumerating choices of 14,947 
observations (single trips). The method of sample enumeration has a long tradition (going 
back to at least ben-akiva and atherton [32]). an attractive feature is that it preserves infor-
mation at the individual level. This is important in the case of mPm23, among others because 
the model operates with choice sets defined at the individual level (see later).

In theory, it would be possible to differentiate the full mPm23 model and extract (individ-
ual) Dfs directly by eqn (4). however, each individual in each submarket (trip purpose, geog-
raphy, distance) faces different constraints and different availabilities of transport modes. 
There is simply not one effect on mode choice that applies to all individuals. as we are 
interested on results on a market (submarket) level, we must run mPm23, predict individual 
choice in behaviour but calculate Dfs on a market (submarket) level.

for the analysis in this article, nine choice alternatives in mPm23 are merged into six 
travel modes as described in Table 1.

reducing from nine to six choice alternatives eases interpretation, streamlines analysis 
and increases transferability of the results. a disadvantage with this procedure is that the cat-
egory bus (metro/tram) might include some trips that are actually made by train and metro/
tram (bus).

We use mPm23 to predict changes in ridership given policy scenarios and we calculate 
Dfs applying eqn (1). In total, we have calculated 11,560 single Dfs. Table 2 lists the vari-
ables by which the scenarios differ from each other.

The combination of the latter three categories yields 36 submarkets (2 trip distances * 3 
geographies * 6 trip purposes). Three of those submarkets had less than 30 observations in 
the data set and were merged together resulting in 34 submarkets. Table 3 presents sample 
size and baseline market shares of these submarkets.

Table 1: Travel alternatives in mPm23 and in this article.

Travel modes in MPM23 Shares going into new categorization

car driver 100% to car
car passenger 100% to car
Walk 100% to walk
cycle 100% to cycle
Train (without transfer to other PT) 100% to train
bus (without transfer to other PT) 100% to bus
metro/tram (without transfer to other PT) 100% to metro/tram
combination with train 50% to train, 25% to bus, 25% to metro/tram
combination with bus and metro (not train) 50% to bus and 50% to metro/tram
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Table 2: underlying variables in scenario simulations.

Travel 
mode 
altered

Policy variable Size of 
change

Travel 
mode 
affected

Trip 
distance

Geography Trip purpose

•  Car
•  Train
•  Bus
•   Metro/

tram

•  In vehicle time
•   Out-of-pocket 

costs*
•   Access/egress 

time (not car)
•   Waiting time 

(not car)
•   Number of 

interchanges 
(not car)

•  −30%
•  −1%
•  +1%
•  +30%

•  Car
•  Walk
•  Cycle
•  Train
•  Bus
•   Metro/

tram

•  <5 km
•  >5 km

•  Urban
•  Suburban
•   Urban 

to/from 
suburban

•  Commuting
•  School
•  Business
•  Grocery
•  Deliver/pick up
•  Other leisure

* Includes fuel and road tolls cost for car and single ticket prices for PT (users with season ticket have 
zero costs in the current version of mPm23).

Table 3: Sample size and baseline market shares of 34 submarkets.

Index Characteristic of submarket* N Baseline market shares (%)

Car Walk Cycle Train Bus Metro/
tram

1 >5 km; urban; commuting  983 32.7 2.0 8.9 6.9 18.0 31.5
2 >5 km; urban; school  103 8.1 1.1 5.3 5.2 22.3 58.0
3 >5 km; urban; business  73 50.6 1.0 3.5 4.3 15.4 25.1
4 >5 km; urban; grocery 354 56.3 2.4 4.4 3.9 11.9 21.1
5 >5 km; urban; deliver/pick up 135 75.2 2.4 4.2 1.6 6.7 10.0
6 >5 km; urban; other leisure 607 41.3 4.5 6.2 3.4 16.6 28.2
7 >5 km; suburban; commuting  517 86.0 0.5 2.6 4.5 6.0 0.4
8 >5 km; suburban; school  48 23.5 1.5 8.1 17.3 47.4 2.1
9 >5 km; suburban; business  31 91.3 0.4 1.1 3.4 3.6 0.2
10 >5 km; suburban; grocery 456 92.1 0.8 1.7 1.6 3.9 0.1
11 >5 km; suburban; deliver/pick up 193 97.1 0.4 0.8 0.4 1.2 0.0
12 >5 km; suburban; other leisure 514 87.4 1.1 2.0 3.0 6.2 0.3
13 >5 km; u to/from s; commuting  1,423 54.0 0.3 3.6 16.2 18.4 7.5
14 >5 km; u to/from s; school  63 15.6 1.3 4.1 31.2 32.1 15.7
15 >5 km; u to/from s; business  96 67.5 0.1 1.1 9.9 15.9 5.5
16 >5 km; u to/from s; grocery 421 76.4 0.5 1.7 10.5 7.5 3.4
17 >5 km; u to/from s; deliver/pick up 236 92.1 0.5 1.2 1.9 2.6 1.7
18 >5 km; u to/from s; other leisure 771 67.8 1.2 3.0 10.2 12.6 5.3
19 <5 km; urban; commuting  839 18.3 32.9 14.0 0.3 14.0 20.5
20 <5 km; urban; school  96 5.7 27.4 9.9 0.7 24.5 31.9
21 <5 km; urban; business  83 27.6 28.9 6.2 0.3 9.1 27.8

22 <5 km; urban; grocery 1,492 33.0 50.3 5.6 0.0 4.9 6.2
23 <5 km; urban; deliver/pick up 485 49.8 40.6 4.7 0.0 2.8 2.1

(Continued)
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Index Characteristic of submarket* N Baseline market shares (%)

Car Walk Cycle Train Bus Metro/
tram

25 <5 km; suburban; commuting  213 60.5 25.6 8.4 0.2 5.3 0.0
26 <5 km; suburban; school  35 21.8 38.5 19.0 1.4 19.2 0.0
27 <5 km; suburban; grocery 773 70.2 24.0 3.5 0.1 2.1 0.0
28 <5 km; suburban; deliver/pick up 370 80.0 17.3 2.1 0.0 0.7 0.0
29 <5 km; suburban; other leisure 751 50.9 41.7 4.7 0.1 2.6 0.0
30 <5 km; u to/from s; commuting  139 56.9 20.7 10.2 1.1 9.3 1.8
31 <5 km; u to/from s; grocery 421 65.6 26.2 3.5 0.2 3.8 0.7
32 <5 km; u to/from s; deliver/pick up 213 79.6 16.0 2.7 0.3 1.3 0.1
33 <5 km; u to/from s; other leisure 393 45.1 44.6 5.1 0.2 4.1 0.9
34 <5 km; remaining 38 64.4 17.2 4.9 0.6 12.9 0.0

* ‘u to/from s’ means ‘urban areas to/from suburban areas’.

Overall, car has the highest market shares in the greater Oslo area. This holds true for most 
submarkets. Exceptions are school trips and most short-distance (<5 km) urban trips.

Not surprisingly, the market share for walking varies considerably between short-distance 
and long-distance trips. cycling has higher market shares for commuting and school trips. 
Train is barely used for trips under 5 km and has its highest market shares on longer subur-
ban and ‘suburban to/from urban’ trips. also, the market shares for bus vary greatly across 
submarkets; school trips are particularly often done by bus. bus – and to an even higher 
degree metro/tram – has higher market shares for urban than for suburban trips. There are 
no short-distance metro/tram trips within suburban areas since metro/tram is not available 
there. The market shares for metro/tram trip departing and/or ending in suburban areas are in 
reality trips made by combinations of transport modes but are coded as metro/tram with the 
applied method.

The competitive structure in the 34 submarkets can also be described by the available choice 
alternatives (Table 4). Whether a travel mode is ‘available’ or not is defined by mPm23 on a 
trip level. car is always available, as the model assumes that you can always be ‘car passen-
ger’. for walk and cycle, availability is defined by the trip distance, with limits of availability 
of 10 and 40 km, respectively. availability of PT is mainly defined by distance to the nearest 
station in a similar fashion (see [25] for details).
For submarkets with shorter  trips (<5 km),  train and,  to a  lower degree, metro/tram are 

seldom defined as available due to unreasonably long access/egress times to the nearest sta-
tion. The availability for walk decreases rapidly for submarkets with longer trip relations.

The overall methodical approach of our analysis is briefly summarized in fig. 1.

4 DeScrIPTIVe STaTISTIcS
In this section, we present some descriptive statistics from the results of the model simula-
tions. regression analyses are presented in Section 5.

as Dfs have a close connection to cross-elasticities (see equation (2)), we have also simu-
lated own- and cross-elasticities of demand alongside Dfs. all simulated own-elasticities are 
negative. This is expected given that all analysed policy variables are ‘bads’, for example an 

Table 3: (Continued)
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Table 4:  average distance and availability of modes (averages over trips within submarkets).

Index Characteristic of 
submarket*

Average 
distance 
(km)

No. of 
available 
travel 
modes

Availability by mode (%)**

Car Walk Cycle Train Bus Metro/
tram

1 >5 km; urban; commuting  9.0 4.9 100 73 100 30 97 90
2 >5 km; urban; school  9.1 4.8 100 71 100 17 93 95
3 >5 km; urban; business  8.6 5.0 100 82 100 27 97 89
4 >5 km; urban; grocery 8.2 4.9 100 83 100 24 97 85
5 >5 km; urban; deliver/

pick up
8.8 4.8 100 73 100 22 96 88

6 >5 km; urban; other 
leisure

8.4 4.8 100 80 100 20 96 86

7 >5 km; suburban; 
commuting 

19.8 4.1 100 25 90 62 96 39

8 >5 km; suburban; school  18.5 4.2 100 38 88 65 100 33
9 >5 km; suburban; 

business 
17.8 4.0 100 32 87 61 87 32

10 >5 km; suburban; grocery 13.0 4.2 100 54 97 53 88 26
11 >5 km; suburban; 

deliver/p. up
19.3 4.1 100 51 88 50 90 32

12 >5 km; suburban; other 
leisure

18.9 4.1 100 43 88 55 88 33

13 >5 km; u to/from s; 
commuting 

20.9 4.6 100 21 90 72 97 79

14 >5 km; u to/from s; school  18.7 4.8 100 29 95 81 98 81
15 >5 km; u to/from s; 

business 
21.1 4.5 100 22 91 69 95 75

16 >5 km; u to/from s; 
grocery

18.9 4.7 100 35 91 76 98 73

17 >5 km; u to/from s; 
deliver/p. up

18.6 4.5 100 36 88 61 96 68

18 >5 km; u to/from s; 
other leisure

18.6 4.6 100 32 92 68 96 73

19 <5 km; urban; commuting  2.8 4.4 100 100 100 10 68 58
20 <5 km; urban; school  2.8 4.4 100 100 100 8 70 60
21 <5 km; urban; business  2.5 4.3 100 100 100 13 51 64
22 <5 km; urban; grocery 1.7 3.6 100 100 100 3 30 22
23 <5 km; urban; deliver/

pick up
1.8 3.5 100 100 100 1 28 17

24 <5 km; urban; other 
leisure

2.0 3.8 100 100 100 5 38 34

25 <5 km; suburban; 
commuting 

2.6 3.4 100 100 100 8 32 1

26 <5 km; suburban; school  2.6 3.5 100 100 100 6 40 3

(Continued)
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figure 1: Overall methodological approach.

Travel behaviour data from trip
diary survey

(chosen travel mode, trip
purpose, etc.)

Defining choice sets/availability of
travel modes (individual trip level) 

For details
see Flügel et al [25]

see Section 4

see Section 5

Es ma on and implementa on of travel mode choice
model; nested logit model (MPM23)

(Hypothe cal) policy analysis, i.e. model runs altering
variables shown in Table 2

Comparing policy with base scenario and calculation
of diversion factors (N = 11,560); descriptive statistics

Linear regression model with diversion factors as the
dependent variable (“meta-model”)

Supply data (level-of-
service) from network

models

Table 4: (Continued)

27 <5 km; suburban; 
grocery

2.2 3.2 100 100 100 2 21 0

28 <5 km; suburban; deliver/
pick up

2.3 3.2 100 100 100 1 16 0

29 <5 km; suburban; other 
leisure

2.2 3.2 100 100 100 3 18 0

30 <5 km; u to/from s; 
commuting 

3.2 4.1 100 100 100 17 70 19

31 <5 km; u to/from s; 
grocery

2.3 3.6 100 100 100 8 40 12

32 <5 km; u to/from s; 
deliver/p. up

2.6 3.5 100 100 100 7 37 6

33 <5 km; u to/from s; other 
leisure

2.1 3.5 100 100 100 7 31 10

34 <5 km; remaining 2.9 3.7 100 100 100 13 50 3

* ‘u to/from s’ = ‘urban areas to/from suburban areas’.
** as defined on an individual trip level in mPm23.

Index Characteristic of 
submarket*

Average 
distance 
(km)

No. of 
available 
travel 
modes

Availability by mode (%)**

Car Walk Cycle Train Bus Metro/
tram
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increase in loS variable as travel cost, in-vehicle time, waiting time, access–egress times and 
number of interchanges for mode j leads to a decrease in ridership of mode j.

The simulated cross-elasticises are typically positive but some cross-elasticities that involve 
metro/tram are negative (but rather low in size). These are typically cases for suburban areas 
where metro/tram is only used in combination with bus or train. In these cases, metro/tram is 
a complement rather than a substitute to bus and train. This would be the case for  commut-
ers who take a train or bus into central Oslo and from there take metro or tram to their final 
destination within Oslo.

It is important to note that cross-elasticities are highly dependent on the relative market 
shares between the affected and altered transport modes. If the relative market share is high 
(the affected mode has a much higher market share than the altered mode), cross-elasticities 
are typically very close to zero (fig. 2). This underlies the point made in the introduction 
section about cross-elasticities, which is context dependent and difficult to interpret without 
considering the underlying market shares.

Dfs are less affected by market shares, as shown in fig. 3. even for high relative market 
shares we find a widely spread Dfs. however, there appears to be a positive relationship 
between relative market shares and Dfs, which may relate to the theoretical properties of the 
underlying logit models (see eqn 4). a positive correlation between market shares and Dfs 
does generally make sense because the market share of mode i is likely to be proxy for the 
competitiveness (or ‘loS’) of mode i.

The following figures show how Dfs vary by transport mode combination and for group 
of submarkets (aggregates of the 34 submarkets used for simulation). figure 4 shows average 
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figure 2: Simulated cross-elasticities and relative market shares.
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figure 3: Simulated diversion factors and relative market shares.

figure 4: Diversion factors, total and by main categories, when car is altered.

values of Dfs when the car alternative is altered. Observations are weighted by the size of 
each submarket and the market share of car in these submarkets.

Note that both −30%, −1%, 1% and 30% changes in attributes are included; that is potential 
asymmetry is not taken into account here (see later discussion).
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figure 5: Diversion factors, total and by main categories, when bus is altered.

Overall, bus and walk have the highest Dfs than car travel. The Df of 27.2% for bus and 
29.6% for walk can be interpreted with a hypothetical scenario that leads to 1,000 fewer 
(more) car trips. about 272 would come from (go to) bus, while 296 would come from (go 
to) walk.

Dfs vary with submarkets. Walk dominates for trips under 5 km. bus, together with train, 
is the best alternative to car for longer trips. for urban trips, metro/tram has a relatively high 
Df. This is directly related to availability (see Table 4). for suburban trips its Df is low. The 
opposite pattern is observed for train.

figure 5 shows the corresponding picture when bus attributes are altered. The highest Dfs 
are found for car on longer trips and trips within suburban areas, and for metro/tram on 
shorter and urban trips. for suburban travel, metro/tram and bus seem rather to be comple-
mentary, as indicated by the slightly negative DF. In total, close to 50% (33.1% + 16.2%) of 
bus users divert to other PT options. This finding is discussed in Section 6.

figure 6 gives the results of simulations where train attributes are altered. Not surpris-
ingly, the Df for walk (and cycle) is very small. bus and car are main competitors for train 
as judged from the simulated Dfs although a substantial diversion to metro/tram can be seen 
on short and urban trips.

Some interesting patterns are shown in fig. 7, where Dfs are calculated for attribute 
changes in metro/tram. for trips within suburban areas (where metro/tram has rather low 
market shares, and most of the ridership stems from trips where metro/tram is used in com-
bination with PT modes), we find negative diversion to both bus and train. fewer metro/tram 
passengers will also reduce bus and train patronage. In this market, there is therefore com-
plementarity between metro/tram and bus and train. apart from suburban trips, bus has high 
Dfs when metro/tram is altered. Diversion to car is also significant in all submarkets, with 
the exception of short trips where diversion to walk is prominent.
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figure 6: Diversion factors, total and by main categories, when train is altered.

figure 7: Diversion factors, total and by main categories, when metro/tram is altered.

5 regreSSION mODelS
In this section, we present regression analysis on the simulated data. The purpose is to obtain 
information about which explanatory variables have a significant effect on Dfs after controlling 
for other explanatory variables. It is convenient to run linear regression models even though 
those types of models do not guarantee that Dfs (over a given altered mode) do add up to 100%.
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It is important to note that simulated Dfs for a given transport mode pair (altered and 
affected mode) are very similar within a given submarket. That is, the variation by type, 
direction and size of the policy change is very low. as a consequence, tests showed that the 
explanatory variables related to the direction and size (intensity) of change (if it is a −30%, 
−1%, 1% or 30% change) and the policy variable (price, travel time, etc.) are highly insignifi-
cant. In the following regression analysis, we look therefore only at 1% price increases. This 
implies a substantial reduction in the size of the data set. Note that without this adjustment, 
t-values for the other variables would be inflated. We apply weights to the likelihood function 
given by the market share of the affected transport mode in the given submarket.

We present two model versions (m1 and m2). In the former we include a generic coef-
ficient for the number of available alternatives in the submarket. Diagnostic tests indicated a 
multicollinearity issue related to this variable (seemingly because of substantial correlation 
with some of the constant terms). after removing this variable (model m2), multicollinearity 
issue appears resolved. however, as models m1 give reasonable coefficient estimates, we opt 
to present results of m1 as well.

Table 5 shows estimation results for models with simulated Df as explanatory variables. 
The goodness-of-fit indicators of the estimation models are high, which is not surprising 
since many of the included explanatory variables were used to create the variation in simu-
lated Dfs in the first place.

Table 5: estimated models.

Model index M1* M2

N 622 622
adjusted R2 0.925 0.925
Variable Type of variable Value t-Stat Value t-Stat
Generic coefficients
No. of available alternatives continuous (count) −0.0289 −2.32
relative market share of 
affected mode

cont. 
log-transformed

0.0064 2.49 0.0054 2.10

Coefficients for diversion factor towards car 
Distance (car) continuous (km) 0.0160 4.99 0.0146 4.62
urban (car) Dummy −0.1184 −2.48 −0.1451 −3.12
Work-related (car) Dummy −0.0067 −0.26 −0.0088 −0.34
Coefficients for diversion factor towards train 
Distance (train) continuous (km) 0.0168 13.01 0.0162 12.76
urban (train) Dummy 0.0144 0.72 −0.0057 −0.31
Work-related (train) Dummy −0.0188 −1.17 −0.0195 −1.21
Coefficients when diversion factor towards bus 
Distance (bus) continuous (km) 0.0151 12.68 0.0145 12.43
urban (bus) Dummy 0.0563 2.80 0.0431 2.23
Work-related (bus) Dummy −0.0074 −0.44 −0.0078 −0.46
Coefficients when diversion factor towards metro/tram 
Distance (metro/tram) continuous (km) 0.0068 4.93 0.0063 4.62
urban (metro/tram) Dummy 0.2812 11.11 0.2791 10.99
Work-related (m/t) Dummy 0.0004 0.02 0.0011 0.07

(Continued)
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The variable ‘Number of available alternatives’ has a negative and significant impact on 
Dfs. This is intuitive, as the Df towards a given mode should decrease – ceteris paribus – 
when more alternatives are available.

The variable ‘relative market share of affected mode’ (i.e. relative to altered mode) is posi-
tive, meaning that a transport mode with a relatively high market share within a submarket 
attracts relative more travellers from the affected mode. This is expected given that the relative 
market share may capture the competitiveness of the affected mode in a given submarket and 
as such be an indicator of quality (that is, a proxy for the underlying loS of the affected mode).

Model index M1* M2

Coefficients when diversion factor towards walk 
Distance (walk) continuous (km) −0.0338 −17.89 −0.0370 −28.72
urban (walk) Dummy −0.2584 −12.78 −0.2806 −15.71
Work-related (walk) Dummy −0.0056 −0.36 −0.0089 −0.57
Coefficients when diversion factor towards cycle 
Distance (cycle) continuous (km) −0.0008 −0.55 −0.0028 −2.51
urban (cycle) Dummy 0.0013 0.06 −0.0203 −1.13
Work-related (cycle) Dummy 0.0285 1.83 0.0273 1.75
Constant terms for mode pair (altered mode → affected mode) 
car → train Dummy 0.1012 2.57 0.0297 1.21
car → bus Dummy 0.1804 5.59 0.1195 6.37
car → metro/tram Dummy 0.0881 2.00 0.0122 0.41
car → walk Dummy 0.8055 38.51 0.7743 48.19
car → cycle Dummy 0.2155 9.23 0.1793 10.31
Train → car Dummy 0.3908 5.64 0.3467 5.18
Train → bus Dummy 0.1322 2.75 0.0586 1.62
Train → metro/tram Dummy −0.0316 −0.61 −0.1076 −2.68
Train → walk Dummy 0.7590 19.57 0.7240 20.20
Train → cycle Dummy 0.1268 3.23 0.0874 2.46
bus → car Dummy 0.4444 7.17 0.3884 6.78
bus → train Dummy 0.0291 0.65 −0.0491 −1.67
bus → metro/tram Dummy 0.1176 2.27 0.0248 0.75
bus → walk Dummy 0.7084 20.69 0.6579 24.82
bus → cycle Dummy 0.1742 4.92 0.1189 4.53
metro/tram → car Dummy 0.4763 7.30 0.4307 6.90
metro/tram → train Dummy −0.0037 −0.09 −0.0714 −2.27
metro/tram → bus Dummy 0.2665 5.62 0.1801 6.14
metro/tram → walk Dummy 0.7068 21.11 0.6643 23.64
metro/tram → cycle Dummy 0.1811 5.21 0.1338 4.74

*To facilitate understanding of the model, consider a situation where petrol prices increase and the task is to provide 
an estimate of the Df from car to bus. assume there are four alternative modes so that the relative market share 
of bus/car is 0.666, travel distances are 10 km on average and we look at urban non-work trips. using the model 
M3, we estimate Df

car→bus
 = 4*(−0.0289) + 0.0064*LN (0.6666) + 10*0.0151 + 0.0563 + 0 + 0.1804 = 0.2695 or 

26.95%.

Table 5: (Continued)
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The coefficient estimates for distance, urban and work-related trip purpose resemble the 
general pattern that we already saw in Section 4. Trip distance plays the most prominent role 
in explaining differences in Dfs across affected modes. clearly, the Df towards walk reduces 
with increased trip distance. The dummy for urban trips is, as expected, significantly negative 
for Dfs towards car and significantly positive for Dfs towards metro/tram. The dummy for 
urban trips is also significantly negative for walk trips. This may be surprising at first glance 
but it must be noted that this result is after controlling for trip distance. The results for work-
related trips are not significant. We observe a tendency towards cycling having higher Dfs for 
work-related trips. This is likely to relate to the fact that cycling is impractical/inconvenient 
for some other trip purposes such as grocery shopping and escorting children.

The constant terms for the transport mode pair (altered → affected mode) resemble Dfs 
given trip distance of zero and apply for the normalized segment (no-work suburban trips). 
The constant terms towards walk are naturally high, as walking is an attractive mode for very 
short-distance trips.

6 cONcluSIONS aND DIScuSSION
using our ‘model internal meta-analysis’ method, we have obtained the following results that 
conform with prior expectation:

1. Dfs to walk are in general high but decrease rapidly with increasing distance
2. Dfs to cycling tend to be higher for work-related trips
3. Dfs to car and train increase with distance
4. The public transport internal Dfs (i.e. between public transport modes) are rather high 

(typically around 50%)
5. Dfs are in general lower, the higher the number of available transport modes
6. Dfs are in general higher to transport modes with a relative high market share

While results 5 and 6 are more of theoretical interest, results 1–4 may have interesting policy 
implications. Oslo has a political goal that all future passenger transport growth is facilitated 
by walk, cycle or public transport. This implies a strong need for cross-modal substitution 
from car to other modes, since Oslo is experiencing high population growth and the under-
lying trend is for continued growth in car use. Taking a closer look at results 1–4, we may 
suggest the following implications for policy:

1. There is greatest potential to get car drivers to substitute to walk for short-distance travel. 
The Df from car to walk is found to be 64%. Policies that discourage short-distance car 
use (e.g. parking fees) may therefore be effective.

2. a rather high share of car trips seems to be substitutable with cycle. This appears espe-
cially true for work-related trips. In addition to restricting workplace parking availability 
and pricing, facilitating changing rooms, showers and safe bicycle parking at workplaces 
may be effective ways to encourage a shift away from car.

3. for longer distance travel in the greater Oslo area, train is clearly the best substitute to 
car. Improving train options would therefore result in a relatively high share of long-
distance car trips to be transferred to PT.

4. To avoid a strong ‘cannibalization’ between PT modes, it appears important to improve 
all public transport options. If only one PT option is improved, a relatively large share of 
new users will come from other PT alternatives.
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Our methodological approach was motivated by learning more about variations in Dfs 
(which vary greatly across studies) by holding the general context (study area) and the data 
and modelling methods fixed.

Important questions relate to the degree to which our results are method/model-driven, and 
to which results may be specific for the Oslo area and therefore not generalizable.

result 1 is likely to be universally true. however, the degree is likely to vary between 
contexts. We regard our estimated values to be transferable as a proxy value for other cities.

On the other hand, result and implication point number 4 (‘cannibalizing’) may be influ-
enced by the nesting structure of the underlying choice models that have a rather high nest 
parameter for the PT nest [25]. The nesting structure is defined by the researcher and the 
value of the estimated nest parameter is (indirectly) conditioned on the specification of utility 
functions such that high Dfs may partly be a consequence of model building. however, the 
applied nesting structure was the one that fitted the survey data best and should – at least to 
some extent – represent the ‘true’ substitution pattern. Note that the high degree of substitu-
tions between PT modes may also be specific to the Oslo area and may only apply to similar 
cities with an advanced, frequent and widespread public transportation network where sev-
eral PT options ‘overlap’.

Our methodological approach has a few weaknesses that need to be kept in mind. The 
underlying choice model does not calculate generated (or suppressed) transport which may 
impact on the absolute size of Dfs towards other transport modes. another important limita-
tion is that we simulate symmetrical Dfs for both direction and size of change, that is, our 
obtained Dfs were close to identical for attribute changes of −30%, −1%, 1% and 30%, 
respectively. furthermore, Dfs with our method are widely unaffected by the type of attribute 
that is subject to change (price changes, travel time changes). This may or may not be the case 
in the real world. Despite these important caveats, we believe that this article has thrown new 
and to some degree transferable and generalizable light on the under-researched area of Dfs 
and modal substitution.
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aPPeNDIX: DIVerSION Of eQN (4)

In multinomial logit models, we have =
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exp( )i
i

j j

 where the Vs are generalized costs 

of the form V = b
0
 + b

1
X

1
 + b

2
X

2
 + …. and where the Xs are specific to the alternatives j, and 

the bs may be generic or specific. for simplicity, assume that V = a + bX without loss of 
generality. recall that logit cross-price elasticities (denoted ε) for mode i are defined as ε

ii
 = 

b · X
i
 (1 − P

i
) and ε

ij
 = −b X

j
 P

j
 for a linear additive utility function (and similarly for j). using 

the Df relationship between own- and cross-elasticities, we have ε ε=− P P( / )DF
ij jj i j ij

 and 

substituting in the formula for ε
jj
 and ε

ij
 we have −b · X

j
 · P

j
 = −b · X

j
 · (1−P

j
) · (P

j
/ P

i
) Df

ji
 

so that Df
ji
 = P

i
/(1−P

j
).
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