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Abstract Generalised cost (GC) has long been widely used as a measure of the attrac-

tiveness of travel alternatives. We argue that its limitations have been forgotten, over-

looked or not appreciated, and it is used because ‘it has always been used’. We explore the

relationships between GC and its components (price, time, value of time) and their

respective demand elasticities and show that the variation of component elasticities over

time and space is not consistent with the variation implied by a GC formulation. We

therefore conduct detailed tests of whether the GC approach is justified. The datasets used

are recorded ticket sales between pairs of railway stations for a number of years and

covering a variety of types of flow. When restricted to a GC formulation, we find that

allowing VoT to be estimated as part of the modelling process is greatly superior to using

either the UK official VoTs or using VoTs from meta-analyses. We conclude that the

importance of using the correct VoT in calculating GC cannot be overstated. Failure to do

so will lead to incorrect derivation of component elasticities from the GC elasticity. A

more flexible approach estimating elasticities to components of GC is better than even the

best GC formulation. We conclude that robust models, with large sample sizes and very

precise coefficient estimates in their standard form, are not able to support the variation in

GJT and fare elasticities that would be implied by the GC approach. It might be time to

stop using GC.
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Introduction

The issues

Transport planners the world over make much use of generalised cost (GC) and/or gen-

eralised time (GT) which represent the overall attractiveness of a travel alternative in

equivalent units of money or travel time. This is because such composite terms have a

number of attractions at both the estimation and application stages. These include over-

coming estimation problems due to co-linearity between or lack of variation in the con-

stituent variables,1 introducing the potentially desirable feature that the elasticities to the

constituent variables depend upon the proportion they form of the composite term, sup-

porting a consistent approach to forecasting and economic appraisal, reducing concerns

about the use of constituent elasticities for large proportionate changes, and avoiding the

problems in consumer surplus measurement where a constituent variable, such as fare

under a concessionary scheme, is zero. Searle (1978) justified its use on the grounds that

‘‘it results in better practice than its more simple alternatives’’ and that ‘‘we [should not]

overlook the commonsense virtues of generalised cost’’.

Nonetheless, one possible reason why GC is used is because ‘it has always been used’,

and we here contend that its potential limitations have been forgotten, overlooked or

indeed not appreciated. This paper not only raises the question of whether the use of GC in

demand models is justified but provides some empirically based answers. Bruzelius (1981)

contends that the ‘‘articles (Grey 1978a, b; Goodwin 1978; Searle 1978) demonstrate that

there is a considerable lack of understanding in the profession’’. We contend that this is

still the case with regard to GC.

Although the GC formulation is widely adopted, it imposes properties without any

explicit testing of whether they are empirically justified. This has long been recognised

(Jones 1977; Grey 1978a). Indeed, Grey (1978a) stated that, ‘‘The principal restriction is

that the ratio of the rates of change of demand Q with respect to any two independent

variables Ci, Cj is not fixed directly by empirical evidence, but by the predetermined

generalised cost specification’’. The GC approach forces the implied constituent elasticities

to exhibit large cross-sectional variations according to the make-up of GC on different

journeys and an increase (reduction) in time (cost) related elasticities, all other things

equal, as monetary values increase over time with income growth.2 Moreover, it is

implicitly assumed that the value of time used in appraisal can be taken to be appropriate

for demand forecasting.

A different approach, and one used by the rail industry in Great Britain, is to merge the

time related aspects (journey time, frequency and interchange)3 into a single variable,

termed generalised journey time (GJT), but to maintain fare as a separate term. We term

this the GJT-Fare approach. This approach also forces elasticity variation, given that the

elasticities of the component variables of GJT will vary with the proportion that they form

1 For example, the GC approach has attractions where, as is often the case in the car and bus markets, there
is sufficient evidence on price elasticities but a dearth of evidence on time elasticities (TRL et al. 2004).
2 There is also what Gunn (1983) termed ‘‘a crucial ambiguity’’ that models expressed in terms of GC (GT)
will imply a reduction (increase) in demand over time as the value of time increases with income. We do not
here address this issue but rather focus our attention on the use of GC (GT) in the elasticity domain.
3 The wait time element common in GC calculations is taken up by the frequency term. Walk time is also a
common feature of GC but not in the rail demand models which form the evidence base here since they are
estimated to recorded demand between stations.
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of GJT. Whilst this might not be justified, and indeed was addressed in Wardman (1994),

the formulation of the GJT function is not the focus of this paper.

Finally, what might be regarded as the conventional economics approach would be to

enter into the demand model separately each of the key attributes regarded to influence

demand. We term this the separate components (SC) approach. We note that it invariably

characterises the very extensive discrete choice modelling literature. The SC approach is

here covered to demonstrate the potential for further disaggregation of the components of

GJT, and for reference and interest given that we can estimate it, but its most appropriate

formulation is not the focus of this paper.

The opportunity and aims

The railway industry in Great Britain has available very large amounts of ticket sales data

which provide a reasonably accurate account of rail travel between very many stations over

numerous years. Whilst rail fares exhibit variation over time, just as the costs of other

modes do, a key attraction is that rail routes can also exhibit variations in the

timetable related service quality attributes of journey time, frequency and interchange. This

then supports modelling opportunities not otherwise possible which we here exploit to test

a number of important hypotheses. As Bruzelius (1981), summarising Searle (1978),

concluded: ‘‘the use of generalised cost has to be based on [the claim that] travel demand

functions in terms of generalised costs seem to be working better than other types of travel

demand models’’. Specifically, the aims of the research reported here are to test:

• whether the GC approach of standard transport planning provides a better explanation

of rail travel demand than the standard rail industry GJT and fare approach or indeed an

approach that specifies separate elasticities to each component of GC;

• whether the elasticities to GJT and fare implied by the GC approach can be empirically

justified;

• whether variations over time and across routes in the GJT and fare elasticities implied

by the GC formulation are empirically justified;

• the appropriate values of time to adopt conditional upon the use of the GC approach.

In short, is generalised cost justified in travel demand analysis?

Scope and significance

The research findings here discussed are both original and significant because, as far as we

aware, there has been no explicit and detailed testing of the ‘hypotheses’ set out in ‘‘The

opportunity and aims’’ section along with GC being a dominant formulation worldwide

where transport planning and appraisal is practised. It is important to know whether GC is

empirically valid because of the fact that GC is consistent with conventional microeco-

nomic demand theory if and only if the willingness to pay to save travel time is not a

function of real income (Bruzelius 1981). In addition to insights of a methodological

nature, we also provide a range of results that are of broader interest for the purposes of

forecasting, benchmarking and interpretation in the passenger rail market.

In terms of the scope of the research reported here, which is primarily concerned with

the validity of the GC approach, we make a number of important points largely stemming

from its originality. We aim to understand these fundamentals of GC as currently used in

practice but with a view to developing this investigation to address more complex issues.
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Firstly, we have not considered ‘flexible’ functional forms where the GC, GJT and SC

formulations might through appropriate parameterisation approximate each other. The

analysis reported here is couched very much in the tradition of these approaches, that is,

characterised by constant elasticities to GC, GJT and Fare, and the SC variables. The

analysis of more flexible functions is a separate study in its own right.

Secondly, the analysis could have been extended to the direct estimation of a wider

range of weights used in the composite GJT terms. We are though of the view that this

would not materially add to or alter the findings presented here. Again, this is a separate

study beyond the scope of the significant issues this paper aims to address.

Thirdly, and related to the previous point, our focus here is on comparing the GC and

GJT-Fare approaches on the grounds that the latter is dominant in the rail industry in

Britain and serves as a sound empirical basis to test the former whereas the robust esti-

mation of each of the SC elements to provide a firm basis of comparison is a much more

challenging task.

Finally, we have not addressed dynamic behavioural responses. In part, this is because

two of the three data sets available to us cover only a few years. But more importantly, the

analysis of dynamic effects would cloud our investigations and add an element of com-

plexity in terms of the relationships explored that would not contribute to answering the

important hypotheses set out in ‘‘The opportunity and aims’’ section.

Structure

The structure of the paper is as follows. ‘‘The candidate model formulations’’ section

provides background discussion covering the competing demand model formulations.

‘‘What insights on expected elasticity variation are provided by existing evidence?’’ sec-

tion considers the insights that are provided by review study evidence into the elasticity

variation here being examined whilst the rail ticket sales data used in our analysis are

described in ‘‘Data used in analysis’’ section. ‘‘Model specification’’ section sets out the

candidate models to be evaluated and examines whether fixed or random effects models are

more appropriate to our investigations. The main empirical findings and tests of hypotheses

are contained in ‘‘Empirical findings’’ section and concluding remarks are provided in

‘‘Conclusions’’ section.

The candidate model formulations

The GC approach4

The concept of GC has been widely used in transport planning since the late 1960s

(Goodwin 1978). Indeed, Searle (1978) claimed that, ‘‘…… what could be more sensible

as a simple working hypothesis than to assume that major determinants of travel behaviour

are a linear combination of time and money cost parameters?’’ McIntosh and Quarmby

(1970) first set out the procedures recommended for use in transport planning studies in

Britain but the term seems to originate with Wilson (1969).

Despite the widespread use of GC, review studies (TRRL 1980; Goodwin 1992; Bal-

combe et al. 2004; ATOC 2013; Wardman 2014) all point to there being extensive

4 We take this to be the conventional formulation where GC is a linear-additive combination of its com-
ponent parts.
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evidence relating to fare elasticities but surprisingly little for GC elasticities.5 Indeed the

GC elasticity is sometimes deduced from the much more common evidence on price

elasticities.

We can compose GC in this rail context simply as the summation of fare (F) and

generalised journey time (GJT):

GC ¼ F þ lGJT ð1Þ

GJT represents the timetable related service quality in time units, as discussed in ‘‘The GJT

and fare approach’’ section, and l is the money value of time that converts GJT into an

equivalent monetary amount. The value of l is invariably pre-specified, but as we shall see

it can here be directly estimated.

If we specify the relationship between the volume of rail demand (V) and GC in typical

constant elasticity form:

V ¼ jGCk. . .. . . ð2Þ

then the implied elasticities (g) to GJT and fare are:

gGJT ¼ k
lGJT
GC

ð3Þ

gF ¼ k
F

GC
ð4Þ

The elasticity to a constituent variable is the product of the proportion that it forms of GC

and the GC elasticity (k). Since GT is simply a change from money to time units, the GT

and GC elasticity are the same and the implied GJT and fare elasticities are unaffected. The

sum of the constituent elasticities equals the component elasticity. Note also that functional

relationships between demand and GC other than Eq. 2 still impose the property that the

component elasticities depend upon the proportion that they form of GC.

The implied GJT and fare elasticities will exhibit strong variation across routes

according to the proportion that each variable forms of GC and, since l will increase over

time with income, the implied GJT (fare) elasticity will be forced to increase (fall) over

time, all other things equal. Whilst these are not a priori unreasonable properties, as far as

we are aware they have not been subjected to explicit empirical testing.6 In addition, GC is

invariably calculated using the best available evidence on the value of time rather than

upon a directly estimated value of time that provides the best explanation of demand

conditional upon the use of GC.

The GC approach implies that the value of time is:

l ¼ F

GJT

gGJT
gF

ð5Þ

5 It is surprising why there is so little evidence on GC elasticities when GC is so widely used in forecasting.
6 Indeed, our experience is that when rail demand models are allowed to depart from the standard constant
elasticity position the alternative is either rarely empirically preferable or else, with flexible functional
forms, the estimated elasticity variation is slight.
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We subsequently make use of this relationship although, more usefully where there is

limited evidence on one of the elasticities, its re-arrangement allows gGJT (gF) to be

deduced if we have evidence on gF (gGJT) and l.7 So, for example:

gGJT ¼ l
GJT

F
gF ð6Þ

The GJT and fare approach

With a pedigree almost as long as the GC approach is the UK rail industry’s practice of

using separate fare and GJT terms. This is set out in the Passenger Demand Forecasting

Handbook (PDFH) which is unique worldwide amongst railway organisations and indeed

transport authorities in general. It has set out a recommended forecasting procedure and

associated parameters since 1986 (ATOC 2013).8 GJT stemmed from the need for an index

to represent the timetable related attractiveness of train services which have somewhat

different journey times, departure time profiles and interchange requirements across the

day (Tyler and Hassard 1973). The different British Rail computer systems dealing with

timetables and revenue led to a separation of GJT and fare which has persisted to this day

without any empirical testing of whether movement to the conventional GC approach or

indeed the SC approach would provide a better forecasting approach.

There is a considerable evidence base covering GJT and fare elasticities in the rail

industry in Great Britain, as is clear from PDFH and large-scale reviews of the literature

(Wardman 2012, 2014).

PDFH specifies the demand function in conventional constant elasticity form as:

V ¼ tGJTdFc. . .. . . ð7Þ

GJT is constituted as:

GJT ¼ ST þ sH þ xI ð8Þ

ST is the station-to-station journey time including any interchange connection time.9 The

frequency penalty (s) and interchange penalty (x) convert service headway (H) and the

number of interchanges (I) into equivalent journey time. Whilst GJT could, in principle, be

enhanced with other terms, such as travel time reliability, rolling stock and crowding

levels, their inclusion in the time-series models that provide the evidence base is fraught

with serious problems such as the lack of historical evidence, the lack of variation over

time and difficulties of measurement.

The estimation of the GJT elasticity (d) has almost always been based on the ‘best’ prior

evidence relating to s and x to construct GJT. The few exceptions are Wardman and

Whelan (2004) and Wheat and Wardman (2017) who simultaneously estimated s, x and d.

7 For example, the TRL et al. (2004) review of public transport demand elasticities uses this relationship to
provide deduced time-based elasticities in the bus market where there is a dearth of directly estimated
evidence. Of course, the elasticities to other terms within GJT can also be deduced.
8 The initial PDFH was issued in 1986 and the most recent update (v6) was undertaken in 2017. Updates on
the original were 1989 (v2), 1997 (v3), 2002 (v4), 2005 (v4.1), 2009 (v5) and 2013 (v5.1).
9 The standard formulation of GJT in PDFH remains station-to-station journey time even though it has been
possible for many years to isolate connection time in the industry model that supplies the GJT data. All GJT
models reported in this paper do not isolate the connection time component of station-to-station time.
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Whilst this GJT-Fare approach is more flexible than the GC approach, it still forces the

elasticities to time, headway and interchange to depend upon the proportion that each

forms of GJT.10

The SC approach

The conventional (Marshallian) demand models of economic theory and practice typically

relate the volume of demand to distinct terms such as time, cost, frequency and inter-

change. But in addition an extensive discrete choice literature has developed over the same

period as GC’s existence and central to the latter is the composite utility term that reflects

the attractiveness of an alternative. Whilst this could itself be made a function of a created

GC, this is never done and instead the key travel attributes enter separately.11

For the variables of interest here, the conventional constant elasticity SC demand model

specification would be:

V ¼ /STaHbewIFc. . .. . . ð9Þ

Interchange takes this form because it is discrete and often zero, and the parameter w
denotes the constant proportionate change in demand after a change in the number of

interchanges. If connection time is separated from ST, as it is in some of our reported SC

models, then it also enters in the same form as interchange, albeit in minutes rather than as

the number of interchanges, given that it can be zero.

What insights on expected elasticity variation are provided by existing
evidence?

Whilst we contend that there have been no studies that have tested the GC approach to the

degree that is reported below, available evidence might still be able to shed light on the

validity of the GC model’s elasticity properties.

The GC approach implies that there will be considerable variation in GJT and fare

elasticities over time and across routes. Our experience from analysing rail demand and

conducting review studies over the past 30 years is that it is often difficult to discern

statistically significant variations in GJT and fare elasticities that overturn constant elas-

ticity models, let alone ones that approach those implied by the GC approach. Notwith-

standing our impressions and experiences, a much firmer empirical basis is provided by

drawing upon the insights provided by three major reviews and meta-analyses of UK

evidence.

Wardman (2014) covers 1633 price elasticities for car, rail and bus drawn from 167

studies published between 1968 and 2010. Wardman (2012) covers the period 1977–2010

and 209 (rail) GJT elasticities and 168 IVT elasticities. Abrantes and Wardman (2011)

cover 1749 valuations between 1960 and 2008 including 933 IVT values, 29 car congested

time values and 39 car free flow values.

10 Nonetheless, this separation of GJT and fare, as advocated by Jones (1977), would overcome Gunn’s
‘‘crucial ambiguity’’ units problem when using either GC or GT in forecasting over time.
11 These choice models have their own untested properties, such as the elasticities being very strongly
influenced by market share.
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The evidence from these major meta-analyses can be used in conjunction with Eq. 6 to

provide insights as to whether the empirical relationships between the time elasticity, price

elasticity and value of time support the GC approach.

The relevant insights from these meta-analyses are summarised in Table 1 for the key

variables of income growth over time, journey distance and journey purpose. We distin-

guish rail from other modes given that this paper analyses rail data and that rail provides

substantial proportions of the meta-analysis evidence. The elasticity terms in Table 1

indicate how the value of time varies with income or how an elasticity varies with distance.

So the distance elasticity for IVT for rail indicates that a 10% increase in distance would

increase the IVT elasticity by 2.5%. The other terms denote proportionate effects on a

parameter.

Income is a very important variable given that the value of time increases with it over

time and hence the balance between the GJT and fare elasticities implied by the GC

approach would be expected to vary with income growth, all else equal. However, all else

is not equal, and the ratio GJT/F might vary over time. We subsequently analyse a data set

covering the period 1995–2005 and over that period the GJT/F ratio fell by around 10% or

1% per annum, being broadly similar across the different types of flow covered. Given an

elasticity of the value of time with respect to income of 0.9, the value of time would have

increased by around 2% per annum over that period for rail. Hence we might expect the

elasticity of the GJT elasticity with respect to income to be larger than the corresponding

fare elasticity variation. This is not the case.

Turning to car, real money costs have increased over time but so have journey times due

to greater congestion. Over the period 1995–2014, inspection of National Travel Survey

data (Leigh Fisher et al. 2016) implied that the ratio of time to cost was falling by around

1� % per annum. This contrasts with 2% value of time growth per annum and hence is not

entirely consistent with the GC approach given the absence of income effects on the time

and price elasticities.

Table 1 Summary evidence from meta-analysis studies

Price elasticity GJT elasticity IVT elasticity Value of time

Inter-temporal income effects

Rail None None None 0.90 income elasticity

Other
modes

None n.a. None 0.90 income elasticity

Distance effects

Rail - 7% inter-urban non
London

0.20 distance
elasticity

0.25 distance
elasticity

0.16 distance elasticity

Other
modes

? 77% inter-urban car
? 26% inter-urban bus

n.a. ? 78% inter-
urban car

? 131% inter-
urban bus

0.21 distance elasticity car
0.16 distance elasticity bus

Purpose effects

Rail - 44% business, ?
31% leisure

? 14%
commute

? 14% for
commute

? 113% business, ? 12%
commute

Other
modes

- 44% business,
? 31% leisure

n.a. ? 14% for
commute

? 113% business, ? 12%
commute

GJT elasticity evidence relates only to rail
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As for bus travel, fares have increased over time but then speeds have also deteriorated.

The net effect would be expected to dampen but not remove the effect of the value of time

growth within Eq. 6 whereby time elasticities should become more important than price

elasticities over time but this is not the case.

With regard to journey distance, it is not clear how the GJT/F ratio for rail might be

expected to vary. Whilst fares taper with distance, longer distance journeys are often faster

and service frequency does not deteriorate in line with distance. Inspecting our 1995–2005

data sets, we regressed the logarithm of GJT/F on the logarithm of miles which provides

elasticities which can conveniently be compared with the value of time distance elasticity

of 0.16 reported in Table 1. The estimated elasticity of GJT/F to miles was - 0.16 for Non

London flows and - 0.10 for London flows. Thus the variations in GJT/F and the value of

time in Eq. 6 essentially cancel out, implying that the time and fare elasticities should

exhibit similar variation with respect to distance. However, we find that the rail time

elasticities increase with distance quite strongly whereas there is a slight reduction on some

flows for the price elasticity.

With respect to bus travel, speeds are higher for longer distance journeys and fares tend

to taper. The balance between time and fare might though be fairly constant with distance.

The value of time increases with distance for bus, the fare elasticity is larger for inter-urban

trips and the IVT elasticity is somewhat larger for inter-urban trips. We might then con-

clude that the distance effects for bus are in line with what would be implied by the GC

approach.

For car travel, speeds are higher for longer distances but fuel efficiency is also better.

The balance between time and cost might not vary much with distance. The evidence

points to time and cost elasticities being similarly larger for inter-urban trips, but given the

quite strong distance elasticity on the value of time for car then the GC approach would

imply a somewhat greater increase in the time elasticity than the cost elasticity with

distance.

As for the other main variable of journey purpose, the key variations relate to business

travel. The value of time for business travellers is essentially twice that of other travellers

and the price elasticity is just over half that of commuters and around 60% less than leisure

travellers. The variations in the value of time and fare elasticity essentially cancel out in

Eq. 6 and so, given that there were no variations in time elasticities by purpose, consis-

tency with the GC approach requires that the balance between time and cost is similar

between business and other trips. This can be expected to be the case for car but we would

expect GJT/F to be somewhat lower for rail business travellers given that they purchase

more expensive tickets to travel first class or at peak times.

Whilst there are inevitable approximations and assumptions involved in using Eq. 6 and

review evidence to test the relationships implied by the GC approach, we conclude that this

consideration of existing empirical evidence at the very least indicates that the new pri-

mary research reported here into the validity of the GC approach is clearly warranted. It is

to this that we now turn.

Data used in analysis

The data used here is recorded tickets sales between pairs of railway stations. In Great

Britain, this has since the 1970s supported empirical analysis of how a wide range of

factors impact on the demand for rail travel.
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Elasticity estimation requirements

The ability to estimate credible and precise elasticities is fundamental to the hypotheses

here being tested. Drawing firm conclusions from comparisons of elasticities implied by

the GC approach with those directly estimated using the GJT and Fare approach would

clearly be hampered if the elasticity estimates were not plausible or possessed very large

confidence intervals. Although not a primary requirement of our investigation, a desirable

feature is that we can obtain reliable elasticity estimates for the component variables of

GJT.

The ticket sales data used

Given that the issues we are here investigating are fundamental aspects of transport

planning and forecasting, we have made use of the three datasets at our disposal which

support our investigation in terms of being able to provide reliable GJT and fare elastic-

ities. Within these data sets, we distinguish flow types which the rail industry in Great

Britain customarily regard to be different and for which PDFH provides separate recom-

mendations. Whilst this coverage of a range of datasets and flow types inevitably leads to

an element of repetition, we feel that it is important to bring as much evidence to bear

given the significance of the hypotheses we are testing and to determine whether our

conclusions apply across a range of contexts.

Although rail has a significant presence in commuting markets in Great Britain, season

ticket data is often unsuitable because the widespread use of area-wide ‘travelcard’ tickets

in major urban areas means that we do not have an accurate account of travel between

specific pairs of stations. In addition, key commuter flows tend to exhibit relatively little by

way of GJT variation and fares are regulated.

Annual data for non-London non season tickets 2006–2010

This data was assembled for a project with the primary objective of examining the impact

of large changes in timetable related service quality on rail demand (Wheat and Wardman

2017). Flows were selected where timetable changes had brought about an increase or

reduction in GJT of at least 20% at some time in the period 2006–2010. This yielded 274

flows on Non-London long distance12 routes. The monetary variables are all expressed in

2006 prices. The timetable related service quality data distinguishes train in-vehicle time,

service frequency, the number of interchanges and any connection time.

Annual data for long distance non-season tickets 1996–2001

This data set was assembled for the specific purpose of examining the influence on rail

demand of changes in timetable related service quality (Wardman and Whelan 2004). It

covers 138 inter-urban London flows and 594 Non London inter-urban flows. All monetary

terms are in 2001 prices. The timetable related service quality data distinguishes train in-

vehicle time, service frequency, the number of interchanges and any connection time.

12 In Britain, the railways define long distance to be over 20 miles (32 km).
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Annual data for non-season tickets 1995–2005

This data was provided in order to examine the effects of external factors on rail demand

(Wardman and Dargay 2007). Nonetheless, it turned out to be ‘fit for purpose’ in terms of

being able to recover precise and reasonable elasticities to fare and GJT. It covers 621 long

distance London flows, 2442 long distance Non London flows, 738 Non London short

distance flows not entirely within travelcard areas and 686 flows within the South East of

England around London but not entirely within the London Travelcard Area. The monetary

variables are expressed in 2005 prices. The timetable related service quality data covers

station-to-station journey time, without any distinction between in-vehicle time and con-

nection time, along with service frequency and the number of interchanges.

Summary of data analysed

Table 2 summarises the data we have used in testing the hypotheses set out in ‘‘The

opportunity and aims’’ section. We have removed flows to and from airports as atypical.

The largest removal of observations was for long distance London flows covering the years

1995–2005. Models estimated to the full data set failed to recover sensible GJT and fare

elasticities and this was attributed to volatility in demand on some minor flows. We

removed 149 flows where in any year demand was less than 5 return trips per day which

then enabled sensible results to be obtained. Note that whilst this reduces the number of

flows by 24%, the number of recorded journeys is reduced by less than 1%. Excepting this

flow type, it is clear from Table 2 that the modelled data is the vast majority of the

available data.

Table 2 Available data—flow types, years and omissions

Flows Years Max
Obs

Used Obs Comment

274 non London
long distance

2006–2010 1370 1367
(99.8%)

3 observations with missing revenue data

138 London
long distancea

1996–2001 828 798
(96.4%)

30 observations with missing revenue data

594 non London
long distanceb

1996–2001 3564 3480
(97.6%)

Removed 14 flows to/from Stansted or Gatwick
Airports

621 London
long distancea

1995–2005 6831 5154
(75.5%)

Removed to and from Birmingham Airport
Removed 16 observations no GJT data
Remove 149 flows with demand less than 5 return

trips per day

2442 non
London long
distanceb

1995–2005 26,862 25,465
(94.8%)

Removed 127 flows to or from Gatwick,
Manchester, Birmingham, Stansted and
Southampton Airports

738 non London
short distance

1995–2005 8118 8030
(98.9%)

Removed 88 observations with no GJT data

686 South East
long distance

1995–2005 7546 6842
(90.7%)

Remove 64 flows to/from Gatwick and Southampton
Airports

a,bThere is an element of overlap with these respective data sets but the 1996–2001 datasets contain flows
not included in the 1995–2005 datasets
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Model specification

The candidate model forms

In conducting our tests of the central hypothesis of whether GC is justified, we estimate six

different model forms for each of our data sets. These are:

• GJT-Fare: The standard GJT and fare model of the rail industry in Britain

• GC-Direct1: The GC formulation with a single directly estimated value of time.

• GC-Direct2: The GC formulation with a directly estimated value of time that is

proportional to income.13

• GC-Meta: The GC formulation with the value of time derived from the meta-model of

Eq. 10 below weighted by journey purpose.

• GC-Official: The GC formulation with the value of time based on official recommen-

dations and weighted by journey purpose.

• SC: Splitting GJT into its separate components of in-vehicle-time, headway,

interchange and, where possible, connection time

All models can be estimated by ordinary least squares regression except for GC-Direct1

and GC-Direct2 where non-linear least squares is required.

The mix of journey purposes used in calculating overall values of time in the GC-Meta

and GC-Official models is set out in Table 3. Note that the results are not very sensitive to

even quite large variations upon these journey purpose shares.

GC and GJT weights

The weights attached to headway and interchange in constructing GJT are set out in PDFH

and we take these as given for the purposes of the analysis conducted here.

GC-Meta and GC-Official follow the conventional approach of adopting values of time

(VoT) from prior evidence to construct GC. The former uses the values of time implied by

the extensive meta-analysis of UK evidence reported in Abrantes and Wardman (2011)

which is:

VoT ¼ G0:899D0:161e�5:80þ0:75EBþ0:11Commþ0:23IUþ0:242SE ð10Þ

VoT is in pence per minute in 2008 quarter four prices, D denotes distance in miles, G is

GDP per capita with an index of 5927, EB and Comm are dummy variables denoting the

Table 3 Journey purposes by flow type for non-season tickets. Source: National Rail Passenger Survey

Commuting (%) Business (%) Leisure (%)

London long 14 36 50

Non London long 21 22 57

Non London short 31 13 56

London and South East 28 19 53

13 We did experiment with freely estimating both the value of time and its income elasticity but this proved
to be a ‘step too far’!.
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purposes of employer’s business and commuting, IU denotes whether the trip is inter-

urban, which is deemed to be over 20 miles, and SE represents a journey made in the South

East of England which is more affluent as well as having one of the densest rail networks in

the world.

Another source of values of time is, quite naturally, official UK recommendations. We

used the values recommended when we commenced this research, which were 44.76 pence

per minute for business, 11.35 for commuting, and 10.07 for leisure trips, in 2010 prices

and incomes. The income elasticity is unity for business travel but 0.8 for all other trips in

line with the Department for Transport recommendations at the time.14

Other data

The key external drivers of non-season rail demand are economic activity and income, and

the models reported here contain regional GVA per capita specified for the origin station.

Of course, other variables impact on rail demand, such as car ownership levels, population,

and the costs, journey times and service frequencies of other modes. We have not included

these terms for a number of reasons. Firstly, obtaining reliable historic evidence on some of

these terms, such as route specific car journey times and bus fares and service frequencies,

is notoriously difficult. Secondly, some of the external factors tend to be highly correlated,

such as income, car ownership, population and in some years car fuel costs. Thirdly, the

cross-elasticity effects tend to be of second-order (ATOC 2013; TRL et al. 2004; TRRL

1980).15 Finally, some of these influences, especially those that vary little over time, will

have been discerned by the fixed effects in our estimated models. Taken overall, we feel it

is highly unlikely that the conclusions we draw would have been materially altered with the

inclusion of a wide range of other factors even if it were possible to reliably do so.

Model form

The reported models take the following general form:

Vijt ¼ s
Yn

k¼1

Xak
ijkte

Pm
l¼1

blXijlt

e

Ps
r¼1

crDijrt

ð11Þ

Vijt is the demand for rail travel between stations i and j in time period t. It is a function of n

continuous variables (Xijkt), entered so that their coefficients (akÞ are interpreted as elas-

ticities, and m continuous variables (Xijlt), entered so that their coefficients ðblÞ denote the

proportionate change in demand after a unit change in the variable whereupon the elasticity

is then proportional to the level of the variable ðblXijltÞ. In addition, there are s discrete

variables denoted by the dummy variables ðDijrtÞ and their coefficients ðcrÞ denote the

proportionate effect on demand of a particularly category of a variable relative to an

arbitrarily selected base category.

14 The UK Department for Transport has recently revised its official valuations. Nonetheless, the officially
recommended values of time over the periods of the data we have analysed are more appropriate since they
would have been used in creating GC at the time.
15 Indeed, the required homogeneity of degree zero of a full demand system implies that all cross-elas-
ticities for substitutes must be smaller than the own-elasticity, even more so if the income elasticity is
positive.
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We explored both fixed-effects (FE) and the more parsimonious random-effects (RE)

specifications. The FE specification is equivalent to dummy variables ðDijrtÞ for p - 1 of

the p station-to-station movements without any variation by time period t, effectively

estimating route specific intercepts, and is potentially useful for controlling for unobserved

heterogeneity over the cross-sections when that heterogeneity is constant over time. By

contrast, a RE specification assumes that any differences between cross-sections are

essentially random and that all cross-sections have been drawn from the same underlying

population.

For each flow type, we computed two statistics to test whether a FE or RE specification

of the GJT-Fare model was preferred. The first test is of an F statistic that tests the null

hypothesis that the fixed-effect parameters are all zero. Rejection of the null hypothesis

suggests an FE specification may be appropriate. The second test is of a Hausman

m statistic that provides information about the appropriateness of the RE specification. The

m statistic is based on the idea that, under the null hypothesis of no correlation between the

effects variables and the regressors, OLS and GLS are consistent, but OLS is inefficient.

Hence, the test is based on the result that the covariance of an efficient estimator with its

difference from an inefficient estimator is zero (SAS Institute 2011). Rejection of the null

hypothesis suggests that an FE specification may be more appropriate.

In general, the greater the number of cross-sections (and the greater their within-cross-

section homogeneity and between-cross-section heterogeneity), the more likely it is that FE

will be supported and RE not supported. This is especially so as sample size approaches

population size.

The results in Table 4 indicate that the FE specification performed better than the RE

specification for all flow types. In respect of the former, the F test statistics indicated that

the models need to recognise the panel structure of the data; the fixed-effects were in all

cases found to be jointly significant. With respect to the latter, the random-effects speci-

fications were rejected convincingly based on the Hausman test. This means that cross-

sectional differences between routes are picked up by route-specific constants. Only in the

Non-London Long Distance 1995–2005 segment is the case for FE not totally over-

whelming. In the latter case, it is the shorter-distance trips (under 100 miles) which exhibit

Table 4 Tests of fixed effects versus random effects models

F test of H0: all fixed-effects = 0 Hausman test of H0: no
correlation between
effects and error term
(random-effects model)

F value df
(num/den)

Pr[ F m
value

Df Pr[m

Non-London long distance 2006–2010 299.27 273/1090 \ 0.0001 80.90 3 \ 0.0001

London long distance 1996–2001 260.71 133/637 \ 0.0001 36.14 3 \ 0.0001

Non-London long distance 1996–2001 193.00 579/2897 \ 0.0001 85.51 3 \ 0.0001

London long distance 1995–2005 728.99 496/4643 \ 0.0001 194.98 3 \ 0.0001

Non-London long distance 1995–2005 391.19 2314/23,147 \ 0.0001 7.30 3 0.063

South East to and from London 1995–2005 770.97 621/6217 \ 0.0001 209.05 3 \ 0.0001

Non-London short distance 1995–2005 203.46 729/7297 \ 0.0001 96.50 3 \ 0.0001

88 Transportation (2020) 47:75–108

123



less unattributable route-specific variation. However, since we have not segmented by

distance, we prefer its FE specification.

We subsequently proceed with the FE specification, although the (numerous) fixed-

effect parameters are not reported. It turned out that the GJT, Fare and GVA elasticities

from the FE and RE models were generally very similar as is reported in ‘‘Appendix’’.

Empirical findings

Model outputs

The model outputs for the seven sets of flows described in Table 2 are reported in Tables 5,

6, 7, 8, 9, 10 and 11, with long distance London flows first, followed by long distance Non

London flows and then the South East flows and finally the short distance Non London

flows. The estimated models are logarithmic transformations of Eq. 11 and the SAS

package was used. These models are estimated by ordinary least squares, except GC-

Direct1 and GC-Direct2 where non-linear least squares is used to enable estimation of the

VoT within GC.

Common elements of each table and each model are the GVA per capita elasticity

estimate, the residual sum of squares (RSS), the adjusted R2 goodness of fit measure (ADJ

R2) and, in the table heading, the number of observations. The GC, GJT, fare, headway,

IVT and station-to-station time (TIME) coefficient estimates are all elasticities (Xijkt in

Eq. 11). INT denotes the number of interchanges and CONN is any connection time (Xijlt

in Eq. 11) which are entered in absolute form since they can be zero. The t ratio for each

coefficient estimate is reported in brackets.

VoT-Est denotes an estimated value of time, in pence per minute. For the GC-Direct2

model, where the value of time is forced to increase in line with income, it denotes the

estimated value of time for the first year before the subsequent income effect.

The row denoted VoT takes several forms. For the GJT-Fare model and the SC model it

is the mean value of time across flows for the first and last years in the data set deduced

using Eq. 5. For GC-Direct1 it is the constant directly estimated VoT. For the other cases,

we report the mean value for the first and last year in the data set. GC-Direct2 and GC-

Official have common VoTs across flows and hence the standard errors, given in brackets,

are zero.

The rows denoted gGJT and gFARE report the mean GJT and fare elasticities respectively

implied by the four GC approaches for the first and last years in the respective data sets,

along with their standard errors in brackets. For the SC model in the final column, gGJT is

the sum of a, b and wI of Eq. 9, where I is taken as its mean level in the data for the years

in question. Where connection time is separately identified, then its contribution to gGJT is

its coefficient estimate multiplied by the mean amount of connection time.

For the models reported in Tables 6, 8 and 9, the Durbin–Watson statistic was in the

range 1.6–2.0. This indicates autocorrelation is not an issue. In the other tables, which all

cover the 1995–2005 data, the Durbin–Watson statistic was very much centred around 1.

Nonetheless, the t ratios are so large that allowing for autocorrelation, or indeed inspecting

and correcting for heteroscedasticity, would not make a material difference to the confi-

dence that could be placed in the parameter estimates.

In all models, the GJT, fare and GC elasticities are precisely estimated, almost always

extremely so, and the GJT and fare elasticity estimates are on the whole very credible and
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broadly in line with PDFH recommendations and major reviews and meta-analyses of UK

evidence on fare elasticities (Wardman 2014) and GJT elasticities (Wardman 2012).16 We

conclude that the data sets provide a very firm basis for our tests.

The SC model is not central to the hypotheses here being tested but the results are of

interest not only because its performance relative to other model forms indicates that it

warrants further and more detailed attention but also because we here provide new evi-

dence where little exists. The IVT/TIME elasticity is generally estimated very precisely

and in all but one case, where it exceeds the estimated GJT elasticity, it is plausible. The

importance of interchange comes across very clearly and the headway elasticity estimates

are plausible and highly significant in four of the seven cases. The results for CONN are

disappointing, but correlation with INT could be an explanatory factor. Nonetheless, the

general credibility of the separate estimates for variables that underpin GJT gives us further

confidence that our GJT data provides a robust basis for the tests we are undertaking.

The other key elasticity estimate relates to GVA per capita which is specified relative to

the origin station. A noticeable feature of the result in Table 9 is that the GVA elasticity is

negative. This is because over the period there was a sharp contraction in GVA yet for

complex reasons beyond the scope of this investigation rail demand continued to increase.

We do not feel though that this invalidates the investigation of our key hypotheses for this

dataset.

Table 8 Non-London long distance 1996–2001 (N = 3480)

GJT-Fare GC-Direct1 GC-Direct2 GC-Meta GC-Official SC

GVA 1.18 (12.8) 1.27 (13.6) 2.47 (35.3) 2.11 (30.8) 2.43 (35.1) 1.47 (15.8)

GJT - 1.22
(23.1)

FARE - 1.12
(21.2)

- 1.15 (21.8)

IVT - 0.54 (6.6)

HEAD 0.01 (0.6)

INT - 0.29 (14.7)

CONN 0.00 (0.1)

GC - 2.34 - 2.19 (33.1) - 2.22 (33.1) - 2.03 (31.0) - 2.05 (31.5) - 1.97:- 1.86

VoT 5.96:7.20
(0.08:0.12)

6.78 6.06:6.90
(0.00:0.00)

15.08:16.95
(0.07:0.08)

11.76:13.57
(0.00:0.00)

5.22:5.53
(0.07:0.09)

VoT-
Est

6.78 (13.0) 6.06 (13.2)

RSS 94.59 95.91 95.88 99.40 98.70 93.68

ADJ
R2

0.979 0.979 0.979 0.978 0.979 0.979

gGJT - 1.22 - 1.24:- 1.15
(0.007:0.008)

- 1.19:- 1.17
(0.008:0.009)

- 1.50:- 1.48
(0.005:0.006)

- 1.41:- 1.40
(0.006:0.007)

- 0.82:
- 0.71

gFARE - 1.12 - 0.95:- 1.04
(0.007:0.008)

- 1.03:- 1.05
(0.008:0.009)

- 0.53:- 0.55
(0.005:0.006)

- 0.64:- 0.65
(0.006:0.007)

- 1.15

16 We are not aware of GC elasticity evidence relating to rail travel which could be used here for com-
parison purposes.
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But more importantly, it can be seen that the GVA elasticity is very similar across the

GJT-Fare, GC-Direct1 and SC models, which contain no other income term. For the GC-

Direct2, GC-Meta, and GC-Official models, which contain income within the value of time

element of GC, the coefficient on GVA is more positive. In these cases the true GVA

elasticity is the coefficient on GVA plus a fraction of the GC elasticity which, being

negative, means the true GVA elasticity is less than the GVA coefficient. For example in

Table 6, approximately 60% of the GC elasticity needs to be taken off the ‘direct’ GVA

elasticity in order to generate the ‘true’ GVA elasticity. Once this adjustment is under-

taken, the GVA elasticities for the cases where VoT depends on income are broadly

comparable to those where VoT does not depend on income. Thus the central story as

regards GVA is that all six model forms give similar results on any given data set.

The remaining parameter that we estimate is VoT. We are not aware of direct demand

models outside this stream of work that have directly estimated VoT. The VoTs are

estimated extremely precisely. These estimated values along with the prior official and

meta-analysis values used are central to the hypotheses here being tested and are sum-

marised and discussed in ‘‘Insights into values of time’’ section.

A key feature of this research investigation is the extent to which the GJT and fare

elasticities implied by the GC models are consistent with the freely estimated elasticities.

We provide summary statistics and discussion surrounding them in ‘‘Implied and directly

estimated GJT and fare elasticities’’ section but note some patterns here. The models which

directly estimate the VoT can be seen to provide average implied GJT and fare elasticities

that are broadly in line with the directly estimated GJT and fare elasticities. This is not the

case with the models using pre-specified values, where there is a tendency to place too

much weight on the impact of GJT changes and too little on fare changes. This is hardly

surprising given that the prior VoTs are generally larger than the freely estimated VoTs.

Our view is that we have here an impressive set of plausible, precise and in some

regards original estimates, and that these provide a firm basis for the pioneering tests that

we are here conducting. We now discuss these tests and investigations in more detail.

These cover:

• Goodness of fit comparisons of different model forms

• Comparisons of directly estimated GJT and Fare elasticities with those implied by the

GC approach and of directly estimated and implied GC elasticities

• Insights into values of time

• Explicit testing of the elasticity variation implied by the GC approach

Relative goodness of fit

Although not the single nor indeed most important criterion against which we assess the

model outputs, it is informative to compare how the different models compare in terms of

how well they explain the data.

For models with the same number of parameters, we can simply compare the adjusted

R2 or RSS. This can be done for the GJT-Fare, GC-Direct1 and GC-Direct2 models and

also for GC-Meta and GC-Official models. However, the latter two have one less estimated

parameter and hence we use an F test to compare the GC-Meta and GC-Official models as

restricted cases of the GJT-Fare, GC-Direct1 and GC-Direct2 models and to compare the

SC model with any other restricted model. The test F statistic is based on the residual sum

of squares of the restricted (RSSR) and unrestricted (RSSU) models as:
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F ¼ RSSR � RSSUð Þ=r
RSSU= n� kð Þ ð12Þ

with degrees of freedom r, denoting the number of restrictions imposed, and n - k, where

n is the number of observations and k is the number of estimated parameters.

Table 12 reports the relative explanatory performance across all six models for each of

the seven datasets. Noticeably, the SC model provides the best fit in all cases. This is an

interesting finding although one that impacts more on future research priorities and needs

than on the tests we are here conducting.

Of more significance here is that the GJT-Fare specification always provides a better

explanation of the data than the GC models. This is our first evidence that the GJT-Fare

model is preferable to various forms of the standard GC expression as typically formulated.

Another notable pattern in Table 12 is that GC-Direct2, which freely estimates a VoT

that increases in line with income, is in all but one case superior to GC-Direct1 where the

freely estimated VoT is constant. This is reassuring given that the income effect is to be

expected but is by no means guaranteed in such free estimation.

We also take confidence in the finding that the GC models with directly estimated VoTs,

which the railway industry is generally in a position to undertake, generally perform better

than GC models based on ‘best evidence’ and official values.

It is noticeable, but nonetheless unsurprising, that the GC models based on official

values, which primarily serve purposes of economic appraisal, tend to be the worst per-

forming. This is though, in our understanding, the conventional way in which GC would be

constructed.

This evidence points to the GC approach being inferior to other formulations, and that if

the GC approach is to be used it is preferable to base it on directly estimated VoT with best

evidence VoT better than ‘official’ values.

Table 12 Relative goodness of fit

1st 2nd 3rd 4th 5th 6th

London long distance 1995–2005 SC GJT-
Fare

GC-
Direct2

GC-Meta GC-
Direct1

GC-
Official

London long distance 1996–2001 SC GJT-
Fare

GC-Meta GC-
Direct2

GC-
Direct1

GC-
Official

Non-London long distance 1995–2005 SC GJT-
Fare

GC-Meta GC-
Direct2

GC-
Official

GC-
Direct1

Non-London long distance 1996–2001 SC GJT-
Fare

GC-
Direct2

GC-
Direct1

GC-
Official

GC-Meta

Non-London long distance 2006–2010 SC GJT-
Fare

GC-
Direct2

GC-
Direct1

GC-
Official

GC-Meta

South East to and from London
1995–2005

SC GJT-
Fare

GC-
Direct1

GC-
Direct2

GC-Meta GC-
Official

Non-London short distance 1995–2005 SC GJT-
Fare

GC-
Direct2

GC-
Direct1

GC-Meta GC-
Official
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Implied and directly estimated GJT and fare elasticities

Table 13 summarises the previous evidence regarding implied and directly estimated

elasticities. The first three rows provide the average directly estimated and implied GC,

GJT and Fare elasticities for each model across the seven data sets along with their

standard errors.

The GC elasticities on average do not vary greatly, and are not significantly different.

This is encouraging since we can then explore how similar GC elasticities are decomposed

into GJT and Fare elasticities.

Turning to the GJT and fare elasticities, on average the GC-Direct1 and GC-Direct2

models provide implied GJT and fare elasticities very similar to the directly estimated

ones. GC-Meta tends to provide GJT elasticities a little larger than those directly estimated

but somewhat lower fare elasticities with the GC-Official model on average performing

well on GJT but poorly on fare. What is noticeable is that the official and review VoTs

imply GJT elasticities around twice the fare elasticities, somewhat out of line with all other

models. The SC model provides GJT elasticities farthest removed from those directly

estimated but, as would be expected, its fare elasticities are very much in line with the

GJT-Fare model.

Of course, average values of two parameters can be very similar even when the indi-

vidual values are often somewhat different. We therefore report in the final three rows the

means and associated standard errors of the proportionate absolute deviation of the direct

and implied elasticities from those of the GJT-Fare model.

Whilst the proportionate deviations in the GC elasticities are significant in all cases,

they are nonetheless small. This similarity of elasticities is though not the case with regard

to GJT and fare. We can see that when the VoT is directly estimated the implied GJT and

fare elasticities are on average less than 10% different to the directly estimated values.

Contrast this with the cases where the VoT is based on prior evidence. Here the implied

GJT elasticities of the GC-Meta and GC-Official models are on average just over 20%

different to the directly estimated ones with corresponding figures of 35 and 27% for the

fare elasticity. The SC model performs by far the poorest on implied relative to directly

estimated GJT elasticities. We attribute this to the greater challenges of obtaining precise

estimates when there are more service quality variables to be covered, including the

increased possibilities of multicollinearity and of lack of variation in some of the more

detailed attributes.

Table 13 Summary of implied and directly estimated GC, GJT and fare elasticities

GJT-Fare GC-Direct1 GC-Direct2 GC-Meta GC-Official SC

Average elasticities

GC - 2.13 (0.17) - 2.01 (0.18) - 2.02 (0.18) - 1.87 (0.14) - 1.83 (0.18) - 1.89 (0.08)

GJT - 1.20 (0.14) - 1.15 (0.15) - 1.13 (0.15) - 1.30 (0.12) - 1.17 (0.12) - 0.95 (0.10)

Fare - 0.94 (0.12) - 0.86 (0.13) - 0.89 (0.12) - 0.57 (0.04) - 0.65 (0.06) - 0.94 (0.12)

Proportionate absolute deviation from GJT-fare model

GC – 0.06 (0.015) 0.06 (0.013) 0.12 (0.030) 0.15 (0.028) 0.19 (0.041)

GJT – 0.07 (0.019) 0.08 (0.021) 0.21 (0.076) 0.22 (0.069) 0.33 (0.079)

Fare – 0.09 (0.026) 0.06 (0.012) 0.35 (0.087) 0.27 (0.092) 0.02 (0.004)

Where elasticities vary, we take the average of the first and last year in the dataset

Transportation (2020) 47:75–108 99

123



At the level of central estimates, it seems that the GC approach can approximate the

GJT-Fare model well when the VoT is directly estimated but there are concerns when

predetermined VoTs are used to construct GC.

Insights into values of time

Table 14 summarises the implied, directly estimated and prior VoTs for each model type in

terms of their mean and associated standard errors. We are unaware of VoTs being directly

estimated in this way from direct demand models.

On average, there is little to choose between the mean VoTs except for the larger value

of the GC-Meta model. However, when we inspect the proportionate absolute deviation

relative to GC-Direct2, given that it directly estimates a VoT that is allowed to increase

with income, we see a very close correspondence with the freely estimated but constant

VoT of GC-Direct1 and with the implied values of the GJT-Fare model. The VoTs based

on prior evidence are very different on average.

This evidence is indicating that the averages of the directly estimated VoTs are similar

to each other and to that implied by the GJT-Fare model but are distinctly different to the

official and meta-analysis evidence. The VoTs implied by the SC model differ but are on

average closer to the former than the latter. In several cases, the standard approach of using

‘best evidence’ would involve VoTs somewhat different to those which best explain rail

demand and implied by the balance between time and price elasticities.

Testing the implied elasticity variation

So far, we have compared at an average level actual and implied elasticities and values of

time along with explanatory performance. However, a more rigorous test of the GC

approach, whichever of our types, is to examine the spread of implied elasticities rather

than just the means. Are the variations in the GJT and Fare elasticities implied by the GC

approach empirically justified?

Equations 3 and 4 denote the dependence of the implied GJT and fare elasticities of the

GC approach on the proportion that each forms of GC. We therefore created dummy

variables denoting five different categories of expected elasticity according to the pro-

portion that GJT and Fare form of GC. In order to avoid endogeneity problems, the five

Table 14 Summary of implied, directly estimated and prior values of time

GJT-Fare GC-Direct1 GC-Direct2 GC-Meta GC-Official SC

Average valuations

VOT 13.38 (3.20) 14.47 (3.92) 13.10 (3.26) 18.77 (1.72) 14.55 (0.83) 13.71 (4.23)

Proportionate absolute deviation from GJT-Direct2

0.08 (0.035) 0.07 (0.030) – 1.32 (0.675) 1.23 (0.810) 0.45 (0.226)

Where the VoT varies, we use the mean across the first and last year in the data set. VoT is pence per minute
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categories on each flow are defined for the first year in the time-series17 and are created

using the constant VoT of the GC-Direct1 model.

We then specify an extended GJT-Fare model that allows the GJT and Fare elasticities

to vary with the proportion that each forms of GC. Ignoring terms other than GJT and fare,

this model takes the form:

lnVijt ¼ d1GJTijt þ d2d2GJTijt þ d3d3GJTijt þ d4d4GJTijt þ d5d5GJTijt þ c1Fijt þ c2d2Fijt

þ c3d3Fijt þ c4d4Fijt þ c5d5Fijt

ð13Þ

The d2, d3, d4 and d5 are dummy variables denoting sensible categorisations of expected

elasticity variation. We use five categories to provide a more rigorous test, given that the

previously reported models have very precisely estimated elasticities to GJT and fare and

hence can support so many categories.18

Interpreting the model parameters with regard to GJT, the base elasticity is d1. For the

second expected elasticity category the GJT elasticity is d1 ? d2 and for the fifth it is

d1 ? d5. Given that we specify the dummy variables to denote increasing proportions that

GJT forms of GC, we would expect that d5\ d4\ d3\ d2\ 0. For fare we would expect

that c5[ c4[ c3[ c2[ 0.

Table 15 reports the segmented models for each flow type, covering quite large vari-

ations in expected elasticity variation but bearing in mind the split of observations across

each category. Exp gGJT and Exp gF denote the expected elasticity categories for GJT and

fare respectively with Est gGJT and Est gF reporting the estimates of Eq. 13. The first

column of results provides the base GJT or fare elasticity and their t statistics. These are for

categories that are the lowest (highest) proportions that GJT (fare) forms of GC. The

properties of the GC approach would require that as we move to the right in Table 15 the

incremental effects should imply a GJT (fare) elasticity that becomes more (less) negative.

Encouragingly, all the base GJT and Fare elasticities are statistically significant, and

almost all are estimated with a high level of precision. However, around 40% of the

incremental effects were not significant at the usual 5% level. Moreover, it is only in the

case of the GJT elasticity for South East to and from London flows that there is a con-

vincing case in support of the GC implied elasticity variation, although a few more

instances could be argued to possibly support the GC approach but then relying on the

argument that all else is not equal across the various categories. We should also point out

that the pattern of results was not greatly different when the segmentations of the GJT

elasticity and the fare elasticity were conducted separately.

We conclude that robust models, with large sample sizes and plausible and very precise

coefficient estimates in their standard form, are not able to support the variation in GJT and

fare elasticities that would be implied by the GC approach.

17 The numbers in each category do not vary much depending upon whether the categories are defined for
the first year or separately for each year. And the conclusions are not altered when the latter specification
was used.
18 We experimented with four and three categories, but the findings would not alter our conclusions.
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Table 15 Segmented elasticities: comparison of expected and estimated elasticities

London long distance 1995–2005

Exp gGJT B 0.60gGC 0.61gGC–0.65gGC 0.66gGC–0.70gGC 0.71gGC–0.75gGC [ 0.75gGC

Est gGJT - 1.63 (22.6) ? 0.37 (2.7) - 0.07 (1.3) - 0.11 (2.4) ? 0.09 (1.9)

Exp gF [ 0.40gGC 0.35gGC–0.39gGC 0.30gGC–0.34gGC 0.25gGC–0.29gGC B 0.25gGC

Est gF - 0.72 (12.7) - 0.02 (0.2) ? 0.09 (1.1) ? 0.13 (1.8) - 0.25 (3.3)

Obs 838 590 1329 1395 1002

London long distance 1996–2001

Exp gGJT B 0.40gGC 0.41gGC–0.45gGC 0.46gGC–0.50gGC 0.51gGC–0.60gGC [ 0.60gGC

Est gGJT - 0.40 (2.1) - 0.38 (3.4) - 0.41 (3.7) - 0.45 (4.1) - 0.31 (1.0)

Exp gF [ 0.60gGC 0.55gGC–0.59gGC 0.54gGC–0.50gGC 0.40gGC–0.49gGC B 0.40gGC

Est gF - 1.35 (10.7) ? 0.59 (3.3) ? 0.66 (3.4) ? 0.63 (3.3) - 0.25 (1.1)

Obs 63 127 156 236 216

Non-London long distance 1995–2005

Exp gGJT B 0.60gGC 0.61gGC–0.65gGC 0.66gGC–0.70gGC 0.71gGC–0.75gGC [0.75gGC

Est gGJT - 1.07 (17.6) - 0.01 (0.1) ? 0.03 (0.4) - 0.22 (3.1) ? 0.06 (0.7)

Exp gF [ 0.40gGC 0.35gGC–0.39gGC 0.30gGC–0.34gGC 0.25gGC–0.29gGC B 0.25gGC

Est gF - 0.32 (12.6) - 0.10 (3.1) - 0.23 (7.1) - 0.28 (8.2) - 0.78 (18.5)

Obs 2695 3894 7337 6732 4807

Non-London long distance 1996–2001

Exp gGJT B 0.45gGC 0.46gGC–0.50gGC 0.51gGC–0.60gGC 0.60gGC–0.65gGC [ 0.65gGC

Est gGJT - 1.32 (12.5) ? 0.65 (4.6) ? 0.07 (0.6) - 0.17 (1.2) - 0.08 (0.5)

Exp gF [ 0.55gGC 0.50gGC–0.54gGC 0.40gGC–0.49gGC 0.35gGC–0.40gGC B 0.35gGC

Est gF - 1.16 (10.3) ? 0.35 (2.3) ? 0.04 (0.3) - 0.04 (0.2) - 0.74 (2.8)

Obs 493 665 1542 510 270

Non-London long distance 2006–2010

Exp gGJT B 0.40gGC 0.41gGC–0.45gGC 0.46gGC–0.55gGC 0.56gGC–0.65gGC [ 0.65gGC

Est gGJT - 2.23 (6.3) ? 0.70 (1.5) ? 0.47 (1.2) ? 0.73 (1.8) ? 0.47 (0.9)

Exp gF [ 0.60gGC 0.55gGC–0.59gGC 0.45gGC–0.54gGC 0.35gGC–0.44gGC B 0.35gGC

Est gF - 2.51 (7.5) ? 1.49 (3.2) ? 1.12 (3.1) ? 1.21 (3.4) ? 1.50 (3.9)

Obs 65 135 405 562 200

South East to and from London 1995–2005

Exp gGJT B 0.60gGC 0.61gGC–0.65gGC 0.66gGC–0.70gGC 0.71gGC–0.75gGC [ 0.75gGC

Est gGJT - 1.00 (5.0) - 0.40 (1.7) - 0.62 (2.7) - 0.15 (0.7) - 0.86 (3.3)

Exp gF [ 0.40gGC 0.35gGC–0.39gGC 0.30gGC–0.34gGC 0.25gGC–0.29gGC B 0.25gGC

Est gF - 0.84 (7.5) ? 0.25 (2.0) ? 0.04 (0.3) - 0.27 (2.0) ? 0.22 (1.5)

Obs 1045 1969 1958 1254 616

Non-London Short Distance 1995–2005

Exp gGJT B 0.20gGC 0.21gGC–0.25gGC 0.26gGC–0.30gGC 0.31gGC–0.35gGC [ 0.35gGC

Est gGJT - 0.38 (4.3) - 0.42 (3.7) - 0.18 (1.5) - 0.02 (0.2) - 1.03 (7.1)

Exp gF [ 0.80gGC 0.75gGC–0.79gGC 0.70gGC–0.74gGC 0.65gGC–0.69gGC B 0.65gGC

Est gF - 0.82 (9.2) - 0.45 (4.0) - 1.06 (9.4) - 0.28 (2.4) - 0.75 (6.1)

Obs 1045 2002 2398 1617 968
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Conclusions

The GC formulation has been used in transport models for many years to represent the

overall attractiveness of different alternatives and can be regarded as an ‘industry stan-

dard’. Given its significant place in transport planning, modelling and forecasting, an

observer might reasonably expect that its quite specific implied elasticity properties would

have been subject to empirical testing, and indeed this point was made many years ago by

Grey (1978a, b). That same informed observer might also ponder the stark contrast

between the large variation in time and fare elasticities implied by the GC approach and the

common failure of demand models to find statistical support for alternatives to the con-

ventional constant elasticity formulation. Indeed, examination of the elasticity and value of

time review literature raises serious questions surrounding the implied elasticity properties

of GC models.

We contend that there has been little empirical questioning of the implied elasticity

properties of the GC formulation, and also of the VoTs that underpin it, and moreover that

the limitations of the GC approach have been forgotten, overlooked or not appreciated, and

it is used because ‘it has always been used’.

The research reported here is original and significant in conducting detailed tests of

whether the GC approach is justified, directly estimating the VoT that should be used in

constructing GC and making a significant contribution to the evidence base regarding a

number of rail demand elasticities.

The opportunity to test the properties and parameters of the GC approach is afforded by

the unique availability of large amounts of rail ticket sales data in Great Britain alongside

the necessary variations in service quality attributes over time that complement more

customary price variations. Such data sets and the required variations do not exist for other

modes.

We have examined six model forms across seven different data sets. Four models are of

the GC formulation, of which two represent conventional practice, with GC constructed

using official values of time and best evidence as represented by the findings of meta-

analysis, and two which can be regarded to be original in directly estimating the VoT

within the GC function that best explains demand responses. The two alternatives to these

GC formulations are a model based on GJT and fare (GJT-Fare), which represents the well-

established analysis and forecasting approach used by railways in Great Britain, and an

approach more akin to disaggregate model, where GJT is split into its separate components

(SC) covering journey time, service headway, interchange and connection time.

The elasticities across the various models we report are generally plausible and esti-

mated with a very high degree of precision whilst the directly estimated VoTs are almost

always extremely precise. We therefore have a very firm basis for empirical testing of the

GC approach.

In terms of our hypotheses set out in ‘‘The opportunity and aims’’ section, we have

found that:
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• The industry standard GJT-Fare model always provided a better fit than our four

candidate GC approaches. Amongst the GC models, those that directly estimate the

VoT almost always provided a better fit than those that use pre-determined values even

though the latter contain more route specific variations, such as by distance and

purpose, than the former.

• The GC models that directly estimate the value of time imply mean GJT and fare

elasticities that correspond well with the directly estimated GJT and fare elasticities.

This though is not the case when pre-determined VoTs are used in constructing GC.

• The temporal and spatial variations in GJT and fare elasticities according to the

proportions that they respectively form of GC as forced by the GC approach are not

supported when explicitly tested in robust rail demand models based on large data sets.

• Examination of the review literature finds that the variations in the fare elasticities, time

elasticities and values of time are not consistent with what would be implied by the GC

approach.

• If the GC approach is to be used, then the directly estimated VoTs that best explain the

balance between the demand impacts of time and fare changes are somewhat different

to the pre-determined values.

Whilst directly estimated VoTs are clearly preferable within the GC approach, this will

not always be possible for rail and, significantly, will hardly ever be the case for other

modes. In addition, the evidence might even be indicating that official VoTs, based largely

on Stated Preference evidence, are inaccurate.

In summary, the results raise serious concerns about the wisdom of the composite GC

term in demand forecasting. Bruzelius (1981) queried whether we had ‘‘really shown that

such models work?’’ We have shown that they do not work. To answer the question that is

the title of this paper: GC in the form that it conventionally takes is not justified in a variety

of rail markets. Given that the problems with GC apply pari passu to models based on

Generalised Time also, Gunn’s (1983) argument that ‘‘neither time nor cost is likely to

provide a plausible unit system for conventional forecasting’’ further supports the view that

the railway industry in Great Britain is entirely vindicated in its persistence with the GJT-

Fare approach rather than going down the GC path.

Whilst the findings of this study are original, extensive and significant, much further

research on this important subject is needed.

We have restricted our investigations to the standard constant elasticity models that

dominate the analysis and forecasting practice based around aggregate models of the direct

demand form. More flexible functions which allow the GC elasticity to vary can be

estimated which also permit closer approximation of the GC, GJT-Fare, and the SC models

through appropriate parameterisation of each model. For example, we might reject the

strong elasticity variation forced by the conventional GC approach and here tested, but a

more limited degree of variation might be supported using a more flexible functional form.

Equally, interaction terms within the GJT-Fare and SC approaches can bestow elasticity

properties similar to the GC approach.
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We have not here tested the weights used to construct GJT, and hence also GC, and

whilst the SC approach demonstrates promise it makes more demands of the data and we

face a challenge in recovering precise and plausible estimates of all parameters. Nor have

we considered lagged behavioural responses, where there are inevitable additional chal-

lenges of interpretation if GC, GJT, fare and the SC variables exhibit different lags.

We have here focussed entirely on direct demand models based on secondary data.

There is, of course, an ‘alternative world’ of behavioural modelling at a more disaggregate

level based upon discrete choice models. These models do not use GC as an independent

variable, although they could, and the default here is essentially the SC approach. An

important point though is that such models in practical application often force considerable

elasticity variation without empirical justification along the lines of the elasticity variation

imposed by the GC models considered here. Nor have we considered the justification of

using GC in network modelling.

There are therefore important further research issues to investigate, but our conclusions

regarding the validity of the GC approach are profound and provide a long overdue start in

a very much neglected area of analytical transport research.
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See Table 16.
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