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Summary

Using data from Moody’s, we examine three sources of sovereign credit

ratings’ persistence: true state dependence, spurious state dependence and

serial error correlation. Accounting for ratings’ persistence, we also examine

whether ratings were sticky or procyclical for two major crises, the European

debt crisis and the East Asian crisis. We set up a dynamic panel ordered pro-

bit model with autocorrelated disturbances and nonparametrically distributed

random effects. An efficient Markov chain Monte Carlo algorithm is designed

for model estimation. We find evidence of stickiness of ratings and of the three

sources of ratings’ persistence, with the true state dependence being weak.
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1 Introduction

On August 5, 2011 Standard and Poor’s (S&P) downgraded, for the first time in

history, the US debt from AAA to AA+. Two years later, on February 13, 2013 the

United Kingdom lost its Aaa rating, which it had had since the 1970s, as Moody’s

downgraded the UK economy by one notch, to Aa1. On July 13, 2012 Italy’s

government bond rating fell by two notches (from A3 to Baa2), forcing the Italian

Industry Minister Corrado Passera to declare that “ The downgrade of Italy by

ratings agency Moody’s is unjustified and misleading.”

The 2007 financial crisis swiftly evolved into a situation of global economic tur-

moil, which had severe consequences for many countries within Europe. Greece is

currently struggling not to default on its debt while several other countries (Ire-

land, Portugal, Spain, Cyprus) have resorted to austerity measures in an attempt

to address their fiscal problems.

The government of any country could potentially default on its public debt. The

three largest rating agencies, Moody’s, Standard & Poor’s and Fitch, assign credit

ratings to sovereigns using a gamut of quantitative and qualitative variables. These

ratings aim to provide a signal of the level of sovereigns’ default risk, which depends

on the payment capacity and willingness of the government to service their debt on

time.

Nowadays, rating scores dominate international financial markets and are im-

portant for both governments and international investors. Investors seek favourable

rated securities while the cost of external borrowing for national governments, which

are the largest bond issuers, depends on the rating of their creditworthiness.

Although the risk ratings are available in the public domain, the rating process

is obscure and difficult to identify by the external observer. The reason is that the

weights attached to the quantified variables by the agencies are unknown, while

the qualitative variables (i.e., socio-political factors) are subject to the analysts’

discretionary judgement.
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A large body of research has been devoted to examine what drives the formulation

of sovereign ratings. The present work focuses on the literature of sovereign credit

ratings and analyses the following empirical question: could time dependence in

sovereign ratings (apparent persistence of current ratings on past ratings) arise due

to (i) agents’ previous rating decisions, (ii) country-related unobserved components,

or (iii) autocorrelated idiosyncratic errors?

The first case is referred to as “true state dependence” and implies that past

sovereign rating choices of the agencies have a direct impact on their current rating

decisions. If previous ratings are significant predictors of the current ratings (the

validity of this claim will be examined in our analysis), then two sovereigns which

are currently identical will be upgraded (or downgraded) in the current year with

different probabilities, depending on their ratings in the previous year. This type

of persistence is behavioural and constitutes one potential linkage of intertemporal

dependence.

The second case is known as “spurious state dependence” and implies that the

source of ratings’ persistence is entirely caused by latent heterogeneity; that is, by

sovereign-specific unobserved permanent effects. In this case, the inertia in ratings

is not influenced by the last period’s rating decisions of the agencies. This type of

persistence is intrinsic and if not properly accounted for, can be mistaken for true

state dependence.

The third potential source of ratings’ inertia is attributed to serial correlation

in the idiosyncratic error terms. Each of the countries in the data set we use has

been operating in an economic environment subject to shocks, often distributed

over several time periods, which are likely to have affected their macroeconomic

performance, their financial solvency and therefore the rating agencies’ decisions.

As such, ratings can exhibit serial dependence due to the dynamic effect of shocks

to ratings. Assuming uncorrelated idiosyncratic errors might result in the true state

dependent effect being picked up in a spurious way.
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We construct a nonlinear panel data model that incorporates the three sources

of intertemporal dependence in ratings (true state dependence, spurious state de-

pendence, serially correlated disturbances). In particular, we use sovereign-specific

random effects to control for latent differences in the characteristics of sovereigns

(spurious state dependence), we use lagged dummies for each rating category in the

previous period to accommodate dependence on past rating information (true state

dependence) and we allow the idiosyncratic errors to follow a stationary first-order

autoregressive process.

Because of the ordinal nature of ratings, an ordered probit (OP) is considered

to be the most appropriate model choice. The resulting model is a dynamic panel

ordered probit model with random effects and serially correlated errors.

An inherent problem in our model is the endogeneity of the rating decisions

in the initial period (initial conditions problem). That is to say, this amounts to

reasonably assuming that the first observed rating choices of the agencies in the

sample depend upon sovereign-related latent permanent factors. The hypothesis of

exogenous initial values tends to overestimate state persistence (Fotouhi, 2005) and

generally leads to biased and inconsistent estimates. To avoid such complications we

apply (Wooldridge’s, 2005) method that allows for endogenous initial state variables,

as well as for possible correlation between the latent heterogeneity and explanatory

variables.

To ensure robustness of our results against possible misspecification of the hetero-

geneity distribution, we assume a nonparametric structure. To this end, we exploit

a nonparametric prior, the Dirichlet process (DP) prior. DPs (Ferguson, 1973) are a

powerful tool for constructing priors for unknown distributions and are widely used

in modern Bayesian nonparametric modelling.

Our model formulation entails estimation difficulties due to the intractability of

the full likelihood function under the nonparametric assumption for the latent het-

erogeneity. As such, we resort to Markov chain Monte Carlo (MCMC) techniques
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and develop an efficient algorithm for the posterior estimation of all parameters of in-

terest. The algorithm delivers mostly closed form Gibbs conditionals in the posterior

analysis, thus simplifying the inference procedure. As a by-product of the sampler

output, we calculate the average partial effects and for robustness check, we report

the results from alternative model specifications and conduct model comparison.

So far, no attempt has been made to disentangle, in a nonlinear setting, the effect

of past rating history from the effect of latent heterogeneity and/or from the effect

of serial error correlation on the probability distribution of current ratings. In this

paper, though, our modelling strategy, which is new to the extant empirical literature

on the determinants of sovereign debt ratings, accounts for latent heterogeneity

effects (spurious dependence), dynamic effects (state dependence) and correlated

idiosyncratic error terms in an OP model setting.

From an econometric point of view, researchers have applied two basic models in

the literature on the determinants of sovereign credit ratings: linear regression mod-

els (Cantor and Parker, 1996, Celasun and Harms, 2011) and ordered probit (logit)

models (Bissoondoyal-Bheenick et al., 2006, Afonso et al., 2011). Linear regression

techniques constitute an inadequate approach as ratings are, by nature, a qualita-

tive discrete (ordinal) measure. Ordered probit models that have been used in the

literature, tend to control only for sovereign heterogeneity, thus failing to measure

inertia via the inclusion of a firm’s previous rating choices as a covariate. This can

be a potential source of model misspecification. It is also important to mention that

the relevant literature assumes a normal distribution for the latent heterogeneity

term. However, a parametric distributional assumption may not capture the full

extent of the unobserved heterogeneity, leading to spurious conclusions regarding

the true state dependence of ratings. The Dirichlet process that we exploit in this

paper accounts for this problem by allowing flexible structure for the heterogeneity

distribution.

Furthermore, existing models capture the dynamic behaviour of ratings through
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a single one-period lagged rating variable. In the present work, though, we model

the dynamic feedback of sovereign credit ratings in a more flexible way; that is,

through lagged dummies that correspond to the rating categories in the previous

year.

To our knowledge, none of the previous studies that have examined the dynamic

behaviour of ratings have considered the serial correlation in the errors as an ad-

ditional (potential) source of persistence in ratings. Our proposed model addresses

this issue as well.

Using our model, we also turn our empirical attention to the long-lasting debate

over the role of rating agencies in predicting and deepening macroeconomic crises.

Rating agencies should assign sovereign debt ratings unaffected by the business cycle

in the sense that agencies should see “through the cycle” and thus should not assign

high ratings to a country enjoying macroeconomic prosperity if that performance

is expected to expire. Similarly, agencies need not downgrade a country as long as

better times are anticipated.

However, several times in the past, rating agencies have been accused of excessive

downgrading (upgrading) sovereigns in bad (good) times, thus exacerbating the

boom-bust cycle. For instance, (Ferri et al., 1999) concluded that rating agencies

exacerbated the East Asian crisis of 1997 by downgrading too late and too much

Indonesia, Korea, Malaysia and Thailand. In other words, ratings were procyclical.

Ratings are defined as being procyclical when rating agencies downgrade countries

more than the macroeconomic fundamentals would justify during the crisis and

create wrong expectations by assigning higher than deserved ratings in the run

up to the crisis. Other studies (Mora, 2006), though, found that ratings were,

if anything, sticky in the East Asian crisis. With respect to the so-called PIGS

countries (Portugal, Ireland, Greece, Spain), (Gärtner et al., 2011) supported that

they have been excessively downgraded during the European sovereign debt crisis.

The issue of procyclicality of ratings is of importance as countries whose ratings
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covary with the business cycle can experience extreme volatility in the cost of bor-

rowing from financial markets, seeing the influx of international funds to them to

evaporate. The case of the European debt crisis has been inadequately investigated

in that respect and in this paper we attempt to fill this gap.

Using data from Moody’s, we apply the proposed model to a panel of 62 coun-

tries in order to examine the three sources of ratings’ persistence during the pe-

riod 2000-2011. Furthermore, we examine whether rating agencies’ behaviour was

sticky or procyclical in the pre-crisis period (2000-2006) and at the time of the crisis

(2007-2011) in Europe. In addition, we extend the analysis before the year 2000 by

exploiting an additional data set, spanning the period 1991-2004, during which the

East Asian crisis (1997-1998) occurred. Our proposed model is used to investigate

the degree of procyclicality of ratings over that time interval, as well.

The structure of our paper is organized as follows. In Section 2 we outline our

econometric approach while in Section 3 we describe our dataset. Section 4 sets up

our model. In Section 5 we briefly describe the MCMC method used, show how

the average partial effects are calculated and address the issue of model comparison.

In Section 6 we carry out our empirical analysis and discuss the results. Section 7

concludes. An Online Appendix accompanies this paper.

2 Modelling background

In the literature on the determinants of sovereign debt ratings, the research papers

differ in the credit rating data they use (cross-sectional/panel) and in the mod-

elling specification they apply [linear versus ordered probit/logit models, dynamic

(lagged creditworthiness) versus static models and models with or without latent

heterogeneity].

We categorize the models in the corresponding literature according to the fol-

lowing cases:
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1) cross-sectional linear/ordered probit(logit) regression models (Cantor and

Parker, 1996, Afonso, 2003, Bissoondoyal-Bheenick et al., 2006)

2) panel linear/ordered probit(logit) models without latent heterogeneity and

dynamics (Hu et al., 2002, Borio and Parker, 2004)

3) panel linear models with dynamics (one lagged value of ratings) and without

latent heterogeneity (Monfort and Mulder, 2000, Mulder and Perrelli, 2001)

4) panel linear/ordered probit(logit) models with latent heterogeneity and with-

out dynamics (Depken et al., 2007, Afonso et al., 2011)

5) panel linear models with latent heterogeneity and dynamics (Eliasson, 2002,

Celasun and Harms, 2011).

We extend this literature by developing a novel Bayesian nonparametric ordered

probit model that introduces intertemporal dependence in the ordinal response vari-

able in three ways, after controlling for independent covariates; through lagged dum-

mies that represent the rating grades in the previous period (true state dependence),

through a sovereign-specific random effect (spurious state dependence), denoted by

ϕi in equation (4.1.1), with i indexing cross-section units (sovereigns) and through

a stationary first-order autoregressive (AR(1)) error process.

The assumption of zero correlation between unobserved heterogeneity and the

regressors is overly restrictive. The empirical literature on ratings provides some

evidence on this (Celasun and Harms, 2011, Afonso et al., 2011). When such a cor-

relation is present, the estimators suffer from bias and inconsistency. Thus, following

(Mundlak, 1978) we parametrize the sovereign-related random effects specification

to be a function of the mean (over time) of the time-varying exogenous covariates.

More importantly, in the presence of ϕi the inclusion of the previous state (dy-

namics of first order) requires some assumptions about the generation of the initial

rating yi1 for every country i. This is referred to as the initial values problem.

Generally, when the first available observation in the sample does not coincide with

the true start of the process and/or the idiosyncratic errors are serially correlated,
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then yi1 will be endogenous and correlated with ϕi. Even if we observed the entire

history of the ratings, the exogeneity assumption of yi1 would still be very strong

(Wooldridge, 2005).

The initial conditions problem is both a theoretical and a practical one and

addressing it is important in order to avoid misleading results (Fotouhi, 2005). In

order to rectify this problem, we follow the method of (Wooldridge, 2005) who

considered the joint distribution of observations after the initial period conditional

on the initial value. This approach requires defining the conditional distribution

of the unobserved heterogeneity given the initial value and means of exogenous

covariates over time, in order to integrate out the random effects. As a result,

our random effects specification combines three parts: Mundlak’s model (Mundlak,

1978), the initial value of the ordinal outcome and an error term1.

As (Wooldridge, 2005) acknowledges, his method is sensitive to potentially mis-

specified assumptions about the auxiliary random effects distribution. We address

this by letting the distribution of random effects be unspecified. In that respect,

we impose a nonparametric prior on it, the Dirichlet process prior (described in the

Online Appendix), to guarantee that the findings for ratings’ inertia are robust to

various forms of heterogeneity.

3 Data description

Ratings on external debt incurred by governments (borrowers) are a driving force

in the international bond markets. To this end, in estimating our empirical model,

we exploit a data set of ratings on sovereigns’ financial obligations denominated in

foreign currency with maturity time over one year.

In particular, we use Moody’s long term foreign currency sovereign credit ratings,

as of 31st of December of each year for a panel of 62 (developed and developing)

1In dynamic linear panel data models the solution usually involves a combination of first-
differencing of the regression (to eliminate ϕi) and instrumental variable estimates; see for example
(Cameron and Trivedi, 2005, Ch. 22).
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countries2. Our rating database covers the period 2000 to 2011.

Moody’s assigns a country one of the 21 rating notations, with the lowest being

C and the highest being Aaa. Table 1 reports the rating levels that Moody’s uses

(column 2) along with their corresponding interpretation (column 1). Of the 62

countries rated by Moody’s, 36 countries remained above Ba1 (the speculative grade

threshold) throughout the period 2000-2011, while 12 countries were below the Ba1

ceiling throughout the same time period. As expected, the majority of the countries

with ratings steadily above Ba1 were developed countries.

Table 1 also displays the frequency of each rating grade in our data set (col-

umn 3). In total, 18 ratings were recorded; C, Caa3 and Caa2 were not chosen by

Moody’s. According to Moody’s, 217 observations (out of 744 overall) reflect gov-

ernment bonds with increasingly speculative characteristics (Ba1 and below), while

there are 199 observations of the highest bond quality (Aaa).

We transform the qualitative rating grades into numeric values in order to con-

duct empirical regression analysis. Because of the ordinal ranking of ratings, we

choose 17 numeric categories of creditworthiness (Table 1, column 4) by grouping

together the categories Ca and Caa1, which were assigned few observations. There-

fore, in our analysis Ca and Caa1 are assigned a value of “1”, B3 ratings a value

of “2”, B2 ratings a value of “3” and so on up to Aaa ratings, which are assigned a

value of “17”. In this way, higher values are associated with better ratings.

Drawing on previous studies, several explanatory variables were used: GDP

growth, inflation, unemployment, current account balance, government balance, gov-

ernment debt and political variables3 (political stability, regulatory quality). The

2The countries included in our sample are: Argentina, Australia, Austria, Belgium, Brazil,
Bulgaria, Canada, China, Colombia, Costa Rica, Cyprus, Czech Republic, Denmark, Domini-
can Republic, El Salvador, Fiji Islands, Finland, France, Germany, Greece, Honduras, Hungary,
Iceland, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Korea, Latvia, Lithuania, Luxembourg,
Malaysia, Malta, Mauritius, Mexico, Moldova, Morocco, Netherlands, New Zealand, Norway, Pak-
istan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Romania, Russia, Saudi Arabia,
Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Tunisia, United King-
dom, Venezuela.

3The missing data on political variables for the year 2001 were interpolated. Political variables
have been used, among others, by (Haque et al., 1998, Borio and Parker, 2004, Celasun and Harms,
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data on GDP growth, political variables and inflation were obtained from the World

Bank (World Development Indicators, Worldwide Governance Indicators) while the

data on the other variables were obtained from the International Monetary Fund

(World Outlook).

4 Our econometric set up

4.1 The proposed model

Consider the latent continuous variable y∗it that has the following dynamic specifi-

cation

y∗it = x ′
itβ+r ′

it−1γ+ϕi+ǫit, i = 1, ..., N , t = 1, ..., T. (4.1.1)

where ϕi represents the individual-specific random effects and xit=(x1,it, .., xk,it)
′ is

a vector of covariates. We assume that E(ǫit|xi1, .., xiT , ϕi) = 0, t = 1, ..., T , which

implies that the covariate vector x is uncorrelated with past, future and present

values of the idiosyncratic error term ǫ. Therefore, x is strictly exogenous.

What we observe, though, is an ordinal categorical response yit that takes on J

values, yit ∈ {1, ..., J}. The variable yit is connected to y∗it according to the following

mapping mechanism:

yit = j ⇔ ζj−1 < y∗it ≤ ζj, 1 ≤ j ≤ J. (4.1.2)

In other words, the probability that a sovereign i at time t belongs to category

j equals the probability that y∗it lies between a particular interval defined by two

threshold parameters (cutpoints) ζj−1, ζj, 1 ≤ j ≤ J. So, y∗it varies between unknown

boundaries.

The term rit−1 is the state dependent variable that contains J − 1 dummies

r
(j)
it−1 = 1(yit−1 = j) indicating if individual i reports response j = 1, ..., J − 1 at

2011). The remaining covariates have been adopted by (Cantor and Parker, 1996, Eliasson, 2002,
Afonso, 2003, Bissoondoyal-Bheenick et al., 2006, Afonso et al., 2011).
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time t− 1.

The stochastic disturbances ǫit are independently distributed over the cross-

sectional units but are serially correlated, following an AR(1) process:

ǫit = ρǫit−1+vit, −1 < ρ < 1, vit
i.i.d
∼ N(0, σ2

v). (4.1.3)

The vit random variables are identically normally distributed and independent

across all i and t, while the scalar parameter ρ satisfies the stationarity restriction,

which prevents ǫit from becoming an explosive process. It is also assumed that vit

and ϕi are mutually independent.

To guarantee positive signs for all the probabilities we require ζ0 < ζ1 < · · · <

ζJ−1 < ζJ . In addition, one can impose the identification restrictions ζ0 = −∞,

ζJ = +∞ and σ2
v = 1. The latter is a scale constraint that fixes the error variance

to one. Furthermore, we set ζ1 = 0, which is a location constraint, as the cutpoints

play the role of the intercept.

It has been well documented that sampling the parameters ζ’s conditional on the

latent data as in (Albert and Chib, 1993), produces a high autocorrelation in the

Gibbs draws for the cutpoints, slowing the mixing of the chain. More efficient meth-

ods sample the cutpoints and the latent data in one block (Cowles, 1996; Nandram

and Chen, 1996). These methods require updating the cutpoints marginalized over

the latent variables, using a Metropolis-Hastings step. The proposal distributions

that have been put forward, though, are usually difficult to tune (truncated nor-

mal proposal distribution) or depend on how balanced the cell counts are (Dirichlet

proposal distribution).

(Chen and Dey, 2000) developed an alternative way that enabled them to use

well-tailored proposal distributions. Their approach is based on transforming the

threshold points as follows:

ζ∗j = log
(

ζj−ζj−1

1−ζj

)
, j = 2, .., J−2. (4.1.4)
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This parametrization removes the ordering constraint in the cutpoints, allowing

for normal priors to be placed upon them. Moreover, (Chen and Dey, 2000) suggest

an alternative way to identify the scale of the latent variable by setting ζJ−1 = 1,

in addition to having ζ0 = −∞, ζ1 = 0, ζJ = +∞, but leaving σ2
v unrestricted. The

approach of (Chen and Dey, 2000) is applied throughout the paper.

In order to account for the initial conditions problem, as well as possible correla-

tion between ϕi and the regressors xit, we parametrize, as mentioned in section 2, ϕi

according to (Wooldridge’s, 2005) approach. In particular, the model for unobserved

sovereign-related effects is defined as follows4:

ϕi = r ′
i0hi1+x′

ihi2+ui. (4.1.5)

Hence, ϕi is a function of 1) xi , the within-individual average of the time-varying

covariates (Mundlak’s specification), 2) ri0, a set of J−1 indicators that describe all

the possible choices of the initial time period and 3) an error term, ui. Furthermore,

the term ui is assumed to be uncorrelated with the covariates and initial values. It

is also worth noting that if xit contains time-constant regressors, these regressors

should be excluded from xi for identification reasons.

For the Bayesian analysis of this model we choose independent priors over the set

of parameters (δ,hi, ζ(2,J−2), σ
2
v , ρ) where hi = (hi1,hi2)

′, δ = (β′,γ ′)′ and ζ(2,J−2) =

(ζ2, ..., ζJ−2)
′. Thus, we suppose that the prior information for these parameters is

given by the following set of distributions

σ−2
v ∼G( e1

2
, f1

2
), ρ ∼ N(ρ0, σ

2
ρ)I(−1,1)(ρ), p(ζ(2,J−2)) ∝ 1,

p(δ) ∝ 1, hi ∼ Nk+J−1(h̃, H̃), h̃ ∼ N(h̃0,Σ), H̃ ∼ IW (δ,∆−1),

where G and IW denote the gamma and the Inverse Wishart density respectively,

I(−1,1)(ρ) is an indicator function that equals one for the stationary region and zero

4In his paper, (Wooldridge, 2005) assumed hi1 = h1 and hi2 = h2 for every i=1,...,N. In our
modelling approach, we let the parameters h1 and h2 be heterogeneous as, in this way, we deal
better with cross-country heterogeneity. We thank a referee for pointing out this suggestion.

13



otherwise and N(ρ0, σ
2
ρ)I(−1,1)(ρ) is a normal density truncated in the stationary re-

gion. For the unrestricted cutpoints ζ(2,J−2) and the parameter vector δ we assume

a flat prior, while for hi we use a hyperparametric prior.

In the frequentist literature ui is considered to follow a parametric distribution,

usually an i.i.d N(µu, σ
2
u). However, the model is sensitive to misspecification re-

garding the distributional assumptions of ui. In our hierarchical setting we let ui

have a semiparametric structure which is based on the Dirichlet Process mixture

(DPM) model (Lo, 1984). In particular, we assume that the error terms ui are

distributed as follows:

ui|ϑi ∼ N(µi, σ
2
i ), ϑi = (µi, σ

2
i ), i = 1..., N

ϑi
iid
∼ G

G|a,G0 ∼ DP (a,G0) (4.1.6)

G0 ≡ N(µi;µ0, τ0σ
2
i )IG(σ

2
i ;

e0
2
, f0

2
)

a ∼ G(c, d).

According to the above DPM model, the ui are conditionally independent and

Gaussian distributed with means µi and variances σ2
i . The ϑi = (µi,σ

2
i ) are drawn

from some unknown prior random distribution G. To characterize the uncertainty

aboutG we use a Dirichlet process prior, i.e., G is sampled fromDP (a,G0). Posterior

consistency for the DPM model is discussed in the Online Appendix.

For the purposes of this study, the precision parameter a is assumed to follow

a gamma prior distribution G(c, d) with mean c/d and variance c/d2. The base-

line prior distribution G0 is specified as a conjugate normal-inverse gamma, that

is, N(µi;µ0, τ0σ
2
i )IG(σ

2
i ;

e0
2
, f0

2
), where the inverse gamma density for σ2

i has mean

(f0
2
)/( e0

2
− 1) for e0

2
> 1 and variance (f0

2
)2/[( e0

2
− 1)2( e0

2
− 2)] for e0

2
> 2.

The marginal distribution f(ui) is a infinite mixture model. The mixture model

arises from the convolution of the Gaussian kernel with the mixing distribution

G which, in turn, is modelled nonparametrically with a flexible DP. In this way,

expression (4.1.5) produces a large class of error distributions, allowing for skewness
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and multimodality.

5 Posterior analysis

5.1 The algorithm

We devised an MCMC algorithm to estimate the model parameters of subsection

4.1, by sampling from the following conditional distributions:

1. p(ϕi|{y
∗
it }t≥1,hi, σ

2
v , ρ, δ), i = 1, ..., N ,

2. Update deterministically ui, i = 1, ..., N from expression (4.1.5),

3. p(hi|ϕi, ϑi, h̃, H̃), i = 1, ..., N ,

4. p(h̃|{hi}, H̃, h̃0,Σ),

5. p(H̃|{hi}, h̃, δ,∆
−1),

6. p(ρ|{ǫit}i≥1,t≥1, σ
2
v , ρ0, σ

2
ρ),

7. p(σ−2
v , δ|{y∗it }i≥1,t≥1, ρ, {ϕi}, e1, f1),

8. p({y∗it }i≥1,t≥1, ζ
∗
(2,J−2)|{yit}i≥1,t≥1, δ, σ

2
v , {ϕi}, ρ), where ζ

∗
(2,J−2)= (ζ∗2 , ..., ζ

∗
J−2)

′,

9. p (ϑi|ϑ1, ..., ϑi−1, ui, G0), i = 1, ..., N ,

10. p(a|{ϑi}).

In order to achieve efficiency in sampling {y∗it }i≥1,t≥1, we orthogonalize the corre-

lated errors using a decomposition method (Chib and Jeliazkov, 2006). Furthermore,

to update the DPM model in (4.1.6) we use marginal methods (Escobar and West,

1994). The details of the MCMC algorithm, as well as a Monte Carlo simulation

study, are described in the Online Appendix.

5.2 Average partial effects and model comparison

In nonlinear models, the direct interpretation of the coefficients may be ambiguous.

In this case, partial effects can be obtained, as a by-product of our sampler, to

estimate the effect of a covariate change on the probability of y equalling an ordered

value.
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Assuming that xk,it is a continuous regressor (without interaction terms in-

volved), the partial effect (pe) of xk,it on the probability of yit being equal to j,

after marginalizing out all the unknown parameters, is defined as

E(pekitj|W,y) =
∫ (

∂P (yit=j|wit,δ,ϕi,σ
2
v ,ρ,ζj−1,ζj)

∂xk,it

)
dp(δ, ϕi, σ

2
v , ρ, ζj−1, ζj|W,y). (5.2.1)

where y is the whole vector of the observed dependent variables, wit = (x′
it, r

′
it−1)

′

and W = {wit}i≥1,t≥1. Notice that the expectation in (5.2.1) is taken with respect

to (δ, ϕi, σ
2
v , ρ, ζj−1, ζj), from their posterior distributions. The calculation of the

derivative in the above expression is given in the Online Appendix.

The average partial effect (APE) is the mean of the partial effects:

APE = 1
N×T

∑N

i=1

∑T

t=1 E(pekitj|W,y). (5.2.2)

Using draws from the MCMC chain, expression (5.2.2) is estimated by taking

the average of (5.2.1) over all i = 1, ..., N , t = 1, ..., T and over all iterations. In the

Online Appendix we also calculate the average partial effects when xk,it is discrete.

Model comparison is performed using the Deviance information criterion (DIC)

proposed by (Spiegelhalter et al., 2002) and cross-validation (CV) methods. The

DIC method compares models based on both how well they fit the data and on the

model complexity, as measured by the effective number of parameters. The smaller

the DIC value, the better the model fit. Regarding the cross-validation method, we

use the leave-one-out cross-validation, in which each observation yit is in turn left

out of the sample, and the average of the posterior probabilities f(yit|y−it), where

y−it = y \ {yit}, is calculated. Based on this criterion, the larger this average of

these probabilities, the better the model. Details on the implementation of these

methods are presented in the Online Appendix.

6 Empirical results
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6.1 Modelling strategies

In our empirical analysis, we use data on foreign currency sovereign credit ratings

from Moody’s for a panel of 62 countries covering the period 2000-2011. We focus

on the proposed model (model 4), which is a semiparametric dynamic panel ordered

probit specification with random effects and correlated errors. Since this paper deals

with the dynamic behaviour of ratings, we also considered three alternative dynamic

ordered probit models for comparison purposes.

Model 1 controls only for true state dependence through lagged dummies, ig-

noring latent heterogeneity and serial correlation in the errors. For this model we

assume that ǫit ∼ N(µǫ, σ
2
ǫ ) with µǫ ∼ N(0, 100) and σ−2

ǫ ∼ G(4.2/2, 0.5/2).

Model 2 assumes lagged dummies, semiparametric Wooldridge’s-type random

effects (Wooldridge, 2005) and independent and identically distributed errors ǫit ∼

N(0, σ2
ǫ ) with σ−2

ǫ ∼ G(4.2/2, 0.5/2); see the Online Appendix for the MCMC algo-

rithm of this model.

Model 3 is the same as our proposed model, but instead of using lagged dummies

for each rating score, we use a single one-period lagged ordinal variable. Therefore,

model 3 is a less flexible model specification than model 4, as it assumes that the

effect of the state variable is the same at all rating grades.

The regression results are presented in Table 2. In order to examine the statistical

significance of the estimated coefficients, we construct 95% highest posterior density

intervals. For the definition of these intervals see Online Appendix.

6.2 Determinants of sovereign credit ratings and model com-

parison

Model 4 (the baseline model) has the best goodness of fit as it has the smallest DIC

value (917.03) and the largest CV value (0.5650); see the last two rows of Table 2.

According to model 4, current account balance is insignificant, whereas the other
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macroeconomic variables are valid determinants of sovereign credit ratings. Fur-

thermore, better regulatory quality affects positively the agencies’ rating decisions,

whilst political uncertainty is not an important factor of ratings’ formulation.

The empirical results of model 3 are in accordance with those of model 4; the

only difference between the two being the insignificant government balance in model

3, which was found significant in model 4. It is also worth noting that the particular

representation of true state dependence (a single lagged dependent variable vis-à-vis

lagged dummy variables representing the ratings) matters, as model 3 is inferior to

model 4 in terms of model fit (DIC=923.91, CV=0.5346). Nonetheless, model 3

provides better fit to the data than the rest of the models.

By assuming uncorrelated errors in model 4, the resulting model specification,

model 2, delivers worse DIC and CV values (DIC=1370.61, CV=0.4990) than models

3 and 4. Furthermore, most of the significant variables in model 2 were also sig-

nificant in the baseline model (GDP growth, inflation, unemployment, government

debt, regulatory quality).

By excluding the random effects from model 2 we obtain model 1, whose fit to the

data deteriorates further (DIC=1375.94, CV=0.4975), indicating the importance of

heterogeneity in analysing our empirical data. Model 1 also produced similar results,

in terms of the significance of the economic variables, to those obtained by model 4;

from the common set of the significant economic variables, only unemployment and

current account balance are excluded.

Overall, GDP growth, inflation, government debt and regulatory quality were

significant whereas political stability was insignificant across all models of Table 2.

6.3 Channels of ratings’ persistence

6.3.1 Evidence of weak state dependence

To identify the potential sources of inertia in ratings’ formulation we turn our at-

tention to the proposed model (model 4). The inclusion of the lagged dummies in
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this model allows us to have a more detailed picture of the behaviour of the state

dependence by rating classification. The thirteenth rating category (A1) is used as

a baseline rating.

As seen in Table 2 (last column), most of the lagged dummies are significant (11

out of 16), an indication that past ratings are important determinants of the current

ratings. Also, all the dummies representing the categories from Baa2 and below are

significant and have a negative sign. A negative coefficient means that a country

with this rating in the previous period is expected to have a rating below A1 in the

current period.

In nonlinear models the direct interpretation of the estimated parameters may

be ambiguous. The most natural way to interpret discrete probability models is

to calculate the average partial effects (APEs); see section 5.2. The table for the

APEs of the lagged dummies would be of dimension 17×16. For making the results

more readable, we extracted from this table only the average partial effect of a

lagged dummy variable recording the rating grade j in the previous period on the

expected probability of Moody’s choosing the same rating grade j in the current

period, for j = 1, ..., 12, 14, ..., 17. These particular APEs, which we loosely name

“diagonal average partial effects” (as most of them are on the diagonal of the table)

in order to distinguish them from the remaining APEs, are displayed in Table 3.

The complete table for the APEs is displayed in the Online Appendix.

According to Table 3, Moody’s tends to choose the same rating for a country

over time. However, this tendency is weak as the diagonal average partial effects are

small in magnitude. For instance, Moody’s probability of staying in Ba2 increases

only by 0.0493 if its previous rating choice was also Ba2.

True state dependence is the weakest for countries with Aa1 rating (0.0076)

and the strongest for countries with Aaa rating (0.1042). The last empirical result

explains why countries with the highest bond quality continue to enjoy such rat-

ing grades over time. We also observe that the diagonal average partial effects are
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larger for countries that belong to the lower-investment-grade category (Baa) than

for countries that belong to the better middle-investment-grade categories Aa and

A. Therefore, economies that find themselves to the bottom of the investment-grade

region are more likely to continue receiving the corresponding ratings over time. Sim-

ilarly, within Baa category, as economies lose the Baa1 rating and descend towards

Baa3, the magnitude of true state dependence increases, whereas within category

Aa, countries with Aa2 rating exhibit stronger true state dependence (0.0548) than

countries with ratings Aa1 and Aa3 (0.0076 and 0.0123 respectively).

On the threshold between the investment and speculative grade regions, Ba

ratings exhibit stronger persistence than Baa ratings; compare the average of the

corresponding entries in Table 3. Similarly, the diagonal average partial effects are

relatively larger in the upper-speculative-grade category (Ba) than in the worse

middle-speculative-grade category (B). Furthermore, countries that fall in the Ba

rating category are more likely to get the same rating as they climb towards a better

rating within that category, whereas countries with B2 rating are more probable of

maintaining this level than countries with B1 or B3. Also, within the speculative-

grade region, countries with very high credit risk and close to default, assigned to

the lowest rating category, have the highest probability (0.0762) of staying in this

category, as have countries with the highest debt-serving capacity (AAA).

The autoregressive parameter ρ is significant and positive (0.8818), indicating

important dynamic dependence in the ordinal responses through serial correlation

in the idiosyncratic errors. Furthermore, Figure 1 shows the estimated average pos-

terior distribution of the random effects ui. As we can see, there is evidence of

non-normality in the data, a fact that supports the use of our semiparametric ap-

proach. Moreover, by fitting the fully parametric version of model 4 to the empirical

data (results not shown), we conclude that there are persistent rating choices, not

only due to previous rating decisions and serial error correlation, but also due to

unobserved heterogeneity.
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In conclusion, there is evidence in favour of the three channels of rating’s persis-

tence, with the true state dependence being weak.

6.3.2 Robustness check

In order to check how the results on ratings’ persistence change, we utilized the

other models of Table 2. We also implemented three alternative dynamic ordered

regression specifications. In particular, we re-estimated model 4 without the mean

variables (model 4a) and without the initial rating variables (model 4b). We also

considered a model specification that incorporates dynamics, uncorrelated distur-

bances and time-varying random effects (model 5). With model 5, we guarantee that

the dynamic effects are not picked up by the lagged dummy variables in a spurious

way due to left-out time-varying individual-specific control variables. For instance,

ratings should reflect country-specific risk, which is likely to be time-varying5.

The magnitudes of the diagonal average partial effects of the lagged dummies

for models 4a and 4b also suggest weak state dependence (Table 3). In addition,

the pattern of the diagonal average partial effects in these models is also supported

by model 4. For instance, true state dependence is the strongest for Aaa rating,

the weakest for Aa1 rating, increases for countries with improving Ba rating and

is relatively larger in Baa category compared to the categories Aa and A. As in

model 4, the autocorrelation coefficient ρ was found to be positive and significant

in models 4a and 4b (0.8435 and 0.9181 respectively).

It is also worth noting that the fit of models 4a and 4b is worse than that

of model 46. This is an indication that the rating decisions are conditioned on the

initial rating choices (initial conditions problem) and that the set of significant mean

variables xi is not empty.

5The empirical results for models 4a and 4b are presented and briefly discussed in the Online
Appendix. Further details about model 5, its MCMC algorithm and its empirical results are also
provided in the Online Appendix. We thank a referee for this suggestion.

6For model 4a, we have DIC=934.10 CV=0.5614 and for model 4b we have DIC=917.42 and
CV=0.5622.
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Most of the lagged dummies are significant in model 2 (14 out of 16), whereas

in model 1 none of these dummies is insignificant; see Table 2. In these models, the

effect of the significant lagged dummies increases monotonically as we climb towards

the Aaa rating; countries that have been assigned a higher rating in the previous

period have a higher probability of being assigned a rating above A1 in the current

period. The diagonal average partial effects of the lagged dummies for models 1, 2

and 5 are also small in magnitude and behave in a similar way to that of model 4,

with small variations (Table 3).

In model 3, the single lagged rating variable is statistically significant, positive

and small in magnitude7 (0.0156); see Table 2. The positive sign implies that a

sovereign that has experienced a downgrade (upgrade) in the current period is less

likely to have experienced an upgrade (downgrade) in the previous period. In ad-

dition, the empirical findings of model 3 about the small magnitude of the average

partial effects for the lagged rating variable across all rating categories (Table 4), as

well as the presence of serial correlation in the errors (Table 2), are also in agreement

with those of model 4.

As a last issue, we examined if the proposed model violates the strict exogeneity

assumption due to the presence of feedback effects. If this is the case, covariates de-

termining contemporaneous rating decisions are influenced by past rating outcomes,

leading to inconsistent estimators. In the context of our empirical analysis, it is

possible that there might be feedback effects from past ratings to future values of

inflation and GDP growth. Based on the approach of (Wooldridge, 2010, Section

15.8.2, p. 618-619), we test whether these two variables satisfy the strict exogeneity

requirement. The test procedure, as well as our empirical results, which justify the

7In the context of a dynamic specification, (Monfort and Mulder, 2000, Mulder and Perrelli,
2001) concluded that ratings tend to be persistent, as the coefficient on the last year’s rating
category was close to one. (Celasun and Harms, 2011) set up a dynamic linear model with ran-
dom effects and found that the coefficient on the lagged creditworthiness varies between 0.35 and
0.65. Their findings were based on a sample of 65 developing countries covering the period 1980-
2005. (Eliasson, 2002), using a similar model and data spanning the years 1990-1999, obtained a
coefficient close to one.
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assumption of strict exogeneity, are provided in the Online Appendix.

A well-cited paper that deals with endogeneity in non-linear models is that of

(Arellano and Carrasco, 2003). (Arellano and Carrasco, 2003) proposed a general-

ized method of moments (GMM) estimator for a binary choice panel data model

that allows for predetermined variables, as well as for correlation between the ex-

planatory variables and the random effects. However, their method is based on some

model assumptions that are absent from our model.

Specifically, in their paper the random effects distribution given the initial values

is discrete, whereas the approach taken here assumes a flexible continuous semi-

parametric distribution that can pick up multimodality and skewness in the data.

Second, (Arellano and Carrasco, 2003) assumed serially uncorrelated idiosyncratic

errors, whereas we allow for the opposite. It can also be shown that their approach

applied to our model does not enable the researcher to easily recover the average par-

tial effects for our model. Furthermore, in our empirical application we use several

explanatory variables and as (Biewen, 2009) notes (Arellano and Carrasco, 2003)

estimator is “based on the cell averages of all possible time paths of the regressors

up to a given period. However, in an application with a moderate to large number

of regressors and many time periods, as considered here, this usually leads to a large

number of empty cells and requires the use of trimming methods.” In their appli-

cation, (Arellano and Carrasco, 2003) considered only two regressors. Our Bayesian

approach is not bounded by the above problems, yet, it does not address a potential

presence of predetermined variables that (Arellano and Carrasco, 2003) consider.

This case is left for future research.

6.4 Sticky or procyclical sovereign credit ratings?

6.4.1 The European debt crisis

Ratings exhibit procyclical behaviour if prior to the crisis the actual ratings exceed

the model-predicted ratings and during the crisis the assigned ratings are lower than

23



the predicted ratings. In this case, ratings agencies exacerbate the boom-bust cycle.

To examine this issue, we used the proposed model in order to calculate what

is the probability of generating ratings lower, equal and greater than the actual

ratings before (2000-2006) and during (2007-2011) the crisis. The corresponding

probabilities for the other models were also utilized for robustness check. The results

are presented in Table 5. The derivation of the posterior probabilities is given in

the Online Appendix.

Model 4 supports the absence of ratings’ procyclicality throughout the period in

question; in the run up to the crisis, as well as during the crisis, there is an almost

equal probability of observing predicted ratings below and above actual ratings.

In particular, prior to the crisis, it is unlikely that the actual ratings increased

more than the fundamentals of the economy would justify; during 2000-2006 the

probability of observing predicted ratings below actual ratings (13.29%) is almost

equal to the probability of observing predicted ratings greater than actual ratings

(13.26%). During the crisis period (2007-2011) the probability of predicted ratings

being lower than realized ratings (12.60%) was also found to be approximately equal

to the probability of predicted ratings being greater than actual ratings (12.63%).

We therefore cannot support the claim that Moody’s downgraded excessively the

countries in the period 2007-2011.

Based on the findings from the rest of the models of Table 5, the ratings also

exhibited sticky, rather than procyclical behaviour. For instance, the probabilities

P (y < yobs) and P (y > yobs) are each approximately equal to 24% in models 1, 2

and 5 and 13% in models 3, 4a and 4b before and during the European debt crisis.

It is important to notice that the baseline model has the largest in-sample pre-

dictability, as measured by the probability P (y = yobs). This indicates that the three

channels of ratings’ persistence are a key feature when predicting ratings in-sample.

For robustness check, we also considered (in the Online Appendix) equal periods

before and during the crisis, that is, 2002-2006 as the pre-crisis period and 2007-2011
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as the crisis period. We still find strong evidence against the procyclicality in the

behaviour of ratings.

6.4.2 The East Asian Crisis

We extended our analysis before the year 2000, by using another data set8, span-

ning the period 1991-2004, to examine the degree of procyclicality of ratings before

(1991-1996), during (1997-1998) and after (1999-2004) the East Asian crisis. Dur-

ing the period in question, all models suggest that ratings were sticky, rather than

procyclical. For further information, the interested reader is referred to the Online

Appendix which displays a supporting table accompanied by a brief discussion.

7 Conclusions

In order to examine why ratings tend to be persistent over time, we propose a model

that accounts for three potential sources of ratings’ inertia, as we use previous rating

choices as explanatory variables to control for (first-order) true state dependence,

semiparametric sovereign-specific time-invariant random effects to capture spurious

state dependence and a first-order stationary autoregressive error term. An efficient

MCMC sampler is developed for the estimation of the model parameters.

In our empirical study we find evidence of the three channels of the observed

ratings’ persistence, with the true state dependence being weak. Our analysis also

supports the existence of stickiness in the behaviour of ratings for two major crises,

the European debt crisis and the East Asian crisis. The empirical conclusions of our

paper were found to be robust to various alternative model specifications.

An open econometric issue would be to consider cross-country correlation in our

analysis. The implications of this issue will be examined in a future paper.

8In total, we used 6 variables (GDP growth, inflation rate, current account balance, unemploy-
ment rate, general government revenue, general government total expenditure) and 25 countries:
Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, Greece, Hong
Kong, Iceland, Italy, Japan, Malaysia, New Zealand, Norway, Pakistan, Portugal, Singapore, Spain,
Sweden, Switzerland, United Kingdom, United States.
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Table 1: Rating classifications of sovereigns’ debt obligations

Description (Moody’s) Rating Frequency Num. transformation

Investment grade

Highest likelihood of sovereign Aaa 199 17
debt-servicing capacity

Very high likelihood of sovereign Aa1 23 16
debt-servicing capacity Aa2 31 15

Aa3 17 14

High likelihood of sovereign A1 40 13
debt-servicing capacity A2 52 12

A3 34 11

Moderate likelihood of sovereign Baa1 37 10
debt-servicing capacity Baa2 41 9

Baa3 53 8

Speculative grade

Substantial credit risk Ba1 53 7
Ba2 37 6
Ba3 18 5

High credit risk B1 22 4
B2 40 3
B3 25 2

Very high credit risk Caa1 18 1
Caa2 - -
Caa3 - -

Default is imminent Ca 4 1
(not necessarily inevitable)

Default C - -

Note: For a more detailed description see (Moody’s, 2014).
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Table 2: Empirical results: Dynamic panel ordered probit models

model 1 model 2 model 3 model 4

GDP growth 0.0053* 0.0041* 0.0029* 0.0027*
(0.0009) (0.0011) (0.0009) (0.0010)

Inflation -0.0018* -0.0034* -0.0034* -0.0034*
(0.0007) (0.0010) (0.0008) (0.0009)

Unemployment -0.0013 -0.0065* -0.0109* -0.0100*
(0.0007) (0.0021) (0.0031) (0.0031)

Current account balance 0.0023* 0.0026* 0.0013 0.0019
(0.0005) (0.0008) (0.0010) (0.0010)

Government Balance 0.0020* -0.0013 -0.0018 -0.0027*
(0.0009) (0.0013) (0.0012) (0.0012)

Government Debt -0.0005* -0.0024* -0.0037* -0.0037*
(0.0001) (0.0003) (0.0006) (0.0005)

Political stability 0.0050 0.0222 -0.0165 -0.0067
(0.0056) (0.0154) (0.0195) (0.0197)

Regulatory quality 0.0423* 0.0673* 0.1310* 0.1195*
(0.0101) (0.0288) (0.0325) (0.0321)

single lagged rating 0.0156*
(0.0046)

Ra17(= Aaa)(t−1) 0.3202* 0.2189* 0.1389*

(0.0245) (0.0445) (0.0471)
Ra16(= Aa1)(t−1) 0.1692* 0.0316 -0.0376

(0.0236) (0.0533) (0.0555)
Ra15(= Aa2)(t−1) 0.1423* 0.1102* 0.1224*

(0.0196) (0.0352) (0.0410)
Ra14(= Aa3)(t−1) 0.0519* 0.0421 0.0428

(0.0236) (0.0297) (0.0315)
Ra12(= A2)(t−1) -0.0603* -0.0454* -0.0148

(0.0163) (0.0198) (0.0216)
Ra11(= A3)(t−1) -0.1341* -0.1084* -0.0434

(0.0195) (0.0235) (0.0287)
Ra10(= Baa1)(t−1) -0.1713* -0.1315* -0.0555

(0.0202) (0.0259) (0.0305)
Ra9(= Baa2)(t−1) -0.2344* -0.2008* -0.0929*

(0.0211) (0.0279) (0.0355)
Ra8(= Baa3)(t−1) -0.2934* -0.2169* -0.0863*

(0.0210) (0.0287) (0.0374)
Ra7(= Ba1)(t−1) -0.3796* -0.2644* -0.0940*

(0.0215) (0.0332) (0.0414)
Ra6(= Ba2)(t−1) -0.4432* -0.3287* -0.1054*

(0.0244) (0.0381) (0.0506)
Ra5(= Ba3)(t−1) -0.5153* -0.3758* -0.1381*

(0.0268) (0.0393) (0.0542)
Ra4(= B1)(t−1) -0.5463* -0.3994* -0.1261*

(0.0262) (0.0384) (0.0547)
Ra3(= B2)(t−1) -0.6045* -0.4121* -0.1226*

(0.0258) (0.0424) (0.0588)
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Table 2: Empirical results (cont.): Dynamic panel ordered probit models

model 1 model 2 model 3 model 4

Ra2(= B3)(t−1) -0.6879* -0.4800* -0.1583*

(0.0267) (0.0440) (0.0636)
Ra1(≤ Caa1)(t−1) -0.7887* -0.5261* -0.1418*

(0.0305) (0.0507) (0.0695)
ρ 0.9469* 0.8818*

(0.0628) (0.0140)
σ2
v 0.0044* 0.0041*

(0.0003) (0.0003)
µǫ 0.7874*

(0.0194)
σ2
ǫ 0.0049* 0.0036*

(0.0003) (0.0003)

DIC 1375.94 1370.61 923.91 917.03
CV 0.4975 0.4990 0.5346 0.5650

*Significant based on the 95% highest posterior density interval. Standard
errors in parentheses. Ra1(≤ Caa1)(t−1) is the first lagged dummy variable
representing the ratings “Caa1 and below”, Ra2(= B3)(t−1) is the second
lagged dummy variable representing the rating B3 and so forth.

Table 3: Empirical results: Diagonal average partial effects (DAPE) for the lagged
dummies

model 1 model 2 model 4 model 4a model 4b model 5

Investment grade region:

DAPEAaa(yt = 17) 0.4638* 0.1958* 0.1042* 0.1137* 0.1043* 0.1738*
DAPEAa1(yt = 16) 0.0258* 0.0051* 0.0076* 0.0072* 0.0072* 0.0029*
DAPEAa2(yt = 15) 0.0397* 0.0285* 0.0548* 0.0547* 0.0544* 0.0331*
DAPEAa3(yt = 14) 0.0053* 0.0048* 0.0123* 0.0123* 0.0123* 0.0071*
DAPEA2(yt = 12) 0.0066* 0.0039* 0.0077* 0.0075* 0.0076* 0.0059*
DAPEA3(yt = 11) 0.0118* 0.0128* 0.0180* 0.0185* 0.0177* 0.0131*
DAPEBaa1(yt = 10) 0.0254* 0.0216* 0.0275* 0.0285* 0.0271* 0.0233*
DAPEBaa2(yt = 9) 0.0336* 0.0364* 0.0437* 0.0452* 0.0433* 0.0383*
DAPEBaa3(yt = 8) 0.0529* 0.0553* 0.0470* 0.0503* 0.0466* 0.0550*

Speculative grade region:

DAPEBa1(yt = 7) 0.0736* 0.0705* 0.0621* 0.0666* 0.0617* 0.0680*
DAPEBa2(yt = 6) 0.0565* 0.0504* 0.0493* 0.0533* 0.0489* 0.0470*
DAPEBa3(yt = 5) 0.0224* 0.0207* 0.0238* 0.0253* 0.0236* 0.0191*
DAPEB1(yt = 4) 0.0295* 0.0285* 0.0260* 0.0287* 0.0256* 0.0251*
DAPEB2(yt = 3) 0.0790* 0.0772* 0.0518* 0.0594* 0.0507* 0.0702*
DAPEB3(yt = 2) 0.0447* 0.0431* 0.0302* 0.0326* 0.0303* 0.0399*
DAPE≤Caa1(yt = 1) 0.5697* 0.3395* 0.0762* 0.0899* 0.0730* 0.3709*

*Significant based on the 95% highest posterior density interval. The complete tables of
average partial effects for these models are given in the Online Appendix.
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Table 4: Empirical results: Average partial effects (APE) for the single one-period
lagged dependent variable of model 3

APEAaa(yt = 17) 0.0070*
APEAa1(yt = 16) 0.0018
APEAa2(yt = 15) 0.0004
APEAa3(yt = 14) 0.0009
APEA1(yt = 13) 0.0038*
APEA2(yt = 12) 0.0004
APEA3(yt = 11) -0.0012
APEBaa1(yt = 10) -0.0006
APEBaa2(yt = 9) -0.0000
APEBaa3(yt = 8) 0.0008
APEBa1(yt = 7) -0.0026
APEBa2(yt = 6) -0.0015
APEBa3(yt = 5) -0.0015
APEB1(yt = 4) 0.0000
APEB2(yt = 3) 0.0000
APEB3(yt = 2) -0.0048*
APE≤Caa1(yt = 1) -0.0053*

*Significant based on the 95% highest posterior density interval. “1” refers to “Caa1
and below’ (≤ Caa1) ratings, “2” refers to B3 ratings, “3” refers to B2 ratings and
so forth.

Table 5: Empirical results: Ratings’ behaviour before (2000-2006) and during (2007-
2011) the European crisis

Before the crisis During the crisis
Model P (y < yobs) P (y = yobs) P (y > yobs) P (y < yobs) P (y = yobs) P (y > yobs)

Model 1 25.57% 50.13% 24.30% 24.95% 51.13% 23.92%
Model 2 24.82% 51.23% 23.95% 23.66% 52.77% 23.57%
Model 3 13.70% 72.56% 13.74% 13.10% 73.81% 13.09%
Model 4 13.29% 73.45% 13.26% 12.60% 74.77% 12.63%
Model 4a 14.01% 72.05% 13.94% 13.29% 73.37% 13.34%
Model 4b 13.29% 73.45% 13.26% 12.59% 74.77% 12.64%
Model 5 24.74% 51.49% 23.77% 23.55% 53.29% 23.16%
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Figure 1: Empirical results: The estimated posterior density of u obtained from
model 4 for the empirical data.
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Online Appendix for: State dependence and stickiness of

sovereign credit ratings: Evidence from a panel of countries

Dimitrakopoulos Stefanos∗1 and Kolossiatis Michalis2

1Department of Economics, University of Warwick, Coventry, CV4 7AL, UK
2Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK

1 The Dirichlet Process

The DP was introduced by (Ferguson, 1973) and it is widely used as a prior for random

probability measures in Bayesian nonparametrics literature.

Consider a probability space Ω and a finite measurable partition of it {B1, ..., Bl}. A random

probability distribution G is said to follow a Dirichlet process with parameters a and G0 if the

random vector (G(B1), ..., (G(Bl)) is finite-dimensional Dirichlet distributed for all possible

partitions; that is, if

(G(B1), ..., G(Bl)) ∼ Dir(aG0(B1), ...., aG0(Bl))

where G(Bk) and G0(Bk) for k = 1, ..., l are the probabilities of the partition Bk under G

and G0 respectively. The distribution Dir is the Dirichlet distribution1.

The Dirichlet Process prior is denoted as DP (a,G0) and we write G ∼ DP (a,G0). The

distribution G0, which is a parametric distribution, is called base distribution and it defines

the “location” of theDP ; it can be also considered as our prior guess aboutG. The parameter

a is called concentration parameter and it is a positive scalar quantity. It determines the

strength of our prior belief regarding the stochastic deviation of G from G0.

The reason for the success and popularity of the DP as a prior is its theoretical properties.

A basic property is the clustering property. To be more specific, suppose that the sample

(ϑ1, ϑ2..., ϑN ) is simulated from G with G ∼ DP (a,G0). (Blackwell and MacQueen, 1973)

proved that this sample can be directly drawn from its marginal distribution. By integrating

∗Correspondence to: Dimitrakopoulos Stefanos, University of Warwick, Department of Economics,
Coventry, CV4 7AL, UK, Room: S2.97, Tel: +44(0) 2476 528420, Fax: +44(0) 2476 523032, E-mail:
S.Dimitrakopoulos@warwick.ac.uk

1Let Z be an n-dimensional continuous random variable Z = (Z1, ..., Zn) such that Z1, Z2, ..., Zn > 0 and∑n

i=1 Zi = 1. The random variable Z will follow the Dirichlet distribution , denoted by Dir(α1, ..., αn), with
parameters α1, ..., αn > 0, if its density is

fZ(z1, z2, ..., zn) =
Γ(α1 + ...+ αn)

Γ(α1)Γ(α2)...Γ(αn)

n∏

i=1

z
αi−1
i , z1, z2, ..., zn > 0,

n∑

i=1

zi = 1

where Γ is the gamma function. The beta distribution is the Dirichlet distribution with n=2.

1



out G the joint distribution of these draws is known and can be described by a Pólya-urn

process:

p(ϑ1, ..., ϑN ) =
N∏

i=1

p(ϑi|ϑ1, ..., ϑi−1) =
∫ N∏

i=1

p(ϑi|ϑ1, ..., ϑi−1, G)p(G|ϑ1:i−1)dG

= G0(ϑ1)
N∏

i=2

{
a

a+i−1G0(ϑi) +
1

a+i−1

∑i−1
j=1 δϑj

(ϑi)
}

(A.1)

where δϑj
(ϑi) represents a unit point mass at ϑi = ϑj .

The intuition behind (A.1) is rather simple. The first draw ϑ1 is always sampled from

the base measure G0 (the urn is empty). Each next draw ϑi, conditional on the previous

values, is either a fresh value from G0 with probability a/(a + i − 1) or is assigned to an

existing value ϑj , j = 1, ..., i− 1 with probability 1/(a+ i− 1).

According to (A.1) the concentration parameter a determines the number of clusters in

(ϑ1, ..., ϑN ). For larger values of a, the realizations G are closer to G0; the probability that

ϑi is one of the existing values is smaller. For smaller values of a the probability mass of G

is concentrated on a few atoms; in this case, we see few unique values in (ϑ1, ..., ϑN ), and

the realization of G resembles a finite mixture model.

Due to the clustering property of the DP there will be ties in the sample. At this point

we must make clear that we assume that G0 is a continuous distribution. In this way, all

the ties in the sample are caused only by the clustering behaviour of the DP (and not on

having matching draws from G0, as would be the case if it was discrete). As a result, the

N draws will reduce with positive probability to M unique values (clusters), (ϑ∗1, ..., ϑ
∗
M ),

1 ≤M ≤ N .

By using the ϑ∗’s, the conditional distribution of ϑi given ϑ1, ..., ϑi−1 becomes

ϑi|ϑ1, ..., ϑi−1, G0 ∼
a

a+ i− 1
G0(ϑi) +

1

a+ i− 1

M(i)∑

m=1

n(i)m δ
ϑ
∗(i)
m

(ϑi) (A.2)

where (ϑ
∗(i)
1 , ..., ϑ

∗(i)
M(i)) are the distinct values in (ϑ1, ϑ2..., ϑi−1). The term n

(i)
m represents

the number of already drawn values ϑl, l < i that are associated with the cluster ϑ
∗(i)
m ,m =

1, ...,M (i), whereM (i) is the number of clusters in (ϑ1, ϑ2..., ϑi−1) and
∑M(i)

m=1 n
(i)
m = i−1. The

probability that ϑi is assigned to one of the existing clusters ϑ
∗(i)
m is equal to n

(i)
m /(a+ i− 1).

Furthermore, expressions (A.1) and (A.2) show the exchangeability of the draws: the

conditional distribution of ϑi has the same form for any i2. As a result, one can easily sample

from a DP using this representation, which forms the basis for the posterior computation of

2Because of the exchangeability of the sample (ϑ1, ..., ϑN ), the value ϑi, i = 1, ..., N can be treated as the
last value ϑN , so that the prior conditional of ϑi given θ

(i) is given by

ϑi|θ
(i), G0 ∼ a

a+N−1
G0(ϑi) +

1
a+N−1

∑M(i)

m=1 n
(i)
m δ

ϑ
∗(i)
m

(ϑi)

where θ
(i) denotes the vector of the random parameters ϑ of all the individuals with ϑi removed,

that is θ
(i) = (ϑ1, ..., ϑi−1, ϑi+1, ..., ϑN )′. This general Pólya-urn representation is used in the posterior

analysis of the paper.
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DP models.

Various techniques have been developed to fit models that include the DP. One such

method is the Pólya-urn Gibbs sampling, which is based on the updated version of the

Pólya-urn scheme (A.1) or (A.2); see (Escobar and West, 1994) and (MacEachern and Müller,

1998). These methods are called marginal methods, since the DP is integrated out. In this

way, we do not need to generate samples directly from the infinite dimensional G .

Another important property of the DP is the discreteness of its realisations; the DP

samples discrete distributions G (with infinite number of atoms) with probability one. This

discreteness creates ties in the sample (ϑ1, ..., ϑN ), a result which is verified by (A.1) and

(A.2). Depending on the magnitude of a the population distribution G can either mimic the

baseline distribution or a finite mixture model with few atoms.

In cases of continuous data, and in order to overcome the discreteness of the realizations

of the DP, the use of mixtures of DPs has been proposed (Lo, 1984). The idea is to assume

that some continuous data ω1, ..., ωN follow a distribution f(ωi|θi, λ), where (some of) the

parameters (in this case, θi) follow a distribution G ∼ DP . This popular model is called the

Dirichlet process mixture (DPM) model.

1.1 Posterior consistency

There are many articles dealing with posterior consistency and convergence rates of DPMs.

The case of location-scale mixtures of normal distributions, with a conjugate normal-inverse

gamma base distribution

ui|ϑi ∼ N(µi, σ
2
i ), ϑi = (µi, σ

2
i ), i = 1..., N

ϑi
iid∼ G

G|a,Gb ∼ DP (a,Gb), Gb ≡ N(µi;µ0, τ0σ
2
i )IG(σ2i ;

e0
2
,
f0
2
),

which we use in our proposed model, is discussed in (Ghosal et al., 1999, Tokdar, 2006). The

above model can also be written as

f(ui) =

∫
φ(u;µi, σ

2
i )dG(µi, σ

2
i )

G|a,Gb ∼ DP (a,Gb), Gb ≡ N(µi;µ0, τ0σ
2
i )IG(σ2i ;

e0
2
,
f0
2
),

where φ(x;µ, σ2) denotes the pdf of a normal distribution with mean µ and variance σ2.

Remark 1 in (Ghosal et al., 1999) generalizes the weak consistency of location mixtures

of Theorem 3 of the same article. Let f0(x) denote the true density. According to this

remark, weak posterior consistency holds if the true density is also a location-scale mixture

of normals, f0(u) =
∫
φ(u;µ, σ2)dP0(µ, σ

2) and the true mixing distribution P0 for the mean

and variance is compactly supported and belongs in the support of the Dirichlet process

prior used, DP (a,Gb).

Further, (Tokdar, 2006) establishes sufficient conditions for strong consistency of the

3



above model. Specifically, Remark 4.2 applies Theorem 4.2 of the same paper to the case

of DPM structure and shows that, in this case, strong posterior consistency follows from

weak consistency. Therefore, the above conditions for the true density f0 and true mixing

distribution P0 suffice to establish strong posterior consistency.

Considering next the proposed model (model 4), of which the above DPM is a part,

proving posterior consistency is a technically challenging problem, which we did not tackle

in this paper. Apart from having a more complicated model than the one above, additional

technical difficulties are caused by the autoregressive structure of the errors ǫit and the flat

priors assigned to δ and ζ. Due to the former the latent variables y∗it are not independent

(even conditionally on the covariates of (4.1.1)), whereas the latter creates problems when

trying to integrate out δ and ζ (for example, for checking conditions similar to condition

(ii) in Theorem 1 of (De Blasi et al., 2010)). The proof of the posterior consistency of the

proposed model is further compounded by an additional source of serial correlation in the

yit, due to the presence of the state dependent indicators in the regression for y∗it.

To our knowledge, no previous Bayesian studies have dealt with posterior consistency of

such models and it is therefore an open issue in the field of Bayesian nonparametrics. Our

intuition, though, is that since the rest of the model consists of a finite number of parameters,

and posterior consistency holds for the nonparametric (and therefore the infinite dimensional)

part of the model (the DPM part), posterior consistency should hold for the full model, as

well.

2 MCMC algorithm for the model of section 4

We present a simulation methodology for sampling from the proposed model of section 4.

Our algorithm consists of updating all the parameters in the model. We note that the

parameters ui are deterministically updated, given the updated values of φi and hi.

As is now a standard procedure in the DPM models, instead of simulating the parameters

θi = (µi, σ
2
i ), we instead simulate the discrete values θ∗i = (µ∗i , σ

∗2
i ) and the allocation

parameters ψi of the θi to these clusters, ψi = m ⇔ θi = θ∗m. This method was proposed

by (MacEachern, 1994), who showed that using this reparametrisation (knowing the ψ’s and

θ∗’s is equivalent to knowing the θ’s) improves mixing.

The error term ǫi = (ǫi1, ..., ǫiT )
′ follows a multivariate normal distribution with mean 0

(vector of zeros) and (symmetric, positive definite) covariance matrix σ2vΩi where σ
2
v > 0 and

Ωi =
1

1−ρ2




1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

ρ2 ρ 1 · · · ρT−3

...
...

...
. . .

...

ρT−1 ρT−2 ρT−3 · · · 1




.

Define also

w′
it = (x′

it, r
′
it−1), Wi = (wi1, ...,wiT )

′,
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y∗i = (y∗i1, ..., y
∗
iT )

′, y∗ = (y∗′1 , ...,y
∗′
N )′,

k′
i = (r′i0,x

′
i), ǫ = (ǫ′1, ..., ǫ

′
N )′.

Due to the non-diagonal covariance matrix, the updating of the latent variables {y∗i }
requires sampling from a multivariate truncated normal distribution. Since such sampling

is inefficient, slowing the mixing of the algorithm, we orthogonalize the correlated errors in

such a way that the elements within each y∗i can be sampled independently of one another

(Chib and Jeliazkov, 2006).

In particular, the covariance matrix Ωi can be decomposed as Ωi = R̃i+ ξIT where R̃i is

a symmetric positive definite matrix, IT is the T × T identity matrix and ξ is an arbitrary

constant that satisfies the constraint ξ̄ > ξ > 0, where ξ̄ is the minimum eigenvalue of Ωi.

Following (Chib and Jeliazkov, 2006), we also find that by setting ξ = ξ̄/2, the algorithm

is stable. R̃i can be further decomposed into R̃i = C ′
iCi (Cholesky decomposition). Hence

Ωi = C ′
iCi + ξIT .

Now, the latent regression for y∗i , i = 1, ..., N can be written as

y∗i = Wiδ + iTϕi + C ′
iηi + ei

where iT is a T × 1 vector of ones, ηi ∼ N(0, σ2vIT ) and ei ∼ N(0, ξσ2vIT ).

Posterior sampling of {ϕi}
The full conditional distribution of the random effect ϕi can be computed as

p(ϕi|y∗i ,Wi,k
′
i, ϑi,hi, σ

2
v ,Ωi, δ) ∝ p(ϕi|k′

i,hi, µi, σ
2
i )× p(y∗i |Wi, ϕi, δ, σ

2
v ,Ωi)

∝ exp
(
−1

2(ϕi − k′
ihi − µi)

2/σ2i )
)

× exp
(
− 1

2σ2
v
(y∗i −Wiδ − iTϕi)

′Ω−1
i (y∗i −Wiδ − iTϕi)

)
, i = 1, ..., N..

Therefore,

ϕi|y∗i ,Wi,k
′
i, ϑi,hi, σ

2
v ,Ωi, δ ∼ N(D0d0, D0)

where D0 =
(

1
σ2
i

+ σ−2
v i′TΩ

−1
i iT

)−1
, d0 =

k′

ihi+µi

σ2
i

+ σ−2
v i′TΩ

−1
i (y∗i −Wiδ).

Posterior sampling of hi

The full conditional distribution of hi is given by

p(hi|k′
i, ϕi, ϑi, h̃, H̃) ∝ p(hi|h̃, H̃)p(ϕi|k′

i,hi, µi, σ
2
i )

∝ exp
(
−1

2(hi − h̃)′H̃−1(hi − h̃)− 1
2(ϕi − k′

ihi − µi)
2/σ2i

)
.
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Therefore, updating hi requires sampling from

hi|k′
i, ϕi, ϑi, h̃, H̃ ∼ N(Dhi

dhi
, Dhi

)

where Dhi
= (H̃−1 +

kik
′

i

σ2
i

)−1, dhi
= (H̃−1h̃+ ki(ϕi−µi)

σ2
i

).

Posterior sampling of h̃

The full conditional distribution of h̃ is given by

p(h̃|{hi}, H̃, h̃0,Σ) ∝ p(h̃|h̃0,Σ)
∏N

i=1 p(hi|h̃, H̃)

∝ exp
(
−1

2(h̃− h̃0)
′Σ−1(h̃− h̃0)− 1

2(h− Ĩh̃)′(IN ⊗ H̃−1)(h− Ĩh̃)
)

where h = (h′
1, ...,h

′
N )′, Ĩ = (I2, ..., I2)

′ contains N times the 2 × 2 identity matrix I2

and ⊗ is the Kronecker product.

Therefore,

h̃|{hi}, H̃, h̃0,Σ ∼ N(D1d1, D1)

where D1 = (Σ−1 +NH̃−1)−1, d1 = (Σ−1h̃0 + H̃−1
∑N

i=1 hi).

Posterior sampling of H̃

The full conditional distribution of H̃ is given by

p(H̃|{hi}, h̃, δ,∆−1) ∝ p(H̃|δ,∆−1)
∏N

i=1 p(hi|h̃, H̃)

∝ |H̃−1|(δ+K+J−1+1)/2 exp
(
−1

2 tr(∆
−1H̃−1)

)
×|H̃−1|N/2 exp

(
−1

2

∑N
i=1(hi − h̃)′H̃−1(hi − h̃)

)
.

Therefore,

H̃|{hi}, h̃, δ,∆−1 ∼ IW
(
N + δ,

∑N
i=1(hi − h̃)(hi − h̃)′ +∆−1

)
.

Posterior sampling of ρ

To simulate ρ, we use a Metropolis-Hasting (M-H) algorithm. In particular, the full

conditional distribution of ρ is given by

p(ρ|ǫ, σ2v , ρ0, σ2ρ) ∝ p(ρ|ρ0, σ2ρ)
∏N

i=1 p(ǫi1|ρ, σ2v)
∏N

i=1

∏T
t=2 p(ǫit|ǫit−1, σ

2
v , ρ)

∝ exp
(
− 1

2σ2
ρ
(ρ− ρ0)

2
)
I(−1,1)(ρ)×

√
(1− ρ2)N × exp

(
− (1−ρ2)

2σ2
v

∑N
i=1 ǫ

2
i1

)

× exp
(
− 1

2σ2
v

∑N
i=1

∑T
t=2(ǫit − ρǫit−1)

2
)

∝
√

(1− ρ2)N × exp
(
− (1−ρ2)

2σ2
v

∑N
i=1 ǫ

2
i1

)
×N(D2d2, D2)I(−1,1)(ρ)
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∝ Ψ(ρ)×N(D2d2, D2)I(−1,1)(ρ)

where ǫit = y∗it − w′
itδ − ϕi , Ψ(ρ) =

√
(1− ρ2)N × exp

(
− (1−ρ2)

2σ2
v

∑N
i=1 ǫ

2
i1

)
, D2 = ( 1

σ2
ρ
+

σ−2
v

∑N
i=1

∑T
t=2 ǫ

2
it−1)

−1, and d2 = ( ρ0
σ2
ρ
+ σ−2

v

∑N
i=1

∑T
t=2 ǫitǫit−1).

Given the current value ρ, we sample a candidate value ρ′ from the proposal density

N(D2d2, D2)I(−1,1)(ρ). This value is accepted as the next sample value with probability

min(Ψ(ρ′)/Ψ(ρ), 1); otherwise, the next sample value is taken to be the current one.

Posterior sampling of δ, σ2v in one block

The joint posterior density of σ−2
v and δ can be expressed as the product of a marginal

probability and a conditional probability:

p(σ−2
v , δ|y∗, {Wi}, {Ωi}, {ϕi}, e1, f1) = p(σ−2

v |y∗, {Wi}, {Ωi}, {ϕi}, e1, f1)
× p(δ|σ−2

v ,y∗, {Wi}, {Ωi}, {ϕi}, e1, f1).

To sample from the joint posterior p(σ−2
v , δ|•) we have to sample first from p(σ−2

v |•)
and then from p(δ|•) . The latter term is the full conditional of δ while the former term is

the marginal posterior of σ−2
v , having integrated out δ, which is proportional to

p(σ−2
v |y∗, {Wi}, {Ωi}, {ϕi}, e1, f1) ∝ p(σ−2

v |e1, f1)×p(y∗|{Wi}, {Ωi}, {ϕi}, σ−2
v )

∝ p(σ−2
v |e1, f1)× Γ

where Γ = p(y∗|{Wi}, {Ωi}, {ϕi}, σ−2
v ) =

∫
p(δ)p(y∗|{Wi}, {Ωi}, {ϕi}, σ−2

v , δ)dδ.

To simplify our notation we set the term inside the integral equal to ∆ which, under the

flat prior p(δ) ∝ 1, is equal to

∆ = (2π)−NT/2 × (σ−2
v )NT/2 × |Ω|− 1

2 × exp
(
− 1

2σ2
v
(ỹ∗ −Wδ)′Ω−1(ỹ∗ −Wδ)

)

where W = (W′
1, ...,W

′
N )′. The elements ỹit

∗ = y∗it − ϕi, i = 1, ..., N, t = 1, ..., T are

stacked appropriately in ỹ∗, while Ω is a block diagonal matrix, that is,

Ω =




Ω1

Ω2

. . .

ΩN



.

We can always write (ỹ∗ − Wδ)′Ω−1(ỹ∗ − Wδ) =(ỹ∗ − Wδ̂)′Ω−1(ỹ∗ − Wδ̂)+(δ −
δ̂)′W′Ω−1W(δ − δ̂) where δ̂ is the OLS estimator of δ: δ̂ = (W′Ω−1W)−1W′Ω−1ỹ∗.

Hence, ∆ becomes
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∆ =
[
(2π)−NT/2 × (σ−2

v )NT/2 × |Ω|− 1
2 × exp

(
− 1

2σ2
v
(ỹ∗ −Wδ̂)′Ω−1(ỹ∗ −Wδ̂)

)]

×
[
exp

(
− 1

2σ2
v
(δ − δ̂)′W′Ω−1W(δ − δ̂)

)]
.

The term inside the second set of square brackets is proportional to a multivariate normal

kernel of δ. The integral of this term with respect to δ is equal to

(σ−2
v )(−k−J+1)/2(2π)(k+J−1)/2|W′Ω−1W|1/2.

Consequently, it holds that

Γ = (2π)−NT/2 × (σ−2
v )NT/2 × (σ−2

v )(−k−J+1)/2 × (2π)(k+J−1)/2|W′Ω−1W|1/2

× exp
(
− 1

2σ2
v
(ỹ∗ −Wδ̂)′Ω−1(ỹ∗ −Wδ̂)

)
.

Then, the marginal posterior of σ−2
v takes the explicit form

p(σ−2
v |y∗, {Wi}, {Ωi}, {ϕi}, e1, f1) ∝ (1/σ2ǫ )

(
e1+NT−k−J+1

2
−1)

× exp
(
− 1

2σ2
v
[f1 + (ỹ∗ −Wδ̂)′Ω−1(ỹ∗ −Wδ̂)]

)
.

The Gibbs conditional for δ is

p(δ|y∗, {Wi}, {Ωi}, {ϕi}, σ−2
v ) ∝ exp

(
− 1

2σ2
v
(ỹ∗ −Wδ̂)′Ω−1(ỹ∗ −Wδ̂)

)

× exp
(
− 1

2σ2
v
(δ − δ̂)′W′Ω−1W(δ − δ̂)

)

∝ exp
(
− 1

2σ2
v
(δ − δ̂)′W′Ω−1W(δ − δ̂)

)
.

To sum up, we first sample σ2v marginalized over δ from

σ−2
v |y∗, {Wi}, {Ωi}, {ϕi}, e1, f1 ∼ G( e12 ,

f1
2 )

where e1 = e1 +NT − k − J + 1, f1 = f1 + (ỹ∗ −Wδ̂)′Ω−1(ỹ∗ −Wδ̂).

Then, we sample δ from its full posterior distribution:

δ|y∗, {Wi}, {Ωi}, {ϕi}, σ−2
v ∼ N

(
δ̂, ( 1

σ2
v
W′Ω−1W)−1

)
.

Posterior sampling of {ηi}
The full conditional distribution of ηi, i = 1, ..., N is given by
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p(ηi|y∗i , δ, ϕi, σ
2
v) ∝ p(ηi|σ2v)× p(y∗i |δ, ϕi,ηi, σ

2
v)

∝ exp
(
−η′iηi/2σ2v

)

× exp
(
− 1

2ξσ2
v
(y∗i −Wiδ − iTϕi − C ′

iηi)
′(y∗i −Wiδ − iTϕi − C ′

iηi)
)
.

Therefore, updating ηi requires sampling from

ηi|y∗i , δ, ϕi, σ
2
v ∼ N(P1p1, P1)

where P1 =
(
IT
σ2
v
+

CiC
′

i

ξσ2
v

)−1
and p1 =

Ci(y∗

i−Wiδ−iTϕi)
ξσ2

v
.

Posterior sampling of ζ∗(2,J−2) and y
∗ in one block

We want to sample from the joint posterior

p(y∗, ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) = p(ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi})

×p(y∗|ζ∗(2,J−2),y, δ, σ
2
v , {ϕi}, {ηi}),

where y is the whole vector of the observed dependent variables. The conditional distri-

bution of p(ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) is

p(ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) ∝ p(ζ(2,J−2)|y, δ, σ2v , {ϕi}, {ηi})×
J−2∏

j=2

(1−ζj−1) exp(ζ
∗

j )

(1+exp(ζ∗j ))2
, (A.3)

where the first term at the right hand side of the above expression is the full conditional

distribution of the cutpoints evaluated at ζj =
ζj−1+exp(ζ∗j )

1+exp(ζ∗j )
, that is,

p(ζ(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) ∝
∏

it:yit=2,t≥1

P (ζ1 < y∗it ≤ ζ2)× ...

...×
∏

it:yit=J−1,t≥1

P (ζJ−2 < y ∗
it ≤ ζJ−1)

where P (ζj−1 < y ∗
it ≤ ζj) = Φ(

ζj−w ′

itδ−ϕi−qit√
ξσv

)− Φ(
ζj−1−w ′

itδ−ϕi−qit√
ξσv

), j = 1, ...., J

and qit is the t− th element of qi = C ′
iηi.

The conditional distribution p(ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) is derived from a transformation

of variables from p(ζ(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}). The Jacobian of this transformation is given

by the last term of the right hand side expression of (A.3).

Instead of sampling directly from p(ζ(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}), we sample from the joint

distribution p(ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) using a Metropolis-Hastings step. Specifically, at

the l-th iteration we generate a value ζ
∗(p)
(2,J−2) from a multivariate Student-t distribution
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MV t(ζ
∗(p)
(2,J−2)| ̂ζ∗(2,J−2), cΣ̂ζ∗

(2,J−2)
, v)

where ̂ζ∗(2,J−2) = argmax p(ζ∗(2,J−2)|y, δ, σ2v , {ϕi}, {ηi}) is defined to be the mode of the

right hand side of p(ζ∗(2,J−2)|•) and the term

Σ̂ζ∗

(2,J−2)
=

[(
− ϑ2 log p(ζ∗

(2,J−2)|•)
ϑζ∗

(2,J−2)ϑζ
∗′

(2,J−2)

)

ζ∗

(2,J−2)=
̂ζ∗

(2,J−2)

]−1

is the inverse of the negative Hessian matrix of log p(ζ∗(2,J−2)|•), scaled by some arbitrary

number c> 0. The term v is the degrees of freedom and is specified arbitrarily at the onset

of the programming, along with the scalar c and the other hyperparameters. We use both c

and v in order to achieve the desired M-H acceptance rate by regulating the tail heaviness

and the covariance matrix of the multivariate Student-t proposal distribution. Notice that

a very small v or a very large value of c can lead to a very low acceptance rate.

Given the proposed value ζ
∗(p)
(2,J−2) and the value ζ

∗(l−1)
(2,J−2) from the previous iteration,

ζ
∗(p)
(2,J−2) is accepted as a valid current value (ζ

∗(l)
(2,J−2) = ζ

∗(p)
(2,J−2)) with probability

ap(ζ
∗(l−1)
(2,J−2), ζ

∗(p)
(2,J−2)) = min(

p(ζ
∗(p)
(2,J−2)

|y,δ,σ2
v ,{ϕi},{ηi}) MV t(ζ

∗(l−1)
(2,J−2)

|•)
p(ζ

∗(l−1)
(2,J−2)

|y,δ,σ2
v ,{ϕi},{ηi}) MV t(ζ

∗(p)
(2,J−2)

|•)
, 1).

Practically, the ap value is compared with a draw u from the uniform U(0, 1). If ap > u,

ζ
∗(p)
(2,J−2) is accepted at the l-th iteration; otherwise set ζ

∗(l)
(2,J−2) = ζ

∗(l−1)
(2,J−2).

To sum up, first draw from the posterior kernel of the cutpoints ζ∗(2,J−2) marginally of

the latent variable y∗it , using a Metropolis-Hastings step. Then, calculate ζj , j = 2, .., J − 2

from ζj =
ζj−1+exp(ζ∗j )

1+exp(ζ∗j )
.

Next, sample the latent dependent variable y∗it , i = 1, ..., N, t = 1, ..., T from the trun-

cated normal

y∗it |yit = j,w′
it, δ, ϕi, σ

2
v , qit ∼N(w ′

itδ + ϕi + qit, ξσ
2
v)1(ζj−1 < y∗it ≤ ζj).

Posterior sampling of ui

The error terms ui are calculated from ui = ϕi − k′
ihi, i = 1, ..., N.

Posterior sampling of {ψi}
Let θ∗ = (ϑ∗1, ..., ϑ

∗
M )′, M ≤ N be the set of unique values that corresponds to the

complete vector θ = (ϑ1, ..., ϑN )′. Each ϑ∗m, m = 1, ...,M represents a cluster location.

Furthermore, define ψ = (ψ1, . . . , ψN )′ to be the latent indicator variables such that ψi = m

iff ϑi = ϑ∗m. The vector θ(i) will containM (i) clusters, that is, θ∗(i) = (ϑ
∗(i)
1 , ..., ϑ

∗(i)
M(i))

′ where

M (i) is the number of unique values in θ(i). The number of elements in θ(i) that take the

distinct value ϑ
∗(i)
m will be n

(i)
m =

∑
j1(ψj = m, j 6= i), m = 1, ...,M (i).

We sample each ψi according to the probabilities
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P (ψi = m|θ∗(i), ψ(i), n
(i)
m ) ∝

{
q̃im if m = 1, ...,M (i)

q̃i0 if m =M (i)+1
(A.4)

where ψ(i) = ψ\{ψi} and the weights q̃i0 and q̃im are defined as

q̃i0 ∝ a
∫
f(ui|ϑi)dG0(ϑi) , q̃im ∝ n

(i)
m f(ui|ϑ∗(i)m ).

The constant of proportionality3 is the same for both expressions and is such that q̃i0

+
∑M(i)

m=1 q̃im = 1. The term q̃i0 is proportional to the precision parameter a times the marginal

density of the latent error term ui. The marginal density follows by integrating over ϑi, under

the baseline prior G0. If we first integrate out µi we have f(ui|σ2i ) = N(ui|µ0, (1 + τ0)σ
2
i ).

By integrating out σ2i as well, we obtain a Student-t distribution. So, the two-dimensional

integral is:
∫ ∫

f(ui|µi, σ2i )p(µi, σ2i )dµidσ2i = qt(ui|µ0, (1 + τ0)f0/e0, e0) where µ0 is the

mean, e0 is the degrees of freedom and the remaining term (1 + τ0)f0/e0 is the scale factor.

The term q̃im is proportional the normal distribution of ui evaluated at ϑ
∗(i)
m , m = 1, ...,M (i).

In other words, q̃im ∝ n
(i)
m exp(−1

2

(
ui − µ

∗(i)
m

)2
/σ

∗2(i)
m ).

The logic behind (A.4) is the following: ψi can take a new value (M (i)+1) with poste-

rior probability proportional to q̃i0. In this case, set ϑi=ϑ
∗
M(i)+1

and sample ϑ∗
M(i)+1

from

p(ϑi|ui, µ0, τ0, e0, f0); otherwise assign ϑi to an existing cluster ϑ
∗(i)
m , m = 1, ...,M (i).

The expression p(ϑi|ui, µ0, τ0, e0, f0) can be calculated as follows:

p(µi, σ
2
i |ui, µ0, τ0, e0, f0) ∝ IG(σ2i | e02 ,

f0
2 )N(µi|µ0, τ0σ2i )p(ui|µi, σ2i )

∝ (σ2i )
− (

e0
2
+1) exp(− f0

2σ2
i

)× (σ2i )
−( 1+1

2
) exp

(
−1

2

[
(ui−µi)

2

σ2
i

+ (µi−µ0)2

τ0σ2
i

])
. (A.5)

Using (A.5) and the identity

τ−1
0 (µi − µ0)

2 + (ui − µi)
2 = (τ−1

0 + 1)(µi − µN )2 +τ−1
0 (ui − µ0)

2/(τ−1
0 + 1)

where µN = (τ−1
0 µ0 + ui)/(τ

−1
0 + 1), we derive

ϑi = (µi, σ
2
i )|ui, µ0, τ0, e0, f0 ∼ N(µi|µ0, τ0σ2i )IG(σ2i | e02 ,

f0
2 )

where µ0 =
µ0+τ0ui

1+τ0
, τ0 =

τ0
1+τ0

, e0 = e0 + 1, f0 = f0 + (ui−µ0)
2

τ0+1 .

Posterior sampling of {ϑ∗m}
Let Fm = {i : ϑi = ϑ∗m} be the set of individuals sharing the parameter ϑ∗m. The accel-

erating step implies generating draws for each ϑ∗m, m = 1, ...,M from

3The normalising constant is c = a
∫
f(ui|ϑi)dG0(ϑi) +

M(i)∑

m=1

n
(i)
m f(ui|ϑ

∗(i)
m ).
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p(µ∗m, σ
∗2
m |{ui }i∈Fm , µ0, τ0, e0, f0) ∝

N(µ∗m|µ0, τ0σ∗2m )IG(σ∗2m | e02 ,
f0
2 )
∏

i∈Fm

p(ui|µ∗m, σ∗2m )

∝ (σ∗2m )− (
e0
2
+1) exp(− f0

2σ∗2
m
)× (σ∗2m )−(nm+1

2
) exp

(
−1

2

[
(µ∗

m−µ0)2

τ0σ∗2
m

+

∑

i∈Fm

(ui−µ∗
m)2

σ∗2
m

])
. (A.6)

Using (A.6) and the identities

∑
i∈Fm

(ui − µ∗m)2 = nm(µ∗m − 1
nm

∑
i∈Fm

ui)
2 +

∑
i∈Fm

(ui − 1
nm

∑
i∈Fm

ui)
2 and

τ−1
0 (µ∗m − µ0)

2 + nm(µ∗m − 1
nm

∑
i∈Fm

ui)
2

= (τ−1
0 +nm)(µ∗m −µnm)

2 +τ−1
0 nm( 1

nm

∑
i∈Fm

ui −µ0)
2/(τ−1

0 +nm)

where µnm = (τ−1
0 µ0 +

∑
i∈Fm

ui)/(τ
−1
0 + nm), we derive the full conditionals of (µ∗m, σ

∗2
m ):

ϑ∗m = (µ∗m, σ
∗2
m )|{ui }i∈Fm , µ0, τ0, e0, f0 ∼ N(µ∗m|µm, τmσ∗2m )IG(σ∗2m | em2 ,

fm
2 )

where µm =
µ0+τ0

∑

i∈Fm

ui

1+τ0nm
, τm = τ0

1+τ0nm
,

em = e0 + nm, fm = f0 +

nm( 1
nm

∑

i∈Fm

ui−µ0)2

1+τ0nm
+
∑

i∈Fm

(ui − 1
nm

∑
i∈Fm

ui)
2.

Posterior sampling of a

Following (Escobar and West, 1994) we sample the concentration parameter a using a

data augmentation scheme:

1) Sample η̃ from η̃|a,N∼ Beta(a+ 1, N) where η̃ is a latent variable.

2) Sample the concentration parameter a from a mixture of two gammas. That is,

a|η̃, c, d,M∼ πη̃G(c+M,d− log(η̃)) + (1− πη̃)G(c+M − 1, d− log(η̃))

with the mixture weight πη̃ satisfying πη̃/(1− πη̃) = (c+M − 1)/N(d− log(η̃)).

3 Average partial effects

The derivative
∂P (yit=j|wit,δ,ϕi,σ

2
v ,ρ,ζj−1,ζj)

∂xk,it
, which is given in section 5.2 of the paper, is cal-

culated as

∂P (yit=j|wit,δ,ϕi,σ
2
v ,ρ,ζj−1,ζj)

∂xk,it
=
(
φ(

ζj−1−w′

itδ−ϕi−qit√
ξσv

)− φ(
ζj−w ′

itδ−ϕi−qit√
ξσv

)
)

βk√
ξσv

where φ denotes the density of the standard normal distribution.
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If xk,it is discrete, the partial effect of a change of xk,it from zero to one on the probability

of yit being equal to j is equal to the difference between the probability that yit = j when

xk,it = 1 and the probability that yit = j when xk,it = 0; namely,

∆j(xk,it) =
[
Φ(

ζj−(w ′

itδ−xk,itβk)−βk−ϕi−qit√
ξσv

)− Φ(
ζj−1−(w ′

itδ−xk,itβk)−βk−ϕi−qit√
ξσv

)
]

−
[
Φ(

ζj−(w ′

itδ−xk,itβk)−ϕi−qit√
ξσv

)− Φ(
ζj−1−(w ′

itδ−xk,itβk)−ϕi−qit√
ξσv

)
]
.

4 Model Comparison

4.1 Deviance information criterion

Due to the orthogonalization of the errors, we can easily calculate the DIC (Spiegelhalter et

al., 2002), which is used as a model comparison criterion. The DIC is based on the deviance

which is defined as -2 times the log-likelihood function, that is, D(Θ) = −2 log f(y|Θ)

where Θ denotes the vector of all parameters in the model. Model complexity is measured

by the effective number of model parameters and is defined as pD = D(Θ) − D(Θ) where

D(Θ) = −2EΘ[log f(y|Θ)|y] is the posterior mean deviance and D(Θ) = −2 log f(y|Θ)

where log f(y|Θ) is the log-likelihood evaluated at Θ, is the posterior mean of Θ. The DIC is

defined as DIC = D(Θ)+pD = 2D(Θ)−D(Θ). The smaller the DIC, the better the model fit.

Therefore, a model with smaller DIC is preferred. Using MCMC samples of the parameters,

Θ(1), ...,Θ(M), the expression D(Θ) can be estimated by −2
∑M

m=1 log f(y|Θ(m))/M where

Θ(m) is the value of Θ at iteration m = 1, ...,M .

The deviance for our model is

D(Θ) = −2 log f(y|Θ)

= −2

N∑

i=1

T∑

t=1

log

[
Φ(
ζj −w ′

itδ − ϕi − qit√
ξσv

)− Φ(
ζj−1 −w ′

itδ − ϕi − qit√
ξσv

)

]
.

where j = 1, ..., J denotes the ordinal choice.z

4.2 Calculating cross-validation predictive densities

In order to apply the cross-validation method4, for each model we need to calculate the

conditional likelihoods f(yit|y−it), i = 1, 2, . . . , N, t = 1, 2, . . . , T , where y−it = y \ {yit}. In
order to calculate f(yit|y−it), we apply the method of (Gelfand and Dey, 1994) and (Gelfand,

1996). More specifically,

f̂(yit|y−it) =

(
1

M

M∑

m=1

(
f(yit|y−it,Θ

(m))
)−1

)−1

,

4(Kottas et al., 2005) also applied the cross-validation comparison method in modelling, semiparametri-
cally, multivariate ordinal data. See also (Gu et al., 2009).
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where M is the number of posterior samples and Θ(m) denotes the vector of all parameters

in the model at the m-th posterior sample.

Then, the average over all observations

1

NT

N∑

i=1

T∑

t=1

f̂(yit|y−it)

is calculated for each model. Obviously, the higher the value of this average, the better the

model fits the data.

For the case of the model described above,

f(yit|y−it,Θ
(m)) = P (yit = j|y−it,Θ

(m))

= P (ζ
(m)
j−1 < y

∗(m)
it ≤ ζ

(m)
j )

= Φ(
ζ
(m)
j −w ′

itδ
(m) − ϕ

(m)
i − q

(m)
it√

ξ(m)σ
(m)
v

)− Φ(
ζ
(m)
j−1 −w ′

itδ
(m) − ϕ

(m)
i − q

(m)
it√

ξ(m)σ
(m)
v

).

Similar expressions can be derived for the two models described later in this Appendix.

5 MCMC algorithm for model 2 of section 6

In this subsection, we present an MCMC algorithm for estimating the model of section 4

without serial correlation (which was defined as model 2 in section 6); that is, we assume that

ǫit are iid normally distributed, ǫit ∼ N(0, σ2ǫ ) with σ
−2
ǫ having the gamma prior G( e12 ,

f1
2 ).

Furthermore, ǫit is assumed to be uncorrelated with xit and ϕi.

The likelihood function for individual i is given by

Li = p(yi1, ..., yiT |r′i0, δ, {x′
it}t≥1, ϕi, σ

2
ǫ , {ζj}J−2

j=2 ) =

=
T∏

t=1

J∏

j=1

P (yit = j|r ′
it−1, δ,x

′
it, ϕi, σ

2
ǫ , ζj−1, ζj)

1(yit=j)

where P (yit = j|r ′
it−1, δ,x

′
it, ϕi, σ

2
ǫ , ζj−1, ζj) = P (ζj−1 < y ∗

it ≤ ζj)

= Φ(
ζj−w ′

itδ−ϕi

σǫ
)− Φ(

ζj−1−w ′

itδ−ϕi

σǫ
)

where T is the number of time periods, J is the number of ordinal choices (categories)

and 1(yit = j) is an indicator function that equals one if yit = j and zero otherwise. The

function Φ is the standard Gaussian cdf.

Posterior sampling of {ϕi}
The random effects ϕi, i = 1, ..., N are generated from
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ϕi|y∗i ,Wi,k
′
i, ϑi,hi, σ

2
ǫ , δ ∼ N(D0d0, D0)

where D0 =
(

1
σ2
i

+ T
σ2
ǫ

)−1
, d0 =

T∑

t=1
(y∗it − w ′

itδ)

σ2
ǫ

+
k′

ihi+µi

σ2
i

.

Posterior sampling of δ, σ2ǫ in one block

a) First, sample σ2ǫ marginalized over δ from

σ−2
ǫ |y∗, {Wi}, {ϕi}, e1, f1 ∼ G( e12 ,

f1
2 )

where e1 = e1 +NT − k − J + 1, f1 = f1 +
N∑
i=1

T∑
t=1

(y ∗
it −w ′

itδ̂ − ϕi)
2

and δ̂ = (
N∑
i=1

T∑
t=1

witw
′
it)

−1 × [
N∑
i=1

T∑
t=1

wit(y
∗

it − ϕi)].

b) Second, sample δ from its full posterior distribution:

δ|σ2ǫ ,y
∗, {Wi}, {ϕi} ∼ N(δ̂, ( 1

σ2
ǫ

N∑
i=1

T∑
t=1

witw
′
it)

−1 ).

Posterior sampling of ζ∗(2,J−2) and y
∗ in one block

a) Draw from the posterior kernel of the cutpoints ζ∗(2,J−2) marginally of the latent

variable y∗it . This kernel has a nonstandard density,

p(ζ∗(2,J−2)|y, δ, σ2ǫ , {ϕi}) ∝ p(ζ(2,J−2)|y, δ, σ2ǫ , {ϕi})×
J−2∏

j=2

(1−ζj−1) exp(ζ
∗

j )

(1+exp(ζ∗j ))2

where

p(ζ(2,J−2)|y, δ, σ2ǫ , {ϕi}) ∝
∏

it:yit=2,t≥1

P (ζ1 < y∗it ≤ ζ2)× ...

...×
∏

it:yit=J−1,t≥1

P (ζJ−2 < y ∗
it ≤ ζJ−1)

Hence, we sample from p(ζ∗(2,J−2)|•) by employing a proposal density (multivariate t

density) which is evaluated within a M-H step, similar to that for our main model. We,

then, calculate ζj , j = 2, .., J − 2 from ζj =
ζj−1+exp(ζ∗j )

1+exp(ζ∗j )
.

b) Draw the latent dependent variable y∗it , i = 1, ..., N, t = 1, ..., T from the truncated

normal

y∗it |yit = j,w′
it, δ, ϕi, σ

2
ǫ ∼N(w ′

itδ + ϕi, σ
2
ǫ )1(ζj−1 < y∗it ≤ ζj).

The updating of {hi}, h̃, H̃, {ui} , {ϑi} and a is the same as in our main model.
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6 MCMC algorithm for model 5 of section 6

Consider the following model specification,

yit = j ⇔ ζj−1 < y∗it ≤ ζj , 1 ≤ j ≤ J, i = 1, ..., N , t = 1, ..., T,

y∗it = x ′
itβ + r ′

it−1γ + λtϕi + ǫit,

ϕi = r ′
i0hi1 + x′

ihi2 + ui.

The disturbances ǫit are iid normally distributed, ǫit ∼ N(0, σ2ǫ ) and are assumed to be

uncorrelated with the design matrix xit and the random components ϕi. The factor loadings

λt allow the impact of the random effects ϕi to differ across time. Moreover, ui follow the

DPM model, described by the expression (4.1.6) in the main paper.

For σ−2
ǫ and λt, we assume the following priors:

σ−2
ǫ ∼G( e12 ,

f1
2 ), λt ∼ N(µλ, σ

2
λ).

Posterior sampling of {ϕi}
The random effects ϕi, i = 1, ..., N are generated from

ϕi|y∗i ,Wi, {λt},k′
i, ϑi,hi, σ

2
ǫ , δ ∼ N(D0d0, D0)

where D0 =
(

1
σ2
i

+
∑T

t=1 λ
2
t

σ2
ǫ

)−1

, d0 =

T∑

t=1
λt(y∗it − w ′

itδ)

σ2
ǫ

+
k′

ihi+µi

σ2
i

.

Posterior sampling of δ, σ2ǫ in one block

a) First, sample σ2ǫ marginalized over δ from

σ−2
ǫ |y∗, {Wi}, {λt}, {ϕi}, e1, f1 ∼ G( e12 ,

f1
2 )

where e1 = e1 +NT − k − J + 1, f1 = f1 +
N∑
i=1

T∑
t=1

(y ∗
it −w ′

itδ̂ − λtϕi)
2

and δ̂ = (
N∑
i=1

T∑
t=1

witw
′
it)

−1 × [
N∑
i=1

T∑
t=1

wit(y
∗

it − λtϕi)].

b) Second, sample δ from its full posterior distribution:

δ|σ2ǫ ,y
∗, {λt}, {Wi}, {ϕi} ∼ N(δ̂, ( 1

σ2
ǫ

N∑
i=1

T∑
t=1

witw
′
it)

−1 ).

Posterior sampling of ζ∗(2,J−2) and y
∗ in one block

a) Draw from the posterior kernel of the cutpoints ζ∗(2,J−2) marginally of the latent

variable y∗it . This kernel has a nonstandard density,

p(ζ∗(2,J−2)|y, δ, σ2ǫ , {ϕi}, {λt}) ∝ p(ζ(2,J−2)|y, δ, σ2ǫ , {ϕi}, {λt})×
J−2∏

j=2

(1−ζj−1) exp(ζ
∗

j )

(1+exp(ζ∗j ))2
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where

p(ζ(2,J−2)|y, δ, σ2ǫ , {ϕi}, {λt}) ∝
∏

it:yit=2,t≥1

P (ζ1 < y∗it ≤ ζ2)× ...

...×
∏

it:yit=J−1,t≥1

P (ζJ−2 < y ∗
it ≤ ζJ−1)

and P (ζj−1 < y ∗
it ≤ ζj) = Φ(

ζj−w ′

itδ−λtϕi

σǫ
)− Φ(

ζj−1−w ′

itδ−λtϕi

σǫ
), j = 1, ...., J .

Hence, we sample from p(ζ∗(2,J−2)|•) by employing a proposal density (multivariate t

density) which is evaluated within a M-H step, similar to that for our main model. We,

then, calculate ζj , j = 2, .., J − 2 from ζj =
ζj−1+exp(ζ∗j )

1+exp(ζ∗j )
.

b) Draw the latent dependent variable y∗it , i = 1, ..., N, t = 1, ..., T from the truncated

normal

y∗it |yit = j,w′
it, δ, λt, ϕi, σ

2
ǫ ∼N(w ′

itδ + λtϕi, σ
2
ǫ )1(ζj−1 < y∗it ≤ ζj).

Posterior sampling of {λt}Tt=1

Sample λt for t = 1, ..., T from

λt|{y∗it}i≥1, µλ, σ
2
λ, {w′

it}i≥1, {ϕi}, σ2ǫ ∼ N(D1d1, D1)

where D1 =
(

1
σ2
λ

+
∑N

i=1 ϕ
2
i

σ2
ǫ

)−1

, d1 =
µλ

σ2
λ

+
∑N

i=1 ϕi(y
∗

it−w′

itδ)

σ2
ǫ

.

The updating of {hi}, h̃, H̃, {ui} , {ϑi} and a is the same as in our main model.

7 Calculating the posterior probabilities of subsection 6.4

Using our main model, we compute the posterior probability of observing the actual ratings

before the European debt crisis as

P (yit = yobs,beforeit |y,W) =

∫
P (yit = yobs,beforeit |y,W, δ, ϕi, σ

2
v , ρ, ζj−1, ζj)

× dp(δ, ϕi, σ
2
v , ρ, ζj−1, ζj |y,W),

where yobs,beforeit denotes the observed yit before the European crisis, that is, for i = 1, ..., N ,

and t = 1, ..., T1 (the pre-crisis period), with T1 < T . Also, y is the vector of all the observed

responses and W = {Wi}Ni=1, with Wi = (wi1, ...,wiT )
′.

The above quantity can be directly estimated within the MCMC code from
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P̂ (yit = yobs,beforeit |y,W) =
1

M

M∑

m=1

P (yit = yobs,beforeit |y,W, δ(m), ϕ
(m)
i , σ2(m)

v , ρ(m), ζ
(m)
j−1, ζ

(m)
j ),

where δ(m), ϕ
(m)
i , σ

2(m)
v , ρ(m), ζ

(m)
j−1, ζ

(m)
j are posterior draws, obtained from the sampler and

M is the number of iterations after the burn-in period. Therefore, the average probability

of observing the actual ratings before the European crisis is given by

1

N × T1

N∑

i=1

T1∑

t=1

P (yit = yobs,beforeit |y,W),

and is approximated by

1

M ×N × T1

M∑

m=1

N∑

i=1

T1∑

t=1

P̂ (yit = yobs,beforeit |y,W).

In a similar way, we can compute the average probability of observing the actual ratings

during the European debt crisis (t = T1+1, ..., T ). Similar analysis holds for the calculation of

the probabilities P (yit > yobsit |y,W) and P (yit < yobsit |y,W) before and during the European

crisis.

It is possible, though, that the behaviour of Moody’s could have changed during the crisis.

If this is the case, the calculation of the probabilities conditional on the whole data might

give misleading results. Therefore, we also calculated the above probabilities conditional only

on the data related to each period separately. For instance, we approximated the average

probability of observing the actual ratings before the European crisis as

1

M ×N × T1

M∑

m=1

N∑

i=1

T1∑

t=1

P̂ (yit = yobs,beforeit |ybefore,Wbefore),

where ybefore = {yit}i≥1,1≤t≤T1 andWbefore = {Wbefore
i }Ni=1, withWbefore

i = (wi1, ...,wiT1)
′.

We found (results not shown) that the main conclusion about the stickiness of ratings does

not change.

For the East Asian crisis, the whole time period (t = 1, ..., T ) was divided in three

segments; the pre-crisis period (t = 1, ..., T1), the crisis period (t = T1 + 1, ..., T2) and the

post-crisis period (t = T2 + 1, ..., T ). The posterior probabilities for the East Asian crisis

were calculated in a similar way. We still found stickiness in the behaviour of ratings (results

not shown) when the posterior probabilities were conditioned on the data related to each

period separately.
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8 Testing the strict exogeneity assumption of the proposed

model

Consider the model of section 4:

yit = j ⇔ ζj−1 < y∗it ≤ ζj , 1 ≤ j ≤ J, i = 1, ..., N , t = 1, ..., T,

y∗it = x ′
itβ + r ′

it−1γ + ϕi + ǫit,

ǫit = ρǫit−1 + vit, vit
i.i.d∼ N(0, σ2v),

ϕi = r ′
i0hi1 + x′

ihi2 + ui,

ui|ϑi ∼ N(µi, σ
2
i ), ϑi = (µi, σ

2
i ),

ϑi
iid∼ G, G|a,G0 ∼ DP (a,G0),

G0 ≡ N(µi;µ0, τ0σ
2
i )IG(σ2i ; e02 ,

f0
2 ),

a ∼ G(c, d).

Let x̃it be the suspected endogenous variables of inflation and GDP growth, which are a

subset of the covariate vector xit. In order to examine whether inflation and GDP growth

are strictly exogenous, we develop in a Bayesian setting a test procedure that is similar to

the approach of (Wooldridge, 2010, Section 15.8.2, p. 618-619). In particular, we add x̃it+1

as an additional vector of covariates in the equation for y∗it , namely,

y∗it = x ′
itβ + x̃ ′

it+1δ̃ + r ′
it−1γ + ϕi + ǫit,

where δ̃ = (δ̃1, δ̃2)
′ and conduct the following hypothesis testing

H0 : δ̃i = 0, i = 1, 2,

H1 : δ̃1 6= 0 or δ̃2 6= 0.

The intuition is that under the null hypothesis H0 there are no feedback effects present

in the data. In other words, if strict exogeneity assumption holds, the effect of each covariate

in x̃it+1 will be insignificant. Under the alternative hypothesis H1, the assumption of strict

exogeneity is violated.

To test this hypothesis, we calculate the highest posterior density interval (HPD) for

each δ̃i, i = 1, 2. The HPD interval, as an ad hoc way to examine model restrictions, is a

specific case of credible intervals.

Credible intervals are used in the Bayesian methodology in order to quantify the posterior

uncertainty regarding the parameters of a model. These intervals are analogous to confidence

intervals used in the frequentist literature. An interval [a, b] is a 100α% credible interval for

a univariate parameter θ, with α ∈ [0, 1] representing the amount of the probability mass

included in it, if it encloses 100α% of the posterior distribution mass of θ:

P (a ≤ θ ≤ b|y) = α,
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where y is the vector of observed data. In this paper we take α = 0.95.

The HPD interval additionally requires that the posterior mass at any point inside this

interval be larger than the mass at any point outside of it:

The credible interval C is a 100α% HPD interval if for any points ϕ1 ∈ C and ϕ2 /∈ C,

p(φ1|y) ≥ p(φ2|y).

So, we calculate the 95% highest posterior density interval for each of the coefficients

corresponding to the added variables. If the HPD interval for δ̃i, i = 1, 2, does not include

0, this is evidence against the null hypothesis H0. These intervals are reported below Table

4 of section 10 of this Appendix.

It is also worth mentioning that by implementing this test, we lose the observation of the

last period due to the inclusion of the one-period ahead covariate vector x̃it+1 in the latent

regression for y∗it .

We also use 95% HPD intervals throughout the paper to examine the statistical signif-

icance of individual regression coefficients, as well as of other parameters (for example, the

autoregressive parameter ρ).

9 A Monte Carlo simulation study

To evaluate the performance of the proposed algorithm (see section 4 in the main paper), we

conduct some simulation experiments. Specifically, we set N = 60, T = 14, J = 12, k = 1.

The true parameter values are defined as follows

β1 = 0.3,γ = (0.4, 0.8, 0.3, 0.1,−0.2, 0.1, 0.3, 0.6, 0.4, 0.25, 0.7),

ρ = 0.5, σ2v = 0.01, ζ2 = 0.1, ζ3 = 0.2, ζ4 = 0.3, ζ5 = 0.4,

ζ6 = 0.5, ζ7 = 0.6, ζ8 = 0.7, ζ9 = 0.8, ζ10 = 0.9.

The heterogeneous parameters hi, i = 1, ..., N , are generated from the multivariate nor-

mal Nk+J−1(h̃, H̃) where h̃ = (0, ..., 0)′, and H̃ = Ik+J−1, the (k + J − 1) × (k + J − 1)

identity matrix. Each xit is generated independently as 0.3+U(0, 1) where U(a, b) is a uni-

form distribution defined on the domain (a, b).

We also assume the following prior distributions:

σ−2
v ∼ G(4.2/2, 0.5/2), ρ ∼ N(0, 10)I(−1,1)(ρ),

h̃ ∼ N(0, 100× Ik+J−1), H̃ ∼ IW (12, 20× Ik+J−1),

µi ∼ N(0, 4× σ2i ), σ
2
i ∼ IG(4.2/2, 0.5/2).

We examine 2 cases:

1) The error term ui is generated from a normal N(0, 1).
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2) The error term ui is generated from a mixture of two gammas, ui ∼ 0.5G(1, 0.5) +
0.5G(4, 1).

We saved 150000 draws after discarding the first 50000 samples, while the acceptance

rate was set around 75% for the independence M-H step for the cutpoints and ρ.

Table 1 reports the simulation results of our semiparametric model and a fully parametric

dynamic panel random effects OP model, in which the error distribution of ui is normal

N(µu, σ
2
u) with priors µu ∼ N(0, 4× σ2u) and σ

2
u ∼ IG(4.2/2, 0.5/2).

For case 1, both the semiparametric and the fully parametric models produce accurate

results (close to the true parameter values), given the small sample size. For case 2, the

fully parametric model has significant bias of some of the parameters (β1, ρ) whereas the

semiparametric model performs well overall, producing more accurate posterior estimates

(with smaller standard deviations) than the parametric model.

From our simulation studies we also infer that when the cell counts are more balanced,

that is, when the number of observations falling in each ordinal category are roughly equal,

the accuracy of the estimates improves. Similarly, the more observations we have across the

categories, the better the estimation results in terms of posterior accuracy. The posterior

means of the cutpoints, though, are robust to small sample sizes and to unbalanced cell

counts.

We also calculated the true average partial effects for xit for both models for cases 1

(Table 2) and 2 (Table 3). In both cases, the estimation results are quite close to the true

values. The semiparametric model leads to smaller biases and to slightly smaller standard

errors under case 2, while under case 1 the parametric model yields posterior means of the

average partial effects closer to their true values.
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Table 1: Simulation results

Error distribution N(0, 1) Non-normal

Model Semiparametric Parametric Semiparametric Parametric

true values Mean Stdev Mean Stdev Mean Stdev Mean Stdev

β1 = 0.3 0.3085 0.0127 0.3024 0.0124 0.3226 0.0182 0.7261 0.0191

γ1 = 0.4 0.4086 0.0391 0.3994 0.0377 0.5033 0.0578 0.5219 0.0625

γ2 = 0.8 0.8630 0.0452 0.8548 0.0470 0.8566 0.1002 0.8775 0.1113

γ3 = 0.3 0.3369 0.0458 0.3406 0.0473 0.2427 0.0757 0.2281 0.0842

γ4 = 0.1 0.0652 0.0396 0.0672 0.0415 0.1465 0.0794 0.1553 0.0830

γ5 = −0.2 -0.1896 0.0472 -0.1926 0.0482 -0.2073 0.0617 -0.2126 0.0659

γ6 = 0.1 0.0771 0.0398 0.0896 0.0415 0.1665 0.0661 0.1839 0.0697

γ7 = 0.3 0.2949 0.0435 0.2994 0.0412 0.4117 0.0577 0.4209 0.0614

γ8 = 0.6 0.6182 0.0438 0.6047 0.0420 0.7012 0.0622 0.7160 0.0703

γ9 = 0.4 0.4094 0.0431 0.4070 0.0453 0.4516 0.0570 0.4585 0.0619

γ10 = 0.25 0.2185 0.0566 0.2236 0.0607 0.2851 0.0480 0.2873 0.0533

γ11 = 0.7 0.7399 0.0526 0.7426 0.0537 0.7246 0.0669 0.7403 0.0728

ρ=0.5 0.5588 0.1593 0.6073 0.1433 0.6212 0.0823 0.7212 0.0923

σ2v = 0.01 0.0142 0.0020 0.0137 0.0018 0.0187 0.0033 0.0192 0.0037

ζ2 = 0.1 0.1114 0.0214 0.1077 0.0210 0.0579 0.0224 0.0546 0.0235

ζ3 = 0.2 0.1909 0.0240 0.1861 0.0241 0.1479 0.0315 0.1387 0.0325

ζ4 = 0.3 0.3115 0.0248 0.3066 0.0255 0.2164 0.0370 0.2030 0.0365

ζ5 = 0.4 0.4231 0.0247 0.4201 0.0254 0.3565 0.0380 0.3403 0.0393

ζ6 = 0.5 0.5382 0.0245 0.5372 0.0252 0.4476 0.0369 0.4371 0.0379

ζ7 = 0.6 0.6216 0.0244 0.6194 0.0250 0.5387 0.0351 0.5341 0.0362

ζ8 = 0.7 0.7523 0.0237 0.7510 0.0242 0.6826 0.0327 0.6798 0.0335

ζ9 = 0.8 0.8380 0.0220 0.8374 0.0224 0.7856 0.0287 0.7835 0.0292

ζ10 = 0.9 0.8993 0.0191 0.8987 0.0194 0.9054 0.0214 0.9051 0.0216

µu = 0 -0.0445 0.2169

σ2u = 1 0.9702 0.1254
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Table 2: Simulation results (case 1): Average partial effects

Error distribution Normal

Model semiparametric parametric

True av. partial effects Mean Stdev Mean Stdev

APEβ1(yt = 1) = −0.0688 -0.0627 0.2537 -0.0646 0.2465

APEβ1(yt = 2) = 0.0039 -0.0144 0.2608 -0.0136 0.2305

APEβ1(yt = 3) = −0.0120 -0.0030 0.2101 -0.0016 0.2415

APEβ1(yt = 4) = −0.0033 0.0039 0.3098 0.0039 0.2796

APEβ1(yt = 5) = 0.0031 -0.0088 0.2666 -0.0065 0.2702

APEβ1(yt = 6) = −0.0104 0.0010 0.3049 -0.0017 0.2745

APEβ1(yt = 7) = −0.0028 -0.0023 0.2761 -0.0027 0.2402

APEβ1(yt = 8) = 0.0035 -0.0030 0.2230 -0.0008 0.2945

APEβ1(yt = 9) = 0.0004 0.0086 0.2599 0.0074 0.2286

APEβ1(yt = 10) = 0.0106 0.0013 0.1787 0.0012 0.2083

APEβ1(yt = 11) = 0.0005 -0.0059 0.2629 -0.0048 0.2348

APEβ1(yt = 12) = 0.0751 0.0851 0.2931 0.0838 0.3104

Table 3: Simulation results (case 2): Average partial effects

Error distribution Non-Normal

Model semiparametric parametric

True av. partial effects Mean Stdev Mean Stdev

APEβ1(yt = 1) = −0.0373 -0.0314 0.1636 -0.0287 0.1690

APEβ1(yt = 2) = −0.0013 -0.0026 0.0664 -0.0037 0.0883

APEβ1(yt = 3) = 0.0105 -0.0012 0.1077 -0.0015 0.1436

APEβ1(yt = 4) = 0.0035 -0.0011 0.0991 -0.0017 0.1312

APEβ1(yt = 5) = −0.0112 -0.0060 0.1708 -0.0032 0.2097

APEβ1(yt = 6) = −0.0154 -0.0045 0.1461 -0.0033 0.1784

APEβ1(yt = 7) = 0.0003 -0.0053 0.1514 -0.0061 0.1801

APEβ1(yt = 8) = −0.0079 -0.0035 0.2087 -0.0057 0.2462

APEβ1(yt = 9) = −0.0078 -0.0127 0.1949 -0.0120 0.2320

APEβ1(yt = 10) = −0.0111 -0.0116 0.2118 -0.0097 0.2652

APEβ1(yt = 11) = 0.0046 0.0101 0.1729 0.0142 0.2053

APEβ1(yt = 12) = 0.0733 0.0668 0.2377 0.0650 0.2425

10 Empirical results

In this section we report the regression results for the models of subsection 6.3.2. We also

display the complete tables for the average partial effects of the lagged dummies for the

models of section 6.3. Regarding these tables, we note that for space constraint reasons,

we use the simplified notation Ra1(t−1) and APE(yt = 1) instead of Ra1(≤ Caa1)(t−1)

and APE≤Caa1(yt = 1) that we use in the main paper. Similar notation is applied for the

remaining lagged dummies. Last, we present the tables for the results on the issue of ratings’

procyclicality for the European debt crisis and the East Asian crisis.
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Table 4: Empirical results: Dynamic panel ordered probit models

model 4a model 4b model 5 model 4 (endogeneity)

GDP growth 0.0029* 0.0029* 0.0030* 0.0023*
(0.0004) (0.0003) (0.0013) (0.0010)

Inflation -0.0034* -0.0034* -0.0034* -0.0030*
(0.0009) (0.0009) (0.0009) (0.0009)

Unemployment -0.0099* -0.0101* -0.0082* -0.0093*
(0.0030) (0.0031) (0.0021) (0.0033)

Current account balance 0.0019 0.0018 0.0020* 0.0017
(0.0010) (0.0010) (0.0008) (0.0010)

Government Balance -0.0026* -0.0027* -0.0007 -0.0025*
(0.0012) (0.0012) (0.0013) (0.0013)

Government Debt -0.0036* -0.0037* -0.0023* -0.0031*
(0.0005) (0.0006) (0.0003) (0.0006)

Political stability -0.0048 -0.0072 0.0046 -0.0104
(0.0192) (0.0195) (0.0154) (0.0197)

Regulatory quality 0.1223* 0.1209* 0.0694* 0.1075*
(0.0318) (0.0320) (0.0248) (0.0319)

GDP growtht+1 0.0013
(0.0009)

Inflationt+1 -0.0001
(0.0009)

Ra17(= Aaa)(t−1) 0.1506* 0.1384 0.2113* 0.1209*
(0.0465) (0.0475) (0.0397) (0.0449)

Ra16(= Aa1)(t−1) -0.0306 -0.0322 0.0136 -0.2506
(0.0552) (0.0557) (0.0491) (0.0781)

Ra15(= Aa2)(t−1) 0.1253* 0.1242* 0.1183* 0.1181*
(0.0406) (0.0409) (0.0328) (0.0352)

Ra14(= Aa3)(t−1) 0.0446 0.0441 0.0482 -0.0150
(0.0312) (0.0311) (0.0285) (0.0428)

Ra12(= A2)(t−1) -0.0153 -0.0143 -0.0567* -0.0274
(0.0216) (0.0215) (0.0192) (0.0220)

Ra11(= A3)(t−1) -0.0462 -0.0424 -0.1182* -0.0486
(0.0288) (0.0288) (0.0222) (0.0286)

Ra10(= Baa1)(t−1) -0.0595 -0.0541 -0.1331* -0.0543
(0.0303) (0.0307) (0.0247) (0.0308)

Ra9(= Baa2)(t−1) -0.0999* -0.0909* -0.2174* -0.0975*
(0.0354) (0.0358) (0.0267) (0.0352)

Ra8(= Baa3)(t−1) -0.0948* -0.0849* -0.2222* -0.0725*
(0.0371) (0.0376) (0.0282) (0.0383)

Ra7(= Ba1)(t−1) -0.1050* -0.0922* -0.2756* -0.0830*
(0.0410) (0.0412) (0.0329) (0.0400)

Ra6(= Ba2)(t−1) -0.1205* -0.1024* -0.3501* -0.0993*
(0.0501) (0.0505) (0.0379) (0.0411)

Ra5(= Ba3)(t−1) -0.1545* -0.1349* -0.3957* -0.1336*
(0.0538) (0.0543) (0.0392) (0.0516)

Ra4(= B1)(t−1) -0.1442* -0.1223* -0.4120* -0.1235*
(0.0543) (0.0544) (0.0387) (0.0511)
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Table 4: Empirical results: Continued. Dynamic panel ordered probit models

model 4a model 4b model 5 model 4 (endogeneity)

Ra3(= B2)(t−1) -0.1418* -0.1185* -0.4336* -0.1130*

(0.0583) (0.0585) (0.0422) (0.0562)
Ra2(= B3)(t−1) -0.1789* -0.1539* -0.4940* -0.1531*

(0.0631) (0.0631) (0.0441) (0.0609)
Ra1(≤ Caa1)(t−1) -0.1642* -0.1366* -0.5455* -0.1318*

(0.0697) (0.0691) (0.0510) (0.0661)
σ2ǫ 0.0041*

(0.0003)
ρ 0.8435* 0.9181* 0.7225*

(0.0763) (0.0776) (0.0117)
σ2v 0.0043* 0.0041* 0.0038*

(0.0008) (0.0003) (0.0003)

DIC 934.10 917.42 1316.12 918.34
CV 0.5614 0.5622 0.5020 0.5564

*Significant based on the 95% highest posterior density interval. Standard errors
in parentheses. Ra1(≤ Caa1)(t−1) is the first lagged dummy variable representing
the ratings “Caa1 and below”, Ra2(= B3)(t−1) is the second lagged dummy variable
representing the rating B3 and so forth.

Some comments on Table 4

• The empirical results of models 4a and 4b verify the findings of model 4 in terms of
the significant explanatory variables. Also, the pattern of the significant lagged dummy
effects in model 4 was found to be the same in models 4a and 4b; the significant effects
are negative from Baa2 and below, increase monotonically as we move upwards within
the Ba category, are larger for Baa3 and Baa2 than those for speculative-grade ratings
and become positive for ratings Aa2 and Aaa.

• Models 5 and 2 produce the same set of significant macroeconomic covariates and of
lagged dummies (14 out of 16). Furthermore, in model 5 the effect of the significant
lagged dummies increases monotonically, as in model 2.

• As far as model 4 with endogeneity is concerned, the HPD intervals for δ1 and δ2
(see section 8 of this Appendix) are (-1.9542, 1.9717) and (-1.8791, 2.0177), respectively.
Therefore, there is evidence in favour of the strict exogeneity assumption. As such, in
the main paper we use model 4 as the final one instead of model 4 with endogeneity.
The results of model 4 and model 4 with endogeneity are the same, in terms of the
significance of the explanatory variables. Also, both these models produced similar
coefficient values for the covariates.
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Table 5: Empirical results: Average partial effects for the lagged dummies of model 4

Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra4(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra8(t−1) Ra9(t−1) Ra10(t−1) Ra11(t−1) Ra12(t−1) Ra14(t−1) Ra15(t−1) Ra16(t−1) Ra17(t−1)

APE(yt = 1) 0.0762 0.0613 0.0360 0.0585 0.0674 0.0508 0.0457 0.0418 0.0451 0.0259 0.0200 0.0067 -0.0100 -0.0201 0.0184 -0.0213

APE(yt = 2) 0.0097 0.0302 0.0017 -0.0003 0.0001 0.0019 0.0048 0.0039 0.0039 0.0038 0.0033 0.0013 -0.0098 -0.0207 0.0006 -0.0216

APE(yt = 3) 0.0025 0.0203 0.0518 0.0020 -0.0062 -0.0072 -0.0014 0.0001 0.0004 -0.0015 -0.0015 -0.0007 -0.0037 -0.0222 -0.0011 -0.0257

APE(yt = 4) 0.0092 0.0081 0.0191 0.0260 0.0146 -0.0002 0.0022 0.0078 0.0085 0.0051 0.0039 0.0013 0.0015 -0.0005 0.0042 -0.0023

APE(yt = 5) 0.0070 0.0042 0.0013 0.0168 0.0238 0.0083 -0.0044 0.0045 0.0057 0.0036 0.0030 0.0013 -0.0023 -0.0021 0.0024 -0.0027

APE(yt = 6) 0.0113 0.0072 -0.0027 0.0101 0.0309 0.0493 -0.0038 -0.0005 0.0096 0.0063 0.0052 0.0014 -0.0049 -0.0109 0.0045 -0.0111

APE(yt = 7) 0.0019 0.0001 -0.0040 -0.0060 -0.0055 0.0027 0.0621 -0.0131 -0.0093 0.0036 0.0029 0.0017 -0.0074 -0.0179 0.0011 -0.0195

APE(yt = 8) -0.0011 -0.0010 -0.0026 -0.0022 -0.0092 -0.0142 -0.0055 0.0470 -0.0141 -0.0062 -0.0016 -0.0008 -0.0008 -0.0095 -0.0016 -0.0120

APE(yt = 9) 0.0022 0.0026 0.0023 0.0021 0.0011 -0.0022 -0.0158 0.0036 0.0437 -0.0094 -0.0051 -0.0005 0.0017 0.0003 -0.0003 -0.0011

APE(yt = 10) 0.0019 0.0012 0.0038 0.0034 0.0030 0.0039 0.0011 -0.0108 0.0113 0.0275 -0.0024 -0.0005 0.0005 0.0009 0.0033 0.0028

APE(yt = 11) -0.0064 -0.0080 -0.0043 -0.0047 -0.0058 -0.0024 -0.0018 -0.0058 -0.0119 0.0027 0.0180 -0.0024 -0.0027 -0.0052 -0.0004 -0.0010

APE(yt = 12) -0.0221 -0.0245 -0.0197 -0.0206 -0.0223 -0.0173 -0.0159 -0.0154 -0.0238 -0.0167 -0.0060 0.0077 -0.0038 -0.0148 -0.0073 -0.0074

APE(yt = 13) -0.0197 -0.0213 -0.0180 -0.0184 -0.0195 -0.0166 -0.0159 -0.0155 -0.0181 -0.0135 -0.0151 -0.0067 0.0048 -0.0043 -0.0085 0.0023

APE(yt = 14) -0.0046 -0.0055 -0.0037 -0.0039 -0.0046 -0.0027 -0.0019 -0.0014 -0.0018 -0.0006 -0.0007 -0.0009 0.0123 0.0190 -0.0020 0.0088

APE(yt = 15) -0.0122 -0.0134 -0.0114 -0.0119 -0.0128 -0.0104 -0.0096 -0.0088 -0.0096 -0.0048 -0.0034 -0.0013 0.0030 0.0548 -0.0059 0.0070

APE(yt = 16) -0.0073 -0.0075 -0.0071 -0.0073 -0.0074 -0.0070 -0.0072 -0.0072 -0.0074 -0.0059 -0.0049 -0.0020 -0.0000 0.0116 0.0076 0.0007

APE(yt = 17) -0.0484 -0.0540 -0.0423 -0.0436 -0.0476 -0.0367 -0.0328 -0.0302 -0.0323 -0.0199 -0.0158 -0.0056 0.0218 0.0416 -0.0150 0.1042

Table 6: Empirical results: Average partial effects for the lagged dummies of model 1

Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra4(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra8(t−1) Ra9(t−1) Ra10(t−1) Ra11(t−1) Ra12(t−1) Ra14(t−1) Ra15(t−1) Ra16(t−1) Ra17(t−1)

APE(yt = 1) 0.5697 0.4557 0.3512 0.3213 0.2963 0.2183 0.1821 0.1557 0.1199 0.0835 0.0630 0.0253 -0.0161 -0.0329 -0.0350 -0.0387

APE(yt = 2) 0.0282 0.0447 0.0437 0.0274 0.0247 0.0215 0.0013 0.0123 0.0124 0.0099 0.0088 0.0052 -0.0054 -0.0154 -0.0180 -0.0239

APE(yt = 3) 0.0104 0.0439 0.0790 0.0450 0.0342 0.0317 0.0111 0.0033 0.0151 0.0108 0.0080 0.0040 -0.0064 -0.0206 -0.0251 -0.0443

APE(yt = 4) -0.0021 0.0078 0.0336 0.0295 0.0247 0.0236 0.0133 -0.0037 0.0067 0.0073 0.0055 0.0019 -0.0017 -0.0076 -0.0100 -0.0242

APE(yt = 5) -0.0003 -0.0004 0.0139 0.0202 0.0224 0.0260 0.0143 -0.0019 0.0023 0.0063 0.0055 0.0023 -0.0013 -0.0044 -0.0061 -0.0175

APE(yt = 6) 0.0191 -0.0096 -0.0003 0.0149 0.0289 0.0565 0.0473 0.0075 -0.0057 0.0077 0.0101 0.0051 -0.0037 -0.0085 -0.0104 -0.0291

APE(yt = 7) 0.0360 0.0068 -0.0185 -0.0156 -0.0065 0.0238 0.0736 0.0379 -0.0027 -0.0067 0.0035 0.0042 -0.0049 -0.0125 -0.0142 -0.0266

APE(yt = 8) -0.0069 0.0279 0.0011 -0.0180 -0.0214 -0.0145 0.0242 0.0529 0.0257 -0.0041 -0.0071 0.0006 -0.0029 -0.0096 -0.0117 -0.0205

APE(yt = 9) -0.0377 0.0053 0.0194 0.0041 -0.0068 -0.0208 -0.0114 0.0227 0.0336 0.0163 -0.0039 -0.0029 -0.0012 -0.0053 -0.0068 -0.0159

APE(yt = 10) -0.0547 -0.0292 0.0063 0.0200 0.0157 -0.0138 -0.0239 -0.0078 0.0170 0.0254 0.0104 -0.0028 -0.0007 -0.0045 -0.0047 -0.0154

APE(yt = 11) -0.0491 -0.0422 -0.0233 0.0044 0.0132 0.0006 -0.0183 -0.0230 -0.0088 0.0054 0.0118 0.0022 -0.0016 -0.0065 -0.0050 -0.0159

APE(yt = 12) -0.0781 -0.0759 -0.0694 -0.0327 -0.0137 0.0061 -0.0117 -0.0426 -0.0395 -0.0251 -0.0025 0.0066 -0.0010 -0.0137 -0.0109 -0.0481

APE(yt = 13) -0.0652 -0.0652 -0.0668 -0.0529 -0.0449 -0.0111 0.0077 -0.0036 -0.0260 -0.0328 -0.0247 -0.0066 0.0083 0.0082 0.0012 -0.0821

APE(yt = 14) -0.0250 -0.0252 -0.0255 -0.0239 -0.0231 -0.0131 0.0013 0.0164 0.0070 -0.0053 -0.0098 -0.0063 0.0053 0.0175 0.0108 -0.0383

APE(yt = 15) -0.0387 -0.0388 -0.0389 -0.0382 -0.0381 -0.0307 -0.0130 0.0311 0.0399 0.0216 0.0044 -0.0072 0.0066 0.0397 0.0342 -0.0354

APE(yt = 16) -0.0249 -0.0250 -0.0249 -0.0249 -0.0249 -0.0238 -0.0191 0.0052 0.0282 0.0360 0.0275 0.0055 0.0018 0.0187 0.0258 0.0119

APE(yt = 17) -0.2807 -0.2807 -0.2807 -0.2807 -0.2807 -0.2804 -0.2788 -0.2622 -0.2251 -0.1562 -0.1106 -0.0371 0.0248 0.0574 0.0859 0.4638
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Table 7: Empirical results: Average partial effects for the lagged dummies of model 2
Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra4(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra8(t−1) Ra9(t−1) Ra10(t−1) Ra11(t−1) Ra12(t−1) Ra14(t−1) Ra15(t−1) Ra16(t−1) Ra17(t−1)

APE(yt = 1) 0.3395 0.2744 0.1917 0.1978 0.1831 0.1443 0.1243 0.1017 0.0924 0.0555 0.0444 0.0172 -0.0121 -0.0262 -0.0077 -0.0367

APE(yt = 2) 0.0360 0.0431 0.0401 0.0254 0.0202 0.0103 0.0063 0.0142 0.0138 0.0088 0.0071 0.0030 -0.0039 -0.0106 -0.0033 -0.0184

APE(yt = 3) 0.0434 0.0592 0.0772 0.0484 0.0373 0.0276 -0.0025 0.0155 0.0206 0.0153 0.0129 0.0053 -0.0045 -0.0132 -0.0035 -0.0295

APE(yt = 4) 0.0163 0.0206 0.0362 0.0285 0.0240 0.0224 0.0012 -0.0006 0.0073 0.0066 0.0059 0.0029 -0.0029 -0.0069 -0.0021 -0.0146

APE(yt = 5) 0.0084 0.0117 0.0206 0.0206 0.0207 0.0226 0.0072 -0.0047 0.0024 0.0039 0.0036 0.0017 -0.0022 -0.0057 -0.0018 -0.0111

APE(yt = 6) 0.0021 0.0111 0.0217 0.0283 0.0357 0.0504 0.0380 -0.0058 -0.0048 0.0051 0.0058 0.0026 -0.0030 -0.0091 -0.0025 -0.0194

APE(yt = 7) -0.0219 -0.0114 -0.0012 0.0090 0.0183 0.0390 0.0705 0.0280 -0.0069 -0.0003 0.0048 0.0028 -0.0027 -0.0076 -0.0020 -0.0185

APE(yt = 8) -0.0353 -0.0324 -0.0282 -0.0164 -0.0095 0.0009 0.0377 0.0553 0.0229 -0.0036 -0.0022 0.0018 -0.0024 -0.0063 -0.0018 -0.0138

APE(yt = 9) -0.0314 -0.0339 -0.0360 -0.0276 -0.0237 -0.0219 -0.0062 0.0272 0.0364 0.0104 -0.0048 -0.0012 -0.0017 -0.0050 -0.0016 -0.0100

APE(yt = 10) -0.0305 -0.0323 -0.0368 -0.0331 -0.0319 -0.0341 -0.0305 -0.0071 0.0198 0.0216 0.0069 -0.0019 -0.0009 -0.0041 -0.0008 -0.0080

APE(yt = 11) -0.0279 -0.0265 -0.0279 -0.0278 -0.0288 -0.0320 -0.0346 -0.0268 -0.0094 0.0066 0.0128 0.0013 -0.0014 -0.0047 -0.0009 -0.0065

APE(yt = 12) -0.0494 -0.0441 -0.0392 -0.0393 -0.0404 -0.0435 -0.0500 -0.0509 -0.0445 -0.0233 -0.0021 0.0039 -0.0008 -0.0085 -0.0017 -0.0107

APE(yt = 13) -0.0467 -0.0418 -0.0335 -0.0322 -0.0302 -0.0278 -0.0294 -0.0334 -0.0397 -0.0294 -0.0249 -0.0058 0.0069 0.0084 0.0015 -0.0080

APE(yt = 14) -0.0204 -0.0187 -0.0150 -0.0142 -0.0127 -0.0100 -0.0079 -0.0084 -0.0110 -0.0092 -0.0102 -0.0047 0.0048 0.0137 0.0022 -0.0022

APE(yt = 15) -0.0335 -0.0317 -0.0267 -0.0256 -0.0231 -0.0177 -0.0108 -0.0080 -0.0094 -0.0086 -0.0103 -0.0066 0.0058 0.0285 0.0063 0.0019

APE(yt = 16) -0.0203 -0.0198 -0.0179 -0.0175 -0.0163 -0.0132 -0.0081 -0.0043 -0.0035 -0.0014 -0.0017 -0.0020 0.0021 0.0127 0.0051 0.0096

APE(yt = 17) -0.1285 -0.1275 -0.1249 -0.1243 -0.1225 -0.1174 -0.1054 -0.0919 -0.0864 -0.0581 -0.0479 -0.0201 0.0189 0.0447 0.0144 0.1958

Table 8: Empirical results: Average partial effects for the lagged dummies of model 4a

Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra4(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra8(t−1) Ra9(t−1) Ra10(t−1) Ra11(t−1) Ra12(t−1) Ra14(t−1) Ra15(t−1) Ra16(t−1) Ra17(t−1)

APE(yt = 1) 0.0899 0.0721 0.0411 0.0666 0.0754 0.0583 0.0513 0.0461 0.0487 0.0278 0.0212 0.0069 -0.0102 -0.0205 0.0166 -0.0224

APE(yt = 2) 0.0117 0.0326 0.0047 -0.0002 -0.0002 0.0018 0.0052 0.0043 0.0043 0.0042 0.0037 0.0014 -0.0098 -0.0207 0.0005 -0.0221

APE(yt = 3) 0.0057 0.0259 0.0594 0.0060 -0.0039 -0.0080 -0.0009 0.0010 0.0013 -0.0012 -0.0013 -0.0006 -0.0040 -0.0225 -0.0011 -0.0283

APE(yt = 4) 0.0104 0.0105 0.0235 0.0287 0.0173 0.0014 0.0010 0.0083 0.0090 0.0054 0.0042 0.0013 0.0014 -0.0008 0.0038 -0.0038

APE(yt = 5) 0.0076 0.0047 0.0033 0.0188 0.0253 0.0111 -0.0054 0.0047 0.0063 0.0039 0.0032 0.0013 -0.0023 -0.0022 0.0022 -0.0030

APE(yt = 6) 0.0112 0.0056 -0.0040 0.0119 0.0329 0.0533 -0.0012 -0.0019 0.0100 0.0069 0.0058 0.0015 -0.0051 -0.0110 0.0040 -0.0113

APE(yt = 7) 0.0012 -0.0014 -0.0074 -0.0077 -0.0051 0.0048 0.0666 -0.0128 -0.0119 0.0035 0.0029 0.0017 -0.0076 -0.0183 0.0008 -0.0210

APE(yt = 8) -0.0011 -0.0010 -0.0031 -0.0032 -0.0105 -0.0165 -0.0029 0.0503 -0.0128 -0.0071 -0.0017 -0.0008 -0.0007 -0.0097 -0.0015 -0.0136

APE(yt = 9) 0.0017 0.0018 0.0022 0.0020 0.0001 -0.0034 -0.0180 0.0058 0.0452 -0.0093 -0.0057 -0.0006 0.0017 0.0005 -0.0004 -0.0018

APE(yt = 10) -0.0002 -0.0013 0.0024 0.0020 0.0013 0.0029 -0.0009 -0.0125 0.0133 0.0285 -0.0023 -0.0006 0.0007 0.0013 0.0029 0.0032

APE(yt = 11) -0.0089 -0.0105 -0.0064 -0.0069 -0.0079 -0.0040 -0.0031 -0.0078 -0.0132 0.0032 0.0185 -0.0023 -0.0026 -0.0048 -0.0004 -0.0005

APE(yt = 12) -0.0252 -0.0272 -0.0229 -0.0236 -0.0248 -0.0202 -0.0185 -0.0179 -0.0271 -0.0183 -0.0062 0.0075 -0.0036 -0.0143 -0.0066 -0.0070

APE(yt = 13) -0.0216 -0.0229 -0.0196 -0.0197 -0.0206 -0.0178 -0.0168 -0.0162 -0.0189 -0.0144 -0.0160 -0.0068 0.0051 -0.0039 -0.0076 0.0017

APE(yt = 14) -0.0054 -0.0062 -0.0045 -0.0046 -0.0052 -0.0033 -0.0022 -0.0016 -0.0020 -0.0007 -0.0007 -0.0010 0.0123 0.0194 -0.0016 0.0086

APE(yt = 15) -0.0128 -0.0136 -0.0121 -0.0125 -0.0130 -0.0112 -0.0102 -0.0092 -0.0099 -0.0050 -0.0035 -0.0012 0.0028 0.0547 -0.0053 0.0068

APE(yt = 16) -0.0074 -0.0075 -0.0070 -0.0071 -0.0071 -0.0069 -0.0070 -0.0070 -0.0072 -0.0059 -0.0049 -0.0019 -0.0001 0.0113 0.0072 0.0007

APE(yt = 17) -0.0568 -0.0618 -0.0496 -0.0505 -0.0539 -0.0424 -0.0371 -0.0335 -0.0352 -0.0216 -0.0170 -0.0058 0.0220 0.0414 -0.0135 0.1137
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Table 9: Empirical results: Average partial effects for the lagged dummies of model 4b
Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra4(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra8(t−1) Ra9(t−1) Ra10(t−1) Ra11(t−1) Ra12(t−1) Ra14(t−1) Ra15(t−1) Ra16(t−1) Ra17(t−1)

APE(yt = 1) 0.0730 0.0587 0.0349 0.0564 0.0653 0.0488 0.0442 0.0405 0.0436 0.0249 0.0193 0.0064 -0.0099 -0.0200 0.0170 -0.0210

APE(yt = 2) 0.0096 0.0303 0.0009 -0.0000 0.0005 0.0022 0.0049 0.0041 0.0041 0.0038 0.0033 0.0012 -0.0098 -0.0208 0.0005 -0.0215

APE(yt = 3) 0.0019 0.0191 0.0507 0.0011 -0.0067 -0.0068 -0.0014 0.0000 0.0004 -0.0014 -0.0014 -0.0007 -0.0037 -0.0218 -0.0011 -0.0251

APE(yt = 4) 0.0091 0.0078 0.0182 0.0256 0.0140 -0.0005 0.0024 0.0077 0.0084 0.0051 0.0039 0.0013 0.0015 -0.0003 0.0041 -0.0020

APE(yt = 5) 0.0070 0.0043 0.0009 0.0163 0.0236 0.0075 -0.0041 0.0044 0.0056 0.0035 0.0029 0.0012 -0.0024 -0.0022 0.0023 -0.0026

APE(yt = 6) 0.0118 0.0081 -0.0020 0.0101 0.0309 0.0489 -0.0042 -0.0000 0.0098 0.0062 0.0052 0.0014 -0.0049 -0.0109 0.0043 -0.0110

APE(yt = 7) 0.0022 0.0006 -0.0032 -0.0054 -0.0054 0.0023 0.0617 -0.0131 -0.0086 0.0037 0.0030 0.0017 -0.0077 -0.0182 0.0010 -0.0197

APE(yt = 8) -0.0011 -0.0010 -0.0025 -0.0020 -0.0088 -0.0137 -0.0058 0.0466 -0.0143 -0.0060 -0.0014 -0.0007 -0.0008 -0.0098 -0.0015 -0.0122

APE(yt = 9) 0.0023 0.0028 0.0023 0.0020 0.0013 -0.0020 -0.0154 0.0033 0.0433 -0.0093 -0.0050 -0.0005 0.0016 0.0003 -0.0003 -0.0012

APE(yt = 10) 0.0023 0.0017 0.0040 0.0037 0.0035 0.0041 0.0014 -0.0105 0.0108 0.0271 -0.0024 -0.0004 0.0005 0.0009 0.0032 0.0028

APE(yt = 11) -0.0060 -0.0076 -0.0039 -0.0042 -0.0054 -0.0021 -0.0016 -0.0056 -0.0116 0.0026 0.0177 -0.0024 -0.0029 -0.0053 -0.0004 -0.0011

APE(yt = 12) -0.0213 -0.0239 -0.0191 -0.0199 -0.0218 -0.0166 -0.0154 -0.0150 -0.0230 -0.0162 -0.0058 0.0076 -0.0039 -0.0152 -0.0069 -0.0076

APE(yt = 13) -0.0193 -0.0210 -0.0175 -0.0179 -0.0191 -0.0161 -0.0156 -0.0151 -0.0177 -0.0131 -0.0147 -0.0065 0.0047 -0.0045 -0.0081 0.0020

APE(yt = 14) -0.0046 -0.0056 -0.0036 -0.0038 -0.0046 -0.0026 -0.0018 -0.0014 -0.0017 -0.0005 -0.0006 -0.0009 0.0123 0.0190 -0.0019 0.0086

APE(yt = 15) -0.0123 -0.0136 -0.0115 -0.0120 -0.0129 -0.0104 -0.0096 -0.0089 -0.0097 -0.0049 -0.0035 -0.0013 0.0030 0.0544 -0.0057 0.0067

APE(yt = 16) -0.0074 -0.0077 -0.0072 -0.0074 -0.0075 -0.0071 -0.0073 -0.0072 -0.0075 -0.0059 -0.0049 -0.0019 -0.0000 0.0121 0.0072 0.0007

APE(yt = 17 -0.0472 -0.0531 -0.0413 -0.0426 -0.0468 -0.0359 -0.0324 -0.0299 -0.0319 -0.0197 -0.0156 -0.0054 0.0223 0.0424 -0.0139 0.1043

Table 10: Empirical results: Average partial effects for the lagged dummies of model 5
Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra4(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra8(t−1) Ra9(t−1) Ra10(t−1) Ra11(t−1) Ra12(t−1) Ra14(t−1) Ra15(t−1) Ra16(t−1) Ra17(t−1)

APE(yt = 1) 0.3709 0.3011 0.2227 0.2218 0.2106 0.1651 0.1382 0.1134 0.1105 0.0616 0.0537 0.0237 -0.0145 -0.0287 -0.0027 -0.0370

APE(yt = 2) 0.0325 0.0399 0.0392 0.0242 0.0201 0.0130 0.0039 0.0135 0.0142 0.0089 0.0080 0.0043 -0.0051 -0.0125 -0.0018 -0.0194

APE(yt = 3) 0.0359 0.0507 0.0702 0.0418 0.0318 0.0268 -0.0037 0.0117 0.0187 0.0131 0.0117 0.0054 -0.0055 -0.0158 -0.0018 -0.0306

APE(yt = 4) 0.0143 0.0190 0.0335 0.0251 0.0214 0.0211 0.0020 -0.0018 0.0063 0.0068 0.0064 0.0033 -0.0026 -0.0067 -0.0007 -0.0146

APE(yt = 5) 0.0066 0.0109 0.0194 0.0186 0.0191 0.0212 0.0072 -0.0052 0.0008 0.0041 0.0042 0.0024 -0.0023 -0.0053 -0.0007 -0.0106

APE(yt = 6) -0.0036 0.0074 0.0200 0.0259 0.0331 0.0470 0.0343 -0.0067 -0.0085 0.0033 0.0050 0.0032 -0.0039 -0.0099 -0.0013 -0.0182

APE(yt = 7) -0.0270 -0.0169 -0.0047 0.0059 0.0144 0.0372 0.0680 0.0245 -0.0089 -0.0031 0.0015 0.0016 -0.0027 -0.0085 -0.0010 -0.0176

APE(yt = 8) -0.0370 -0.0338 -0.0317 -0.0199 -0.0140 -0.0014 0.0406 0.0550 0.0245 -0.0041 -0.0037 0.0015 -0.0013 -0.0042 -0.0002 -0.0110

APE(yt = 9) -0.0326 -0.0344 -0.0386 -0.0292 -0.0257 -0.0245 -0.0060 0.0289 0.0383 0.0105 -0.0042 -0.0024 -0.0016 -0.0039 -0.0009 -0.0068

APE(yt = 10) -0.0314 -0.0329 -0.0390 -0.0331 -0.0322 -0.0361 -0.0328 -0.0073 0.0192 0.0233 0.0098 -0.0026 -0.0005 -0.0036 0.0000 -0.0047

APE(yt = 11) -0.0288 -0.0272 -0.0295 -0.0280 -0.0293 -0.0338 -0.0376 -0.0289 -0.0118 0.0063 0.0131 0.0031 -0.0020 -0.0052 -0.0005 -0.0050

APE(yt = 12) -0.0517 -0.0459 -0.0420 -0.0410 -0.0426 -0.0465 -0.0538 -0.0543 -0.0481 -0.0268 -0.0063 0.0059 -0.0026 -0.0108 -0.0027 -0.0111

APE(yt = 13) -0.0484 -0.0428 -0.0351 -0.0326 -0.0315 -0.0289 -0.0298 -0.0344 -0.0425 -0.0315 -0.0281 -0.0097 0.0089 0.0097 0.0005 -0.0056

APE(yt = 14) -0.0212 -0.0191 -0.0154 -0.0139 -0.0128 -0.0097 -0.0065 -0.0071 -0.0108 -0.0087 -0.0108 -0.0070 0.0071 0.0170 0.0016 0.0008

APE(yt = 15) -0.0346 -0.0327 -0.0282 -0.0261 -0.0242 -0.0183 -0.0087 -0.0046 -0.0070 -0.0055 -0.0083 -0.0071 0.0075 0.0331 0.0037 0.0072

APE(yt = 16) -0.0209 -0.0205 -0.0192 -0.0184 -0.0176 -0.0148 -0.0085 -0.0037 -0.0035 0.0002 -0.0001 -0.0010 0.0013 0.0117 0.0029 0.0104

APE(yt = 17) -0.1230 -0.1228 -0.1219 -0.1213 -0.1206 -0.1176 -0.1067 -0.0929 -0.0916 -0.0585 -0.0519 -0.0246 0.0199 0.0438 0.0055 0.1738
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Table 11: Empirical results: Ratings’ behaviour before (2002-2006) and during (2007-2011) the European crisis

Before the crisis During the crisis

Model P (y < y
obs) P (y = y

obs) P (y > y
obs) P (y < y

obs) P (y = y
obs) P (y > y

obs)

Model 1 25.66% 52.58% 21.76% 24.88% 50.19% 24.93%
Model 2 23.99% 53.49% 22.52% 23.97% 52.03% 24%
Model 3 12.62% 74.84% 12.54% 13.32% 73.34% 13.34%
Model 4 12.19% 75.73% 12.08% 12.59% 74.78% 12.63%

Model 4a 12.49% 75.17% 12.34% 12.97% 74.05% 12.98%
Model 4b 12.23% 75.66% 12.11% 12.65% 74.67% 12.68%
Model 5 23.86% 53.62% 22.52% 24.18% 51.92% 23.90%

Table 12: Empirical results: Ratings’ behaviour before (1991-1996), during (1997-1998) and after (1999-2004) the East Asian crisis

Before the crisis During the crisis After the crisis

Model P (y < y
obs) P (y = y

obs) P (y > y
obs) P (y < y

obs) P (y = y
obs) P (y > y

obs) P (y < y
obs) P (y = y

obs) P (y > y
obs)

Model 1 14.79% 69.39% 15.82% 24.97% 49.55% 25.48% 17.44% 64.02% 18.54%
Model 2 15.23% 68.66% 16.11% 25.54% 46.39% 28.07% 18.10% 63.54% 18.36%
Model 3 7.54% 85.18% 7.28% 13.30% 73.52% 13.18% 8.79% 82.25% 8.96%
Model 4 7.18% 85.65% 7.17% 13.43% 73.88% 12.69% 8.74% 82.36% 8.90%

Model 4a 7.20% 85.59% 7.21% 13.20% 73.81% 12.99% 8.79% 82.29% 8.92%
Model 4b 7.37% 85.25% 7.38% 13.57% 73.09% 13.34% 8.96% 81.92% 9.12%
Model 5 15.41% 69.94% 14.65% 25.43% 47.22% 27.35% 16.78% 65.76% 17.46%
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Some comments on Table 12

• From Table 12, we notice that according to model 4, which has the highest in-sample

predictability, predicted ratings mostly matched actual ratings before, during and after the

East Asian crisis; the probabilities P (y < yobs) and P (y > yobs) are each approximately

equal to 7%, 13% and 9% in the pre-crisis period, crisis period and post-crisis period, re-

spectively. Therefore, we find that ratings are sticky, rather than procyclical.

• The rest of the alternative dynamic model specifications of Table 12 also lend support

to the sticky view of ratings. None of these models suggest that Moody’s upgraded sovereigns

excessively in good times or downgraded them unduly in bad times.
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of Statistics 1(2): 353–355.

Chib S, Jeliazkov I. 2006. Inference in semiparametric dynamic models for Binary longitu-

dinal data. Journal of the American Statistical Association 101: 685–700.

De Blasi P, James LF, Lau JW. 2010. Bayesian nonparametric estimation and consistency

of mixed multinomial logit choice models. Bernoulli 16(3): 679–704.

Escobar M, West M. 1994. Bayesian density estimation and inference using mixtures. Journal

of the American Statistical Association 90: 577–588.

Ferguson TS. 1973. A Bayesian analysis of some nonparametric problems. The Annals of

Statistics 1(2): 209–230.

Gelfand AE. 1996. Model determination using sampling-based methods. In Markov Chain

Monte Carlo in Practice, ed. W. R. Gilks, S. Richardson, D. J. Spiegelhalter. London, UK:

Chapman & Hall chapter 9, pp. 145–161.

Gelfand AE, Dey DK. 1994. Bayesian model choice: Asymptotics and exact calculations.

Journal of the Royal Statistical Society, Series B 56(3): 501–514.

Ghosal S, Ghosh JK, Ramamoorthi RV. 1999. Posterior consistency of Dirichlet mixtures in

density estimation. The Annals of Statistics 27(1): pp. 143–158.

Gu Y, Fiebig D, Cripps E, Kohn R. 2009. Bayesian estimation of a random effects het-

eroscedastic probit model. Econometrics Journal 12(2): 324–339.

Kottas A, Müller P, Quintana F. 2005. Nonparametric Bayesian modeling for multivariate

ordinal data. Journal of Computational and Graphical Statistics 14(3): 610–625.

Lo AY. 1984. On a class of Bayesian nonparametric estimates: I. Density estimates. The

Annals of Statistics 12(1): 351–357.

30



MacEachern SN. 1994. Estimating normal means with a conjugate style Dirichlet process

prior. Communications in Statistics. Simulation and Computation 23(3): 727–741.

MacEachern SN, Müller P. 1998. Estimating mixture of Dirichlet process models. Journal of

Computational and Graphical Statistics 7(2): 223–238.

Spiegelhalter D, Best N, Carlin B, Van Der Linde A. 2002. Bayesian measures of model com-

plexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

64(4): 583–639.

Tokdar ST. 2006. Posterior consistency of Dirichlet location-scale mixture of normals in

density estimation and regression. Sankhy: The Indian Journal of Statistics (2003-2007)

68(1): pp. 90–110.

Wooldridge JM. 2010 . Econometric Analysis of Cross Section and Panel Data. The MIT

Press, second edition.

31


	paper_for_submission10
	online_appendix9

