UNIVERSITYW

This is a repository copy of RoboChart: modelling and verification of the functional
behaviour of robotic applications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/141624/

Version: Published Version

Article:

Miyazawa, Alvaro Heiji orcid.org/0000-0003-2233-9091, De Oliveira Salazar Ribeiro,
Pedro Fernando orcid.org/0000-0003-4319-4872, Li, W. orcid.org/0000-0001-9786-585X
et al. (3 more authors) (2019) RoboChart: modelling and verification of the functional
behaviour of robotic applications. Software and Systems Modeling. pp. 3097-3149. ISSN
1619-1366

https://doi.org/10.1007/s10270-018-00710-z

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

university consortium eprints@whiterose.ac.uk
WA Universties of Leeds, Sheffeld & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/s10270-018-00710-z
https://eprints.whiterose.ac.uk/id/eprint/141624/
https://eprints.whiterose.ac.uk/

Software & Systems Modeling
https://doi.org/10.1007/510270-018-00710-z

REGULAR PAPER

@ CrossMark

RoboChart: modelling and verification of the functional behaviour of

robotic applications

Alvaro Miyazawa' - Pedro Ribeiro' - Wei Li? - Ana Cavalcanti' - Jon Timmis? . Jim Woodcock'

Received: 21 June 2018 / Revised: 21 December 2018 / Accepted: 21 December 2018

© The Author(s) 2019

Abstract

Robots are becoming ubiquitous: from vacuum cleaners to driverless cars, there is a wide variety of applications, many with
potential safety hazards. The work presented in this paper proposes a set of constructs suitable for both modelling robotic
applications and supporting verification via model checking and theorem proving. Our goal is to support roboticists in writing
models and applying modern verification techniques using a language familiar to them. To that end, we present RoboChart, a
domain-specific modelling language based on UML, but with a restricted set of constructs to enable a simplified semantics and
automated reasoning. We present the RoboChart metamodel, its well-formedness rules, and its process-algebraic semantics.
We discuss verification based on these foundations using an implementation of RoboChart and its semantics as a set of Eclipse

plug-ins called RoboTool.

Keywords State machines - Formal semantics - Process algebra - CSP - Model checking - Timed properties - Domain-specific

language for robotics

1 Introduction

The current practice of programming robotic applications is
often based on standard state machines, without a formal
semantics or even precise syntax, to describe the controller
only, with time properties discussed in natural language [76,
78,95]. For analysis, simulation is often used during design

Communicated by Dr. Jeff Gray.

B Alvaro Miyazawa
Alvaro.Miyazawa@york.ac.uk

Pedro Ribeiro
Pedro.Ribeiro@york.ac.uk

Wei Li
Wei.Li@york.ac.uk

Ana Cavalcanti
Ana.Cavalcanti @york.ac.uk

Jon Timmis
Jon.Timmis@york.ac.uk

Jim Woodcock
Jim.Woodcock @york.ac.uk
Department of Computer Science, University of York, York

YO10 5GH, UK

Department of Electronic Engineering, University of York,
York YO10 5DD, UK

Published online: 23 January 2019

to understand the behaviour of the controller for particu-
lar robots and environments. A state machine guides the
development of the simulation, but only a loose connection
between these artefacts is claimed. For implementation in a
robotic platform, ad hoc adjustments to the deployed code
are normally carried out to cater for the reality gap between
the simulation, and the platform and actual environment.
Robotics can benefit from techniques used in modern soft-
ware engineering, involving precise modelling and rigorous
verification. Our goal is to support this agenda, and here we
report on a key result: definition, formalisation, and applica-
tion of a state machine based notation, called RoboChart,
for the design of robotic systems. RoboChart is akin to
informal notations in current use, but it is precise and spe-
cialised to enable automated reasoning , catering for proof
of functional properties that can be specified as a refinement
check, including, deadlock, livelock, and timelock freedom,
for instance. Moreover, RoboChart enforces design patterns
appropriate for robotics, where the physical robot is explicitly
modelled in terms of only its variables, events, and opera-
tions. RoboChart also supports the definition of a dedicated
library of components to aid the development of robotic
applications. The core concepts of RoboChart are common
to cyber-physical systems in general, but the terminology and
support provided, such as libraries, examples, guidelines, and

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-00710-z&domain=pdf

A. Miyazawa et al.

simulation facilities, makes it distinctive as a domain-specific
language (DSL) for robotics.

RoboChart can be regarded as a profile of UML state
machines and their derivatives, enriched with facilities to
define time properties. We adopt a minimalist core of the
UML state machine notation to enable a simplified seman-
tics suitable for automated reasoning, and add time primitives
often demanded to model robotic applications. In the lit-
erature, there are descriptions of many general-purpose
notations (CSP [85], timed automata [6], and others), but
we propose specialisation to facilitate use by practitioners,
optimised verification, and automatic generation of simula-
tions.

In addition to state machines, RoboChart includes ele-
ments to organise specifications and foster reuse: constructs
to model robotic platforms and their controllers. Commu-
nication between state machines is synchronous to model
parallel threads of behaviour, while communication between
controllers can also be asynchronous, like in actual imple-
mentations of robotic systems. Operations used in a state
machine can be taken from a domain-specific AP, or defined
by another state machine as well as pre- and postconditions.
The action language used in states and transitions is fully
specified.

To specify budgets and deadlines for operations and
events, directly as part of a state machine, we use time prim-
itives. They are inspired by constructs of timed automata [2]
and Timed CSP [88], but are included in a notation where,
for example, states have actions and can call operations. Con-
straints can be specified in association with the relative-time
elapsed since the occurrence of events or the entering of
states. Timed automata and Timed CSP, for example, are
alternatives to give semantics to RoboChart.

Here, we formalise the RoboChart semantics using CSP
and its dialect, tock-CSP [85], tailored for modelling time.
Via their CSP semantics, we provide support for verification
of RoboChart models using the FDR [41] refinement model
checker. FDR provides a high degree of automation for early
validation of our semantics and has the additional advantage
of supporting tock-CSP. Ultimately, however, the semantic
underpinning that we envisage for RoboChart is Hoare and
He’s Unifying Theories of Programming [46] (UTP). This is
motivated by a requirement for extensibility of RoboChart to
tackle additional aspects of robotic systems, such as, prob-
abilistic [100] and continuous behaviour [36]. Our use of
CSP is primarily as a front end for a UTP theory [19], which
defines a mathematical predicative relational model that sup-
ports verification based on theorem proving. Our choice of
CSP as a front end is motivated by the availability of a pow-
erful model checker for early validation. An encoding of
CSP using the UTP is also available in the theorem prover
Isabelle/HOL [37,71].

@ Springer

Use of RoboChart is supported by RoboTool!; it enables
modelling, performs type checking and analysis of well-
formedness, and automatically calculates CSP models. Here,
we describe RoboTool and its design. It has been applied in
several case studies from the literature, which we also discuss
here.

We introduced RoboChart in [68]; there, we give an
overview of its metamodel and four case studies. We briefly
mentioned the semantics, but here give a full overview and
formalisation. In [82], we presented the timed semantics,
but not the complete semantics or a formalisation, not the
complete metamodel and well-formedness rules, and not the
design of RoboTool.

An early version of RoboChart was discussed informally
in [51], where we approached the issue of automatic sim-
ulation generation. This important aspect of our work was
partially addressed in [51] via a discussion of an initial
version of our facilities for automatic code generation in
C++. Our focus in this paper, however, is on the RoboChart
notation, its semantics, and its tool. A revision of the early
approach in [51] to sound simulation is ongoing work.

In summary, we address the problem of model-based
design of robotic applications. Our contribution is a novel
DSL for verification, namely RoboChart, which provides
constructs to model real-time concurrent designs. It includes
the notions of robotic platforms with (distributed) controllers,
possibly with parallel threads of behaviour. Threads are mod-
elled by state machines, distinctively, with powerful time
primitives to capture budgets and deadlines. Most impor-
tantly, a formal semantics enables verification of RoboChart
models.

Section 2 reviews related works. Section 3 describes
RoboChart—its metamodel and well-formedness condi-
tions—and presents an example. Section 4 describes the CSP
semantics, abstracting away temporal aspects, and formalises
it as functions from RoboChart to CSP models. Section 5
presents RoboTool and extra examples: a chemical detec-
tor [44], a transporter [20], and the alpha algorithm [10].
In Sect. 6, we focus on the temporal aspects of RoboChart,
revisiting its metamodel, well-formedness conditions, and
semantics. Finally, Sect. 7 concludes and describes our next
steps.

2 Related work

Early efforts on verification for robotics apply existing
mathematical techniques [30], and while there are many
general-purpose languages for which model checking sup-
port is available (like C, for example), our goal here is a

I Available for download at www.cs.york.ac.uk/circus/RoboCalc/
robotool/.

www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/

RoboChart: modelling and verification of the functional...

customisation to produce a simple language akin to what
is already used by practitioners [14,25,77], with friendly
support for graphical modelling, and optimisations in the
semantics and verification that do not apply to arbitrary uses
of general-purpose languages.

UML and its derivatives have been used for modelling in
various application domains, from business to safety-critical
systems. While UML has been given many formalisations,
in general, only subsets of UML are covered. The works in
the literature either define tailored semantic domains [12], or
use existing techniques such as graph transformations [48]
and CSP [22,81].

There are several general languages for architectural and
behavioural modelling. Notable examples of widely used
notations are SysML [73], AADL [32], and Focus [13]. For
SysML, a comprehensive semantics in a CSP-like language
is available [52]. For AADL, we are aware of a semantics
that uses rewriting logic [75].

For Focus, the semantics is based on streams, which
map time to messages; communication is asynchronous, but
without delay. Refinement allows the introduction of new
behaviours. This is different from the CSP models, based on
atomic, instantaneous, synchronous events, with refinement
captured by behaviour subsetting.

The AutoFocus [93] approach caters for the whole devel-
opment process, from informal textual specification to code.
This tool chain is similar to RoboTool in some ways, particu-
larly with respect to its goals. On the other hand, where Auto-
Focus targets embedded software with behaviour defined by
automata or functions, RoboTool focuses on robotic applica-
tions with behaviour defined by state machines. Verification
in AutoFocus uses theorem proving with Isabelle/HOL.
Semi-automatic model transformation encodes properties
into temporal logic; the transformation generates a refine-
ment of the original model, rather than encoding its seman-
tics. So the properties of the generated model can be slightly
different. AutoFocus also provides facilities for code gener-
ation. Work on support for proof and code generation from
RoboChart is ongoing.

RoboChart is, however, distinctive as a small language,
supporting a particular component model, and with a tailored
semantics to enable sound generation of usable formal mod-
els . In our previous work [53,66], we have given semantics
to comprehensive subsets of Stateflow [62] and UML state
machines using CSP-based languages. The models, however,
require further transformation to enable even simple checks.
Results with RoboChart, on the other hand, point to tractable
models that enable model checking directly. This is likely to
facilitate theorem proving as well.

Nordmann et al. [72] suggest that domain-specific lan-
guages for robotics are becoming popular, providing extra
motivation for our focus on a small DSL. While the majority
of works aim at code generation for deployment or sim-

ulation, we target generation of mathematical models for
verification. Some of the proposed notations and tools can be
complemented by RoboChart models to support modelling
and verification of the functional behaviour of components
and systems.

RobotML [25] is a UML-based DSL for robotics for auto-
matic generation of platform-independent code; reasoning
about non-functional properties is envisaged but not available
yet. In the same vein, Schlegel et al. [87] advocate model-
based engineering for robotic systems using a UML-based
framework, but without support for formal verification.

SafeRobots [79] is a general framework that supports a
component-based approach, where components are defined
using a data-flow architecture, and OCL is adopted for def-
inition of properties. Specification of behaviour is via code
from libraries.

The work in [47] covers architectural design and deploy-
ment. There is, however, no support for modelling behaviour,
time properties, or verification.

The MontiArcAutomaton framework [83] provides exten-
sion and composition mechanisms for languages and code
generators. They can accommodate use and integration of
multiple modelling languages and generators, and support
of heterogeneous target platforms. At its core, MontiAr-
cAutomaton comprises an ADL based on components and
connectors that allows extension with component-behaviour
modelling languages. RoboChart, as a language based on
components and connectors, could be integrated in this set-
ting.

Yakindu? is an Eclipse-based tool for constructing UML
statecharts, with support for code generation and animation.
Like RoboChart, it supports the definition of events, vari-
ables, interfaces, actions, (timed) triggers, and operations.
Its action language is comparable, but RoboChart supports
rich data types based on Z [99]. Compared to Yakindu,
in RoboChart operations can be defined abstractly, without
determining specific behaviours, and capturing time budgets
and deadlines, but optionally also as state machines. Simi-
larly to RoboTool, Yakindu implements validation rules, but
some of them are incomplete [3]. For example, states are
deemed unreachable if there are no incoming transitions,
but, if there are, path reachability is not taken into account.
Yakindu could serve as a basis for implementing RoboChart,
but this would require adapting Yakindu’s metamodel to sup-
port specific elements of RoboChart, namely controllers and
modules, and to restrict the use of features that hinder com-
positional semantic models. Yakindu does not currently have
a public API that could support such a task.

FlexBE [86] is a behaviour engine for the Robot Operating
System (ROS) that enables human operators to specify and
observe a robotic system’s behaviour, and if necessary inter-

2 www.itemis.com/en/yakindu/state-machine.

@ Springer

www.itemis.com/en/yakindu/state-machine

A. Miyazawa et al.

vene at runtime, by pausing or modifying behaviours. These
are specified by hierarchical state machines with actions
implemented by Python classes. Composition is realised via
code generation. Similar, but more abstract, models can be
developed in RoboChart using shared variables and multiple
state machines. FlexBE’s tool implements validation rules,
but does not support formal verification.

MissionLab [29] is specific for military applications. It
provides support for end users, rather than developers, to
specify behaviour as mission plans. A wizard allows the
definition of mission parameters, like task, environment,
possibility of presence of enemies, and so on. Lower-level
behaviour is captured by simple state machines. Move oper-
ations may be specified on a map. A formal semantics and
verification are not mentioned, but usability studies indicate
ease of use. Such studies for RoboTool are not available yet.

There are also vendor-specific tools for developing con-
trollers for robots like the NAO? and LEGO Mindstorms®
EV3 provides a didactic visual programming environment
for specifying behaviours using blocks, a precursor of the
educational language Scratch [57]. Similarly, the NAO soft-
ware provides blocks and parametrisation that is specific to
the NAO hardware.

A rather different approach to the development of robotic
controllers is the use of temporal logic formulae as a
model [63]. For example SPECTRA [61] allows behaviour
and assumptions about the environment to be modelled using
patterns [58] of a subset of LTL for which there are efficient
synthesis algorithms [11]. In practice, this also requires suit-
able discrete data type abstractions [60]. Time constraints,
however, cannot be directly specified, and so the model needs
to account for the target cyclic executive, which could have a
fixed delay, or run as fast as possible. Empirical evidence [59]
suggests that modelling of realistic environments can be chal-
lenging, as is establishing traceability for failures observed in
deployments and in the case of infeasible designs. Simulation
is not directly considered.

The approaches proposed in [30,33,39,42] are closest to
ours in addressing aspects such as architectural design, con-
currency, control of events, and verification. GenoM [39]
supports verification of schedulability via translation to Petri
Nets and model checking [9], and deadlock checking using
BIP [5]. GenoM is an executable language (potentially
including C code). RoboChart, on the other hand, is a self-
contained modelling language supporting various levels of
abstraction.

Mauve [42] supports component-based models with inter-
faces defined by constants, operations, and ports, but not
shared variables like RoboChart. Behaviour can be defined
by code or simple textual state machines. On the other hand,

3 doc.aldebaran.com/1-14/software/choregraphe.

4 lego.com/mindstorms/downloads/download-software.

@ Springer

a contract language can be used to specify behaviour using
temporal logic and observation points of the code or state
machine. Code generation is supported for Orocos [92] plat-
forms. Based on a deployment that associates tasks with
components and the executable code, an optimised WCET
analysis is used to ensure schedulability. Time properties
are derived from this analysis, rather than specified like in
RoboChart. Proof of properties uses TINA like [39].

The verification approach in [33] is based on an adaptive
architecture and supports identification of optimal configu-
rations based on various proof techniques including model
checking. Verification of behavioural properties, however, is
not the focus. Finally, Orccad [30] is a notation that supports
modelling, simulation and programming, and verification of
timed properties by translating models into formal languages.
Orccad has limited support for graphical modelling, using
constructs that are closest to those of RoboChart’s seman-
tics.

In summary, to our knowledge, most of the DSLs for
robotics in the literature do not have a technique for proof
of behavioural properties. They also provide limited or no
support to deal with time.

As previously said, the RoboChart time primitives are
inspired by timed automata and Timed CSP. Timed automata
use synchronous continuous-time clocks, and properties
expressed in temporal logic can be checked using the model
checker UPPAAL. RoboChart, in contrast, provides abstrac-
tions specific for robotic applications and has a semantics
for which there is a notion of refinement. UPPAAL is limited
in its support for modelling state, with comparable models
requiring additional states, interleaved automata, and defini-
tion of appropriate state invariants. Ongoing work, however,
is exploring a RoboChart semantics using timed automata
for the purpose of property verification.

A real-time extension of UML statecharts, Hierarchical
Timed Automata (HTA), is proposed in [21]. In that work,
statecharts are translated to timed automata for use with
UPPAAL. Some of the restrictions on UML are similar to those
of RoboChart; for example, neither notation includes inter-
level transitions. On the other hand, HTA imposes severe
restrictions on data, guards, and use of events, and has no
support for operations. Roughly speaking, HTA is timed
automata with hierarchy and history. On the positive side,
the target timed automata models remain decidable.

UML [74] has a simple notion of time and does not pro-
vide appropriate facilities to model timed properties. Instead,
a profile such as UML-MARTE [90] can be used, which
features support for logical, discrete, and continuous time
through the notion of clocks. Complex clock constraints may
be specified using CSSL [56]. A constraint solver [24] exists
to find solutions suitable for deployment. Support for spec-
ifying deadlines and the duration of behaviours is largely
focused on particular instances of behaviour, as specified

http://doc.aldebaran.com/1-14/software/choregraphe
http://lego.com/mindstorms/downloads/download-software

RoboChart: modelling and verification of the functional...

through UML sequence and time diagrams. While it is pos-
sible to define the potential execution duration of a particular
behaviour, it is not possible to define timed constraints in
terms of transitions and states.

UML-RT, an extension to UML, focuses on the architec-
tural description of systems by providing a clear separation of
concerns using the notions of capsules, ports, and protocols.
Capsules encapsulate finite state machines, while commu-
nication between capsules takes place through ports, whose
valid communications are defined by protocols. A timing pro-
tocol can act as a timer by raising timeouts in response to the
passage of a certain amount of time [89]. It is not obvious
how timed constraints, such as deadlines, can be specified
directly on UML-RT state machines using anything more
precise than informal annotations.

In [80] UML-RT is given semantics in Circus without con-
sidering time. An extension to UML-RT is proposed in [1]
with semantics given in CSP+T [101], an extension of CSP
that supports the timing of events. Inspired by the constructs
of CSP+T, in [1] annotations are added to record the occur-
rence time of events and constrain the occurrence time of
subsequent events. Although some RoboChart time primi-
tives are similar, we have a richer set of primitives.

RoboChart is mentioned in a comprehensive survey on
formal specification and verification in robotics [31,55].
It highlights that model checking is the most prominent
approach in the literature at the moment, and the importance
of integrating formal methods. RoboChart supports verifi-
cation by model checking, but the long-term plan is use of
theorem proving to deal with larger models and collections.
Future work will explore combined use of several verification
approaches.

3 Language

The core of RoboChart is a subset of the UML state machine
notation that excludes non-essential features that lead to an
increase in the complexity of the underlying mathematical
models. Parallel states are not available in RoboChart as
they introduce difficulties both in the semantics and mod-
elling practice. For instance, based on examples found in
the robotics literature [76,78,95], it is not clear what form,
if any, interaction between parallel states should take. On
the other hand, we include architectural components, namely
modules and controllers, which support the modelling of par-
allel behaviours in a customised and precise manner.
Controllers are collections of state machines that can
communicate with each other through their events, or relay
information through the events of the controllers. Similarly,
modules are collections of controllers that may interact with
each other. A module defines the boundaries of the robotic
application modelled and specifies the interface of such
application through a robotic platform, which provides an

B abandon ’ Neighbourhood

Explore z
Exploration
‘ [decrease P
partition length P] -
have
increase object -
hgave [partition) lincrease position
object| ength] partition length P] reached

Go to ‘ Go to Source

> Position
Hest ‘ object { Estimate
stored
A A
distance
traveled >
partition have
lenght P object
y
Wait for ‘
Transfer ‘ object
passed
stop
waiting|
y
Go to ‘
Nest ‘ object
stored

Fig. 1 State machine from [16]

abstraction of the hardware in terms of variables, events, and
operations.

In the following sections, we expand on the main con-
structs of RoboChart. In Sect. 3.2, we describe in more
detail parts of the metamodel of RoboChart, and in Sect. 3.3,
describe and motivate well-formedness conditions associated
with RoboChart. First, however, in Sect. 3.1, we give a more
complete, though informal, overview of RoboChart via an
example.

3.1 Notation

In this section, we use the model of a foraging robot described
in [16] to present RoboChart. The goal of this robot is to
search an area (the source) for objects, collect one object,
and deliver it to another area (the nest). It achieves this by
coordinating with other similar robots to only traverse part
of the arena. Essentially, a robot tries to find an object, col-
lect it, and carry it up to a certain distance P (the partition
length), where it will wait to transfer to another robot that
will continue the task. Failures in locating objects reduces
the partition length P, and success increases it.

In [16], the authors present the state machine in Fig. 1.
Besides the fact that it cannot be analysed using a tool,
because the notation is informal, this account leaves key ques-
tions open. For example, the initial state is not indicated, and
it is not possible to establish when the robot gives up waiting

@ Springer

A. Miyazawa et al.

Graspl Movementl £ ForagingRP obstacle
Grasp() move(lv: real, av: real) [P] Movementl tored
Transfer() Explore() [P] Graspl store
Store() ExploreNeighbourhood() | | X dist: real

GoTo(pos: real*real) TC nest: real*real

transferred collected

Fig.2 Robotic platform for the foraging example

for a transfer, or when it abandons the neighbourhood explo-
ration. By reading the English description of the robot, we
have developed the precise RoboChart model in Fig. 3.

Robotic platform An important aspect of modelling a
robotic application is understanding any assumptions related
to the functionalities of the physical robot that are required.
Such assumptions can be recorded in a RoboChart model via
a robotic platform definition.

As already mentioned, a robotic platform abstracts a phys-
ical robot in terms of the functionalities it makes available
for the controllers. These may be of three types: (a) vari-
ables, (b) operations, or (c) events. These elements can be
either declared directly in the robotic platform, or grouped
in interfaces. For our example, the robotic platform Foragin-
gRP is shown in Fig. 2 alongside two interfaces Graspl and
Movementl. The platform declares a number of events rep-
resented as boxes on the border of the platform, a variable
dist of type real, a constant nest of type real*real (pair of
real numbers), and provides two interfaces Movementl and
Graspl. The first declares operations associated with move-
ment and exploration, while the second contains operations
associated with the mechanism for manipulating objects. The
visible behaviour of the robot is precisely characterised by
accesses to variables of the platform, calls to its operations,
and occurrences of its events.

Different elements in a RoboChart model are often identi-
fied by icons. For instance, a variable declaration is identified
by X, while a constant is indicated by TC. Table 1 sum-
marises the icons used in the RoboChart diagrams presented
in this paper. For a comprehensive account of the RoboChart
icons, we refer to [96].

Variables represent information the platform makes avail-
able to its controllers and may be used to share information
among the controllers or to record information for the exe-
cution of basic operations of the hardware. For instance, it is
common in wheeled robots for movement to be established
through assignment of speed values to specific variables asso-
ciated with the wheels. In such case, a robotic platform could
abstract such a behaviour by simply providing the variables
left_wheel: real and right_wheel: real , and, at this level,
omitting any relationship between such variables and the
hardware. In our example, the platform state contains a vari-
able dist that records the distance travelled by the robot, and

@ Springer

Table 1 Summary of RoboChart icons

Symbol | Description

Operation declaration

Provided interface

Required interface

Variable declaration

Constant declaration
Module definition
Robotic Platform definition

Robotic Platform reference

2| @ | X|@|H|@

Controller definition

Controller reference

State machine definition

State machine reference

Clock declaration

Initial junction

Function definition

Precondition

Postcondition

b 4V N[- JIClEeN oY PNpes

a constant nest that records the position of the nest in two
dimensions. The variable dist is an abstraction for an odome-
ter of the platform.

Operations represent functionalities provided by the phys-
ical robot. For instance, an alternative to the variables for
the speed of the wheels is the definition of an operation
move(ls:real,as:real), which, given the desired linear and
angular speeds, causes the robot to move. This can be, in
a loose sense, a more abstract approach to modelling; in this
example, the variables left_wheel and right_wheel can indi-
cate reliance on the fact that the robot is wheeled, while the
operation move relies only on the fact that the robot is capable
of moving forward and turning. In our model of the foraging
robot, seven operations are provided by the platform. Grasp(),
Transfer() and Store() provide functionality to manipu-
late objects, while the operations move(ls,as), Explore(),
ExploreNeighbourhood(), and GoTo(pos: real*real) provide
the means for the robot to navigate.

Finally, events model simple, atomic interactions between
the robot and its environment. This feature is the most abstract
of the three, and provides a means for the robot (and its con-
trollers) to interact with the environment in a reactive manner.
For example, obstacle detection is often implemented by
reading the value of a sensor, analysing the results, and decid-
ing whether an obstacle is present or not. When modelling
this application, however, the only information of interest is
the presence of an obstacle, since we are not concerned with
properties of this algorithm. We can, therefore, abstract the
reading and analysis of sensor information as a single event
obstacle that only occurs when an obstacle is present. Fur-
thermore, typed events, such as obstacle:real, can carry extra

RoboChart: modelling and verification of the functional...

£3oTP collected
® Movement!
® Graspl stored
(®) Foraging!
P: real, source: real*real " f "
TC waitDeadline: nat, e: real, explorationDeadline: nat ransferre
[Chs
ﬂ decP(x: real): real

[since(T)>explorationDeadline]/P = decP(P) H x>0

Exploring Neighbourhood result>=0/\result<x

during Explore() entry #T - =
collected/P = incP(P) | during Expl i hood() FxincP(x: real): real
collected H ?e)soulbx
[d(source, position)<e]

GoToNest stored GoToSource Foragingl
entry dist =0 during GoTo(source) TU nest: real*real
during GoTo(nest) collected X dist: real

X position: real*real
[dist>P]
stored f;‘ d(x: real*real, y: real*real): reall
: P resul>=0
WatiForTransfer | trancfarred GoToNestDirectly
entry #T 5 . . during GoTo(nest)
during Transfer() | [since(T)>waitDeadline]

Fig.3 Foraging state machine

information such as the distance of the obstacle. In our exam-
ple, the event obstacle is as discussed above, and the events
collected, stored, and transferred mark the successful com-
pletion of the operations Grasp(), Transfer() and Store().

State machine A state machine is the main behavioural
construct of RoboChart; Fig. 3 shows the machine DTP for
our example that specifies foraging using dynamic task par-
titioning. A state machine contains states, junctions, and
transitions.

Transitions connect states and junctions, which represent
decision points. It is at states and junctions that the state
machine decides how to proceed, that is, which transition, if
any, to take next. The difference between states and junctions
is their stability: while a machine may wait in a state for an
event or condition before proceeding by taking a transition
out of that state, a junction must be left immediately.

States are represented by rectangular boxes and may spec-
ify three types of actions: entry, during and exit actions,
associated with the different phases of execution of the state.
Additionally, a state may be composite, that is, it may itself
contain junctions, states, and transitions. Final states are spe-
cial types of state, drawn as a solid white circle with the letter
Fin the middle. Itindicates termination of the containing state
machine or state. We note that a final state is a state, not a
junction, and therefore is stable.

Junctions are identified by solid black circles, and, as pre-
viously mentioned, represent a decision that must be made
immediately. As a consequence, it must always be possible
for a transition to be taken out of a junction. This leads to
well-formedness conditions that forbid the use of a trigger
in such an outgoing transition (that is, the decision cannot
depend on an external interaction) and require that any con-
ditions form a cover (that is, in all circumstances, at least
one outgoing transition has a condition that is true). Initial
junctions, represented by solid black circles with the letter i

0(8 ForagingC
R) Movement!
(R) Graspl
(R) RState
X position: real*real
__________ l__________________l
collected collected - !
1! |
| (3refDTP | : 4.2 ref PositionEstimation 1
|
stored I Istored : : :
— .
| |transferred

i
I Itransferred

Fig.4 Foraging controller

inside, indicate the starting point of the execution of a state
machine or composite state.

Similarly to a robotic platform, a state machine may
declare events and variables, but not operations. It can, how-
ever, require operations as illustrated in Fig. 3. The operations
in the interfaces Graspl and Movementl are required by the
state machine DTP. Additionally, it requires the interface For-
agingl, which declares the constant nest, and variables dist
and position. Both nest and dist are provided by the robotic
platform, but position is not. This variable is provided by the
controller that uses DTP shown in Fig. 4 described later.

DTP declares two local variables itself: P records the cur-
rent length of the partition, and source, the estimated position
of the source of objects. DTP also declares waitDeadline, e,
and explorationDeadline, which are constants that specify
how long to wait for a transfer, how close to get to the source,
and how long to explore a neighbourhood. The time spent
performing each task is recorded using the clock T, which
can be reset using the statement #T in an action.

The state machine DTP consists of an initial junction and
six states. As previously said, the initial junction determines
the first state to be executed. In our example, this is the
state Exploring, which executes the operation Explore() in
its during action indefinitely. If an event collected occurs,
indicating an object has been found and collected, Exploring
is exited and the state GoToNest is entered. An entry action,
executed upon entering a state, sets the variable dist to zero,
and a during action calls the operation GoTo with parameter
nest, that is, the target position to store the object.

From GoToNest, three possible behaviours can occur. If
the nest is reached and the object is stored, indicated by the
event stored, the DTP moves to the state GoToSource. If,
while moving towards nest, the distance traversed (recorded
in dist) becomes greater than P (the partition length), the
state WaitForTransfer is entered. In the state GoToNest, we
have a nondeterministic behaviour: after the entry action is
executed, both transitions out of GoToNest become enabled
if stored occurs and the condition dist>P is true. In this sce-

@ Springer

A. Miyazawa et al.

nario, the robot has traversed a distance larger than P (that
is, the condition holds), but has arrived in the nest and stored
the object. This nondeterminism is perhaps not obvious,
but is present in the original model (see Fig. 1) and has
been revealed following analysis of our RoboChart model.
It is likely that it needs to be resolved in a simulation or
deployment. Nevertheless, any properties of DTP remain true;
however, the nondeterminism is resolved in a more concrete
model.

In the state WaitForTransfer, the robot stops and waits
to transfer the object to another robot. If a transfer occurs,
indicated by the event transferred, the robot moves to the
state GoToSource. If, however, the robot waits for longer
than waitDeadline to transfer the object, it moves directly
to the nest and stores the object (state GoToNestDirectly),
before moving to GoToSource.

In GoToSource, the robot uses the operation GoTo to
move to the position recorded in source, which estimates the
location of the objects. If the distance between the current
position and source is less than a constant e, the machine
decides that the source has been reached and enters the state
Neighbourhood. In this state, the clock is reset (#T) and then
ExploreNeighbourhood() is called. If an object is found and
collected (that is, collected occurs) the partition length P is
increased using the function incP, and GoToNest is entered.
Otherwise, if the robot has explored the neighbourhood for
longer than explorationDeadline, then P is decreased using
the function decP, and Exploring is entered.

This state machine uses three functions: d, incP, and
decP. The first is a distance function whose only require-
ment is to return a value greater than or equal to 0; it can
be implemented by the Euclidean distance, for example. The
parameter of the other two functions must be positive, and
their results must both change monotonically. These prop-
erties are specified with pre (4) and postconditions (M), as
shown in Fig. 3. Although this is not a common practice in
robotics, these simple specifications capture the properties of
the two implementations experimented with in simulations
reported in [16]. RoboChart does not require the definition
of pre- and postconditions; we can leave the functions com-
pletely unspecified and provide an implementation just for
verification, as is done with simulations.

Controller Several state machines can be encapsulated in a
controller to model either different threads of execution or
to capture independent functionalities. The controller, not a
state machine, interacts with other controllers or directly with
the robotic platform.

Similarly to a state machine, a controller may require oper-
ations and variables, and declare events and local variables.
For example, the controller ForagingC shown in Fig. 4 encap-
sulates a reference to the DTP state machine, and a reference

@ Springer

< Foraging

async
[[

obstacle

obstacle

async
transferred Y transferred

o ref ObstacleAvoidance 0 ref ForagingRP o%§ ref ForagingC

async

stored stored

async

collected

collected

Fig.5 Foraging module

to a state machine called PositionEstimation®. This second
machine models functionality to estimate the position of the
robot and record it in the shared variable position used by
DTP.

The events of ForagingC are the same as those of DTP, and
they are connected with a directional arrow, indicating that
the events are received by the controller and relayed to the
state machine. The names of the events, however, need not be
the same. While the state machine PositionEstimation is not
connected to either the controller or DTP via events, it can
still interact with DTP through the shared variable position.
Even though our approach encourages the use of events for
interaction between parallel components, RoboChart permits
the definition of shared variables due to their use in practice,
particularly in the design of simulations.

Module The overall application is specified by a construct
called module, which encapsulates a robotic platform and
one or more controllers. In our example, the module For-
aging is presented in Fig. 5. It includes references to the
robotic platform ForagingRP, and the controllers ForagingC
and ObstacleAvoidance (omitted here). The two controllers
do not interact with each other, only with the robotic plat-
form through the events obstacle, transferred, stored, and
collected.

All communications with the robotic platform are asyn-
chronous. This restriction reflects the fact that in a physical
robot, represented by a robotic platform in RoboChart, inter-
actions with the control software, represented by controllers
in RoboChart, never block.

Modules differ from controllers in that they have a robotic
platform, and characterise not only the software components
(represented by controllers, and ultimately, state machines),
but also requirements on the hardware and its built-in
libraries (represented by a platform).

5 Omitted here, but available at www.cs.york.ac.uk/circus/RoboCalc/
case_studies/.

www.cs.york.ac.uk/circus/RoboCalc/case_studies/
www.cs.york.ac.uk/circus/RoboCalc/case_studies/

RoboChart: modelling and verification of the functional...

| EQ ConnectionNode

Q Module

T

[0..*] nodes

= connections : Connection

EQ Controller } | @ StateMachine

[0..*] machines EB MachineContainer |

EQ RoboticPlatform} {
|

[

C)) [|
[0..*¥] modules
[0..*] controllers <
[0..*Trobots] RCPackage
[F Interf] | = name:EString
nterface 0..*] interfaces ; .
[0.7] £ imports : Import
= variableList : VariableList . =2 operations : Operation
= operations : Operation [[TypeDecl [0.7] types { = functions : Function
=2 events: Event C]

Fig.6 Metamodel of RoboChart packages

[0..1] type

) [0..*] connections [1..1] eto
g [1..1] efrom

[Event]

| E{] Type ’ [0..%] nodei[[] Module
{ J 1
S [1..1]to
@ ConnectionNode [L.1] from

B Connection

i

ED RoboticPlatform

T
|]

o async: EBoolean = false
o bidirec: EBoolean = false

| R

| =] RoboticPlatformDef‘ [1..1] ref

B RoboticPlatformRef

Fig.7 Metamodel of RoboChart modules

3.2 Metamodel

The structure of RoboChart models is determined by a meta-
model that specifies the types of constructs available and
how they relate to each other. Here, we focus on the top-level
structure of RoboChart models and on modules, controllers,
and state machines. The complete metamodel with additional
details is available in [96].

A RoboChart model is organised in packages, with their
definitions shared using an imports mechanism similar to that
of Java. Figure 6 defines a RoboChart package RCPackage.
It has an optional name, and optionally imports other pack-
ages. All elements of a model are defined in a package. So,

an RCPackage can include declarations of types, interfaces,
modules, robotic platforms, controllers, and state machines.

RCPackages and ControllerDefs (in Fig. 8) contain a col-
lection of state machines (machines). This feature is captured
by the class MachineContainer, inherited by RCPackage and
ControllerDef as shown in Figs. 6 and 8. While the two
containment relations are realised in the same way in the
metamodel, a machine contained in a controller is declared
and used by that controller, but a machine contained directly
in a package is just declared. Such machine can be used via
references in various controllers. In any case, our semantics
presented later characterises a state machine as a component
that can be analysed in isolation.

@ Springer

A. Miyazawa et al.

Fig.8 Metamodel of
RoboChart controllers

[EB MachineContainer

i

EQ Context

= variableList : VariableList

= operations : Operation

(=] :
= events: Event

= plnterfaces : Interface

= rinterfaces : Interface

= interfaces : Interface

[& Controller]

[0..*] machines

["E StateMachine

)

RoboChart is a typed notation, with types drawn from a
set TypeDecls (type declarations, contained in the field types
of an RCPackage). The type system is based on that of the Z
notation [99]. A type declaration can be a given set [99] (that
is, an abstract type without definition), an enumeration (free
type), a record type (called Data Type like in UML, corre-
sponding to Z schema types), a cartesian product, or a set.
Unlike Z, RoboChart, through its library, provides a set of
core given types: real, nat, int, boolean, and char. The Z
mathematical toolkit, including definitions of data types for
sequences, function, and relations, for example, is available
in RoboChart. There is also a definition for a data type string,
which is not available in Z.

The structure of a module is detailed in Fig. 7. It comprises
a number of connection nodes and connections. The class
ConnectionNode characterises the elements that can be con-
nected through their events; they are: platforms, controllers,
and state machines. Modules, however, cannot contain state
machines directly. While the metamodel allows this, state
machines are explicitly excluded via a well-formedness con-
dition presented in the next section (see condition M1).

On the other hand, as shown later in Fig. 8, a con-
troller can have several StateMachines connected among
themselves. The RoboticPlatform is defined by a Robotic-
PlatformDefinition or by a RoboticPlatformReference. A
RoboticPlatformReference is associated with a Robotic-
PlatformDefinition and allows the definition to be made
independently of a particular module. In this way, it can be
reused, and even provided in a library.

Connections are between a source (from) and a tar-
get (to) node, and in a module they establish the relationship
between a platform and its controllers, and between the
controllers themselves. Connections are established via a
source (efrom) and a target (eto) event. They can be asyn-
chronous and bidirectional, as indicated by the boolean

@ Springer

=

= ControllerDef

(B ControllerRef]
[1..1] ref [)

= variableList : VariableList
= operations : Operation

= M4
= events: Event
= connections : Connection

attributes async and bidirec. An event may have a Type,
which, if present, defines the values that can be communi-
cated via the connection.

The structure of a Controller is shown in Fig. 8. It can be
specified by a ControllerDefinition or a ControllerReference,
which just names a controller defined elsewhere. A Con-
trollerDefinition encapsulates any number of state machines.
The class MachineContainer, which groups state machines,
is inherited by both ControllerDef and RCPackage. The pos-
sibility, in the metamodel, for an empty set of state machines
in a controller is useful in RoboTool to support partial mod-
els. In the case of RCPackage, it captures the fact that it is
possible to have a package without state machines.

Lastly, a ControllerDefinition implements a Context,
which defines the variables, including constants, operations,
events, and provided, required, and defined interfaces of an
element. Defined interfaces declare the variables and events
that are used for the specification of behaviour; they are
possibly shared if several elements are used to specify that
behaviour.

Figure 9 shows the metamodel of state machines. Simi-
larly to robotic platforms and controllers, a
StateMachine is either a StateMachineReference or a
StateMachineDefinition. A StateMachineReference points
to a StateMachineDefinition, supports reuse, and is a key
factor in allowing the specification of a library of mod-
elling components. A StateMachineDefinition, on the other
hand, fully specifies the behaviour of a state machine, which
is captured by the class StateMachineBody inherited by
StateMachineDefinition. A StateMachineBody is similar to
a ControllerDefinition in that it is a Context, but it is also a
NodeContainer, which records the nodes and transitions of
the state machine.

A node can be either a State or a Junction, with FinalStates
and InitialJunctions as special types of States and Junctions.

RoboChart: modelling and verification of the functional...

[0..*] transitions

‘ [1..1] target \I/
5 StateMachine | &9 NodeContainer | [0..*] nodes &9 Node 1. 1] source [Transition
l vy = start: Expression
JoN ZF = trigger: Trigger
= end: Expression
_ < _ = condition : Expression
[StateMachineDef [StateMachineBody = action : Statement
—
= clocks : Clock
[1..1] ref EB Context [B State] E Junction
=] StateMachineRef] &2 variableList : VariableList = actions : Action J
C] &3 operations : Operation
&2 events: Event
= plnterfaces : Interface
= rinterfaces : Interface [[Final] [F] Initial
= interfaces : Interface
£ ()\)

Fig.9 Metamodel of RoboChart state machine

[[SeqStatement] [= SendEvent

= TimedStatement [] Assignment

= start: Expression
== end: Expression

5+ left: Assignable
i right: Expression

o trigger: Trigger]
I | il |

v

[1.1] stmt

[2..¥] statements

EB Statement

[1.1] then
[L.1] else

i

4 |

[£ Ifstmt] [£ wait

[H Call [E] ClockReset

{ c» expression:ExpressionJ { c» duration:ExpressionJ [

* operation: Operation 5* clock: Clock
£ args: Expression

Fig. 10 Metamodel of RoboChart statements

A State is also a NodeContainer accounting for the pos-
sibility of hierarchical state machines. Finally, a Transition
connects two nodes and can contain a number of features: a
trigger and a condition describing when a transition can take
place, an action describing the effect of the transition, and a
deadline over the availability of the transition. (We envisage
that an extension of RoboChart will also allow for Proba-
bilisticJunctions, and for a probability expression used in
transitions starting in ProbabilisticJunctions.)

RoboChart specifies an action language to be used in
the specification of the behaviours of state and transition
actions. Figure 10 shows the possible statements of our action

language. They include basic statements such as Assign-
ment, which assigns a value to a variable, SeqStatement,
which composes two or more statements in sequence, Call,
which calls an operation with a sequence of expressions as
arguments, and IfStmt, which conditionally executes one of
two statements depending on the truth value of an expres-
sion. Additionally, the action language includes statements
to interact with other parallel elements of the model using
events (SendEvent), and timed primitives that allow time to
pass (Wait), the specification of bounds on the start and end
times of statements, and the resetting of clocks.

@ Springer

A. Miyazawa et al.

The expression language used in statements is inspired by
Z and its mathematical toolkit. The syntax is omitted here
due to its similarities to Z and for the sake of conciseness. A
detailed account of the syntax and semantics of expression
can be found in [96].

Not all models that respect the metamodel can be given
semantics. For example, it is not possible to give a reasonable
interpretation to modules with connections between events
of different types. To assign meaning to RoboChart models,
we must first identify the set of valid models. We do this by
defining well-formedness conditions. This is the purpose of
the next section.

3.3 Well-formedness

The well-formedness conditions include the typing and scope
rules for expressions and actions, and unicity of names in all
components. These conditions are standard and omitted here.
Below, we concentrate on elements of larger granularity. A
complete account of the well-formedness conditions can be
found in [96].

Some conditions may have been avoided by a more
strict metamodel that already enforces the restrictions. Our
metamodel, however, allows us to record partial models. In
addition, the emphasis on well-formedness conditions makes
it possible to selectively enforce specific subsets of condi-
tions based on the application envisaged for the models (for
instance, model checking, theorem proving, or simulation).
Finally, the conditions below are a more readable account of
how RoboChart should be used than a concise metamodel.

Modules

M1 A module must contain exactly one robotic platform, at
least one controller, and no machines. The platform
describes the hardware on which the controllers are
executed, and identifies the variables and operations it
has available for use by the controllers. Additionally,
through events, the platform provides points of interac-
tion with the controllers. The behaviour of a module
is defined by controllers, and not by state machines
directly.

M2 All variables and operations required by the module’s
controllers must be provided by the platform. This guar-
antees that the module is self-contained, that is, the
resources required by its controllers are provided by the
platform. We note that, in particular, operations required
by a controller cannot be provided by another controller,
since there is no facility for remote operation calls in a
robotic design.

@ Springer

Robotic platforms

RP1 Robotic platforms cannot require interfaces. Since a
platform abstracts a self-contained hardware compo-
nent, it cannot itself require any resources.

RP2 Defined interfaces can only have events since there is
no point in platforms having local access to variables,
because they do not specify a behaviour.

We note that variables and operations declared directly in the
platform, outside an interface, are considered as if declared in
aprovided interface, for the reasons already explained above.
Events declared directly in the platform, on the other hand,
are defined.

Controllers

C1 A controller must contain at least one state machine so
that it has a behavioural specification.

C2 Controllers cannot provide variables or operations to
other controllers. As explained above, controllers are
taken to model separate units of processing, and so
may require variables and operations, or define its own
for use by its own state machines, but not provide any
themselves. As a consequence, a controller cannot have
provided interfaces.

C3 Allvariables required by the controller’s state machines
must be defined or required by the controller. If a state
machine assumes the existence of a variable, it must
be defined by any component that contains the state
machine, that is, it must be defined either by its con-
troller, or indirectly provided by a platform associated
with its module.

C4 All operations required by the controller’s state ma-
chines must be defined or required by the controller. This
is similar to the previous condition, except that defini-
tion of an operation entails not just a declaration, like
in the case of a variable, but a local specification. So,
an operation can be required by a controller, but cannot
be just declared in the controller. If it is required by a
machine in the controller, the operation must either be
required (from the platform) or fully defined within the
controller.

Variables and events declared directly in the controller are
considered as part of a defined interface.

Interfaces Interfaces are meant to group sets of variables,
operations, and events. They exist to foster reuse, but are
also an important mechanism to describe dependencies.
As explained previously, provided and required interfaces
describe sharing, while defined interfaces simply declare its
elements locally.

RoboChart: modelling and verification of the functional...

I1 Provided and required interfaces contain only variables
and operations because these are the only elements that
can be shared; events are locally defined and interaction
is established using connections.

12 Defined interfaces can only have variables and events
because operations of a platform are always provided,
in a controller they are either required or defined (but
never just declared as explained above, and so cannot
be in an interface), and in a machine, they are always
required. We note that, if the defined interface is used in a
platform, then, as stated by a well-formedness condition
for robotic platforms presented above, it can actually
only have events.

State machines The well-formedness conditions that apply
to state machines encompass aspects such as usage of inter-
faces, declaration of variables, events, and operations, and
specification of nodes.

STM1 State machines cannot have provided interfaces. As
the smallest self-contained model components that
encapsulate behaviour, machines do not contain inde-
pendent elements that might be provided for separate
use by other components.

STM2 Operations in state machines can only be required,
not defined. Operations either describe an abstraction
of functionality provided by the robotic platform or
encapsulate behaviours for reuse. In the first case,
operations can be left unspecified, but in the second
case, they must be defined by a state machine. Since
state machines cannot contain other state machines,
there are no means for an operation to be fully defined
in the context of a state machine, and, therefore, it
cannot provide or declare operations.

STM3 Every state machine must have exactly one initial
Jjunction, which determines its starting state.

STM4 State machines must contain at least one state (possi-
bly a final state), because junctions (including initial
junctions) are not stable, that is, they are transi-
tory decision steps towards entering a state. A state
machine cannot, therefore, rest in the initial junction.

Like for controllers, variables and events declared directly,
outside of an interface, in a state machine are regarded as
part of a defined interface.

States and final states The conditions for states and final
states restrict the usage of actions.

S1 If a state has a non-empty set of nodes, then conditions
STM3 and STM4 of state machines apply.

S2 A state has at most one of each type of action: entry,
during, and exit, because they define actions that specify

behaviours that are executed in well-defined phases of
the overall execution of a state.

S3 Final states cannot be the source of transitions, because
they model termination of the behaviours of a state
machine or composite state.

Junctions and initial junctions As discussed before, junc-
tions are transitory steps towards a state. The well-formedness
conditions associated with junctions aim to guarantee this
transient nature.

J1 A junction thatis not initial must contain at least one out-
going transition, since otherwise it would not be possible
to reach a state from the junction.

J2 The guards of the transitions out of a junction must form
a cover, that is, their disjunction is true to guarantee that
it is always possible to take at least one transition out of
a junction.

I3 Transitions starting in junctions cannot have triggers.
Again, this condition guarantees that the state machine
does not become stuck in a junction.

J4 An initial junction must have exactly one outgoing tran-
sition, and, because of the above conditions J2 and J3,
does not have a guard or trigger.

Transitions

T1 The source and target of a transition must belong to
the same container. This guarantees that there are no
inter-level transitions. These are a common feature of
state machine notations, but make the semantics non-
compositional, because when an inter-level transition is
taken, it does not affect the behaviour of only its source
and target nodes, but also of all the substates (at any
level) of their least common ancestor. A parent state of a
state S is a composite state that includes S directly. The
ancestor states include the parent, its parent, and so on,
at all levels. A direct substate is called a child state.

The condition T1 is particularly important because it enables
us to define a compositional semantics. This means that
the semantics of a composite construct is a function of the
semantics of its components. For example, the semantics of a
controller is determined by the semantics of its state machines
composed in such way as to allow communication between
them.

Connections Modules and controllers contain connections.
Our conditions restrict the types of the connected elements,
the nature of the connections, and the types of the associated
events, which must be the same.

@ Springer

A. Miyazawa et al.

Cnl Connections of a module must associate only events of
the robotic platform and its controllers. Connections in
a module describe only the interactions of the immedi-
ate components of the module, that is, the platform and
the controllers.

Cn2 Connections with a robotic platform are always asyn-
chronous. Events in platforms are points of interaction
with sensor and actuators of the hardware, which are
asynchronous by nature. Our hardware abstraction does
not provide means for interaction to be refused, only
ignored. This is in line with existing robotics program-
ming interfaces.

Cn3 Connections of a controller must associate only its
events and those of its machines. As in the case of
modules, connections in a controller describe only the
interactions of its immediate components.

Cn4 Connections must not associate events of the same com-
ponent. So, in particular, events cannot be connected
to themselves. Events establish interaction with other
components and the environment.

RoboChart has a rich expression language, with universal
and existential quantifications, lambda expressions, and def-
inite descriptions. These features have been added for use in
the definitions of pre- and postconditions of functions and
operations, but not in guards and statements. If needed, they
can be used indirectly in these contexts via the definition of
boolean-valued functions. In this way, expressions that can
render the diagrams unreadable can still be effectively used.

As previously said, the expression languages are inspired
by the Z notation and omitted here due to space limitations;
its complete syntax is presented in [96].

The well-formedness conditions presented in this section
are necessary for the untimed semantics discussed in the
next section to be defined. Extra conditions are necessary
for the timed semantics as discussed in Sect. 6 (and stronger
restrictions are necessary to allow automatic generation of
simulation code).

In the next section, we define the semantics of models that
are well formed according to these rules.

4 Semantics

As previously mentioned, RoboChart models are endowed
with a formal semantics. Our formalisation relies on the UTP
framework, but we use CSP as a front end to the UTP to
support early validation via model checking. In Sect. 4.1,
we briefly introduce CSP and describe the operators used in
our semantics. In Sect. 4.2, we provide an overview of our
semantics, and in Sect. 4.3, we discuss its formalisation as a
function from RoboChart to CSP models.

@ Springer

4.1 CSP

Communicating sequential process [45,85] (CSP) is one lan-
guage out of a large family of specification notations for
concurrent systems referred to as process algebras. This fam-
ily includes notations such as CCS [64], Pi-Calculus [65], and
ACP [8]. CSP is distinctive in its denotational nature, while
CCS focuses on operational semantics, and ACP on alge-
braic semantics. The denotational models of CSP give rise
to notions of refinement that are particularly useful when
verifying properties and establishing correctness of imple-
mentations.

The central constructs of CSP are processes and chan-
nels. Processes can specify patterns of interactions, including
aspects such as deterministic and nondeterministic choice,
deadlock, and termination. Process definitions can be made
via parallel composition of other processes, where interac-
tion occurs through channels. The communications between
parallel processes are instantaneous, atomic events and can
carry values.

Table 2 gives the CSP operators used in our semantics. For
each operator, it provides its symbol, name, and an informal
description of its behaviour. Section 4.2 presents a number of
examples of usage of CSP. We explain each of the examples
as they appear.

4.2 Overview

The structure of our CSP semantics is sketched in Fig. 11.
The semantics of modules, controllers, and state machines
is given by processes. A module process is defined by the
parallel composition of the processes for its controllers inter-
acting according to the connections in the module, as well as
a memory process recording the variables (and constants) of
the robotic platform.

While the semantics presented in Sect. 4.3 produces a
single CSP process definition, in examples we use process
declarations to modularise it and improve readability. For
example, the semantic function [|_|| ., presented in Sect. 4.3
specifies the definition below of the process Foraging for the
module of our running example (Fig. 5), but not the decla-
ration shown that names it. Here, we name this process and
others to facilitate presentation. The process names that we
use match applications of the semantic functions described in
Sect. 4.3. The resulting declarations have a positive impact
also in optimising both the generation and analysis of the
models. Therefore, we implement them in RoboTool; this is
further discussed in Sect. 5.1.

The fact that the semantics presented in Sect. 4.3 generates
a single process is not detrimental to compositionality. Each
semantic function is defined compositionally, that is, purely
in terms of the semantics of the components of the RoboChart
element that it defines. Furthermore, compositionality of

RoboChart: modelling and verification of the functional...

Table2 Summary of CSP operators

Symbol Name Description

Skip skip Terminate immediately without any side effects

Stop deadlock Refuse all interactions, but does not change the state

Ples] O generalised parallel composition Run P and Q in parallel synchronising on events in ¢s and terminate only
when P and Q terminate

Plcsy || ¢s2]1Q alphabetised parallel composition Run P, engaging in events in c¢s1, and Q, in events in cs7, in parallel,
synchronising on the intersection of ¢s| and cs2, and terminate only
when P and Q terminate. The channel sets c¢s; and cs; are the alphabets
of the processes P and Q

Pl Q interleaving Run P and Q in parallel without synchronisation, but terminate only when
both P and Q terminate

{ch channel set Set of all possible events corresponding to communications via the
channel ¢

c—> P prefix Synchronise on channel ¢ and then behave like P

cx — P input Synchronise on channel ¢ with any possible value, store the chosen value

cx:S—>P restricted input

cle > P output

P; 0 sequential composition

POQ external choice

PnQ internal choice

PAc—Q interrupt

P o0 exception

P\ cs hiding

(e) & P guard

Pllc < d] renaming

les1i: 1 e P(i) replicated generalised parallelism

|| i:1e[A(D)]P(i) replicated alphabetised parallelism

||| i:1eP(i) replicated interleave
gi: 1 eP(i) replicated sequential composition
Oi:1eP(3) replicated external choice

in x, and behave like P

Synchronise on channel ¢ with any value in S, store the chosen value in x,
and behave like P

Synchronise on channel ¢ with value e and behave like P
Behave like P, and once P terminates, behave like Q
Allow the environment to choose between P and Q
Nondeterministically choose between P and Q

Behave like P with ¢ — Q in choice, until P terminates or the choice is
resolved in favour of ¢ - Q

Behave like P, until P raises an event in cs, at which point, behave like Q
Run P with events in ¢s hidden

If e is true, behave like P, otherwise deadlock

Rename the occurrences of event ¢ to d in P

Run P(i) in parallel for all i in / synchronising in cs

Run P (i) in parallel with alphabet A (i) for all i in /, synchronising in the
intersection of their alphabets

Interleave P(i) for all i in 1
Run P(i) in sequence for all i in /

Offers a choice of processes P(i), where i is in /

refinement follows directly from compositionality of the CSP
operators. For instance, if a state machine S of a controller C
is refined by another machine S’, then S can be replaced with
S’ to form a controller C' that is a refinement of C.

Foraging defines our example module as the parallel compo-
sition of the processes for its controllers, namely ObstacleAv-
oidance and ForagingC, and a memory process Memory_
Foraging for the platform ForagingRP. Synchronous con-
nections between controllers are captured by a parallel
composition ([.. .]|) with the events involved in the connec-
tions hidden (\) because these connections are not visible.
Since, in our example, the controllers are not connected
directly, in the composition of the controller processes the
parallelism is an interleaving (|||) and there is no hiding.

Foraging =
ObstacleAvoidance]. . .|
l
ForagingC
set_FC_dist < set_FRP_dist,
set_FC_nest < set_FRP_nest,
FC_transferred <— FRP_transferred,
FC_stored <— FRP_stored,
FC_collected < FRP_collected
[[{set_FRP_dist, set_Ext_FC_dist, ...}
Memory_Foraging(0)
\ {set_Ext_FC_dist, set_FRP_nest, ... |

@ Springer

A. Miyazawa et al.

Module

Controller

State machine

7 SN
f/

Basic State

transition

AN

Composite State —
Robotic transition
l'?/:atform trangiion Basic State Controller I;)elr:fgen?
emory
transition Memory events
transition —
& transition

State Machine Memory

Fig. 11 Structure of the RoboChart semantics: stacked components and parallel lines indicate parallel composition; bordered boxes indicates points

of interaction

Asynchronous connections, if present, are realised via a
buffer modelled by another process composed in parallel with
the composition of the controller processes. Interactions with
the buffer are hidden.

When referring to RoboChart elements we use sans
serif font, and use italics for CSP terms. For example,
ObstacleAvoidance is a RoboChart state machine, and
ObstacleAvoidance is the CSP process that specifies its
semantics. Table 3 describes the names of elements (pro-
cesses and channels) in our semantics.

The memory model of RoboChart is hierarchical, with
a memory for the robotic platform at the top of the hierar-
chy, memories for the controllers at the next tier, and finally
the memories for the state machines under those for their
controllers. The memory for a robotic platform records its
variables for sharing between controllers (and their state
machines). In our example, the process Memory_Foraging(0)
defined below models a shared memory recording the plat-
form variable dist. The value of the constant nest is defined
using the channel ser_FRP_nest. Since a specific value is
not determined in the RoboChart model, the communication
accepts any possible value (and introduces a nondeterminism
when set_FRP_nest is hidden).

The memory processes for a robotic platform or controller
are slightly different from those for state machines. A pro-
cess for a platform or controller not only accepts updates to
the memory variables, but also propagates updates down the
hierarchy to the memory of the state machines that require the
updated variables. The memory of a state machine caches the
variables it requires, so that the model of the machine itself is
independent of the location of the variables that it uses, that
is, the particular controller or robotic platform that provides
the variables that it requires.

@ Springer

Table 3 Summary of naming conventions in RoboChart semantics

Name Description

N_C Qualified name of component C, where N is the
qualified name of its immediate parent

set_C_vle Channel modelling assignment to variable v of
component C

set_Ext_C_v Channel modelling external assignment to shared
variable v of component C

get_C_v Channel modelling reading of value in variable v of

component C

enter.id) .idy Event marking the start of a state activation, where
id is the identifier of the state that requested
activation and id; is the identifier of the state being

activated

entered.id).idy Event marking the completion of a state activation

exit.id) .idy Event marking the start of a state deactivation, where
id is the identifier of the state that requested
deactivation and id; is the identifier of the state
being deactivated

exited.id).idy ~ Event marking the completion of a state deactivation

Memory_C Process modelling the memory of a component C

S_main Process modelling the behaviour of state S without
its substates

S_R Process modelling the behaviour of state S taking

into account its substates, and restricting
transitions of S that can no longer occur

The memory of a robotic platform is modelled by a recur-
sive process that, at each step, accepts, for each variable v,
updates to v through a channel sef_v, and, for each controller
C; thatrequires v, propagates the new value through channels
set_Ext_C;_v. There are no get channels, since, as mentioned

RoboChart: modelling and verification of the functional...

above, the values of the variables are cached in the memory
processes for the state machines that use them.

The memory process for the platform in our example,
namely, Memory_Foraging(dist), is as follows. It accepts
a value x for dist through set_FRP_dist, and propagates it
to ForagingC through set_Ext_FC_dist. ObstacleAvoidance
does not require dist, so no additional propagation is needed.

Memory_Foraging (dist) = let
Memory(dist) =
set_FRP_dist?x —
set_Ext_FC_dist\x — Memory(x)
within
set_FRP_nestnest — Memory(dist)

The parameter defines the initial value of dist.

In the definition of a module process, the platform-
memory process is composed in parallel with the pro-
cesses for the controllers synchronising on the ser chan-
nels. In our example, Memory_Foraging(0) is composed
in parallel with the parallel composition of the processes
ObstacleAvoidance and ForagingC. They synchronise on
set_FRP and set_Ext_FC events for dist. The set channels
used to update the variables are visible, since they represent
changes to attributes of the platform, but the ser channels
used to define the values of the constants and the set_Ext
channels used just to define the internal propagation proto-
col are hidden.

Write access to a memory higher up in the hierar-
chy is accomplished by renaming ([[... < ...]]) the set
channels of a controller (or machine) process, when it is
composed to define a module (or controller). In our exam-
ple, the channel ser_FC_dist used by the controller process
ForagingC (defined below) to update the variable dist is
renamed to set_FRP_dist, resulting in a process that inter-
acts directly with Memory_Foraging.

The two channels ser_FC_dist and set_FRP_dist for the
same variable dist represent assignments in different con-
texts. The channel set_FRP_dist represents assignment to
dist as a provided variable of the module with platform
ForagingRP (abbreviated to FRP). In the process for the
controller ForagingC (abbreviated here to FC), however, we
do not use ser_FRP_dist to avoid dependence between the
semantics of the controller and that of the module where it
is used. This allows independent definition and, therefore,
analysis of the controller. On the other hand, when defining
the module, the two channels are identified (via renaming
and synchronisation) to guarantee that when the controller
assigns a value to dist, it is captured by the module.

Renaming is also used to deal with connections between
a controller and the platform. A controller event is uniquely
identified in the semantics by a qualified name determined
by the controller. If such an event is connected to an event

of the platform, a renaming to the platform event models the
connection. For example, the event transferred of the con-
troller ForagingC, whose qualified name in our example is
FC_transferred, is renamed to FRP_transferred, which is the
qualified name of the event transferred of the platform. The
same sort of renamings are applied to ObstacleAvoidance,
but are omitted in the sketch above for simplicity.

The visible interactions of a module, represented by visi-
ble CSP events of the module process, correspond to updates
to platform variables, via set channels, to events of the plat-
form, when they are accepted by a controller, and to calls and
returns to and from the platform operations. In our exam-
ple, they are events that use the channel ser_FRP_dist, the
channels named after the events of ForagingRP (namely,
FRP_collected, FRP_stored, and so on), and channels named
after the operations in the interfaces Graspl and Movementl,
provided by ForagingRP, with suffix Call or Ret to indicate
an operation call or return (Fig. 2).

The semantics of a controller is the parallel composition
of the processes for its state machines interacting according
to their connections, and a memory process for the controller
variables. This semantics is similar to that of a module, but
the components are processes for state machines (Fig. 11)
and the controller memory.

For instance, the process below for ForagingC is the par-
allel composition of a process that interleaves the behaviours
of its state machines DTP and PositionEstimation, and its
memory process Memory_ForagingC.

ForagingC =
DTP
[[set_DTP_position < set_FC_position, . . .]
l
PositionEstimation][. . .]|
[{ set_FC_position, . .., set_Ext_DTP_dist ”
Memory_ForagingC(0, (0, 0))
\V{..-}

Here, the machine processes are composed in interleaving
because they do not interact directly via RoboChart events,
only through the shared variable position. Like in the defini-
tion of a module, renamings deal with associations of local
and shared variables and with connections of events. In the
example, renamings are applied to the processes that model
the individual state machines to associate local (machine)
updates to the shared variable position into global (con-
troller) updates, and to associate connected events of the
machines. For instance, while the semantics of DTP uses the
channel set_DTP_position to write to position, the compo-
sition of DTP in the model of the controller renames this
channel to set_FC_position, thus allowing DTP to interact
directly with the controller’s memory process.

@ Springer

A. Miyazawa et al.

Like in a module process, the parallel composition of the
parallelism of the state machine processes with the memory
process synchronises on events that update and propagate
changes to the variables. In addition, the channels used to
update variables in the controller memory (set_FC_position
in our example) and the channels used to propagate changes
to the state machine memories are hidden.

The memory process for a controller is similar to that
of a robotic platform, except that it must not only receive
updates and propagate changes, but also relay propagations
(of updates from the robotic platform to the state machines).
In our example, the memory process for the controller For-
agingC is shown below.

Memory_ForagingC (dist, position) = let
Memory(dist, position) =

set_FC_position?x —
set_Ext_DTP_position!x —
set_Ext_PositionEstimation_position!x —
Memory(dist, x)

O set_Ext_FC_dist?x —
set_Ext_DTP_dist\x —
set_Ext_PositionEstimation_dist'x —
Memory(x, position)

within
set_FC_nestnest — Memory(dist, position)

The required constant nest is set at the start. Since the
controller declares a variable position and requires the
variable dist, it behaves differently for each of these vari-
ables. The variable position is treated similarly to dist in
Memory_Foraging: updates are accepted and propagated.
The required variable dist, on the other hand, is not updated
directly here. Memory_ForagingC simply relays values prop-
agated by the robotic platform, received through the channel
set_Ext_FC_dist, to any state machine that requires that
value. Both machines of ForagingC require dist, so the value
received is propagated through the channel set_Ext_DTP_dist
to DTP and through set_Ext_PositionEstimation_dist to the
state machine PositionEstimation. The order chosen in the
semantics for propagation is arbitrary.

Below, we show the process for the machine DTP. It is a
parallel composition of two processes. One of them models
the behaviour of the state machine. It is itself defined by the
parallel composition of a process Init, which describes the
transition to the initial state, with the parallelism of processes
modelling the states.

@ Springer

DTP =
Init
[[EnterExitChannels)|
ExploringR \ (¥ \ RoboEvents)
[Exploring_SN...]
\ (Exploring_SN...)
[{ set_DTP_P, ..., collected, . .. }]
Memory_DTP(0, (0, 0), 0, (0, 0))
[collected.tO < collected, . . .]|
set_DTP_P, set_DTP_source, get_DTP_P,
\ 3| get_DTP_source, get_DTP_dist,
get_DTP_position, get_DTP_nest

Init = enter.DTP.Exploring —
entered .DTP.Exploring — SKIP

Memory_DTP models the state machine memory; it records
its local variables (and constant) and caches any required
variables. RoboEvents is the set of all CSP events represent-
ing visible interactions of the machine, namely RoboChart
events, accesses to shared variables, and operation calls and
returns. All CSP events (%), except those in RoboEvents,
are hidden. Memory_DTP synchronises with the process that
defines the behaviour of the machine on the sef and get chan-
nels of all variables, and the events of the machine. The events
are renamed to remove transitions identifiers, and the ger and
set channels are hidden, except for the sef events of the shared
variables: dist and position in our example.

CSP events are used to model the control flow defined by
entering and exiting states via the channels enter, entered,
exit, and exited. They model the beginning and end of these
phases: entering or exiting a state is only completed when
the entry and exit actions are finished. This has an impact
on availability of transitions; for instance, the transitions of a
state are only possible once that state is entered. So, we use the
channel enter to start the entering stage, and entered to signal
its completion; similarly for exit and exited. Each channel
takes two parameters: the component that has requested the
action to start and the target of the request. For instance,
in Init above, DTP itself requests that the state Exploring
is entered using the event enter.DTP.Exploring. This event
synchronises with the event enter?s.Exploring offered by the
process ExploringR, which models the state Exploring. The
synchronisation instantiates s as DTP.

A process that models a state does so compositionally,
capturing only information about the state itself, irrespec-
tive of the context (composite state or state machine) where
it occurs. In general, a process for a state S may have two
components: processes S_main, modelling the behaviours of
S, and S_ch, capturing the behaviours of the children states,
if any. In this view, a state is potentially itself an indepen-

RoboChart: modelling and verification of the functional...

dent software component that we can consider separately in
verification.
S_main has the form sketched below.

S_main =
enter?s.SID —

entry;,

enter.SID.SSID — entered.SID.SSID —

entered.s.SID —

during; STOP A

transitions_of _S
O
all_other_transitions_S

This process uses the identifier SID of S, and, for a com-
posite state, the identifier SSID of the state targeted by its
initial junction. S_main accepts communications over enter
that request entry to S, executes its entry action, requests acti-
vation of SSID, waits for it to be completed, that is, for that
state to be entered, acknowledges entry to S, and executes
its during action while offering a choice of events that trig-
ger transitions. If a transition is taken, the during action is
interrupted (A). To cater for a during action that terminates,
the process during is followed by the deadlocked process
STOP. This ensures that the interruptions arising from the
transitions are not discarded by the termination, and remain
available for as long as the state is active.

The transitions offered are those of S (modelled by pro-
cesses denoted by transitions_of _S in the sketch above) and
all possible transitions, that is, transitions with all possible
valid triggers from and to all possible states, whether in the
diagram or not, except those from S and its substates (mod-
elled by processes denoted by all_other_transitions_S above).
These are all the transitions that, if taken, lead to an exit of S,
like those of an ancestor of S. The transitions of the substates
of S are the only ones not considered here, because they can-
not lead to an exit of S, and, therefore, interruption of the
during action, since there are no inter-level transitions.

The role of the processes in all_other_transitions_S is to
capture the possibility of a transition of an ancestor state of
S interrupting its execution without losing compositionality
in the model. We do not consider specifically the transitions
of the states where S occurs. The definition of S_main does
not depend on the particular transitions of the ancestor states
of S: it accepts any transitions, not only its own, except those
of its substates. Since there are no inter-level transitions, the
transitions in the substates of S are dealt with separately, in
the processes for these substates themselves. As explained,
these transitions are not modelled in either transitions_of _S
or all_other_transitions_S.

For illustration, Fig. 12 presents part of a diagram showing
a composite state S that is itself part of a composite state PS
with transitions numbered. Transitions like (3), from S, are

modelled in transitions_of _S, the transitions like (4), (5), (6),
(7), and (8) are modelled in all_other_transitions_S, and those
like (1) and (2), between substates of S, are not modelled in
either transitions_of _S or all_other_transitions_S.

Of course, as part of the behaviour of S, transitions from
states that are not related to S, that is, not substates nor ances-
tors of S, are never taken. If S is the current state, those
transitions are not actually available. Moreover, transitions
that are not in the diagram also are obviously never taken.
These transitions in S that cannot be taken are restricted as
part of defining the process for the parent state PS as explained
later in this section. The definition of S, however, does not
depend on the identification of the transitions of its ancestors
or even of the machine as a whole.

The transitions modelled in transitions_of .S and all_
other_transitions_S are offered in choice (O). In our exam-
ple, the process Exploring for the state of the same name
accepts the event collected, which is associated with its own
transition, but also all other possible transitions whether in
the diagram or not.

The semantics of a transition with identifier tid and trigger
e?x, receiving a value x, with a guard g, and with an action
tact, possibly defined in terms of x, from the state S to another
state R, with identifier RID, is captured by a process T of the
form indicated below.

T = e.tid?x — exit.SID.SID —
exit.SID?s — exited .SID.s — eact;
exited.SID.SID — tact;
enter.SID.RID — entered.SID.RID — S_main

T is composed in choice with similar processes for each tran-
sition of S to define the process indicated in the sketch of
S_main by transitions_of _S.

In T, if e occurs, then exiting of § is indicated by
exit.SID.SID and exited.SID.SID. In between, if S is a com-
posite state, we have the request from S for its active child
state (with identifier s) to exir and, after the confirmation
via exited.SID.s, the execution of the exit action eact of S.
Afterwards, the transition action tact is executed, and then
there is a request for R to be entered using enter and entered,
before recursing back to S_main. This recursion makes the
behaviour of S available again; it can once again be requested
to enter. The guard g is not modelled in 7', but in the memory
process for the machine discussed later.

Since, in the context of a transition for a state S, the deci-
sion to exit S comes from that state itself, in exit.SID.SID
and exited.SID.SID both identifiers are that of S, that is, SID.
In general, however, these channels are used to accept any
requests to, and acknowledge, exit from the state. So, we
need two identifiers. For instance, when S, as a parent state,
asks a child state to exit, the values of these identifiers are
different as shown in the sketch T itself.

@ Springer

A. Miyazawa et al.

Fig.12 Example of a partial
diagram with collections of

transitions identified. The
shaded areas represent
transitions modelled by the
processes transitions_of _S or
all_other_transitions_S in our
sketch of S_main

PS)
R
S U
——1——p
S1 Sz \
«——2—)
4 N 8S R
Vv
3SR transitions_of S 2
*] L J
w
/ !
|
6S R 4 T
7S R
1

* all_other_transitions_S

The events exit.SID.SID and exited.SID.SID enables val-
idation of a state machine by analysis of its internal control
flow. We can use exited events to analyse, for example, the
time spent in a state, by considering a version of the state
machine process where such events are visible. This kind of
validation is discussed later in Sect. 6.3.2. (We observe, how-
ever, that in the overall semantics such events are not visible,
and so properties specified in terms of these events are not
expected to be preserved by refinement. For example, in a
refinement, states may even be removed or added as long as
the externally observable behaviour is correct).

The processes To in all_other_transitions_S are similar. In
this case, the request to exit comes from another state as. In
addition, no account of the transition action is given, and no
new state is entered, because the interruption here is associ-
ated with transitions other than those of S and of its substates.
The control flow for these other transitions is handled in the
processes for their source state, if any, as further discussed
below.

To = e.tid?x — exit?as.SID —
exit.SID?s — exited.SID.s — eact,
exited.as.SID — S_main

In specifying the semantics of a parent state PS, from the state
process S, we need to define a more restricted process S_R that
excludes transitions from a sibling state of S. (A sibling is a
state that has the same parent.) This is because it is the model
for the parent state that specifies the transitions available
between its children. So, the availability of transitions in S
that are actually controlled by one of its sibling states needs
to be blocked. In our example diagram sketch in Fig. 12, the
process S_R still captures the transitions (3), (6), (7), and (8)
like S_main, but not (4) and (5), which are for its sibling
states, and still not (1) and (2). Since we define S_R as a
component of the process for its parent state (if any), we

@ Springer

still do have a compositional definition. In our example, for

instance, the model for DTP, uses the restricted version of

the state processes: Exploring_R, GoToNest_R, and so on.
In general, a process S_R is defined as follows.

S R=
S
[ccall_other_transitions_S \ aall_transitions_PS]|
SKIP

Here, we use aall_other_transitions_S to denote the set of
events for the transitions captured by the process denoted by
all_other_transitions_S in S_main. Similarly,
transitions_PS contains the events for the transitions of PS,
including those whose semantics is captured in transitions_
of _PS and all_other_transitions_PS.

The parallelism with SKIP blocks the transitions in the
synchronisation set. To explain this definition, we observe
that PS itself captures transitions as indicated in Fig. 12 for
any state. So, in this example, the set of transitions modelled
by all_transitions_PS includes (6), (7), and (8). These are the
transitions not to or from a substate of PS. In S_R, we block
the transitions captured by all_other_transitions_S, that is,
those that are not from S or its substates, that are not captured
by PS. These are exactly the transitions that are not from S
and are from a substate of PS. In Fig. 12, S_R captures the
transitions like (3), (6), (7), and (8). The transitions like (4)
and (5), originating from a sibling state of Sin PS, are blocked.
They are captured by the processes for those sibling states.

This restricted process S_R is used to complement the
model of PS, defined by the process PS_main of the form
sketched above, with a model PS_ch of its children. For the
example in Fig. 12, PS_ch is defined in terms of S_R, U_R,
V_R and W_R. In general, for a state S, if S does not have
any substates, like Exploring, the overall model S of S is
just the process S_main. If, on the other hand, S does have

aall_

RoboChart: modelling and verification of the functional...

substates, its model is a parallel composition between S_main
and another process S_ch that models the children (Fig. 11).
The transitions captured by S_ch are all those captured by
S_main, plus those among the children (but not those among
further nested substates that might exist) of S.

The parallelism between S_main and S_ch captures the
transitions modelled in S_main and the additional ones in
S_ch. Synchronisation is required on the transitions captured
by both processes, namely, those of S_main. For S in Fig. 12,
this parallelism captures transitions like all those shown: (1)
to (8). The behaviour for transitions like (1) and (2) is defined
solely by S_ch, while that for the other transitions it requires
agreement. The specific behaviour of a transition like (3) is
defined in S_main, by a process like 7 above. In S_ch, that
transition is enabled without further restrictions. It is consid-
ered in S_ch only because it is allowed by the definitions of
S1 and S», which are independent of the context defined by
S as their parent state.

S_main and S_ch also synchronise on the flow events enter,
entered, exit, and exited that target a child state, but are not
from another child state. This ensures that entering and exit-
ing of the children states that are not requested by another
child are requested by S_main.

S_ch is a parallel composition of the restricted processes
for S’s children synchronising on the flow events. Use of the
restricted processes ensures that the model of each child does
not affect the transitions from its sibling states. Synchroni-
sation on the flow events captures the sequential flow among
the children states.

Memory_DTP(P, source, dist, position), the memory pro-
cess for the state machine DTP, is below.

Memory_DTP(P, source, dist, position) = let
Memory(P, source, dist, position, nest) =
set_DTP_P7x —
Memory(x, source, dist, position, nest)
O get_DTP_P!P —
Memory(P, source, dist, position, nest)
O set_DTP_dist?x — ...
O get_DTP_dist!dist — ...
O set_Ext_DTP_dist?x — ...
O get_DTP_nest'nest — ...
O (dist > P)&internal .12 — . ..
...
within
set_DTP_nestnest —
Memory(P, source, dist, position, nest)

While a state machine can write directly to the memory of the
controller, it does not read values directly. The state machine
memory process keeps a copy of the required variables, and
accepts updates that keep their values synchronised through

the use of setr_Ext events. Our example above is for a process
that manages four variables: local variables P and source,
and required variables dist and position. For P and source,
we have ser and getr channels. For dist and position, we
in addition have ser_Ext channels used by the controller to
update the variables. The value for the required constant nest
is defined like in the memory processes for platforms and
controllers, but, unlike in those cases, the value chosen is
passed to the local recursive process Memory, where it is
offered through a getr event. We note that Memory_DTP is
agnostic to the particular controller that uses this machine
and may actually hold the values of the required variables.

A state machine memory process also models the evalua-
tion of guards, this is captured by extra processes combined
in the choice above. For instance, the transition from GoToN-
est to WaitForTransfer in Fig. 3 has a guard [dist > P]. As
explained, this transition is modelled as part of the semantics
of the state GoToNest by the process below, where, we do
not model the guard, and since the transition is not associated
with an event, we use a channel internal for its trigger.

This process waits for a synchronisation on the channel
internal, which is later hidden. The parameter of internal,
12, is the identifier of the transition. Next, the process indi-
cates that the state is being exited using the channel exir; the
parameters are the identifier GTN of GoToNest and indicate
that this state is exiting itself. Since there are no substates and
no exit actions, the exiting terminates immediately, which is
indicated by the channel exited, and the entering of the state
WaitForTransfer with identifier WFT is requested using the
channel enter. Finally, the transition waits on the channel
entered for the state WaitForTransfer to finish entering and
recurses to the process GoToNest, which models GoToNest
when inactive.

internal .12 —
exit. GTN.GTN — exited. GTN.GTN —
enter GTN.WFT — entered. GTN .WFT —
GoToNest

As illustrated, a transition process does not evaluate any
guard. This is done by the machine memory process.
In our example, Memory_DTP includes a choice
[dist > P] & internal.t2 — Memory_DTP(...). The guard
is re-evaluated on every memory update, and the result
restricts the occurrence of the transition in the semantics
of GoToNest by making the communication on internal.t2
available or not.

The process S for a state gives an independent and com-
positional account of its behaviour. A state in a hierarchical
machine can potentially model a significant component of
the system [15]. Our approach facilitates the definition of a
refinement technique for state machines like that in [67] for
SysML, and enables compositional verification of states. For

@ Springer

A. Miyazawa et al.

instance, if a state S is shown to be refined by a state T, any
state machine that contains S is guaranteed to be refined by
the same state machine with T substituted for S. Composi-
tionality is particularly relevant for us in the long term, as
we are interested in refinement techniques to support proof
of correctness of software.

The models just described can be automatically gen-
erated by our RoboTool presented in Sect. 5.1. For that,
RoboTool implements the transformation rules that formalise
our semantics, which we describe next.

4.3 Formalisation

The semantics of RoboChart is formalised by a set of func-
tions from RoboChart to CSP models. The main function
[-]r is for modules; it is shown in Fig. 13. It takes a value
of the type Module (see Fig. 7) as an argument, used in a
where clause to determine its robotic platform (rp), con-
trollers (ctrls), connections (cons), the set of asynchronous
connections not involving the platform (asyncs), and the set
of events of asynchronous connections (evasyncs). The set
asyncs of asynchronous connections is defined by a set com-
prehension as the set of all connections ¢ of the module m,
such that ¢ is asynchronous (c.async) and none of its ends
(c.from and c.to) is the platform. The set RoboticPlatform is
the syntactic category of models of robotic platforms defined
in the metamodel. The set asyncs is used to calculate the set
evasyncs of identifiers for the events associated with asyn-
chronous connections. This set includes the identifier of the
source (c.efrom) and target (c.eto) events of the connec-
tions. These unique identifiers are determined by the function
eventld.

Set comprehensions are often used in our semantics to
define sets succinctly. The notation for set comprehensions
we use is that adopted in Z. For example, {x : T | P(x) o
f(x)}, where x is a variable name, T is a set, P is a predicate,
and f is a function, denotes the set of values obtained by
applying the function f to all values x in 7 such that P(x) is
true. Both the predicate and function parts of a set compre-
hension can be omitted, in which case they are interpreted as
the value frue and the identify function, respectively.

The result of [_]Jo¢ is a value of type CSPProcess that
represents a CSP process. This value defines a process via
the constructor functions hiding, exception, generalisedPar-
allel, and replicatedInterleave, as well as several functions
described later: buffer, modMemory, and so on. Definitions
such as that of [[_] 4 in Fig. 13 are hard to read due to the
usage of CSP constructors as functions; for this reason, we
present our semantic functions here in a more readable style
as rules. For the definition of [_]| A4, for instance, we have
Rule 1 instead.

In each rule definition, we identify the name of the func-
tion, its parameters, and return type in the header, and specify

@ Springer

[m : Module]pm =
hiding(
exception(
hiding(
generalisedParallel(
replicatedInterleave({c : asyncs o buffer(c)}),
generalisedParallel(
modMemory(m),
composeControllers(m, ctrls, cons),
memoryChannels(m)

)

chanSet(evasyncs)

)
hiddenModuleChannels(m)
)

skip,
{end}

)’
{end}
)

where
ctrls = (z : m.controllers)
cons = m.connections
asyncs =
{c: cons |
c.async A {c.from, c.to} N RoboticPlatform = ()

evasyncs = {c : asyncs o eventld(c.eto)} U
{c: asyncs o eventld(c.efrom)}

Fig. 13 Semantic function for Modules

the function in the body of the rule. Our meta-notation is
straightforward, and we underline its terms, which are used to
specify the CSP processes (for example, the where clauses),
and use standard mathematical italic font for CSP terms (for
example, Skip).

The result of applying []| o to our running example, that
is, the module Foraging in Fig. 5, is the process Foraging
defined in the previous section. It is worth mentioning, how-
ever, that, for clarity, we have made some simplifications
to the Foraging definition. First, since there are no asyn-
chronous interactions between controllers in Foraging, the
replicated interleaving over connections in asyncs in Rule 1
is over the empty set, and omitted. Additionally, since none
of the controllers in this example terminates, the interrup-
tion @{eyqy and hiding \ {end} are redundant and also
omitted. We explain these elements of Rule 1 in more detail
next.

The semantic function buffer takes an asynchronous con-
nection ¢ as argument and defines a process that models a
buffer of size one. It always accepts an input, possibly over-
riding a previously buffered value, and provides an output, if
available. The input and output channels match those for ¢ in
evasyncs; they associate the buffer specifically with c¢. The
rule that defines buffer and some other rules omitted here

RoboChart: modelling and verification of the functional...

Rule 1. Semantics of modules [[m : Module] \, : CSPProcess =

Il ¢ : asyncs e buffer(c)
[[evasyncs]|
modMemory(m)

\ hiddenModuleChannels(m)

OlenaySkip | \ {end}

[[memoryChannels(m)]|
composeControllers(m, ctrls, cons)

where
ctrls = (x : m.controllers)
cons = m.connections

asyncs = {c : cons | c.async A {c.from, c.to} N RoboticPlatform = ¢}

evasyncs = {c : asyncs e eventld(c.eto)} U {c : asyncs e eventld(c.efrom)}

Rule 2. Composition of controllers

composeControllers(m : Module, ctrls : Seq(Controller), cons : Set(Connection)) : CSPProcess =

if #ctrls = 1then
renamingController(m, head ctrls, cons)
else

renamingController(m, head ctrls, cons) [connevts] composeControllers(m, tail ctrls, cons)

where

connevts = renCtrlEvts(m, head ctrls, cons) N | {c : tail ctrls e renCtrlEvts(m, ¢, cons)}

are in [96], and are implemented in RoboTool, presented in
Sect. 5.1.

In Rule 1, we have one buffer for each asynchronous con-
nection in asyncs. The buffers are combined in interleaving.
If asyncs is empty, the interleaving reduces to Skip, the pro-
cess that terminates immediately without any interaction. The
interleaving is in parallel with the processes for the platform
memory and for the controllers, synchronising on the events
in evasyncs.

The function modMemory takes a module and defines a
memory process for it, that is, a process to hold its platform’s
variables. The set memoryChannels(m) includes the chan-
nels used for interaction with this memory process, used for
communication with the controllers.

The function composeControllers (Rule 2) takes a mod-
ule, a sequence of controllers, and a set of connections, and
defines the parallel process that composes the controller pro-
cesses. Finally, hiddenModuleChannels takes a module and
determines the set of channels used internally by that mod-
ule’s process.

The parallelisms and hiding of the CSP events identi-
fied by hiddenModuleChannels(m) in Rule 1 formalise the
account of a module process in the previous section. To deal
with termination, however, that process is composed with an
exception operator that leads to Skip whenever the end event
occurs. An exception P @4 Q is a process that behaves like P
until an event in the set A occurs, when it behaves like Q.

The parallel composition of controllers in a sequence
ctrls is calculated recursively as shown in Rule 2. It con-
structs the parallel process that composes the semantics of the
first controller (head ctrls) renamed according to its connec-
tions, and the process for the remaining controllers (tail ctrls)
defined via a recursion. The renaming applied to a con-
troller process is given by renamingController(m, ¢, cons),
which defines the process for the controller ¢, and the renam-
ing to capture the connections cons. The parallel processes
synchronise on the events in connevts, which contains the
connection events common to the first and the remaining
controllers after renaming. They are determined by the func-
tion renCtrlEvts(m, ¢, cons), which considers the renaming
effected by renamingController(m, c, cons).

The definition of renamingController(m, c, cons), omit-
ted here, uses the function [|_||¢, which gives the semantics of
acontroller c. Itis defined similarly to the semantics of a mod-
ule as shown in Rule 3. The memory process ctrlMiemory(c)
is composed in parallel with composeMachines(c, ms, cs),
which is the parallel composition of the processes for C’s state
machines, synchronising on the eventsin lvars U rvars. These
include the writing events (set) for local variables (identified
by allLocalVariables(c)) and the writing events (set_Ext) for
the required variables (allRequiredVariables(c)). Similarly,
the memory and controller processes also synchronise on
the events in |consts U rconsts, which include the writing
events (set) for the local and required constants. The paral-
lel composition does not include buffers because connections

@ Springer

A. Miyazawa et al.

Rule 3. Semantics of controllers [[c : ControllerDef] : CSPProcess =

((composeMachines(c, ms, cs) [Ivars U rvars U lconsts U rconsts]| ctrlMemory(c)) \ (lvars U rvars U lconsts)) O(enq)Skip

where
ms = (x : c.machines)
Cs = c.connections
Ivars ={v : allLocalVariables(c) eset_vid(v) |}
rvars ={v : allRequiredVariables(c) eset_Ext_vid(v)[}
Iconsts ={v : allLocalConstants(c) eser_vid(v) |}
rconsts ={v : allRequiredConstants(c) esez_vid(v)[

Rule 4. Controller memory ctrlMemory(c : ControllerDef) : CSPProcess =

let Memory(vars)=

v lvars e ser_vid(v)?x — (§m : rmachines(v) e set_Ext_vid(v, m)!x — Skip); Memory(varsiname(v) := x])

O

v :rvars e ser_Ext_vid(v)?x — (§m : rmachines(v) e set_Ext_vid(v, m)!x — Skip); Memory(vars|name(v) := x])

within
constlnit(c); Memory(varvalues)
where
ms = c.machines
Ivars = allLocalVariables(c)
rvars = requiredVariables(c)
vars = (v : rvars U lvars e name(v))
varvalues = (v : rvars U lvars e initial(v))
rmachines = v e {m : ms | v € requiredVariables(m)}

Rule 5. Semantics of state machines [[stm : StateMachineDef] 57 : CSPProcess =

(initialisation(stm) |[flowevts] composeStates(ss, stm)) \ {enter, entered, exit, exited|)

[getsetChannels(stm) U trigEvents(stm)]|
stmMemory(stm)

@{end}Skip

[renameTriggerEvents(stm)] \ getsetLocalChannels(stm) U {internal}

where

flowevts = | J{x :SIDS\states(stm); y : states(stm) o{]enter.)g.y, entered.g(.y, exit.x.y, exited.x.yﬂ}

ss = (x : stm.nodes | s € State)

between machines are always synchronous. The set events of
the local variables (collected in |lvars) and local constants (in
[consts), and the ser_Ext events of the required variables (in
rvars) are then hidden, with termination accounted for as in
the semantics of modules: by capturing the event end through
an exception © and terminating.

The memory process for a controller is specified by Rule 4;
it differs from that for a robotic platform in that it accepts
set_Ext events for each required variable, which are used
to propagate updates to shared variables. Since a controller
memory is never read directly, this process does not accept
get events.

The function ctrlMemory(c) defines a parameterised
recursive process Memory(vars) that at each step reads a

@ Springer

value through one of two types of channels: set for local
variables and sef_Ext for required variables. The parameters
vars are the names name(v) of both local variables (lvars)
and required variables (rvars). For each of them, depend-
ing on their nature (local or required), Memory(vars) offers,
in a choice, a different communication. For a variable v in
[vars, it accepts a value through the channel ser_vid(v); here
vid(v) specifies the qualified name of v. Next, Memory(vars)
propagates sequentially (3) the received value x to all
machines m in the controller that require v using the chan-
nel set_Ext_vid(v, m). The sequence of such machines is
determined by rmachines(v); the order in this sequence is
arbitrary. The name vid(v, m) is the qualified name of v in
the machine m. Finally, Memory(vars) recurses with argu-

RoboChart: modelling and verification of the functional...

ment name(v) as x (vars[name(v) := x]). For a variable v
in rvars, the memory process accepts through set_Ext_vid(v)
a value being propagated from a platform, and propagates it
to the machines, as for local variables. The controller mem-
ory is defined by an interleaving constinit(c) of ser events
for constants of the controller, followed by the instantiation
of Memory(vars) with arguments varvalues that define the
initial values initial(v) for the variables v in the memory.

The definition of composeMachines is similar to that of
composeControllers in Rule 2, and omitted here. It uses the
semantic function for a state machine, specified by Rule 5.
The definition in Rule 5 follows the pattern in Rules 1
and 3: the semantics of the component (state machine, here)
is composed in parallel with a memory process defined by
stmMemory(stm).

There are two main differences here. First, the seman-
tics of a machine stm is itself the parallel composi-
tion of an initialisation process initialisation(stm) and
the parallel composition of the state processes defined
by composeStates((s : stm.nodes | s € State), stm). The
arguments here are a sequence containing the nodes of
stm that are a state, as opposed to a junction, and stm
itself, which defines how those states are used. Second,
the memory process stmMemory(stm) accepts not only
get, set, and ser_Ext events, but also triggers of the tran-
sitions of the machine to support the evaluation of guards.
So, the synchronisation set includes get and setr events for
the machine variables (and constants), local and required,
defined by getsetChannels(stm), and the transition trigger
events, defined by trigEvents(stm), including events of the
special channel internal used for transitions without trig-
ger. The memory process stmMemory(stm) is defined in
Rule 12. We rename the transition trigger events
(renameTriggerEvents(stm)) to remove the transition iden-
tifiers, and hide the events (in getsetLocalChannels(stm))
that use the channels internal, get, or set for local variables
or constants.

The initialisation process initialisation(stm) defines the
semantics of the sequences of transitions from the initial junc-
tion to a state. We note that it is possible that, from the initial
junction, there can be several transitions to other junctions
before a state is reached. The function composeStates is
specified in Rule 6.

The initialisation and states processes synchronise on the
set flowevts, which contains enter, entered, exit, and exited
events. This synchronisation plays two roles. First, it allows
initialisation(stm) to request machine states to be entered.
For that, it uses events enter.x.y and entered.x.y, where x is
the machine identifier, and y is a state of the machine. Sec-
ond, the synchronisation blocks the possibility of any other
machine or states outside stm requesting states of stm to be
entered or exited. For that, flowevts includes events whose
first parameter x is any identifier in SIDS, but not in the set

states(stm) of identifiers for the states of stm. SIDS includes
the machine identifier itself, and that caters for requests from
initialisation(stm). By including the identifiers of all other
machines and of states not in stm, which are not used in
initialisation(stm), the synchronisation blocks them. They
are allowed by composeStates because the semantics of the
states is agnostic to the context, including the machine and
any sibling states, that can request their entering and exiting.
The second parameter y of the events of flowevts is an iden-
tifier in states(stm), since it is the states of stm that can be
requested to be entered and exited.

Composition of states is defined by Rule 6; it takes a
sequence of states ss and their node container p. In Rule 5,
the node container is the state machine. In Rule 8, where
composeStates is used to define the semantics of a compos-
ite state, the container is that state.

The definition of composeStates(ss, p) follows a pattern
similar to that used for controllers (Rule 2) . The restricted
semantics (defined later by Rule 10) of the first state of
ss (head ss) is composed in parallel with the composition
of the semantics of the rest of the sequence of states (tail ss)
calculated recursively, synchronising on the set cflowevts of
their common flow events. This set is calculated similarly
to the set connevts in Rule 2, and consists of the intersec-
tion of the set of events obtained by applying the function
flowEvents to the first state, and the union of the sets obtained
by applying flowEvents to the rest of the states.

The function flowEvents is given by Rule 7. It takes a state
s and a node container p as parameters, and returns a value
of type ChannelSet that represents a set of CSP events. The
channel set returned by the function flowEvents contains the
enter, entered, exit and exited events that represent requests
or acknowledgements from s or to s. One of the two parame-
ters y of each event is the identifier id(s) of s, and the other is
the identifier of one of the children of its container p, that is,
s itself or one of its siblings. These events allow s to request
any of its siblings to enter or exit, and any of the sibling states
to request s to enter or exit.

Rule 6 uses a restricted semantics of states, also used to
give semantics of substates. We present here first the seman-
tics of (composite) states in Rule 8, and then the restricted
semantics for a state in a container in Rule 10. The semantics
of simple states is similar and simpler.

Rule 8 defines [[s]ls as a parallelism of two processes.
The first, Inactive, models the intrinsic behaviours of the
state, that is, its actions and transitions. The second paral-
lel process is composeStates((x : states(s)), s); it accounts
for the semantics of the children of s in a similar fashion
as the semantics of state machines, controllers, and mod-
ules handle the semantics of their components. The parallel
processes synchronise on the events in the set flowtrigevts,
defined in Rule 9 by the function flowTriggerEvents, with the
flow events (those in flowevts) hidden. The set flowtrigevts

@ Springer

A. Miyazawa et al.

Rule 6. Composition of states composeStates(ss : Seq(State), p : NodeContainer) : CSPProcess =

if #ss = 1then
restrictedState(p, head ss)
else
(restrictedState(p, head ss) [cflowevts]| composeStates(tail ss, p)) \ cflowevts
where
cflowevts = flowEvents(head ss, p) N | J{s : tail ss e flowEvents(s, p)}

Rule 7. Flow events flowEvents(s : State, p : NodeContainer) : ChannelSet =

LJ {x : states(p); y : {id(s)} e {]enter.y.)g, entered.y.x, exit.y.x, exited.y.)g, enter.X.y, entered.x.y, exit.x.y, exited.x.yl}}

Rule 8. Semantics of composite states [[s : State]|s : CSPProcess =

let
Inactive=enter?o : sids.id(s) — Activating(0)

Activating(0)=[[s.entry]l 4ction; initialisation(s); entered.o.id(s) — ([s.during]| 4ction; Stop) A

Ot : transitionsFrom(s) e [It, s, false]l,/mactive.Activating

O
(e : Event o if(e.type == null) then eventld(e)?x : tids — exit; Inactive
else eventld(e)?x : tids?y — exit; Inactive
within

(Inactive |[flowtrigevts]| composeStates((x : states(s)), s)) \ flowevts

where
flowtrigevts = flowTriggerEvents(s)

flowevts = | J{x :SIDS\states(s); y : states(s) o{]enter.x.)!, emered.g(.y, exit.x.y, exited.x.yﬂ}

sids =SIDS \ {id(s)}

exit =exit?as : sids.id(s) — exitSubstates(s); [s.exit]] 4ction: exited.as.id(s) — Skip

tids =TIDS \ tIDS(s)

is used to restrict the flow and trigger events to ensure we have
a compositional semantics for states as explained before.
The first parallel process Inactive specifies the initialisa-
tion of s using enter . The communication on enter is arequest
originating from any other state, with identifier o in sids, for
s to be entered. The definition of sids ensures that the request
can come from any state (or machine), but not s. A request
from s itself is handled by the process for the transitions from
s. After the request, the initialisation proceeds to the second
process, Activating, which takes o as argument.
Activating(o) executes the entry-action process of s, that
is, [[s.entry]l 4ction, requests initialisation of the machine
in s, if any, using initialisation(s), indicates that s has fin-
ished entering using enfered, and executes the during-action
process [[s.during]] 4.tion, While offering the possibility of
interruption by a transition process. For a during action, its
semantics ([[s.during]] 4ction) is composed with Stop. The
transition processes are offered in external choice; there are

@ Springer

two groups: (1) transitions that start in s and (2) transitions
that can interrupt s if present in an ancestor state, includ-
ing those without trigger, modelled using semantic internal
events.

A transition # in the first group transitionsFrom(s) is given
semantics by ||z, s, false]]ryf’g. Besides 1, this function takes
as arguments the source of t, which is s here, a boolean indi-
cating whether that source is an initial node, which is false
here, and processes P and Q as parameters. These model the
source state of ¢, when inactive, in the case of P, and after
entering has been requested, in the case of Q. If ¢ exits the
state, [z, s, false]]lE Q proceeds to P. If ¢ is a self-transition,

lz,s, false]]lyf'Q proceeds to Q. In Rule 8, these arguments
are the pro?esses Inactive and Activating. The semantics of
transitions is given by Rule 11.

The second group contains all possible transitions that
could appear in any ancestor state. In the semantics, the
set of all trigger events contains all pairs e.tid, where e

RoboChart: modelling and verification of the functional...

Rule 9. Synchronisation events between parent state and substates flowTriggerEvents(s : State) : ChannelSet =

({e : Event; t : TIDS e e.t]} \ substatesTriggers(s))
U

U{x :SIDS\states(s); y : states(s) o{]enter.x.y, entered,z(.y, exir.x.y, exited.)g.yl}}

is any event, that is, an element of Event, which includes
the internal events, and tid is any identifier from a set
TIDS of valid transition identifiers. Those for the transi-
tions of s and its substates, determined by the function
tIDS(s), cannot identify transitions of ancestors of s. So, we
only need to consider transitions with identifiers in the set
tids =TIDS \ tIDS(s). The name of the trigger event is that
determined by eventld(e). Parameters y of typed events, that
is, those for which e.type is not null, are modelled as param-
eters of the CSP channel eventld(e). After the trigger event,
the state can be exited, as defined by the process exit.

The process exit waits for a synchronisation on the chan-
nel exit, requests and waits for the active substate, if any,
to exit, using the process exitSubstates(s), executes its exit-
action process [[s.exit]| 4.+, and indicates completion of the
exiting process through exited. After executing the process
exit, Activating(o) recurses to Inactive so that s accepts new
requests to be entered.

The synchronisation set between Inactive and the compo-
sition of substates is given by Rule 9. It specifies the events
used by a parent state s to interact with its children. This set
includes all the pairs of events e and transition identifiers ¢,
that is, trigger events of the semantics, except those for tran-
sitions of the substates of s, defined by substatesTriggers(s).
Additionally, flowTriggerEvents(s) includes the flow events
enter, entered, exit, and exited, where the first parameter x
does not identify a child of s: it is in SIDS \ states(s), and
the second parameter y identifies one of those substates. As
illustrated in the previf)us section, the result is that requests
to enter or exit a substate by a non-sibling state can come
only from the parent state.

Rule 10 gives the restricted semantics of a state s, which
captures its behaviour when used in a given node con-
tainer (machine or parent state) p. It is discussed in Sect. 4.2
and used in Rule 6. R

As explained previously, the semantics of a state is com-
positional and offers not only its own transitions, but also
any transition that could possibly belong to one of its ances-
tors to account for the behaviour of composite states. When
composing the process for a state s into the semantics of a
container p, information about the identifiers of the transi-
tions of the sibling states becomes available. Since exit from
a state cannot be requested due to such a transition, we block
the events in the process for s for transitions with those iden-

tifiers. This is achieved by synchronising that process with
Skip on all possible transitions not from or in s, defined by
all_other_transitions_S, except those corresponding to actual
transitions in p: in the set all_transitions_PS of transitions
from s and its giblings.

The set of all transitions wholly contained within a state
s is given by allTransitions(s); it determines the transitions
between the substates of s (at any depth), but not the tran-
sitions starting at s itself. With the set transitionsFrom(s),
on the other hand, we get exactly the transitions that start
at s. These functions are used to define the set of identifiers
tidsfromwithin of the transitions from and within s, which
is used to specify the set all_other_transitions_S. In the def-
inition of all_transitions_PS, the event of a transition t of p
is obtained by t.trigger.event as defined in the metamodel.

The semantics of transitions is given by Rule 11. It takes a
transition t, a node container origin, a boolean value initial,
and processes P and Q. This function is called recursively to
cover all the transitions in a flow starting in a state or initial
junction and finishing in a state. The parameters origin and
initial record the starting point of the flow, that is, the source of
the first transition, and whether or not it is an initial junction.
If the source is a state, P and Q model it: P, when it is inactive,
and Q, after entering has been requested.

Since it is called recursively, Rule 11 distinguishes the
possible starting points src of a transition: a state, an initial
junction, or just a junction (that is not initial). In each case,
it produces a slightly different process.

If it is a state, the process consists of a communica-

tion given by the semantics [[t.trigger]]?%‘,;(;w, of the trigger

(potentially non-existent, leading to an event that uses the
channel internal), and a process that exits the state and moves
on to the target of the transition. This process consists of a
communication on exit to indicate that exiting of src has
started, exitSubstates(src) to request and wait for the active
child, if any, to exit, the process [[src.exit]] 4.¢io, for the exit
action, an indication through exited that the exiting is fin-
ished, the process [[t.action]| 4.+, for the transition action,
and, finally, compileTarget(tgt, src, false)” 2, a process that
captures the execution of the target. For example, if that target
is a state, it is a request to enter that state. If it is a junction,
we have a recursive call to deal with the transitions from
that junction, and so compileTarget has the same parame-
ters declared in Rule 11 itself.

@ Springer

A. Miyazawa et al.

Rule 10. Restricted semantics of states restrictedState(p : NodeContainer, s : State) :CSPProcess =

[[slls [all_other_transitions_S \ all_transitions_PS]| Skip
where

tidsfromwithin = {t : transitionsFrom(s) U allTransitions(s) e id(t)}

all_other_transitions_S = {e : Event; tid : TIDS \ tidsfromwithin e eventld(e).tid}

all_transitions_PS = {e : Event; tid : TIDS e eventld(e).tid} \ {t : allTransitions(p) e eventld(t.trigger.event).id(t)}

Rule 11. Semantics of transitions [[t : Transition, origin : NodeContainer, initial : booIean]]If}Q : CSPProcess =

if src € State
id(t)

[[t.trigger]]Trwm, — exit.id(src).id(src) — exitSubstates(src); [[src.exit]] 4ction; exited.id(src).id(src) — [[t.action] 4ction;

compileTarget(tgt, src, false)™Q
elseif src € Initial

internal.id(t) — [[t.action]] 4ction; cOmpileTarget(tgt, parent(src), true)PQ

elseif src € Junction

internal.id(t) — [[t.action]l 4crion; compileTarget(tgt, origin, initial)?Q

where
src = t.source
tgt = t.target

Rule 12. State machine memory stmMemory(stm : StateMachineDef) : CSPProcess =

let Memory(vars) =

Ov : lvars e get_vid(v)!name(v) — Memory(vars) O set_vid(v)?x — Memory(varsiname(v) := x])

Ov : rvars e (get_vid(v)!name(v) — Memory(vars) O set_vid(v)2x — Memory(vars[name(v) := x])

[m]
[m]
set_Ext_vid(v)?2x — Memory(vars|[name(v) := x]))
|
v : allConstants(stm) e get_vid(v)!name(v) — Memory(vars)
[m]
[t : allTransitions(stm) e memoryTransition(t); Memory(vars)
within
constInitSTM(consts, stm,Memory(varvalues))
where

rvars = requiredVariables(stm)

Ivars = allLocalVariables(stm)

consts = (v : allConstants(stm) e v)

vars = (v : rvars U lvars e name(v)) 7 (v : consts e name(v))

varvalues = (v : rvars U Ivars e initial(v)) 7 (v : consts e name(v))

The process when the source is an initial junction is
slightly simpler, as there is no trigger, and no state to
exit. In this case, the process accepts a synchronisation on
the channel internal (corresponding to the empty trigger)
with the identifier of the transition (id(t)) as a parame-
ter, followed by the execution of the transition action and
compileTarget(tgt, parent(src), true)”-Q. Here, the second
argument is the parent of src. This argument is used to request
the target state to be entered, and if the source is an initial
node, that request comes from the parent state (or machine).

@ Springer

The semantics when the source is a regular junction is similar
to that of initial junctions, except that the parameters origin
and initial of the rule are passed on directly to compileTarget.

The parameters origin and initial are used by the function
compileTarget to identify whether the sequence of transi-
tions whose semantics is being defined starts in an initial
state, and whether that sequence forms a cycle returning to
the initial state. In the first case, the sequence of transitions
does not lead to exiting a state (unlike regular transitions), and
must lead to the execution of the remaining behaviours (for

RoboChart: modelling and verification of the functional...

instance, executing the during action) of the state that con-
tains the initial junction. In the second case, the sequence of
transitions must lead to the behaviour specified by the second
process Q given as parameter. This is needed to guarantee that
after a cycle, the source state is not waiting to be activated, as
it has already been entered by the final transition of the cycle.
The parameters P and Q are the continuation processes used
to build the mutually recursive processes of a state (Rule 8).

The memory process of a machine is defined by Rule 12.
Like Rule 4, this rule defines a recursive parameterised
process (Memory(vars)). At each step it offers, in choice,
get_vid(v) and ser_vid(v) events for each local variable of
the state machine (lvars), events ger_vid(v), set_vid(v) and
set_Ext_vid(v) for each required variable (rvars), get_vid(v)
events for each local and required constant
(allConstants(stm)), and processes memoryTransition(t)
offering the events of each of the transitions 7 of the machine.
The choices involving events set_vid(v) and set_Ext_vid(v)
result in recursive calls where the parameter for the variable
is replaced with the received value, and all other choices lead
to recursive calls with unchanged parameters.

Like in Rule 4, the values of the loose (local and required)
constants ci, ¢, ..., that is, those whose values are not
determined in the machine, are read via set channels. Here,
however, as defined by the function constlnitSTM (omit-
ted) they are read in an (arbitrary) order set_ci?c; —
set_c1?7cy — This defines a scope where the names
c1, c2, ... are defined. In addition, in a let-expression, the
constants whose values are defined in the machine are
declared locally with their values. All constant names are
used as arguments in Memory(...,c1, c2, ...) to define the
values of the constants in the call to the process Memory.
Unlike the platform and controller memory processes, here
we need to record the values of the constants as parameters
to make them available via get channels to the machine.

As previously said, state machines can also be used to
define operations. In this case, the semantics of the opera-
tion is a parameterised process that takes the arguments of
the operation as parameters. Apart from that, the process that
defines the semantics is exactly that of a state machine pre-
sented above (Rule 5).

State machines may contain actions, which are composed
of statements. Statements may contain expressions, and these
expressions must be evaluated before the statement is exe-
cuted. Since variables are recorded in a memory process, the
values used in a statement must be first read from the memory,
and a local context must be created where the statement can
be executed. Rule 13 specifies this behaviour. It takes a state-
ment s, and uses a function readState to construct a process
that reads a set of variables from the memory creating a local
context, and executes the statement in that context. The set
of variables is calculated using the function usedVariables,
and the basic semantics of a statement is given by the func-

tion [[_[| statement- The semantics for statements, expressions,
triggers, and so on is standard and omitted here, but is in [96].

Next, we present RoboTool, which implements the seman-
tic rules above to calculate fully automatically a CSP model
for a RoboChart diagram.

5 Verification and validation

The well-formedness conditions and semantics defined in
the previous sections allow us to both validate and verify our
models. In particular, verification can be performed using
the CSP model-checker FDR [41]. To that end, some level
of automation is necessary. This has been achieved in the
form of a prototype tool called RoboTool, which we discuss
in the next section. Section 5.2 further expands on the use of
model-checking technology for the verification of properties.
Finally, in Sect. 5.3, we discuss some examples.

5.1 Tool support

RoboTool® is a set of Eclipse’ plug-ins implemented using
the Xtext® and Sirius” frameworks.

Modelling We have used the Eclipse Modeling Frame-
work (EMF) to implement the metamodel presented in
Sect. 3.2 as a basis to generate a textual editor using Xtext
and a graphical editor using Sirius. The textual notation is
used exclusively as an internal representation specific to
RoboTool. A different implementation of RoboChart might
choose a different representation.

Figure 14 shows RoboTool with a number of dia-
grams open. The RoboTool window has four areas: model
explorer (top-left), outline (bottom-left), graphical editor
(top-right), and properties/problems (bottom-right).

The area for the graphical editor itself is divided into two
parts: the diagram canvas (left) and the tool palette (right).
RoboChart diagrams are constructed in the diagram canvas
using tools from the palette; additionally, diagrams can be
edited by double-clicking (for example, to edit names and
actions), or by right-clicking elements and selecting actions
from the menu.

The graphical editor constructs a RoboChart model and
automatically verifies all the well-formedness conditions
described in Sect. 3.3 and [96], and type compatibility in
expressions and statements. We describe the implementation
of these checks below.

www.cs.york.ac.uk/circus/RoboCalc/robotool/.
www.eclipse.org.

6
7
8 www.eclipse.org/xtext.
9

www.eclipse.org/sirius.

@ Springer

www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.eclipse.org
www.eclipse.org/xtext
www.eclipse.org/sirius

A. Miyazawa et al.

Rule 13. Semantics of statements in context [[s : Statement]| siatementTnContert : CSPProcess =

readState(usedVariables(s), [[s]lstatement)

File Edit Diagram Navigate Search Project Run Window Help

| mil Qi il v (=T ¢ v Quick Access S
& Model Explorer 3 = B8 & platform & ForagingC & Foraging &% & DTP = B8
BE v BvBv & 0O~ v = v @ Q - . Palette 4
RQAQAD - *~
type filter text ———
Foraging (= Architectural Constru...
v &3 ForagingRobot ane (JInterface
» =\ Project Dependencies | rl' .' | & Robotic Platform
= src-gen obstacle obstacle §3 stateMachine

¥ DTP.rct

>
» O
o Controller
» ¥ Foraging.rct
3
»
»

—> Connection
& Module

o® Canmsllsvnstacanca

(- State Machine
£ Data Model
collected collected R Types

(= OtherTools

transferred|
o2 ref ObstacleAvoidance & ref ForagingRP

transferred

O .
[* ForagingC.rct o$ ref ForagingC

[* platform.rct
[4 representations.aird

stored stored

1
I

5= Outline 2 = B [Properties & |[2 Problems mlE e 8

& f ¥ || ¢+ RC Package

Main ~ Properties
Semantic Name: @
Behaviors
— = <
RC Package &

Fig. 14 RoboChart textual and graphical editors

@Check
def junctionWFC1(Junction j) {
if (j instanceof Initial) return

val parent = j.eContainer as NodeContainer
if (parent.transitions. filter [t|t.source = j]|.size =— 0) {
error (

) ’ I

’A junction in + parent.name + should have at least one outgoing transition ’,
RoboChartPackage. Literals .NAMED ELEMENT NAME,

’transitionFromJunction’

)
}
}

Fig. 15 Implementation of the well-formedness condition J1 for junctions

Validation The well-formedness conditions are imple- The method in Fig. 15 first checks if its argument j
mented through the validation mechanism provided by Xtext. is an initial junction (j instanceof Initial). If so,
Each condition is associated with one or more validationrules ~ the condition being implemented does not apply as there
implemented by a method written in Java or Xtend'® and is a stronger condition for initial junctions (condition J4 in

annotated with @Check. Figure 15 shows the implementa- Sect. 3.3). Next, the method recovers the container parent,
tion of the well-formedness condition J1 for junctions (see that is, the state or machine that contains the junction, obtains
Sect. 3.3). the set parent.transitions of transitions fully con-

tained in the parent and restricts this set, through the method
10° A dialect of Java (www.eclipse.org/xtend/).

@ Springer

www.eclipse.org/xtend/

RoboChart: modelling and verification of the functional...

filter, to those transitions t whose source is the junc-
tion. Finally, it checks the size of this set, and if it is empty,
it produces an error using the method error. This method
takes a textual description of the error, a literal that indicates
the element of the abstract syntax tree to which the error
should be attached (in this case, the name of the junction)
and an identifier for the type of error.

The close correspondence between the RoboChart well-
formedness conditions and the validation rules implemented
in Xtext provides validation for both the language and our
conditions. Violation of such rules not only produces error
information, but also prevent the generation of the semantics
of invalid models. Adding or removing validation rules to
cater, for instance, for different semantic models or applica-
tions (like code generation) is a simple exercise.

While most of the well-formedness conditions can be
checked automatically, conditions such as The guards of the
transitions out of a junction must form a cover (see con-
dition (2) for junctions) cannot be checked syntactically,
requiring the use of automatic theorem provers or SMT
solvers. Nevertheless, violations of such conditions does not
prevent the generation of semantics that can be processed
with CSP tools, and that semantics can be used to check well-
formedness in these cases. For instance, the violation of the
condition mentioned above leads to a deadlocked junction,
which can be identified via a deadlock check using FDR.

Our validation rules additionally check for type correct-
ness based on the type system of the Z notation [99]. Libraries
for the data types modelled in the Z toolkits (sets, functions,
and so on) are under development.

Semantics generation RoboTool calculates both the un-
timed and timed semantics (presented in the next section)
tailored for use with FDR, that is, using the ASCII version
of CSP called CSP-M, to support automatic verification of
properties. For example, Fig. 16 shows the implementation
of Rule 6 in Sect. 4.3.

While the rules are essentially the same, there are some
superficial differences. Our formalisation identifies meta-
notation using colour and underline, but in our implemen-
tation the meta-notation is the language Xtend. The target
language constructs are encoded as strings enclosed in triple
quotes, with in-line meta-expressions identified by the use of
guillemets («»).

In addition, in the code generator, instead of building one
monolithic CSP process that yields the overall semantics
of a module, we declare a number of named processes for
each of the main components: modules, controllers, state
machines, states, and so on. This is important to improve
the performance of verification via model checking in FDR
and readability. For example, in Fig. 16, instead of calling
the function restrictedState used in Rule 6, we call directly
a process whose definition is given by the implementation of

restrictedState. The processes declared by restrictedState
are named S_name_R, where name is the name of the state
defined by «id (state) » in Fig. 16. The prefix S indicates
that the process models a state, and the suffix R indicates that
this is the restricted semantics of the state.

One consequence of using process declarations is that
values that would otherwise be available throughout the
monolithic process defined by Rule 1 must be passed as
parameters. For example, in Fig. 16, if the machine defines
an operation, any parameters need to be passed on to the pro-
cesses S_name_R that defines the state. This is achieved
through the method parameterisation of astate’s state
machine (obtained via the method connectionNode).

Constants are specials kinds of variables, and in our for-
mal semantics, they are held in the memories of the relevant
components. As an optimisation, the semantics generated by
RoboTool handles constants using parameters. For example,
a constant declared by the robotic platform gives rise to a
global CSP declaration of that constant, which is passed as
parameter to the processes for the controllers that require
the constant, which in turn pass it as a parameter to all its
state machines that require the constant as well. A similar
treatment is given to constants defined in a controller. Con-
stants defined in a machine are also declared globally. Careful
choice of names avoids clashes in global declarations: we
use qualified names based on the modules, controllers, or
machines that define the constants.

The set of events cflowevts used in the parallel composi-
tion and in the hiding in Rule 6 is calculated in Fig. 16 using
an extra method get SyncSet that takes the head and tail of
the sequence of states. The semantics generated by RoboTool
uses declarations of channel sets as well as processes to struc-
ture definitions.

Verification tools (for CSP) may impose extra require-
ments on the RoboChart model or on its semantics. For
example, a model checker such as FDR requires a concrete
version of CSP with a fixed syntax and additional restric-
tions. One such restriction requires that, in general, sets used
in the model (for example, in iterated operators such as the
external choices and interleavings used in Sect. 4) are finite.
Additionally, aspects such as declaration of channels and
uniqueness of names must be taken into account when calcu-
lating a semantic model that targets such tools. To generate
CSP models that can be analysed using FDR, aspects such
as these, which are not particularly relevant to the formal
semantics, must be dealt with. In what follows, we briefly
describe our solutions to some of these issues.

In RoboChart, names must be unique within a specific
scope, but can be the same in different components. In
our running example, for instance, the obstacle event is
declared both in the platform ForagingRP (Fig. 2) and
the controller ObstacleAvoidance (Fig. 5). In our seman-
tics implementation, RoboChart events give rise to global

@ Springer

A. Miyazawa et al.

Fig. 16 Implementation of

def composeStates(Iterable<State> nodes) {

Rule 6 if (nodes.size — 1) {
val state = nodes.head
77’8 «id(state)» R«state.connectionNode.parameterisation» ’’’
} else {
val state = nodes.head
val tail = nodes. tail

79

(S_«id(state)» R«state.connectionNode.parameterisation»
[| «state.getSyncSet (tail)»|]
«tail.compileSubstates»)\ «state.getSyncSet(tail)»

LERIS)

channel declarations; modules, controllers, and machines
do not define separate scopes in the CSP model. So, we
use fully qualified names to guarantee uniqueness. The
events obstacle, for instance, yield two channel declarations
ForagingRP_obstacle and ObstacleAvoidance_obstacle, incor-
porating the names of the components where the events are
declared, thus guaranteeing that the names are unique. We
also avoid name clashes between events used just by the
semantics; one such event is enter, for example.

While CSP-M supports a form of scoping known as mod-
ules, these are relatively new and not used in the untimed
semantics. As we discuss in the next section, modules are
used in the timed semantics to reuse the untimed semantics
in the timed context as well as to avoid name clashes between
the two semantics.

In the semantics in Sect. 4, events such as enter, entered,
exit, and exited have type SIDS and can be used in the
semantics of any state machine. SIDS, however, is an infi-
nite set of state identifiers, and cannot be used in CSP-M. To
achieve finiteness, for each state machine, we calculate the
sets of identifiers that actually appear in that machine and
define a machine-specific set of identifiers. For instance, the
set of identifiers for the machine DTP is called DTP_SIDS
and contains seven identifiers: DTP, for the machine,
and, for the states, Exploring, GoToNest, WaitForTransfer,
Neighbourhood, GoToSource, and GoToNestDirectly. In this
way, we guarantee finiteness, but require events such as enter
to be declared with different types for each of the machines,
thus requiring the use of unique fully qualified names. We
take a similar approach to limit the set of transition identi-
fiers (TIDS).

While sets such as SIDS and TIDS can be replaced with
finite sets using solely information available in the model,
other potentially infinite sets such as int and real are more
difficult to handle. This is due to the fact that, in general, it is
not possible to find automatically a subset of these sets that is
finite and covers all possible values used in the specification.
To calculate the semantics of a model that uses such infinite
types, our implementation defines simple default representa-

@ Springer

tions as sets of two or three elements of the original set, and
adapts the primitive operations to check for containment of
the results to avoid type errors.

This adaptation allows the semantics to be checked by
FDR, but may be oversimplifying the model. For this reason,
the definitions of the types and operations are all recorded
in a single file instantiations.csp in the generated
semantics. This facilitates both inspection and modification
of the abstractions, if needed. In this way, it is also pos-
sible to perform verifications of the model with different
abstractions. Verification of properties of the model using
the original infinite types cannot in general be performed
using model-checking techniques (although there are model
checkers, such as nuXmv [18], which support some forms of
infinite state), but, alternatively, can be verified via theorem
proving. Technology for verification of RoboChart models
via theorem proving is currently under development, but
already presents some encouraging results [34].

The implementation in Xtend validates our semantics:
matches the rules and functions closely, and ensures cover-
age of the metamodel and well-typedness of the definitions.
Also, RoboTool has enabled the construction and verification
of several examples that provide further evidence of adequacy
of the semantics.

5.2 Model checking

Besides the semantics, RoboTool generates, for every mod-
ule, controller, and machine of a model, a set of assertions to
check general properties such as termination, deadlock free-
dom, divergence freedom, and determinism. These assertions
refer to the generated semantics and can be automatically
checked using FDR.

As mentioned, FDR is a refinement model checker. While
it differs from temporal logic model checkers, it does exhaus-
tively analyse a model to check that it satisfies a given
specification. The notion of satisfaction is refinement, and
the specification is also a CSP process. This allows us to
compare different RoboChart models, supporting a devel-

RoboChart: modelling and verification of the functional...

assertion DTP does not terminate (R1)
assertion Foraging is deadlock-free (R2)
assertion Neighbourhood is deterministic (R3)

Fig. 17 Assertions for the foraging example

csp ObstacleFree csp-begin
ObstacleFree = DTP [|{|obstacle|}] STOP
csp-end

assertion ObstacleFree is deadlock-free (R1)

Fig. 18 CSP block in .assertions file

opment process in which models are made more and more
concrete (closer to an implementation), and their correctness
is established by refinement checks. Lowe [54] investigates
the interplay between temporal logic and refinement in the
context of process algebras such as CSP. That work shows
that the bounded, positive fragment of linear temporal logic
can be checked using refinement.

RoboTool can also process assertion files (with extension
.assertions) that define properties of particular interest
for verification. The definitions are described using a tool-
independent simple form of controlled English. Figure 17
shows an assertion file for our running example, and the
assertion language is fully specified in [96]. In Fig. 17, we
have three assertions named R1, R2, and R3 specifying that
the machine DTP does not terminate, that the module For-
aging is deadlock free, and that the state Neighbourhood
is deterministic. A .assertions file can be used to pro-
duce a report that records the result of the verification. A full
account of the syntax of .assertions filesis in [97].

The advantage of using a . assertions file, instead of
the assertions automatically generated, is that we can avoid
the need to interact directly with FDR. RoboTool includes
a facility to use a .assertions file to generate a report
with the results of the verification based on the names of the
assertions. Moreover, the assertions allow the reporting to
be tailored for the application. For example, the RoboTool
assertions that are automatically generated check for termi-
nation, and indicate failure if the machine does not terminate.
In our example, we do not expect DTP to terminate, and so we
include the negation of that assertion in the . assertions
file. The report generated, therefore, shows no failures.

A .assertions file can also contain blocks of CSP
that specify processes or custom assertions. One such
block is shown in Fig. 18. It declares a process called
ObstacleFree defined as DTP with the event obstacle
deadlocked. The assertion R1 then checks that the process
ObstacleFree is deadlock free: even if there is no obsta-
cle ever, the machine does not deadlock.

Since RoboChart models may contain loose constants,
given types, and undefined functions, but FDR cannot cope

csp Instantiations csp-begin
nametype nat = {0..10}
nametype real = {0,10}

DTP_e = 1
d((x1,y1),(x2,y2)) = abs(x1-x2)+abs(yl-y2)
csp-end

Fig. 19 CSP Instantiations block

with such elements, instantiations must be provided. To
produce a complete CSP specification, RoboTool provides
default instantiations in the file instantiations.csp.
Loose constants are instantiated with a default value deter-
mined by the type of the constant, given types are instantiated
as nat, and functions are instantiated as constant func-
tions returning the default value of the return type of the
function. User-defined values for the instantiations can be
defined in a .assertions file using a CSP block called
Instantiations as illustrated in Fig. 19. This block
modifies the default instantiations for types such as nat,
constants such as DTP_e, and functions such as d, which
calculates the distance between two points.

The semantics hides channels as soon as possible, and
this has a positive effect on the performance of FDR as the
compression functions tend to be more effective on systems
with many internal actions [85, p. 176]. The use of pro-
cess declarations in RoboTool, as already mentioned, also
contributes positively. In addition, to optimise the verifica-
tions, RoboTool generates definitions that make extensive
use of semantic-preserving compression functions available
in FDR.

In the next section, we present examples of models and
verifications carried out using RoboTool.

5.3 Case studies

We have used RoboChart and RoboTool to model a few
examples from the robotics literature [10,26,40,44,70]. In
this section, we focus on three case studies for which we
have formalised various requirements and used our seman-
tics to verify them. These case studies and the results of their
analyses are available online [84].

Chemical detector Our first example [44] is a tele-operated
chemical detector that receives commands to move forward
and turn, and analyses the air to detect potentially dangerous
gases. Upon detection, the robot flashes a light, and drops
a flag to mark the location of the gas source. This model
includes two controllers, one with a single state machine,
and the other with two non-interacting state machines. The

@ Springer

A. Miyazawa et al.

Table4 Summary of

verifications using FDR Example States Transitions Compilation (s) Deadlock (s) Longest check (s)
Chemical detector 70 237 0.07 0.17 0.17
Alpha algorithm 15 46 0.16 0.12 0.12
Autonomous detector 47 702 0.5 0.05 0.06

machines use features of the core RoboChart notation, such
as, simple states, transitions, junctions, and events.

Alpha algorithm Our second example is the alpha algo-
rithm studied in [26], which is widely used in swarm robotics.
This algorithm uses communication facilities of the robotic
platform to estimate the number of other robots in the neigh-
bourhood. Depending on that number, the algorithm decides
whether the robot is in an aggregate of robots or not. If it is
not, the alpha algorithm uses facilities of the robotic platform
to turn the robot around and move towards the aggregate.
Otherwise, the algorithm effects a random turn to avoid the
collapsing of the aggregate. Our RoboChart model for the
alpha algorithm has two controllers, each defined by a single
state machine. The machines feature synchronous and asyn-
chronous communications, the full range of time primitives,
and local variables.

Autonomous detector The third case study in Table 4 is
an autonomous version of the chemical detector above. This
model expands on the gas detection mechanism and replaces
the controller that treats movement requests with a controller
that performs a random walk with obstacle avoidance. This
example uses features of RoboChart such as asynchronous
communications, and variables in all components.

For each example above, Table 4 gives the size of the
underlying labelled transition systems (number of states and
transitions) after compression, as well as the time FDR takes
to compile the CSP model, to check it for deadlock, and the
longest time to check a requirement. The compilation time is
that FDR takes to build the labelled transition system from
the CSP model. It is presented to emphasise the adequacy of
the RoboChart semantics for analysis with FDR.

The number of states and transitions of the uncompressed
labelled transition system is often large. Through judicious
structuring and hiding of events, the semantics can exploit
compression functions available in FDR to radically reduce
that number. Our experiments, including the three case stud-
ies we present here, indicate that the sizes of the compressed
labelled transition systems are proportional to the numbers
of states in the RoboChart model. We observe, however, that
a number of factors can affect the overall size, including, for
example, the instantiation of types. Further details about the
verifications, including the requirements, models and results
are in [84].

No doubt, further evaluation is necessary to gauge the
effectiveness of model-checking RoboChart semantic mod-

@ Springer

els. We are, however, encouraged by the results with com-
pression, which are related to the structure of the models. In
any case, our plan in the long term is to use theorem proving
based on the UTP theory for CSP.

6 Time in RoboChart

In this section, we describe the support for modelling and ver-
ification of timed properties using RoboChart. The semantics
presented in Sect. 4 ignores all time primitives of RoboChart.
Here, we show how that semantics can be extended to deal
with them. In the next Sect. 6.1 we define the timed con-
structs, and in Sect. 6.2 we formalise their semantics. Support
in RoboTool for model checking is discussed in Sect. 6.3.

6.1 Notation

In RoboChart timed properties are modelled directly in state
machines, a practice commonly seen across the robotics liter-
ature. We consider, for example, the state machine DTP of the
foraging example (Fig. 2) where the clock T is used to control
the time available for transferring objects and exploring the
neighbourhood. For instance, the time allowed for complet-
ing a transfer is bounded by guarding an outgoing transition
of the state WaitForTransfer with since(T)>waitDeadline, so
that if the event transferred does not occur within waitDead-
line time units relative to the previous reset (#T) of T then the
operation GoTo(nest) is called.

Unless specified, operations are not assumed to terminate
and can take any amount of time to complete. For example,
the GoTo operation declared in the interface Movementl is
not further specified, and so can take an arbitrary amount of
time. (Since it is used in a during action, it can be interrupted
by the state’s outgoing transitions, though.) In the interest
of predictability, RoboChart requires time properties to be
specified explicitly, including those of operations.

Timed budgets and deadlines are recorded over actions
and events. To illustrate these, we introduce in Fig. 20 the
state machine Movement, which is part of the model of an
autonomous chemical detector considered in our case stud-
ies [44]. Here, a composite state Stoppable has a transition to
the state Found triggered by the event stop to stop the robot
by calling the operation move(0,0) with linear and angular

RoboChart: modelling and verification of the functional...

| !obstaole: Loc | |odometer: real I |resume

62 Movement

I |turn: real ! |stop | !flag
| S

el | S|
® Operations

Iv: real, evadeTime: nat, stuckPeriod: nat, stuckDist: nat, outPeriod: nat
x a: real, dO: real, d1: real, p: Loc

[since(T)<stuckPeriodVd1-d0>stuckDist] turn?a

Avoiding

entry odometer?d0 <{0}; changeDirection(p); wait (evadeTime)

QOr
Stoppable
AvoidingAgain [since(T)>=stuckPeriodA\d1-dO<=stuckDist] GettingOut 0
entry randomWalk(); wait (outPeriod)
resume
odometer?d1 <{0} turn?a resume
Found
AssessPosition bstacle?olpl=Loc::NO TryingAgain Waiting stop
obstacle?p[p!=Loc::NO] resume - entry move(0, 0); flag
entry move(lv, a) during randomWalk()

resume

obstacle?p #T[p!=Loc::NO]

®

tun?a tun?a

Going

entry move(lv, a)

resume

turn?a

|0 randomWalk() [terminates] |0 changeDirection() [terminates]

|O move(lv: real, av: real) [terminates]

Fig.20 State machine Movement of the autonomous chemical detector from [44]

velocity set to zero, and then drop a flag by raising the event
flag.

Within the state Stoppable the robot, initially in the
state Waiting, starts performing a randomWalk() and can
be interrupted by either the event resume to keep calling
randomWalk(), or the event turn?a to transition to the state
Going and turn. In this state, it can continuously handle the
event turn?a to repeatedly call move(lv,a), with a particular
linear (lv) and angular velocity (a), or handle obstacle?p. In
this case, it resets a clock T and transitions to the state Avoid-
ing when p is not equal (I=) to Loc:NO. Here, Loc is an
enumerated type whose definition we omit, but whose value
NO indicates absence of obstacles.

In Avoiding, with odometer?d0 <{0} the robot requests a
read from the odometer with a deadline zero and stores the
value in the local variable dO0, calls the operation changeDi-
rection(p), and waits for evadeTime time units, before being
able to resume and transition to the state Waiting, or turn
and transition to the state TryingAgain. In that state, it calls
the operation move, and can then resume, turn, or accept an
obstacle event and transition to AssessPosition. It then must
receive an input via the event odometer?d1 with deadline
zero and transition to AvoidingAgain. We observe that the
reading is now recorded in a variable d1 unlike in the state
Avoiding. This allows transitions out of the state AvoidingA-
gain to be constrained relative to the difference d1-d0. If at

least stuckPeriod time units have been spent trying to avoid
the obstacle and a distance less than or equal to stuckDist
has been covered, then the robot transitions to GettingOut,
otherwise it resets the clock T and transitions to Avoiding.
In GettingOut, a randomWalk() is carried out for outPeriod
time units, before the robot can be commanded to resume or
turn.

Both deadlines, over the action odometer?d0<{0}, and
over the trigger odometer?d1 <{0}, impose requirements on
the platform regarding the availability of sensor information
represented by the event odometer over time. In Avoiding, a
budget of evadeTime units is specified to allow the behaviour
of changeDirection to complete before accepting a resume
or turn event. We observe that in this particular example
operations like changeDirection and move are specified as
terminating and consuming no time, thus the budget evade-
Time is used as an indication of the time required for the
actual behaviour of changing direction to occur. A similar
budget is provided for the effect of the operation call ran-
domWalk() in the state GettingOut.

A robotic platform could meet the timed requirements of
Movement, for example, by allowing an odometer reading
to take place at any time. A deadline, however, can also
be a requirement on availability of events of another state
machine, possibly in a different controller. In that case it
may not be obvious whether the complete module meets all

@ Springer

A. Miyazawa et al.

{ @ Expression
L

| EB Statement

el

l
ZF [0..1] deadline ZF

, [| 1 , [‘ | |

B ClockExp B StateClockExp E] TimedStatement [B Wait] [Q ClockReset]
| J (J)

’ [0..1] duration
] clock @ State [0..1] deadline (] Transition [[Trigger

L 5 L J (J

Fig.21 Metamodel of time primitives of RoboChart

timed requirements. We have encountered instances of this
situation, for example, in the model for the alpha algorithm,
where two controllers interact asynchronously via events. As
we discuss later in Sect. 6.3 our timed verification approach
for RoboChart can help identify such scenarios.

We next describe how the time primitives illustrated
above are captured in the RoboChart metamodel (Sect. 6.1.1)
and present the well-formedness conditions that apply to
them (Sect. 6.1.2).

6.1.1 Metamodel

In Fig. 21, we provide a simplified view of the metamodel
components that support modelling of timed aspects. A sum-
mary of the time primitives is included in Table 5. They are
expressions and statements that are omitted in the previous
Figs. 6, 7 and 8.

As previously discussed we have a notion of Clock
that allows transitions to be guarded by time expressions
that define constraints relative to the occurrence of other
events via the primitives since(C) (which is a ClockExp)
and #C (ClockReset), and relative to activation of a state via
sinceEntry(S) (a StateClockExp). Because a ClockExp and a
StateClockExp are expressions, the metamodel allows their
use as part of any expressions. A ClockReset is a statement,
but it can also be used as part of a trigger, when the reset and
the event trigger are to take place at the same time.

In the next section, we define well-formedness conditions
to confine the use of ClockExp and StateClockExp expres-
sions to (well-typed) transition guards. In addition, like in
timed automata, we restrict expressions involving clocks to
comparing single timed primitives with constant expressions,
that is, those whose value depends only on literals or declared
constants.

Finally, we also have a timed primitive to impose a dead-
line d on an action A, a TimedStatement A <{d}, or on a
transition trigger e, a Trigger e <{d}, and to specify a bud-
get: Wait. The are two forms of Wait statements: Wait(d),

@ Springer

where d is an Expression, and Wait([i,j]), defining a budget
between i and j.

6.1.2 Well-formedness

In addition to the conditions of Sect. 3.3, we impose addi-
tional restrictions regarding the usage of clocks in expres-
sions and actions as described below. These are in addition
to usual type and scope rules. Overall, the well-formedness
conditions ensure that clocks are local to machines and can
be used only via the time primitives.

Timed expressions

TE1 Expressions involving since and sinceEntry are permit-
ted only in transition guards because clocks can be used
only to constrain the availability of transitions using
supported expressions, and therefore their value can-
not be directly queried.

TE2 A clock Cin an expression since(C) may reference only a
clock declared within the expression’s containing state
machine. This is because clocks are not shared across
different state machines.

TE3 A state S in an expression sinceEntry(S) may reference
only a state within the expression’s containing state
machine. This is because transitions may not be con-
strained based on the entering of states of other state
machines. Instead, such a scenario can be modelled by
state machines interacting via events.

TE4 Expressions since(C) and sinceEntry(S) may be com-
pared only with an expression that is constant, and
only when using one of the operators >, <, >=, <=,
==, This restriction is similar to timed automata in that
the value of clocks can only be compared with constant
expressions, and not with other clocks. We, however,
allow such expressions to be combined using boolean
operators, as well as boolean-valued functions, possibly
resulting in expressions involving more than one clock.
Atomic expressions such as naturals are constants, as

RoboChart: modelling and verification of the functional...

Table 5 Time primitives of RoboChart

Syntax Metamodel element Description

#C ClockReset Resets clock C

since(C) ClockExp Time elapsed since the most recent reset of clock C
sinceEntry(S) StateClockExp Time elapsed since state S was entered

A <{d} TimedStatement Deadline on action A to terminate within d time units
e <{d} Transition Deadline on event e to happen within d time units
Wait(d) Wait Explicit time budget of d time units
Wait([a,b]) Wait Nondeterministic time budget of d time units where a <d < b
Easblil’eoieitl:;;nrirlz;e)g Tcl)n;iﬁe Symbol Name Description
Wait(d) wait Terminates exactly after d time units
PAs QO timed interrupt Initially behaves as P and after exactly d time units behaves as O
Py»d deadline Deadline on P to terminate within d time units

are variables declared as constant, and any combination
of such expressions using arithmetic operators. More
generally, a function application whose arguments are
constant is also constant.

Timed statements

TS1 A clock reset #C may only reference a clock within its
containing state machine.

The semantics for models that are well-formed, according to
the above conditions, is described next.

6.2 Semantics

In this section, we use the compositional untimed seman-
tics of Sect. 4 as a basis to define a timed semantics for
RoboChart. As previously stated, our formalisation targets
the UTP, but we use CSP as a front end and, in particular, for
modelling time, we use discrete Timed CSP [88] enriched
with a notion of deadlines [98]. For the purpose of early val-
idation using FDR, we encode this Timed CSP semantics
into a dialect of CSP, namely, tock-CSP, as described later in
Sect. 6.3. In Sect. 6.2.1, we briefly introduce Timed CSP. In
Sect. 6.2.2, we provide an overview of the timed semantics,
which we formalise in Sect. 6.2.3.

6.2.1 Timed CSP

Timed CSP is a timed version of CSP for specification of real-
time properties. It has operational and denotational semantics
for continuous time, whose models have been extensively
studied [23]. Here, we use the discrete-time version of CSP.

The operators presented in Table 2 are equally applicable
in Timed CSP. Prefixing (¢ — P), in particular, allows the
implicit passage of time until the point where the environment
is ready to engage in the event c, after which it takes place
immediately and then behaves as P. Internal and unobserv-
able behaviour is assumed to take place as fast as possible,
given that it is not under the control of the environment, and
thus respects the principle of maximal progress whereby as
much internal behaviour as possible takes place before time
can advance.

In addition to the standard operators of CSP (Table 2), we
list three timed operators in Table 6 that we use extensively:
Wait(d), which waits for d time units before terminating,
P A4 Q, which is a strict timed interrupt that initially behaves
as P and exactly after d time units then behaves as Q, and
P » d,whichrequires P to terminate within d time units. The
first two are Timed CSP operators, and the last is a deadline
operator. We consider, however, a discrete-time semantics for
these operators. It is given in the context of Circus Time [91,
98], a timed process algebra based on CSP, and, therefore,
Timed CSP, but with a UTP discrete-time model. In our tock-
CSP encoding, we define all these operators as well (see
Sect. 6.3.2).

6.2.2 Overview

To capture the semantics of the timed constructs of a
RoboChart model, we do not need to change the semantics of
the module and of the controllers, but that of state machines
and actions is enriched. The augmented structure of the timed
semantics of a state machine is depicted in Fig. 22. We have
an additional process Clocks composed in parallel with the
machine process.

@ Springer

A. Miyazawa et al.

Composite State

State machine

transition

Basic State

transition

Basic State

transition

transition

State Machine H Clocks

Memory

Fig.22 Structure of the timed RoboChart state machine semantics: parallel lines indicate parallel composition; bordered boxes indicates points of

interaction

To illustrate the new structure and some of the additional
changes we sketch below the timed semantics of the machine
DTP from the foraging example (Fig. 5). Compared to the
untimed semantics, we have a similar structure: /nit and the
state processes are composed with the parallel composition of
memory and clock processes, denoted here by Memory_DTP
and Clocks_DTP. In this example, Clocks_DTP models T,
and the parallel composition with Memory_DTP represents a
memory that can deal with guards that depend on time. The
synchronisation set for the outer parallelismincludes, in addi-
tion to the memory set and get events, the event clockReset. T
that the Init and state processes can use to reset the clock T.

The constants, such as, nest provided by the robotic
platform, are potentially used in both Memory_DTP and
Clocks_DTP. So, their values are determined using a sef com-
munication. In this example, none of the constants have their
values defined in the machine.

Clocks are not given semantics directly; instead, each
expression in a guard that uses since or sinceEntry is
modelled explicitly, rather than by the evaluation of clock
values. For example, in DTP we have two guards that use
the since primitive: since(T)>waitDeadline and since(T)>
explorationDeadline. They are encoded by the boolean vari-
ables we_T) and wc_T, represented in the memory process
like all other variables. They are updated in the process
Clocks_DTP using the channels setWC_T| and setWC_T5.
The process denoted by Memory_DTP records these two
additional variables, which are initially false. This initial-
isation is arbitrary, as the initial value of these variables is
determined in Clocks and set using setWC_T and setWC_T>.
Guards are still modelled in Memory_DTP since they can in
general depend on clocks as well as other variables.

@ Springer

DTP =
Init
[EnterExitChannels]|
ExploringR \ (2\TRoboEvents)
[Exploring_S N ...]
\ (Exploring_.SN...)
[{ set_DTP_P, ..., clockReset. T }]
set_DTP_nestnest — ...
Memory_DTP
{setWC_T, setWC_T», ...}
Clocks_DTP
\ {setWC_Ty, setWC_T |}
set_DTP_P, get_DTP_P,
get_DTP_P, get_DTP_source,
get_DTP_dist, get_DTP_position,
clockReset. T

The original hiding of all events (that is, those in the
set X) except those in RoboEvents is changed to consider
TRoboEvents. This includes all events of RoboEvents, plus
clockReset.T that can be used by Init and the state processes
to reset T in agreement with Clocks_DTP.

Clocks As previously said, expressions using since(C) or
sinceEntry(S) to compare a constant expression with a clock
C, explicitly indicated in the case of since(C), or implicitly in
the case of sinceEntry(S), are modelled by boolean variables.
The value of such a variable is controlled by a “waiting-
condition” process that toggles it according to the time passed
since a clock reset or state entry. The clock process is defined
by the parallel composition of these condition processes.
For example, for the guard of the transition from the
state WaitForTransfer to GoToNestDirectly in the machine
DTP, namely, since(T)>waitDeadline, we have the follow-
ing condition process WC_T 1. Initially it sets the value of the

RoboChart: modelling and verification of the functional...

Fig.23 Example of a partial /
diagram with composite states S
and CS

s N

cs
5
3 —7 T
01 0—2 cs1 cs2 z
4 6

-

%

variable we_T'1 to false by synchronising on setWC_T lfalse.
This captures the assumption that all clocks are initially set
to 0. The type of since(C) and sinceEntry(S) expressions is
that of the natural numbers, and in a well-typed model they
are compared to expressions of the same type. Here, wait-
Deadline is a natural constant, and so not smaller than 0.

WC_T1 = setWC_Tfalse — WC_T 1_monitor

After the initialisation, WC_T'1 behaves as follows.

WC_T1_monitor =
RUN({I T, I})AwaitDeadline+] A
setWC_Ttrue — RUN({T})
WC_T1_reset

WC_T1_reset =
clockReset'\T — setWC_Tfalse — WC_T 1_monitor

This process is willing to synchronise indefinitely (as defined
by RUN ({T1})) on T, the CSP event that uniquely identifies
the transition from WaitForTransfer to GoToNestDirectly,
until exactly waitDeadline+1 time units have passed, when it
sets we_T 1 to true (using the communication setWC_T true)
and accepts 77 indefinitely once more. At any point it
can be interrupted by a clockReset!T event as defined by
WC_T1_reset. Following the interruption, it sets wc_T'1 to
false and then behaves as WC_T 1_monitor again.

Synchronisation on T'1 is used in WC_T 1_monitor to con-
trol when the state machine and the memory processes can
synchronise on 7' 1. It ensures that they synchronise only once
an update to the value of wc_T'1 has been considered by the
memory process. For that, WC_T'1 withdraws the possibil-
ity to synchronise on T'1, while the value is being set via
the synchronisation with the memory process on setWC_T'1.
Once wc_T1 has been set, T'1 is offered again, thus allow-
ing the state machine and memory processes to synchronise
on T'1 (if that is possible as determined by the memory pro-
cess). Without this synchronisation, it would be possible for
the machine and memory processes to enable the transition
identified by T'1, ignoring the synchronisation on setWC_T 1
to update the value of its guard.

The complete clock process is then defined as the paral-
lel composition of every waiting-condition process for every
expression involving since or sinceEntry in every transition
of a state machine. For example, in the case of DTP, it is the
process named Clocks below.

awc_t1 = {T1, setWC_T1, clockReset.T}
awe_t2 = T2, setWC_T», clockReset.T |}
Clocks = WC_T1[awc_r1 || awc_12]WC_T2

The process Clocks composes WC_T'1 and WC_T2 using the
alphabetised parallel operator, with the set of events used
in WC_T1 denoted as awc_r1, and as awc_1o for WC_T2.
The processes synchronise on the intersection of awc_r1 and
awc_t2- Inour example above, this is the clockReset.T event,
so that a clock reset is taken into account by both processes.
In general, if the guard for a transition has several conditions
on a clock, the processes for these conditions synchronise on
the CSP event for the transition as well.

Trigger deadlines The semantics of states is largely
unchanged from that in Sect. 4, requiring only a small mod-
ification to cater for deadlines on transition triggers. Such a
deadline is relevant once its associated transition is enabled,
that is, the source state is active and the transition’s guard
is true. For example, in Movement (Fig. 20) the deadline
odometer?d1 <{0} on the transition from AssessPosition
to AvoidingAgain is enabled whenever AssessPosition is
active.

More broadly, we consider the example in Fig. 23, where
we have a composite state S with a transition (7) that we
suppose to have a trigger deadline. Transition (7) is enabled
when its guard is true and S has entered, which, in addition
to completing the transitions (1) and (2) and its entry action,
requires that the substates CS and CS1 have also entered, and
so completed their own entry actions, if any. Whenever the
guard of the transition (7) is false, the deadline in (7) is dis-
abled. We observe, however, that the deadline is not disabled
even if the transitions (3), (4), (5) or (6) are triggered. To
capture this semantics, a state process uses additional CSP
events to query the memory process as to whether a transi-
tion’s guard is enabled.

@ Springer

A. Miyazawa et al.

Below, we show the modified definition of S_main.

S_main =
enter1s!SID —
entry;
enter!SID\SSID — entered!SID!SSID —
entered!s\SID —
((during; STOP) ||| triggerDeadlines)
transitions_of _S
Al D
all_other_transitions_S

The only difference compared to the untimed semantics is
that, in interleaving with the process that models the during
action, we compose a process triggerDeadlines that models
the trigger deadlines.

This process, defined below, controls, for each transition
with a deadline, when that deadline should be imposed, and
enforces it. The activation and deactivation of the deadline is
controlled using deadline.tid.on and deadline.tid.off events
for each transition identifier tid, based on the guard of the
transition, which is evaluated as part of the state machine’s
memory process.

Below, triggerDeadlines is defined as an interleaving of
processes td(tid, d), where the pairs (tid, d) are taken from
a set tDS of identifiers tid and associated deadlines d for all
transitions from S with a deadline.

triggerDeadlines = |||(tid, d) : tDS e td(tid, d)

These processes interact with the memory process using
deadlineltid\on and deadline!tid\off, which, based on the
guard of the transition tid, determine when that transition
is enabled or disabled, and the deadline must be enforced or
cancelled. We define rd(tid, d) below.

td(tid, d) = deadline.tid.on —
(deadline.tid.off — Skip » d); td(tid, d)

This process captures the behaviour when, given the currently
active state, enabledness of the transition tid depends only on
its guard. So, it is determined by the event deadline.tid .on. If
that event takes place, the deadline is enforced by accepting
a cancellation via the event deadline.tid.off , which happens
if the guard becomes false, but must happen within d time
units.

Effectively, a deadline can be met in two ways: the
guard becomes false according to the synchronisation on
deadline.tid.off within d time units, or a transition out of
S takes place in Sy, in which case the behaviour of
triggerDeadlines is interrupted (A in Sy4in). The deadline
on the process deadline.tid, off — Skip is enough to impose

@ Springer

a deadline on all other events offered in choice. So, the pos-
sibility to be interrupted by events in transitions_of _S and
all_other_transitions can only be realised within the dead-
line, before deadline.tid .off .

For every transition fid with a trigger deadline and a
guard g, the memory process offers in choice the events
deadline.tid.on and deadline.tid .off as sketched below.

Memory_STM(...) =
O
g & deadline'tid!on — Memory_STM(. . .)

O
— g & deadline'tid'off — Memory_STM(. ..)

Whenever the guard g of a transition identified by #id is
true, the memory process can synchronise on the event
deadline.tid .on, and on deadline.tid .off , otherwise. If a tran-
sition has no guard, then only deadline.tid.on is available in
the memory process.

Action deadlines As already discussed, the action language
of RoboChart supports the definition of deadlines on actions
(A <{d}). The semantics of such an action is given directly in
terms of our deadline operator (» d).

Next, we formalise the necessary changes to the semantics
rules of Sect. 4 to deal with time.

6.2.3 Formalisation

In this section, we formalise the RoboChart timed semantics
using discrete Timed CSP augmented with a deadline opera-
tor (Table 6). Because we fully reuse the untimed semantics,
we adopt many of the rules from Section 4 by considering
their result as discrete Timed CSP processes. Since a pro-
cess defined using purely the CSP operators is a valid Timed
CSP process, the syntactic category TimedCSPProcess of
the metamodel for Timed CSP includes all the terms of
CSPProcess. So, we can specify that the main semantic
functions define terms of TimedCSPProcess without extra
changes beyond those we have discussed above.

The semantic rules for modules and controllers are
unchanged, whereas those for state machines and states are
redefined. In addition, we define rules to calculate waiting-
condition processes, augment the structure of the state
machine memory process, and change the composition of
processes for composite states to cater for trigger deadlines.
Finally, we give semantics to deadlines over actions and to
budgets.

State machines Rule 14 for the timed semantics of state
machines is similar to Rule 5 from Sect. 4. The differ-
ence is in the memory process: it is defined by a function
stmMemory(stm, wcs), which takes an extra parameter

RoboChart: modelling and verification of the functional...

Rule 14. Timed semantics of state machines [[stm : StateMachineDef] sy : TimedCSPProcess =

(initialisation(stm) [flowevts]| composeStates((s : stm.nodes | s € State), Stm)) \ {enter, exit, exited}

[getsetChannels(stm) U trigEvents(stm) U clockResets(wcs) U deadlineEvents(stm)]|

constInitSTM(consts, stm, (Sthemory(stm, wcs) [[clockMemSync]| stmClocks(wcs))) \ (clockMemSync \ trigEvents(stm))

[renameTriggerEvents(stm)] \ getsetLocalChannels(stm) U clockResets(wcs) U deadlineEvents(stm) U {internal, entered|}

OfenaySkip
where

wcs = {t : allTransitions(stm) | t.condition # null e t — wc(t.condition)}

clockMemSync ={t : Transition | t € dom wcs e triggerEvent(t) JU{v : allClockVariables(wcs) esetWC_vid(v)}

flowevts = (J {x : SIDS \ states(stm); y : states(stm) gﬂenter.x.y, entered.)g.y, exit.x.y, exited.x.yﬂ}

consts = (v : allConstants(stm) e v)

Rule 15. Timed state machine memory

stmMemory(stm : StateMachineDef, wcs : Transition + (Expression, WC)) : TimedCSPProcess =

let Memory(vars) =

Ov : lvars e get_vid(v)!Iname(v) — Memory(vars) O set_vid(v)?x — Memory(vars[name(v) := x])

v :rvars e (get_vid(v)!Iname(v) — Memory(vars) O set_vid(v)?x — Memory(varsiname(v) := x])

m|
O
set_Ext_vid(v)?x — Memory(vars|[name(v) := x]))
[m]
v : allConstants(stm) e ger_vid(v)!name(v) — Memory(vars)
[m]
¢ : allTransitions(stm) e memoryTransition(t, wcs); Memory(vars)
O
Ov : cvars e setWC_vid(v)2x — Memory(vars[name(v) := x])
]
[t : allDeadlineTransitions(stm) e memoryDeadline(t, wcs); Memory(vars)
within
Memory(varvalues)
where

rvars = requiredVariables(stm)
Ivars = allLocalVariables(stm)
consts = (v : allConstants(stm) e v)
cvars = allClockVariables(wcs)

vars = (v : rvars U lvars U cvars e name(v)) ~ (v : consts e name(v))

varvalues = (v : rvars U lvars U cvars e initial(v)) 7 (v : consts e name(v))

wcs, a partial function from transitions to pairs defined by
applying a syntactic function wc to the guards t.condition
of transitions t in allTransitions(stm) with a guard
(t.condition # null). The first component of wc(t) is t’s
guard with boolean variables replacing compaﬁls with
since or sinceEntry, and the second is a partial function from
expressions to variables. This function, which we formally
define in Rule 17, maps each expression that defines a com-
parison with since and sinceEntry to the boolean variable
that replaces it.

We consider, for instance, the machine Movement in
Fig. 20 with two transitions whose guards depend on the
clock T. For this example, we refer to the transition from

AvoidingAgain to GettingOut as Tj. In this case, the set
wcs includes the mapping below.

wcecs =
To s (bg A d1 — d0 < stuckDist),
0 {since(T) >= stuckPeriod — bg})"~

Ty is mapped to a pair: the first component is the guard,
namely, since(T) >= stuckPeriod A d1 — d0 < stuckDist,
with the expression since(T)>=stuckPeriod replaced by a
fresh boolean variable bg. The second component is the
function that maps the original expression in the guard,
since(T)>=stuckPeriod, to the variable by.

@ Springer

A. Miyazawa et al.

The memory process stmMemory(stm, wcs) is com-
posed in parallel with the clocks process stmClocks(wcs)
synchronising on the events in clockMemSync. The def-
inition of this set is based on the transitions t in the
domain of wcs. It includes their trigger events, deter-
mined by triggerEvent(t), used by both the memory and
clocks processes to control the transitions. We also include
setWC_ events for the boolean variables used to represent
expressions involving clocks, as defined by the function
allClockVariables(wcs). The setWC_ events are used by
the memory and clocks processes only, so we hide the
events in the set difference between clockMemSync and
trigEvents(stm), so that the composition of the memory
and clock processes synchronises with the state processes
on trigEvents(stm), which, we recall, contains the trigger
events for all transitions in the machine.

Because stmClocks(wcs) may use constants, the defi-
nition of their values is handled by applying the function
constlnitSTM to the parallel composition of the processes
stmMemory(stm, wcs) and stmClocks(wcs), instead of as
part of the definition of stmMemory (see Rule 12). Effec-
tively, this composition is a timed memory process that takes
into account clocks.

The parallel composition of the processes defined by
initialisation(stm) and composeStates(. . .) is similar to that
in Rule 5 for the untimed semantics except that the chan-
nel set entered is not hidden after this composition so as
to allow waiting-condition processes within stmClocks(wcs)
that model expressions involving sinceEntry(S) to synchro-
nise on events entered.x.S. Instead, the hiding of entered
events is scoped further outside the parallel composition
together with internal.

Compared to Rule 5, the hiding is extended to cover
events related to clock resets (clockResets(wcs)) and trig-
ger deadlines (deadlineEvents(stm)). The synchronisation
set of this parallel composition with the processes defined by
stmMemory(stm, wcs) and stmClocks(wcs) is extended in
a similar way. The function clockResets(wcs) defines the set
of all events clockReset.C for every clock C declared in the
state machine, and deadlineEvents(stm) the set of all events
deadline.tid .on and deadline.tid.off , for every identifier tid
for a transition with a deadline.

State machine memory Compared to Rule 12 for the
memory process in the untimed model, Rule 15 introduces
only small changes. As already mentioned, the function
stmMemory that it defines has an extra parameter: a par-
tial function wcs from transitions to pairs of expressions and
boolean variables. The type WC is that of partial functions
Expression -+ Variable, where an expression comparing
since or sinceEntry using one of the allowed operators
(defined by well-formedness condition TE4 for timed expres-
sions in Sect. 6.1.2) is mapped to a boolean variable. The

@ Springer

parameter wcs is required to formalise the waiting condi-
tions.

In Rule 15, using the extra parameter wcs, we define a set
cvars of all boolean variables used for expressions involving
clocks, as defined by allClockVariables(wcs). The sequences
vars and varsvalues are defined to consider all variables,
including those in cvars. Accordingly, the choices in Memory
are augmented with two replicated external choices. One
is over each boolean variable v in cvars, to synchronise
on setWC_vid(v) and recurse with the value of v updated.
The other is over each transition t with a trigger deadline as
defined by the function allDeadlineTransitions(s), synchro-
nising on the process memoryDeadline, which is defined by
Rule 16.

For a transition t with a guard (t.condition # null),
Rule 16 defines a process in which deadline.id (t).on is avail-
able when the guard, [[771(Wcs(t)) | gaprs rewritten to take the
clocks into account, is true, and the event deadline.id(t).off
is offered whenever it is false. The function is used to
project the first component of the pair mapped from t in wcs.
If no guard exists, deadline.id(t).on is always offered.

Lastly, the function menWyTransition that we use in
Rule 15 takes the function wcs as a parameter so that a
transition’s guard whose expression gives rise to a waiting
condition can be defined based on the expression recorded in
wcs. The formalisation of both waiting conditions and trigger
deadlines is discussed next.

Waiting conditions The function wc used in the definition of
Rule 14 is defined by Rule 17. It takes an expression exp and
yields a pair, whose first component is the result of replacing
every comparison with a clock in exp by a fresh boolean
variable, and whose second component is a partial function
of type WC.

Rule 17 shows part of the definition of wc for the cases
where it is applied to expressions since(C)>=e, since(C)>e,
e; A ey, and for expressions that do not involve the since
and sinceEntry constructs, identified by the pattern _ (under-
score), which matches anything. Other cases are similar and
omitted here. A complete definition can be found in [96].
For since(C)>=e, the first component of the pair defined by
wc is the expression b, a fresh name for a boolean vari-
able, and whose second component is the set where there is
a single mapping from the expression since(C)>=e to b. The
other cases involving since(C) and sinceEntry(S) are simi-
lar. The conjunction of two expressions e and e; is defined
by considering the application of wc to e; and e;. The first
component of the resulting pair is the conjunction of the
first components resulting from each application of wc, that
is, m1(wc(eq)) A mi(wc(ey)). The second component is the
union of the second components resulting from each applica-
tion of wc, that is, 77> (wc(eq)) U m(wc(ey)). Finally, wc()

RoboChart: modelling and verification of the functional...

Rule 16. Memory: trigger deadline
memoryDeadline(t : Transition, wcs : Transition - (Expression, WC)) : TimedCSPProcess

if (t.condition # null) then

([[7r1 (wes(0) [l expr) & deadline.id(t).on — Skip O (= [771 (Wcs (1)) [|£.pr) & deadline.id (t).off — Skip
else

deadline.id(t).on — Skip

Rule 17. Eliciting waiting conditions wc(exp : Expression) : (Expression, WC)

wc(since(C) >=e) = (b, {(since(C) >=e) > b})
wc(since(C) > e) = (b, {(since(C) > e) — b})

wc(er A ez) = (m(weler)) A my(we(er)), ma(we(er)) U ma(we(er)))
we() = (-, ¥)

where b is a fresh identifier

Rule 18. State machine clocks stmClocks(wcs : Transition -+ (Expression, WC)) : TimedCSPProcess =

||(t, e,v) : {t: Transition, e : Expression, v : Variable | t € dom wcs A (e — V) € m(wes(t))}
o [@WC(t, e, v)]| compileWC(t, e, v)
where
aWC(t, e, v) ={triggerEvent(t), setWC_vid(v)[} U alphaClockReset(e)

Rule 19. Waiting condition compile WC(t : Transition, exp : Expression, v : Variable) : TimedCSPProcess

compileWC(t, since(C) >=e,v) =
Reset = clockReset.id(C) — setWC_vid(v)!false — Monitor
let Monitor = (RUN ({triggerEvent(t)]}) Aflellg setWC_vid(v)!true — RUN ({triggerEvent(t)})) A Reset

within
setWC_vid(v)false — Monitor

Rule 20. Semantics of clock reset [[s : ClockReset]| siptement : TimedCSPProcess =

clockReset.id(s.clock) — Skip

Rule 21. Semantics of wait [[s : Wait]| s/ytemens : TimedCSPProcess =

[[s.durationTlyyqit

where
[[e : RangeExpllyait =Tn : ”e”ﬂ\pr o Wait(n)
[[e : ExpressionTlyyai =Wait([e]lcpr)

@ Springer

A. Miyazawa et al.

Rule 22. Semantics of statement deadlines [[s : TimedStatement]| s;ytement : TimedCSPProcess =

“ s.stmt ”Smtement > ” s.end "S.\pr

Rule 23. Semantics of composite states [[s : State]|s : TimedCSPProcess =

let
Inactive=enter?o : sids.id(s) — Activating(o)

Activating(0)=[[s.entry] 4ction; initialisation(s); entered.o.id(s) — ([s.during]l 4ction; Stop || triggerDeadlines(s)) A

O ¢ : transitionsFrom(s) e [[#, s, false]|, /nactive.Activating

]

Oe: Event o if(e.type == null) then eventld(e)?x : tids — exit; Inactive

else eventld(e)?x : tids?y — exit; Inactive

within

(Inactive |[flowtrigevts]| composeStates((x : states(s)), s))

where
flowtrigevts = flowTriggerEvents(s)
sids =SIDS\{id(s)}

exit =exit?x : sids.id(s) — exitSubstates(s); [[s.exit]]| 4ction: exited.x.id(s) — Skip

tids =TIDS\tIDS(s)

considers expressions _ not affected; in this case, it defines
the pair whose components are _ and the empty function.

Rule 18 defines the clock process stmClocks(wcs) as the
replicated alphabetised parallel composition of processes
compileWC(t, e, v) specified in Rule 19. Here, ¢, ¢, and v
are drawn from the set obtained by considering every tran-
sition t in the domain of wcs, and expression e mapped to
a variable v in the partial function in the second component
(772) of the pair mapped from t in wcs. These are, there-
fore, the comparisons e in the guard of ¢, involving since and
sinceEntry constructs, and the variables v used to represent
those expressions.

For each compileWC(t, e, v) process, the synchronisa-
tion set «WC(t, e, v) contains the trigger events for t, the
setWC_events for v, and the clock reset events for the clocks
in e as defined by alphaClockReset(e). The definition of this
function, omitted here, considers all possible valid expres-
sions (like the definition of wc in Rule 17). For example,
alphaClockReset, when applied to the comparison since(C)
>= e, yields the set containing clockReset.C, and when
applied to an expression involving sinceEntry(S) yields the
events entered.x.id(S) where x is a valid state identifier.

We sketch Rule 19, which defines compileWC. We show
the definition for since(C)>=e; other cases are in [96]. The
process compileWC(t, since(C) >= e, v) first sets the value
of v in the memory process to false using setWC_vid(v)!false
and then behaves as the process Monitor. This synchronises
any number of times (using RUN) on the trigger for t. After
exactly e time units it is interrupted (Ae..,,) and synchro-

Expr

@ Springer

nises on setWC_vid(v)!true to set v to true, and then offers the
trigger once more. At any point it can be interrupted by the
event clockReset.id(C), as defined by Reset, sets v to false,
and then behaves as Monitor again.

Statements A clock reset #C specified in an action, or as part
of a trigger, is formalised by Rule 20: we have a prefixing
on clockReset.id(s.clock), where id(s.clock) identifies the
clock that is being reset.

The semantics of a statement s of the form Wait(e) is
defined by Rule 21. In this case, we use the semantics of
the expression s.duration, which identifies e, as defined by
another function [[]|y, Rule 21 also defines this semantic
function, by considering two cases. If e is a range expression
[a,b], the semantics is a nondeterministic choice of Wait(n)
processes, where n ranges over the values determined by e
as defined by its semantics [[e]|¢.,, as an expression. These

are the values in the closed interval [a,b]. The second case in
the definition of [[_[|)y,; considers expressions of any other
type, and so the semantics is defined by Wair with an argu-
ment given by the semantics of e.

Finally, Rule 22 defines a deadline on an action. We use
the deadline construct to specify that the process that gives
semantics to the action s must terminate within the time spec-
ified by the expression s.end.

States As said, the timed semantics of a state is largely sim-
ilar to the untimed semantics. For composite states, it is
in Rule 23. We focus on the changes required to accom-
modate trigger deadlines and clock expressions defined

RoboChart: modelling and verification of the functional...

Rule 24. Composition of states composeStates(ss : seq State, p : NodeContainer) : TimedCSPProcess =

if #ss = 1then
restrictedState(p, head ss)
else

(restrictedState(p, head ss) |[cflowevts]| composeStates(tail ss, p))

where

cflowevts = flowEvents(head ss, p) N | J{s : tail ss e flowEvents(s, p)}

Rule 25. Semantics of trigger deadlines triggerDeadlines(s : State) : TimedCSPProcess =

let Deadline(t) = deadline.id(t).on —

readState@edVariables(t.end).(deadline.idﬂ.oﬁ‘ — Skip) » [[t.end]lc.y,) ; Deadline(t)

within
||| t : tDS e Deadline(t)
where
tDS = {t : Transition | t € transitionsFrom(s) A t.end # null}

in transition guards. In interleaving with the semantics
of the during action ([[s.during]|ssasement) We have a pro-
cess triggerDeadlines(s), whose formalisation we give in
Rule 25. The hiding of flowevts in the untimed semantics
given by Rule 8 is omitted to allow waiting conditions, defin-
ing the semantics of guards that use state clock expressions,
such as sinceEntry(S), to observe the entered events of a state
S. Similarly, and for the same reason, when compared to
Rule 6, the hiding of cflowevts is also omitted in Rule 24,
defining the composition of states in the timed semantics.

Trigger deadlines The semantics of trigger deadlines for a
state s is formalised by Rule 25. It specifies a replicated inter-
leaving of recursive processes for transitions ¢ drawn from
a set tDS, containing every transition whose trigger has a
deadline (t.end # null). Each recursive process is defined
as initially offering the event deadline.id(t).on, so as to syn-
chronise with the memory process whenever £’s guard is true,
and then offering to synchronise on deadline.id(t).off within
the time specified by the expression in t.end. If the transi-
tion guard becomes false then the process recurses. Here, we
use readState (previously introduced in Sect. 4.3) to ensure
that the deadline specified by the expression t.end takes into
account the value of any variables it may use, as defined by
a function usedVariables.

As previously said, RoboTool generates automatically
both the untimed and the timed semantics of RoboChart that
we have just formalised. We next discuss how RoboTool deals
with the timed semantics.

6.3 Verification support

Asdiscussedin Sect. 5, we use FDR for early validation of our
semantics via analysis of case studies. For the timed seman-
tics, RoboTool generates automatically models in tock-CSP,
an encoding in CSP-M of discrete Timed CSP that uses the
event fock to mark the passage of time. In Sect. 6.3.1, we
describe how RoboTool is extended to calculate the tock-
CSP semantics. In Sect. 6.3.2, we discuss support for model
checking of timed properties. Finally, in Section 6.3.3 we
discuss the application of our technique to case studies.

6.3.1 Tool support

In general, the approach to construction and validation of
timed models in RoboTool follows that already discussed in
Sect. 5.1. Here, we focus on the changes required to support
timed aspects of RoboChart.

The conditions TE2, TE3, and TS1, discussed in Section
6.1.2, are enforced by scoping rules defined using an Xtext
scope provider. This is an Xtend class whose methods define
how elements of the metamodel, such as a variable or a clock,
can be found given their identifiers and the context where they
are used. For example, the use of since(C) in an expression
givesrise to arecursive look-up in the hierarchy of RoboChart
terms that contain that occurrence of since(C) to find the
declaration of C within the containing state machine. The
metamodel ensures that there is no other point where such a
declaration could be. A similar approach is used to implement
all scope rules of RoboChart.

The well-formedness conditions TE1 and TE4 are enforced
by Xtend methods annotated with @Check as already dis-

@ Springer

A. Miyazawa et al.

cussed in Section 5.1. Essentially these methods recursively
traverse the model built by Xtext and check that clock expres-
sions, such as since(C) and sinceEntry(S), are contained
within a transition’s guard, and that such expressions are
compared, using only the allowed operators, with constant
expressions. Whenever this cannot be ascertained, an error
is indicated and the timed CSP-M model is not generated.

Semantics generation We have used Xtext to implement
the CSP-M script generator in RoboTool. Namely, we have
used the Java dialect Xtend to implement a class with sev-
eral methods corresponding to the semantic rules presented
in this paper as already discussed in Sect. 5.1. Because the
timed semantics for many constructs is largely the same as the
untimed semantics, the Xtend class for the generator of the
timed semantics is implemented as a subclass of that for the
untimed semantics. It overrides the methods that implement
one of the rules presented in this section.

This reuse is possible because FDR allows CSP-M syntax
for timed processes to be written without having to explicitly
introduce fock events, relying instead on a rewriting function,
called a “Timed section”, which, given an untimed CSP-
M script and a function specifying how many tocks should
follow a particular event, introduces tock events wherever
required following the strategy outlined in [88]. For example,
we consider below the CSP-M process P that offers the events
a and b in an external choice and then recurses.

OneStep(_) = 0

Timed (OneStep) {
P=a->P I[] b->P

}

The application of Timed (OneStep) to this fragment,
with OneStep being defined as 0 for every event (), is
equivalent to the following definition where tock is also
offered as a choice in P to allow time pass, while the process
waits for interaction on a or b.

P=a->P I|[] b->P [] tock -> P

Similarly, operators like interleaving and parallel composi-
tion are transformed to require synchronisation on tock, so
that a single clock is used for all parallel processes. A com-
plete specification of the Timed section facility is available
in FDR’s manual.!!

Use of a Timed section is very convenient, but there
are some technical issues that need to be addressed. Hid-
ing, for example, even when used within a Timed sec-
tion, does not ensure maximal progress. Instead a timed
CSP-M process needs to be prioritised explicitly to give
internal events priority over tock. This can be specified
using prioritise(P,<{}, {tock}>). The function

11 www.cs.ox.ac.uk/projects/fdr/.

@ Springer

prioritise takes a process P as the first parameter, and
a sequence <X_0, ...,X_n> of sets of events as a sec-
ond parameter where the silent action 7, and v/, which
signals termination, are implicitly included in X_0, so that
the events in X_j are possible only if those in X_1i are not
available, where X_1 appears before X_J in the sequence.
So, prioritise(P,<{}, {tock}>) ensures maximal
progress: time passes in P only when there are no internal (t
or v') events available.

We exploit FDR’s timed section facility to add fock
to untimed CSP-M processes by enclosing the generated
semantics within a timed section. In every case, we define
OneStep as the constant function shown above that asso-
ciates 0 with all events, since they do not consume time
themselves. Instead, it is the prefixing on an event that allows
time to pass. Prioritisation is defined for the module, con-
troller, and machine processes.

The generator for the timed semantics creates a CSP model
that includes all definitions of the untimed semantics to allow
analysis using both models. Because we fully reuse the gen-
erator for the untimed semantics, however, it is inevitable that
the process names are duplicated. In order to avoid this clash
we enclose the generated CSP-M syntax in a module, a
namespace facility that FDR provides to scope declarations.
For example, given a CSP-M script file Movement . csp,
which contains the generated timed semantics for the Move-
ment state machine, we include it within a module named
timed, declared using the module construct.

module timed
exports

include "defs/Movement.csp"
endmodule

A CSP-M process with the name timed::Movement
is then available. It corresponds to the CSP-M process of
name Movement declared within the CSP-M script file
Movement . csp, declared after exports. We do not fol-
low the same strategy for CSP-M channel names as these
are shared between the timed and untimed semantics. There-
fore, channel names are declared only by the generator of the
untimed semantics.

Process deadline In Sect. 6.2 we use deadlines in the context
of discrete Timed CSP. Here, we give the definition of P » d
using tock-CSP.

The deadline for a process P to terminate within d time
units is enforced by the parallel composition of P with a
process Wait, (d) that can engage in at most d tock events.
Moreover, if P terminates, then a fresh event f interrupts the
Wait, (d) process, and thus terminates the parallel composi-
tion. For precision, here we use the subscript , to indicate
that P, is a process where fock is not offered implicitly. In
this case, for example, the process Wait, (d) offers exactly a

www.cs.ox.ac.uk/projects/fdr/

RoboChart: modelling and verification of the functional...

d number of fock events and then terminates without offer-
ing any more fock events. Similarly, Skip, does not offer
tock atall, and f —,, P does not offer rock while f is offered.
This distinction is important since the encoding of timed CSP
processes Wait(d) and Skip, for example, as tock-CSP pro-
cesses requires that tock is offered alongside the possibility
to terminate for compositionality. For example, in a parallel
composition P |[{...}]| O, termination is only possible when
both P and Q terminate, so if we consider P to be Skip, then
it lets time pass by offering rock alongside the possibility to
terminate because Q may engage in a number of fock events
before terminating itself.

(P; f —u Skipy)

[{rock, £}
(Wait,(d) A f — Skipy)

Pw»d= \ {f}

In this encoding, a deadline is captured by refusing tock once
it is reached. So, a process that fails to meet its deadline
timelocks. Such undesirable behaviour can be identified by
checking that fock is never refused. Occurrences of the fresh
event f used for control are hidden.

Timed interrupt The second operator that is not standard
in the Timed CSP and tock-CSP literature is the strict timed
interrupt operator (A4) that we use extensively in the seman-
tics of waiting conditions. We define it using tock-CSP as
follows.

(P Af —y Skipy)
(2
(RT(d); f —>u Skipu)

PA; Q= \{fh: 0

We have, first of all, a parallel composition of two processes
synchronising on every event (X): P with the possibility of
being interrupted by f, a fresh event; and RT (d) sequentially
composed with a prefixing also on f. Finally, f is hidden
and there is the sequential composition with Q. The process
RT(d) is defined by an external choice of two guarded pro-
cesses as follows.

d == 0 & Skipy,
RT() = I 0 (RUNGE\Y. 1ock)) A
tock —, RT(d — 1)

When d is zero it behaves as Skip,,, and thus terminates imme-
diately, and otherwise when d > 0 it synchronises on every
event in X except for f and fock, any number of times, but

can be interrupted by a fock event to behave as RT(d — 1). In
P A4 Q, the process RT (d) ensures that P can only engage
in visible events, including tock, before a d number of tock
events occur. After exactly d time units, the synchronisation
on f is used to interrupt P and yield control to Q.

We next explain how to use the tock-CSP encoding of our
semantics to verify RoboChart models using FDR with the
support of RoboTool.

6.3.2 Model checking

In addition to the properties described in Section 5.2,
RoboTool generates properties for verification using the
timed semantics. All properties already considered for the
untimed semantics, except for deadlock freedom, but includ-
ing termination, divergence freedom, and determinism, are
also stated for the timed model. In addition, the following
properties are automatically generated: zeno and timelock
freedom, reachability for every state in every machine, and
proper initialisation of clocks. (All clock expressions in
guards are preceded by appropriate clock resets.) As for ver-
ification using the untimed semantics, it is also possible to
write custom assertions using the timed semantics. These
need to be stated as a refinement.

Using the tock-CSP semantics, zeno freedom can be ver-
ified by checking for divergence freedom, while timelock
freedom is checked by ensuring that tock can never be
refused. A timelock-free model, however, is not necessarily
deadlock free in the sense that it never refuses all events other
than fock. For example, a process that only ever offers fock is
timelock free, but not deadlock free in this sense. In general,
specifying that a process eventually accepts an event other
than tock, for use with a model checker like FDR, requires
assumptions about the timeliness of events for a particular
model [54]. As previously said, such temporal properties are
limited to the bounded positive fragment of LTL.

A timelock identifies a scenario where a deadline is poten-
tially not met. As an example, we consider the operation call
randomWalk() in the states GettingOut and Waiting of the
machine Movement in Fig. 20. As discussed in Sect. 4.2,
operation calls are identified by events with suffix Call and
Ret, to indicate an operation call and return, so in this
case the call is identified by the events randomWalkCall
and randomWalkRet. The empty and the singleton trace
(randomWalkCall), for example, are identified as leading to
timelocks. The first timelock occurs because once the Wait-
ing state is entered, its during action must start immediately,
and the operation randomWalk must be called. The second
timelock occurs because a call takes no time, and so, its ter-
mination is urgent. Urgency characterises a deadline, and so
tock is refused. These deadlines can be met only with an
assumption that the platform accepts calls to randomWalk

@ Springer

A. Miyazawa et al.

assertion Movement is timelock-free (R5)
assertion clock Movement::T is initialised (R6)
assertion Movement is divergence-free (R7)
timed assertion Movement::Found is

reachable in System (R8)

timed csp Q csp-begin
Q=...

csp-end

Fig.24 Example of Timed CSP .assertions file

at all times, and that this operation terminates without con-
suming time.

State reachability checks can identify states that are never
entered. Because the RoboChart semantics has an explicit
model of state activation, we can use entered.x.id(S) events
to check whether a state S can be entered. For tlﬁurpose,
RoboTool also generates CSP-M processes for each machine,
controller, and module, where the entered events are visible.
In these processes, entered events are removed from the hid-
ing in Rule 14 and given priority over fock (using the operator
prioritise), so that their maximal progress is retained
even though they are not hidden. The reachability assertion
for a state S identified by sid is then as shown below, where
P is a semantics process (for a state machine, controller, or
module).

= Stop, Crp P\ (Z\{x : SID e entered.x.sid[})

This assertion states that Stop,, is not refined by a (modified)
process P giving semantics to a state machine, controller,
or module, with only entered.x.id(S) events visible. The
absence of a counterexample indicates that the refinement
holds and the assertion is false. So, P can never perform a
trace with the event entered .x.sid, and so S is not reachable.
The existence of a counterexample identifies a trace where
S is entered. The possibility for observing entered events
also allows for animating a state machine, using FDR, while
observing its internal control flow.

The tool-independent assertion language described in
Sect. 5.2 also caters for timed properties. With that, given
a .assertions file, like that shown in Fig. 24, RoboTool
generates CSP-M assertions for the timed semantics by
default as well.

Using the extended language, we can specify if an asser-
tion applies exclusively in the untimed or timed semantics, by
prefixing an assertion with untimed or timed, as shown
in Fig. 24. Similarly, custom blocks contained between
csp-begin and csp-end can also be specified as t imed
or untimed. In Fig. 24, we have two assertions (R5 and
R6) that are only applicable in the timed semantics due to
their nature, an assertion R7 that is checked using both the

@ Springer

untimed and timed semantics (because it is not prefixed with
timed), and R8 that is checked using the timed semantics
only. Assertion R5 is satisfied if there is no timelock, while
assertion R6 is satisfied if every transition of the machine
Movement whose guard uses the clock T can only be trig-
gered after T has been reset at least once. Assertion R7 is
satisfied if there is no divergence, while assertion R8 is sat-
isfied if the state Found of Movement is reachable in the
context of the module System.

Next, we describe the use of RoboTool, and of the timed
semantics and assertions that it generates automatically, to
verify the examples in Sect. 5.

6.3.3 Case studies

Aspreviously mentioned in Sect. 5.3, we have used RoboChart
and RoboTool to model examples from the literature. In

Table 7, we show results obtained with FDR to check

for divergence freedom in the examples we described in

Sect. 5.3, as well as an additional example, but now using

the timed semantics. Overall, compared with Table 4, we

have an increase in the number of states and transitions vis-

ited, mainly due to the use of fock to encode time. Despite

the increase in complexity, we have a modest increase in the

compilation and verification time.

We have also considered more efficient models for the
memory processes for state machines, where individual vari-
ables are modelled in separate, but parallel, processes that
synchronise with a control process. This can yield a reduc-
tion in the number of states, which is noticeable when a state
machine has several variables or timed conditions, which, as
previously discussed, are encoded using boolean variables.

We have also considered the generation of a single
waiting-condition process for comparisons that are syntac-
tically equivalent in RoboChart, again yielding efficiency
gains in terms of state-space complexity. These optimisa-
tions, while valuable from the point of view of making model
checking tractable for larger examples, are likely not ben-
eficial for the purpose of theorem proving, which is our
long-term aim.

7 Conclusions

We have presented RoboChart, a new notation for mod-
elling robotic systems. It is based on UML state machines,
but is distinctive in many ways. It includes the notions of
robotic platform, and parallel controllers and machines, syn-
chronous and asynchronous communications, a well-defined
action language, pre- and postconditions, and time primi-
tives, all with a formal mechanised semantics for verification
and refinement.

RoboChart: modelling and verification of the functional...

Table7 Summary of

verifications using the timed Example States Transitions Compilation (s) Deadlock (s) Longest check (s)
semantics with FDR Chemical detector 504 1623 0.1 0.26 0.26
Autonomous detector 83 611 1.87 0.06 0.07
Alpha algorithm 4427 10,405 4.36 0.37 0.48
Transporter 78 216 15.65 0.07 0.09

We have described the semantics of RoboChart using CSP
to enable validation via model checking. Itis, however, a front
end to a predicative relational semantics using UTP. We are
already exploring automatic proof of deadlock freedom using
Isabelle/HOL [34,38].

First, we have presented an untimed semantics, in which
uses of time primitives are ignored. The timed semantics
defines an extension of the untimed model of a RoboChart
diagram, whereby timed constructs of CSP capture the bud-
gets and deadlines. It is our long-term aim to formalise
the relationship between the timed and untimed models by
exploiting the results on compositionality of semantic theo-
ries in the UTP.

Early work on statecharts have considered translation to C,
Occam, VHDL, and Programmable Logic Arrays [17,27,28].
It is noted the difficulty of translating an intrinsically parallel
model to a sequential program. In the case of the transla-
tion to Occam, however, we note some similarities with the
structure of our model [17]. Processes are used to represent
machines, though not states. Pairs of channels are used to
request and acknowledge exit from a state. Compositional
semantics is, however, not a goal. Inter-level transitions and
history junction seem to be considered.

To support work on case studies and validation of our
semantics, we have developed RoboTool, a user-friendly
tool for editing and verifying RoboChart diagrams. Besides
automatic generation of the CSP semantics, RoboTool also
supports the automatic generation of C++ implementations
for a subset of state machines and controllers. Currently, we
are extending the code generation facilities of RoboTool to
cover the complete notation, and targeting specific simula-
tors to provide a link between implementations of RoboChart
models and the specific API of a simulator. Finally, we are
investigating the use of the generated code for deployment
using the Robot Operating System (ROS'?). At a later point,
we will address proof of correctness of the generated simu-
lations.

Current work is also considering inclusion of probabilistic
choice in RoboChart. Work on probability is available in the
UTP[100], and we are pursuing translation to PRISM [49] for
verification, with an associated encoding of Markov decision
processes in the UTP.

12 WWW.T0S.01rg.

RoboChart can also be enriched with support for mod-
elling the environment and the robotic platforms in more
detail. Facilities to be considered will be based on the
pragmatic approaches taken by robotics simulators. For ver-
ification, however, it is in our plans to take inspiration from
hybrid automata [43] and from the UTP model of continuous
variables [35].

RoboChart is more restrictive than general architec-
tural languages, such as AADL [32], or even UML [74]
and SysML [73]. Architectural models can be defined in
RoboChart by identifying the controllers of a robotic sys-
tem and their connections, and, for each controller, state
machines that capture independent functionality or threads of
behaviour. By restricting the way in which components can
be defined, we simplify the modelling task and the seman-
tics of RoboChart. Currently, we are developing modelling
guidelines for RoboChart.

While in principle, it should be possible to verify our
examples using other CSP model checkers, we adopt the con-
crete standard CSP language (CSP-M). Use of tools such as
PAT [94] and ProB [50] would require different code gener-
ators: PAT accepts a different version of CSP called CSP#,
and ProB accepts a subset of CSP-M.

As part of our future work, we plan to explore a variety of
other model checkers and SMT solvers, such as UPPAAL [7],
PRISM [49], nuXmv [18], Z3 [69] and CVC4 [4], and inves-
tigate the use of sequence diagrams for the specification of
properties and visualisation of counterexamples produced
by FDR. While our approach supports traceability of coun-
terexamples due to a one-to-one correspondence between
CSP events and RoboChart variables, events, and opera-
tions, it currently requires manual inspection of the output
of FDR. Automatic visualisation of counterexamples will
further improve the usability of our approach by limiting the
situations where knowledge of CSP and FDR are required.
Finally, as a further effort in the validation of our semantics,
we intend to encode the semantic functions in Isabelle/HOL,
and prove various properties including totality and well-
typedness with respect to well-formedness conditions. This
encoding will also be used in conjunction with Isabelle/UTP
in order to support verification of RoboChart models via the-
orem proving.

Acknowledgements This work is funded by the EPSRC Grants
EP/M025756/1 and EP/R025479/1, and by the Royal Academy of Engi-

@ Springer

www.ros.org

A. Miyazawa et al.

neering. No new primary data was created during this study. We thank
James Baxter and Augusto Sampaio for many suggestions to improve
RoboChart and this paper. The icons used in RoboChart have been made
by Sarfraz Shoukat, Freepik, Google, Icomoon and Madebyoliver from
www.flaticon.com, and are licensed under CC 3.0 BY.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

10.

12.

. Akhlaki, K.B., Tunon, M.I.C., Terriza, J.A.H., Morales, L.E.M.:

A methodological approach to the formal specification of real-
time systems by transformation of UML-RT design models. Sci.
Comput. Program. 65(1), 41-56 (2007)

. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.

Sci. 126(2), 183-235 (1994)

. Baar, T.: Verification support for a state-transition-DSL defined

with Xtext. In: Mazzara, M., Voronkov, A. (eds.) Perspectives of
System Informatics, pp. 50-60. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41579-6_5

. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic,

D., King, T., Reynolds, A., Tinelli, C.: Cvc4. In: Gopalakrishnan,
G., Qadeer, S. (eds.) Computer Aided Verification, pp. 171-
177. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
22110-1_14

. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-

time components in BIP. In: IEEE International Conference on
Software Engineering and Formal Methods, pp. 3—12. IEEE Com-
puter Society (2006)

. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson,

P., Yi, W., Hendriks, M.: UPPAAL 4.0. In: 3rd International Con-
ference on the Quantitative Evaluation of Systems, pp. 125-126.
IEEE Computer Society (2006)

. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.:

UPPAAL—*-a Tool Suite for Automatic Verification of Real-Time
Systems. In: Proceedings of Workshop on Verification and Control
of Hybrid Systems III, no. 1066 in Lecture Notes in Computer
Science, pp. 232-243. Springer, Berlin (1995)

. Bergstra, J.A., Klop, J.W.: Process theory based on bisimulation

semantics. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G.
(eds.) Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, pp. 50-122. Springer, Berlin (1989)

. Berthomieu, B., Vernadat, F.: Time petri nets analysis with TINA.

In: 3rd International Conference on the Quantitative Evaluation
of Systems, pp. 123-124. IEEE Computer Society (2006)
Bjerknes, J.D., Winfield, A.E.T.: On Fault Tolerance and Scala-
bility of Swarm Robotic Systems, pp. 431—444. Springer, Berlin
(2013)

. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.

Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3),911—
938 (2012). https://doi.org/10.1016/j.jcss.2011.08.007

Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML—
towards a system model for UML: The state machine model.
Technical Report, TUM-10711, Institut fiir Informatik, Technis-
che Universitit Miinchen (2007). http://www4.in.tum.de/publ/
papers/TUM-10711.pdf

. Broy, M., Stglen, K.: Specification and Development of Interactive

Systems: Focus on Streams, Interfaces, and Refinement. Springer,
Berlin (2001)

@ Springer

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Brunner, S.G., Steinmetz, F., Belder, R., Domel, A.: RAFCON:
A graphical tool for engineering complex, robotic tasks. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3283-3290 (2016)

. Brunner, S.G., Steinmetz, F., Belder, R., Domel, A.: Rafcon:

A graphical tool for engineering complex. robotic tasks. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3283-3290 (2016)

Buchanan, E., Pomfret, A., Timmis, J.: Dynamic Task Partitioning
for Foraging Robot Swarms, vol. 9882, pp. 113-124. Springer
(2016)

Calvez, J.P.,, Pasquier, O.: Implementation of statecharts with
transputers. Microprocess. Microprogram. 35(1), 133-139 (1992)
Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti,
A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv
Symbolic Model Checker. In: Biere, A., Bloem, R. (eds.) 26th
International Conference on Computer Aided Verification. Lec-
ture Notes in Computer Science, vol. 8559, pp. 334-342. Springer,
Berlin (2014)

Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction
to CSP in Unifying Theories of Programming. In: Refinement
Techniques in Software Engineering, Lecture Notes in Com-
puter Science, vol. 3167, pp. 220-268. Springer, Berlin (2006).
https://doi.org/10.1007/11889229_6. https://www-users.cs.york.
ac.uk/~alcc/publications/papers/CW06.pdf

Chen, J., Gauci, M., Gross, R.: A strategy for transporting tall
objects with a swarm of miniature mobile robots. In: ICRA, pp.
863-869. IEEE (2013)

David, A., Moller, M.O., Yi, W.: Formal verification of UML
statecharts with real-time extensions. In: Kutsche, R.D., Weber,
H. (eds.) Fundamental Approaches to Software Engineering, pp.
218-232. Springer, Berlin, Heidelberg (2002)

Davies, J., Crichton, C.: Concurrency and refinement in the uni-
fied modeling language. Formal Asp. Comput. 15(2-3), 118-145
(2003)

Davies, J., Schneider, S.: A brief history of Timed CSP. Theor.
Comput. Sci. 138(2), 243-271 (1995)

DeAntoni, J., Mallet, F.: Objects, models, components, patterns.
In: chap. TimeSquare: treat your models with logical time, pp.
34-41. Springer, Berlin (2012)

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.:
RobotML, a domain-specific language to design, simulate and
deploy robotic applications. In: SIMPAR 2012, pp. 149-160.
Springer, Berlin (2012)

Dixon, C., Winfield, A.E.T., Fisher, M., Zeng, C.: Towards tem-
poral verification of swarm robotic systems. Robot. Auton. Syst.
60(11), 1429-1441 (2012)

Drusinsky, D., Harel, D.: Using statecharts for hardware descrip-
tion and synthesis. IEEE Trans. Comput. Aided Desi. Integr.
Circuits Syst. 8(7), 798-807 (1989)

Dutt, N.D., Cho, J.H., Hadley, T.: A user interface for VHDL
behavioral modeling. In: Borrione, D., Waxman, R. (eds.) Com-
puter Hardware Description Languages and Their Applications,
pp. 407-425. North-Holland, Amsterdam (1991)

Endo, Y., MacKenzie, D.C., Arkin, R.C.: Usability evaluation of
high-level user assistance for robot mission specification. IEEE
Trans. Syst. Man Cybern. Part C Appl. Rev. 34(2), 168—-180 (2004)
Espiau, B., Kapellos, K., Jourdan, M.: Formal verification in
robotics: Why and how? In: Robotics Research, pp. 225-236.
Springer, London (1996)

Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated for-
mal methods: necessity meets opportunity. In: Furia, C.A., Winter,
K. (eds.) Integrated Formal Methods, Lecture Notes in Computer
Science, vol. 11023, pp. 161-171. Springer, Berlin (2018)

www.flaticon.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-41579-6_5
https://doi.org/10.1007/978-3-319-41579-6_5
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1016/j.jcss.2011.08.007
http://www4.in.tum.de/publ/papers/TUM-I0711.pdf
http://www4.in.tum.de/publ/papers/TUM-I0711.pdf
https://doi.org/10.1007/11889229_6
https://www-users.cs.york.ac.uk/~alcc/publications/papers/CW06.pdf
https://www-users.cs.york.ac.uk/~alcc/publications/papers/CW06.pdf

RoboChart: modelling and verification of the functional...

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Lan-
guage. Addison-Wesley Professional, Reading (2012)

Fleurey, F., Solberg, A.: A domain specific modeling language
supporting specification, simulation and execution of dynamic
adaptive systems. In: International Conference on Model Driven
Engineering Languages and Systems, pp. 606-621. Springer,
Berlin (2009)

Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.:
Automating verification of state machines with reactive designs
and Isabelle/UTP. In: Bae, K., Olveczky, P.C. (eds.) Formal
Aspects of Component Software, pp. 137-155. Springer, Cham
(2018)

Foster, S., Thiele, B., Cavalcanti, A.L.C., Woodcock, J.C.P.:
Towards a UTP semantics for Modelica. In: UTP 2016, Lecture
Notes in Computer Science. Springer (2016)

Foster, S., Woodcock, J.C.P.: Towards verification of cyber-
physical systems with UTP and Isabelle/HOL. In: Gibson-
Robinson, T., Hopcroft, PJ., Lazic, R. (eds.) Concurrency, Secu-
rity, and Puzzles—Essays Dedicated to Andrew William Roscoe
on the Occasion of His 60th Birthday, Lecture Notes in Computer
Science, vol. 10160, pp. 39-64. Springer, Berlin (2017)

Foster, S., Zeyda, F., Woodcock, J.C.P.: Isabelle/UTP: a mech-
anised theory engineering framework. In: Naumann, D. (ed.)
Unifying Theories of Programming, Lecture Notes in Computer
Science, vol. 8963, pp. 21-41. Springer, Berlin (2015)

Foster, S., Zeyda, F., Woodcock, J.C.P.: Unifying heterogeneous
state-spaces with lenses. In: A.C.A. Sampaio, F. Wang (eds.)
Theoretical Aspects of Computing, Lecture Notes in Computer
Science, vol. 9965, pp. 295-314 (2016)

Foughali, M., Berthomieu, B., Zilio, S.D., Ingrand, F., Mallet, A.:
Model checking real-time properties on the functional layer of
autonomous robots. In: Formal Methods and Software Engineer-
ing, pp. 383-399. Springer, Berlin (2016)

Gauci, M., Chen, J., Li, W., Dodd, T., Gross, R.: Self-organized
aggregation without computation. Int. J. Robot. Res. 33(8), 1145—
1161 (2014)

Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe,
A.W.: FDR3: a modern refinement checker for CSP. In: Tools
and Algorithms for the Construction and Analysis of Systems,
pp. 187-201 (2014)

Gobillot, N., Lesire, C., Doose, D.: A modeling framework for
software architecture specification and validation. In: Brugali, D.,
Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) Simulation,
Modeling, and Programming for Autonomous Robots, pp. 303—
314. Springer, Berlin (2014)

Henzinger, T.A.: The theory of hybrid automata. In: 11th Annual
IEEE Symposium on Logic in Computer Science, pp. 278-292
(1996)

Hilder, J.A., Owens, N.D.L., Neal, M.J., Hickey, P.J., Cairns,
S.N., Kilgour, D.P.A., Timmis, J., Tyrrell, A.M.: Chemical detec-
tion using the receptor density algorithm. IEEE Trans. Syst. Man
Cybern. C Appl. Rev. 42(6), 1730-1741 (2012)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall International, Upper Saddle River (1985)

Hoare, C.A.R., He, J.: Unifying Theories of Programming.
Prentice-Hall, Upper Saddle River (1998)

Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraet-
zschmar, G.K., Brugali, D., Bruyninckx, H.: A model-based
approach to software deployment in robotics. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp.
3907-3914 (2013)

Kuske, S., Gogolla, M., Kollmann, R., Kreowski, H.J.: An inte-
grated semantics for UML class, object and state diagrams based
on graph transformation. In: Butler, M., Petre, L., SereKaisa, K.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

(eds.) Integrated Formal Methods, Lecture Notes in Computer
Science, vol. 2335, pp. 11-28. Springer, Berlin (2002)
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic
model checking with PRISM: a hybrid approach. Int. J. Softw.
Tools Technol. Transf. 6(2), 128—-142 (2004)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003: Formal Methods,
pp. 855-874. Springer, Berlin (2003). https://doi.org/10.1007/
978-3-540-45236-2_46

Li, W., Miyazawa, A., Ribeiro, P., Cavalcanti, A.L.C., Woodcock,
J.C.P.,, Timmis, J.: From formalised state machines to implemen-
tations of robotic controllers. In: GroB, R., Kolling, A., Berman,
S., Frazzoli, E., Martinoli, A., Matsuno, F., Gauci, M. (eds.) Dis-
tributed Autonomous Robotic Systems: the 13th International
Symposium, pp. 517-529. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73008-0_36

Lima, L., Miyazawa, A., Cavalcanti, A.L.C., Cornélio, M., Iyoda,
J., Sampaio, A.C.A., Hains, R., Larkham, A., Lewis, V.: An inte-
grated semantics for reasoning about SysML design models using
refinement. Softw. Syst. Model. 16, 875-902 (2015). https://doi.
org/10.1007/s10270-015-0492-y

Lima, L., Miyazawa, A., Cavalcanti, A.L.C., Cornélio, M., Iyoda,
J., Sampaio, A.C.A., Hains, R., Larkham, A., Lewis, V.: An inte-
grated semantics for reasoning about SysML design models using
refinement. Softw. Syst. Model. 1-28 (2015)

Lowe, G.: Specification of communicating processes: tempo-
ral logic versus refusals-based refinement. Form. Asp. Comput.
20(3), 277-294 (2008)

Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.:
Formal specification and verification of autonomous robotic sys-
tems: a survey. CoRR arXiv:1807.00048 (2018)

Mallet, F.: Clock constraint specification language: specifying
clock constraints with UML/MARTE. Innov. Syst. Softw. Eng.
4(3), 309-314 (2008)

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick,
M.: Scratch: a sneak preview. In: Second International Conference
on Creating, Connecting and Collaborating Through Computing,
2004. Proceedings. pp. 104-109. IEEE (2004)

Maoz, S., Ringert, J.O.: Gr(1) synthesis for Itl specification
patterns. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pp. 96—
106. ACM, New York, NY, USA (2015). https://doi.org/10.1145/
2786805.2786824

Maoz, S., Ringert, J.O.: Synthesizing a lego forklift controller
in GR(1): A case study. In: Proceedings Fourth Workshop on
Synthesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015.,
pp- 58-72 (2015). https://doi.org/10.4204/EPTCS.202.5

Maoz, S., Ringert, J.O.: On the software engineering challenges
of applying reactive synthesis to robotics. In: 2018 IEEE/ACM
Ist International Workshop on Robotics Software Engineering
(RoSE), pp. 17-22 (2018)

Maoz, S., Ringert, J.O.: Spectra Language and Spectra Tools User
Guide (2018). http://smlab.cs.tau.ac.il/syntech/spectra/

The MathWorks,Inc.: Stateflow and Stateflow Coder 7 User’s
Guide. www.mathworks.com/products

Menghi, C., Tsigkanos, C., Berger, T., Pelliccione, P., Ghezzi,
C.: Property specification patterns for robotic missions. In: Pro-
ceedings of the 40th International Conference on Software Engi-
neering: Companion Proceedings, ICSE *18, pp. 434-435. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3183440.
3195044

Milner, R.: Communication and Concurrency. Prentice-Hall,
Upper Saddle River (1989)

Milner, R.: Communicating and Mobile Systems: The -
Calculus. Cambridge University Press, Cambridge (1999)

@ Springer

https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-319-73008-0_36
https://doi.org/10.1007/978-3-319-73008-0_36
https://doi.org/10.1007/s10270-015-0492-y
https://doi.org/10.1007/s10270-015-0492-y
http://arxiv.org/abs/1807.00048
https://doi.org/10.1145/2786805.2786824
https://doi.org/10.1145/2786805.2786824
https://doi.org/10.4204/EPTCS.202.5
http://smlab.cs.tau.ac.il/syntech/spectra/
www.mathworks.com/products
https://doi.org/10.1145/3183440.3195044
https://doi.org/10.1145/3183440.3195044

A. Miyazawa et al.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

Miyazawa, A., Cavalcanti, A.L.C.: Refinement-oriented models
of Stateflow charts. Sci. Comput. Program. 77(10-11), 1151-1177
(2012)

Miyazawa, A., Cavalcanti, A.L.C.: Formal refinement in SysML.
In: Albert, E., Sekerinski, E. (eds.) 11th International Confer-
ence on Integrated Formal Methods. Lecture Notes in Computer
Science, pp. 155-170. Springer, Berlin (2014). https://doi.org/10.
1007/978-3-319-10181-1_10

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J.:
Automatic property checking of robotic applications. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3869-3876 (2017). https://doi.org/10.1109/
TR0OS.2017.8206238

de Moura, L., Bjgrner, N.: Z3: an efficient smt solver. In: Ramakr-
ishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 337-340. Springer,
Berlin (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Naylor, B., Read, M., Timmis, J., Tyrrell, A.: The Relay Chain: A
Scalable Dynamic Communication link between an Exploratory
Underwater Shoal and a Surface Vehicle (2014)

Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, Berlin (2002)
Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A
survey on domain-specific modeling and languages in Robotics.
J. Softw. Eng. Robot. 7(1), 75-99 (2016)

Object Management Group: OMG Systems Modeling Language
(OMG SysML), Version 1.3 (2012). www.omg.org/spec/SysML/
Object Management Group: OMG Unified Modeling Language
(2015). www.omg.org/spec/UML/2.5/

Olveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and
analysis of behavioral aadl models in real-time maude. In: Hatcliff,
J., Zucca, E. (eds.) Formal Techniques for Distributed Systems,
pp. 47-62. Springer, Berlin, Heidelberg (2010)

Park, H.W., Ramezani, A., Grizzle, J.W.: A finite-state machine
for accommodating unexpected large ground-height variations in
bipedal robot walking. IEEE Trans. Robot. 29(2), 331-345 (2013)
Pembeci, 1., Nilsson, H., Hager, G.: Functional reactive robotics:
An exercise in principled integration of domain-specific lan-
guages. In: 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, pp. 168—
179. ACM (2002)

Rabbath, C.A.: A finite-state machine for collaborative airlift with
a formation of unmanned air vehicles. J. Intell. Robot. Syst. 70(1),
233-253 (2013)

Ramaswamy, A., Monsuez, B., Tapus, A.: Saferobots: A model-
driven framework for developing robotic systems. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1517-1524 (2014)

Ramos, R., Sampaio, A.C.A., Mota, A.C.: A semantics for UML-
RT active classes via mapping into Circus. Formal Methods Open
Object-based Distributed Systems, Lecture Notes in Computer
Science 3535, 99-114 (2005)

Rasch, H., Wehrheim, H.: Checking consistency in UML dia-
grams: classes and state machines. In: Formal Methods for Open
Object-Based Distributed Systems, Lecture Notes in Computer
Science, vol. 2884, pp. 229-243. Springer, Berlin (2003)
Ribeiro, P, Miyazawa, A., Li, W., Cavalcanti, A.L.C., Timmis,
J.: Modelling and verification of timed robotic controllers. In:
Polikarpova, N., Schneider, S. (eds.) Integrated Formal Methods,
pp- 18-33. Springer, Berlin (2017). https://doi.org/10.1007/978-
3-319-66845-1_2

Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Code generator
composition for model-driven engineering of robotics component
and connector systems. J. Softw. Eng. Robot. 6(1), 33-57 (2015)
RoboCalc Project: RoboChart Case Studies (2017). www.cs.york.
ac.uk/circus/RoboCalc/case-studies/

@ Springer

85. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Com-
puter Science. Springer, Berlin (2011)

86. Schillinger, P., Kohlbrecher, S., von Stryk, O.: Human-robot
collaborative high-level control with an application to rescue
robotics. In: IEEE International Conference on Robotics and
Automation, Stockholm, Sweden (2016)

87. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic soft. sys-
tems: from code-driven to model-driven designs. In: ICAR 2009,
pp. 1-8. IEEE (2009)

88. Schneider, S.: Concurrent and Real-time Systems: The CSP
Approach. Wiley, London (2000)

89. Selic, B.: Using UML for modeling complex real-time systems.
In: Mueller, F., Bestavros, A. (eds.) Languages, Compilers, and
Tools for Embedded Systems, Lecture Notes in Computer Sci-
ence, vol. 1474, pp. 250-260. Springer, Berlin (1998)

90. Selic, B., Grard, S.: Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE: Developing Cyber-
Physical Systems. Morgan Kaufmann Publishers Inc., Burlington
(2013)

91. Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process
algebraic framework for specification and validation of real-time
systems. Form. Asp. Comput. 22(2), 153-191 (2010). https://doi.
org/10.1007/s00165-009-0119-6

92. Soetens, P., Bruyninckx, H.: Realtime hybrid task-based control
for robots and machine tools. In: 2005 IEEE International Con-
ference on Robotics and Automation, pp. 259-264 (2005)

93. Spichkova, M., Hilzl, F., Trachtenherz, D.: Verified system
development with the autofocus tool chain. In: Proceedings 2nd
Workshop on Formal Methods in the Development of Software
(2012). https://doi.org/10.4204/EPTCS.86.3

94. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verifi-
cation under fairness. In: Bouajjani, A., Maler, O. (eds.) Computer
Aided Verification, pp. 709-714. Springer, Berlin (2009). https://
doi.org/10.1007/978-3-642-02658-4_59

95. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair,
E., Grixa, L.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully
autonomous UAV: research platform for indoor and outdoor urban
search and rescue. IEEE Robot. Autom. Mag. 19(3), 46-56 (2012)

96. University of York: RoboChart Reference Manual. https://bit.ly/
200e7RS

97. University of York: RoboTool Reference Manual. https://bit.ly/
2QGDbAO

98. Wei, K., Woodcock, J.C.P., Burns, A.: Timed Circus: timed CSP
with the miracle. In: International Conference on Engineering of
Complex Computer Systems, pp. 55-64 (2011)

99. Woodcock, J.C.P., Davies, J.: Using Z-Specification, Refinement,
and Proof. Prentice-Hall, Upper Saddle River (1996)

100. Zhu, H., Sanders, J.W., He, J., Qin, S.: Denotational Semantics
for a Probabilistic Timed Shared-Variable Language. In: UTP
2013. Lecture Notes in Computer Science, vol. 7681, pp. 224—
247. Springer, Berlin (2013)

101. Zic, J.J.: Time-constrained buffer specifications in CSP + T and
timed CSP. ACM Trans. Program. Lang. Syst. 16(6), 1661-1674
(1994)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-10181-1_10
https://doi.org/10.1007/978-3-319-10181-1_10
https://doi.org/10.1109/IROS.2017.8206238
https://doi.org/10.1109/IROS.2017.8206238
https://doi.org/10.1007/978-3-540-78800-3_24
www.omg.org/spec/SysML/
www.omg.org/spec/UML/2.5/
https://doi.org/10.1007/978-3-319-66845-1_2
https://doi.org/10.1007/978-3-319-66845-1_2
www.cs.york.ac.uk/circus/RoboCalc/case-studies/
www.cs.york.ac.uk/circus/RoboCalc/case-studies/
https://doi.org/10.1007/s00165-009-0119-6
https://doi.org/10.1007/s00165-009-0119-6
https://doi.org/10.4204/EPTCS.86.3
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1007/978-3-642-02658-4_59
https://bit.ly/2Ooe7RS
https://bit.ly/2Ooe7RS
https://bit.ly/2QGDbA0
https://bit.ly/2QGDbA0

RoboChart: modelling and verification of the functional...

robotics.

tionary machine learning.

Alvaro Miyazawa is a research
associate at the University of York.
Having completed B.Sc. in Com-
puter Science at the University of
Sao Paulo and doctoral research at
the University of York, his main
research interests are in formal
semantics and refinement for
domain-specific languages and
graphical notations, and the devel-
opment of refinement strategies to
support high levels of automation
in program verification. Currently,
his research focuses on modelling,
simulation, and verification for

Pedro Ribeiro is a research asso-
ciate in the High Integrity Sys-
tems Engineering group at the Uni-
versity of York. He holds an MEng
in Computer Systems & Software
Engineering and a Ph.D. in Com-
puter Science. His doctoral work
addressed the treatment of angelic
nondeterminism in process cal-
culi. He has previously worked on
the timed semantics underpinning
Safety-Critical Java applications.
Currently, his work focuses on the
timed semantics of RoboChart for
refinement.

Wei Li received the B.Eng. degree
in automation and the M.Eng.
degree in control science and engi-
neering from Harbin Institute of
Technology, China, in 2009 and
2011, respectively. He also
obtained the Ph.D. degree from
University of Sheffield, UK, in
2016. He is currently a research
associate in the department of elec-
tronic engineering, University of
York, UK. His research interests
include robotics and computational
intelligence, and specifically self-
organised systems and co/evolu-

Ana Cavalcanti is a Professor
at the University of York and a
Royal Academy of Engineering
Chair in Emerging Technologies.
From 2012 to 2017, she was Royal
Society Wolfson Research Merit
Award holder. In 2003, she was
awarded a Royal Society Indus-
try Fellowship to work with Qine-
tiQ on formal methods. She has
published more than 150 papers,
and chaired the Programme Com-
mittee of various well-established
international conferences. Her
main research interest is in Soft-

ware Engineering for Robotics. She is currently Chair of the Formal
Methods Europe association.

Jon Timmis is Professor of Intelli-
gent and Adaptive Systems at the
Department of Electronic Engi-
neering, University of York. He
is a previous holder of both a
Royal Society Wolfson Research
Merit Award and Royal Academy
of Engineering Enterprise Fellow-
ship. His research interests are
interdisciplinary in nature, and
focus on the modelling and sim-
ulation of the immune system,
the development of evidence-based
simulations, and fault tolerance in
biologically inspired systems. He
is a Senior Member of the IEEE.

Jim Woodcock is Professor of
Software Engineering at the Uni-
versity of York. His research inter-
ests are in the unification of math-
ematical theories for cost-effective
design of hardware and software
components in innovative, safe,
and secure cyber-physical systems.
His scientific work has enabled
him to make significant contribu-
tions to the application of mathe-
matical techniques in industry in
domains of strategic importance
to society. He is a Fellow of the
UK’s Royal Academy of Engi-
neering.

@ Springer

	RoboChart: modelling and verification of the functional behaviour of robotic applications
	Abstract
	1 Introduction
	2 Related work
	3 Language
	3.1 Notation
	3.2 Metamodel
	3.3 Well-formedness

	4 Semantics
	4.1 CSP
	4.2 Overview
	4.3 Formalisation

	5 Verification and validation
	5.1 Tool support
	5.2 Model checking
	5.3 Case studies

	6 Time in RoboChart
	6.1 Notation
	6.1.1 Metamodel
	6.1.2 Well-formedness

	6.2 Semantics
	6.2.1 Timed CSP
	6.2.2 Overview
	6.2.3 Formalisation

	6.3 Verification support
	6.3.1 Tool support
	6.3.2 Model checking
	6.3.3 Case studies

	7 Conclusions
	Acknowledgements
	References

