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Stochastic dynamics of φ4 kinks: numerics and

analysis

Grant Lythe

School of Mathematics, University of Leeds, UK

Summary. Given a noise intensity or “temperature”, the stationary density of
the overdamped φ4 SPDE corresponds to a mean number of kinks and antikinks
that is maintained by a balance between nucleation of new kink-antikink pairs and
annihilation whenever a kink and antikink collide. We consider numerical methods
for solution of the SPDE, and a definition of the location of the centre of a kink
using a smoothing function that is the derivative of the function describing the shape
and energy of an isolated kink. This allows calculation of the diffusivity of a kink
and defines the parameter characterising the “small-noise” régime. In the reaction-
diffusion description of the dynamics (where kink-antikink pairs are nucleated with
rate Γ , diffuse with diffusivity, D and annihilate on collision) the number of kinks
per unit length in the steady-state has a simple exact expression.
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Stochastic dynamics of φ4 kinks: numerics and

analysis

Main Abbreviations

◦ ODE: Ordinary differential equation
◦ SDE: Stochastic differential equation
◦ SPDE: Stochastic partial differential equation
◦ RHS: right hand side
◦ LHS: left hand side

1 Introduction

Extended nonlinear systems often exhibit localized structures, such as moving do-
main walls, that move about under the influence of perturbations [1–6]. The φ4

equation can be used in multiple dimensions [7, 8], but we restrict ourselves to one
space dimension, where the localised structures are known as kinks and antikinks [2].
Consider the stochastic partial differential equation for a field whose value at posi-
tion x ∈ [0, L] and time t is denoted Φt(x) [9–19]:

∂

∂t
Φt(x)−

∂2

∂x2
Φt(x) =

1

α
(Φt(x)−Φ

3
t (x)) + (2KT )1/2 ηt(x) (1)

where the last term in (1) is space-time white noise [20–29]:

IE(ηt(x)ηt′(x
′)) = δ(x− x′)δ(t− t′). (2)

The dynamics can be thought of as that of a string subject to a double-well on-
site potential (imagine two parallel trenches) and additive white noise all along its

length. The amplitude of the noise is (2KT )1/2 where T has the interpretation of
temperature and K is Boltzmann’s constant. We will use the notation β = KT−1.
The field Φt is nondimensionalized in such a way that, on the RHS of (1), Φ3

t has
the same coefficient as Φt. The distance x has been scaled so that the Laplacian
term (second term on the LHS of (1)) has coefficient 1. The parameter α can be
removed by rescaling time, but we retain it because several different conventions
exist in the literature and because it provides a useful parameter (with dimensions



4 Grant Lythe

of time) in analytical calculations. In numerical work, we typically adopt α = 1, use
periodic boundary conditions on [0, L] and take very large values of L.

An alternative notation to (1) is the following:

dΦt(x) =
1

α

(

Φt(x)−Φ
3
t (x) + α

∂2

∂x2
Φt(x)

)

dt+ (2KT )1/2dBt(x), (3)

where
dBt(x)dBt(x

′) = δ(x− x′)dt. (4)

1.1 Some definitions

We may define the potential function

V (Φ) =
1

α
(−1

2
Φ2 +

1

4
Φ4), (5)

and the energy functional [30]

E [f ] =
∫

(

V (f(x)) +
1

2

(

∂

∂x
f(x)

)2
)

dx. (6)

The kink shape function, φ(y), is defined as the solution of the ODE

φ′′(y) = V ′(φ(y)), lim
x→−∞

φ(x) = −1 and lim
x→∞

φ(x) = 1. (7)

With V (Φ) as in (5), the solution of (7) is [31]

φ(y) = tanh(y/
√
2α). (8)

(The function describing the shape of an antikink is 1−φ(y).) The energy or “mass”
of a kink is

Ek = E [φ] =
∫ ∞

−∞

(V (φ(y)) +
1

2
φ′(y)2)dy

=

∫ ∞

−∞

φ′(y)2dy

= −
∫ ∞

−∞

φ′′(y)φ(y)dy

=

(

8

9α

)1/2

. (9)

The φ4 SPDE is primarily of interest in the “low noise” régime, where thye typical
distance between kinks is much greater than the width of a kink. The square root of
the ratio of the thermal energy KT and Ek is the corresponding small parameter:

ǫ =

(

KT

Ek

) 1
2

. (10)

The notation (3) expresses, in a natural way, the simplest algorithm that may be
used to solve the SPDE numerically [12,32,33]. Under finite differences, a numerical
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solution is generated on a grid of points separated by ∆x. That is, x = i∆x, i =
1, . . . , N . The discretised version is a system of N SDEs:

dΦ̃t(i) =
1

α

(

−V ′(Φ̃t(i)) + α∆x−2∆̃Φ̃t(i)
)

dt+ (2KT/∆x)1/2dWt(i), (11)

where

∆̃Φ̃t(i) = Φ̃t(i+1)+ Φ̃t(i−1)−2Φ̃t(i) and IE(dWt(i)dWt(i
′)) = δi−i′ dt.

1.2 Structure of the Chapter

The φ4 SPDE (1) can be solved as an initial value problem. On inspecting Φt(x) as
a function of x at a fixed t (that is, inspecting “configurations”), with L ≫ 1, we
observe wide regions where Φt(x) is close to either 1 or −1, separated by narrow
regions called kinks (+1 to the right) or antikinks (+1 to the left). These kinks
and antikinks have some of the properties of particles: they are created in pairs,
follow Brownian paths, and annihilate on collision. In the same way as the the series
of configurations evolves towards a stationary density on the space of continuous
functions, the number of kinks and antikinks per unit length evolves towards a well-
defined mean value. As well as numerical methods for solving the SPDE itself, this
Chapter will be concerned with extracting the density of kinks from the stationary
density, with the practical question of how to locate the positions of kinks and
antikinks in a configuration, with the question of the diffusivity of a kink, and with
the rate of nucleation of kink-antikink pairs.

2 Stationary densities

The stationary density of the SPDE [34–40] is the limit as ∆x→ 0 of the stationary
density of the set of SDEs (11):

ρ(Φ(1), . . . , Φ(N)) = ZN exp(−β∆xE(Φ(1), . . . Φ(N))) (12)

where the energy function of the discretized system is,

E(Φ(1), . . . , Φ(N)) =
N
∑

i=1

(

V (Φ(i)) +
α

2

(

Φ(i)− Φ(i− 1)

∆x

)2
)

(13)

and the partition function [41–43] is

ZN =

∫ ∞

−∞

· · ·
∫ ∞

−∞

exp(−β∆xE(Φ(1), . . . Φ(N)))dΦ(1) . . . dΦ(N). (14)

Using the “transfer integral” [10, 12, 42, 44, 45], it is possible to calculate ZN in the
continuum limit, N → ∞ with L = N∆x fixed:

Z = lim
N→∞

ZN = lim
N→∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

N
∏

i=1

T (Φ(i), Φ(i+ 1))dΦ(1) . . . dΦ(N), (15)

where
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T (Φ(i), Φ(i+1)) = exp

(

−1

2
β∆x

(

α

(

Φ(i+ 1)− Φ(i)

∆x

)2

+ V (Φ(i)) + V (Φ(i+ 1))

))

and Φ(N+1) = Φ(1). To proceed, suppose we can find a suitable set of eigenfunctions
ψn and corresponding eigenvalues tn satisfying

∫ ∞

−∞

T (Φ(i), Φ(i+ 1))ψn(Φ(i))dΦ(i) = tnψn(Φ(i+ 1)). (16)

Then the integral in (15) is written as

ZN =

∫ ∞

−∞

· · ·
∫ ∞

−∞

N
∏

i=1

(

∑

n

tnψn(Φ(i))ψn(Φ(i+ 1))

)

dΦ(1) . . . dΦ(N) =
∑

n

tNn .

Now Z = lim
N→∞

∑

n

tNn = tN0 , where t0 is the maximum eigenvalue. The functions ψn

are solutions of the well-known equation [12,46,47]

(

− 1

2αβ2

∂2

∂Φ2
+ V (Φ)

)

ψn = ǫnψn, and tn = e−β∆xǫn . (17)

Now we are in a position to use this information to calculate quantities of interest,
such as long-time mean values of the field. The mean value of f(Φt(x)) as t→ ∞ is
independent of x and given by

lim
t→∞

IE(f(Φt(x))) =
1

Z
lim

N→∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

f(Φ(j))
N
∏

i=1

T (Φ(i), Φ(i+1))dΦ(1) . . . dΦ(N),

where x = j∆x. Thus

lim
t→∞

IE(f(Φt(x))) =

∫ ∞

−∞

f(Φ)ψ0(Φ)
2dΦ. (18)

That is, the square of the zeroth eigenfunction of the transfer operator is the “one-
point density function”, which has peaks near ±1 but is not simply related to
V (Φ) [10]. Knowing the one-point density function permits fully nonlinear calcu-
lation of numerical values, for example of the mean value of Φt(x), to arbitrary
precision, for comparison with the results of direct simulation of the SPDEs [9, 11].
The results from the transfer integral depend only on β in the limit ∆x→ 0. How-
ever, because the transfer integral is explicitly written with the form of the spatial
discretisation, quantities such as the one-point density and correlation length can
be calculated for finite ∆x [12].

When kinks are the most interesting aspect of the system, the most illuminating
consequence of the stationary density is the correlation function, which is the mean of
the product of values at two different spatial points, as a function of their separation:

c(|x− y|) = lim
t→∞

IE(Φt(x)Φt(y))

=
1

Z
lim

N→∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

Φ(k)Φ(j)
N
∏

i=1

T (Φ(i), Φ(i+ 1))dΦ(1) . . . dΦ(N),
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where x = j∆x and y = k∆x. Thus the spatial correlation function is a sum of
exponentials:

c(|x− y|) = t
−|k−j|
0

∑

n

s2nt
|k−j|
n =

∑

n

s2n exp(−βx(ǫn − ǫ0)). (19)

The “correlation length” is given by

λ = − lim
x→∞

c(x)

c′(x)
=

1

β(ǫ1 − ǫ0)
. (20)

As x → ∞, c(x) → s21 exp(−x/λ). If kinks and antikinks are randomly distributed
in space, then the density of kinks is simply 1/(4λ) [9].

The existence of exact quantities that can be used to benchmark numerical
results and analytical approximations is of immense value. For example, the correct
values of λ can be evaluated to arbitrary precision by numerical solution of (17). For
some choices of V (φ) and some parameter values, analytical results are known [48–
50].

There is an interesting relations between the stationary density of an SPDE
and the Markov chain Monte Carlo (MCMC) method in computational Bayesian
statistics, which is a procedure for sampling by constructing a Markov process whose
invariant density is equal to a target density [51]. The configurations (functions of
space) making up the stationary density of the SPDE sample from the same density
as the sample paths (functions of time) of a suitably-constructed SDE. In diffusion-
bridge sampling, the required processes satisfy SPDEs of the form (1), having unique
invariant measures that are ergodic [35,52, 53].

3 Numerical solution

As the notation (11) suggests, in the Euler algorithm, the change between time t
and time t+∆t at spatial location i is

Φ̃t+∆t(i)− Φ̃t(i) =
(

−V ′(Φ̃t(i)) + α∆x−2∆̃Φ̃t(i)
) ∆t

α
+

(

2KT

∆x

)1/2

∆Bt(i), (21)

where ∆Bt(i) is Gaussian random variable at each i and t with mean zero and

IE(∆Bt(i)∆Bt′(i
′)) =

{

∆t i = i′ and t = t′,

0 otherwise .

Perhaps the only counter-intuitive aspect of the algorithm is the scaling of the noise
with ∆x in (21).

It is straightforward to use the Heun algorithm instead of (21), so that errors
in quantities such as the mean value at a spatial point are proportional to ∆t2 [10,
12]. In practice, an important part of designing a numerical experiment is choosing
L, initial conditions, and run time [54]. The lower the temperature, the easier it
is to identify and track kinks. However, genuine thermodynamic simulations with
properly equilibrated kink populations require larger values of L, and longer run
times, as larger values of β are chosen [9, 10].
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An easier numerical task is to measure the diffusivity of an isolated kink: small
spacetime domains lengths L can be used, with initial conditions chosen to have a
single kink-antikink pair [55]. A consistent way to define and measure the position
of (the centre of) a kink is then crucial. It is also possible to establish the rate of
nucleation of new kink-antikink pairs by performing numerical experiments, with a
kinkless initial configuration, at small and intermediate values of L [13].

It is a remarkable fact that the stationary density of the second-order-in-time
SPDE

∂2

∂t2
Φt(x) + η

∂

∂t
Φt(x) =

∂2

∂x2
Φt(x) +

1

α
(Φt(x)−Φ

3
t (x)) + (2ηKT )1/2 ηt(x), (22)

is independent of the damping η and identical to that of (1), although the dynamics
depends strongly on η. Kink-antikink pairs do not necessarily annihilate on colli-
sion; they bounce inelastically, producing trapping and resonance phenomena [56]
that are the analogues of breathers [57, 58] found in noiseless systems. A starting
point for numerical solution of (22) could be to treat the system as 2N SDEs that
can be solved using Euler or Heun timestepping. However, it is more efficient to
use timestepping that explicitly respects the “partitioned” nature of the system
(only half of the SDEs contain noise terms) [59–64]. “Leapfrog” [65, 66], “reverse
leapfrog” [67] and “partitioned Runge-Kutta” [63] methods are available. The code
used in the Chapter is reproduced in the Appendix.

4 Brownian motion of kinks

We cannot count kinks simply by counting zero crossings, because configurations
are jagged on small scales. However, we can do so after convolving the configuration
with a smoothing function [68]. Many symmetric functions with weight concentrated
near zero could be used; here, we use the derivative of the function φ. That is, kinks
and antikinks are located at values of x such that h(x,Φt) = 0 where

h(x,Φt) =

∫

Φt(u)φ
′(u− x)du. (23)

If the position of a kink at tine t is Xt then the configuration in the vicinity of Xt

region can be written as

Φt(x) = φ(x−Xt) + χt(x−Xt). (24)

By introducing the coordinate
y = x−Xt, (25)

the field χt has stationary statistical properties [55, 68]. The separation (24) has
been introduced by several authors [69, 70] and the assumption made that χt(y) is
“small” in a sense that we can now make precise, using the parameter ǫ defined in
(10). The choice of the smoothing function in (23) is illustrated in Figure 1.

We proceed to derive an SDE for the evolution of the kink position. The general
form for such an SDE is as follows [31]:

dXt = a(Φt, t)dt+ b(Φt, t)dWt
(X). (26)
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Fig. 1. Top: a configuration from one numerical realisation. Bottom: zoomed-in
views of two small regions, containing a kink and an antikink. The green line is the
function h(x,Φt), obtained using the smoothing function φ′(y). The parameters are
α = 1 and β = 20, the numerical simulation was carried out with ∆x = 0.1 and
∆t = 0.002

We have chosen to define the kink’s position Xt by the condition
∫ ∞

−∞

Φt(x)φ
′(x−Xt)dx = 0. (27)

Similarly, Xt+∆t is the value of x such that h(x,Φt+∆t) = 0. That is

∫ ∞

−∞

(Φt(x) +∆Φt(x))φ
′(x−Xt+∆t)dx = 0, (28)

where ∆Φt(x) = Φt+∆t(x)−Φt(x). Letting ∆t→ 0, we can restate (28) in the form
of a stochastic differential:

dh(Xt,Φt) = 0. (29)

The Ito formula [71, 72] is used to expand (29), using (3) and (26):

0 =

∫ ∞

−∞

(

dΦt(x)φ
′(x−Xt)

)

dx

−
(
∫ ∞

−∞

φ′′(x−Xt)Φt(x)dx

)

dXt

+

(
∫ ∞

−∞

φ′′′(x−Xt)Φt(x)dx

)

1

2
b2(Φt)dt (30)

−
∫ ∞

−∞

((2KT )1/2b(t,Φt)dWt
(X)dBt(x)φ

′′(x−Xt))dx.

The second term on the RHS of (30) is MtdXt where, using (24) and (9),

Mt = −
∫ ∞

−∞

φ′′(x−Xt)Φt(x)dx = Ek +

∫ ∞

−∞

φ′′(x−Xt)χt(x)dx. (31)

Thus we find, performing the integral in the first term on the RHS of (30),

b(Φt, t) = Mt
−1(2KTEk)

1/2. (32)

Thus, at lowest order in ǫ (10), Mt = Ek and an isolated kink’s motion is Brownian
with diffusivity ǫ2, that is, with mean-squared displacement at time t given by 2ǫ2t.

In order to calculate higher-order terms, we use the operator L that acts on a
function f(y) as follows

Lf(y) = αf ′′(y) + f(y)− 3φ2(y)f(y). (33)

The operator L is obtained from the equation of motion (1) by linearizing about the
single-kink solution φ(y) [2]. The eigenvalue equation,

Lf(y) = −λf(y), (34)
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has two discrete solutions and also has an infinite series of solutions with λ > 2. The
discrete solutions [2]

g(y) =
√
2αφ′(y) =

1

cosh2(y/
√
2α)

(35)

and

s(y) =
(

−αφ′′(y)φ(y)
)1/2

=
sinh(y/

√
2α)

cosh2(y/
√
2α)

, (36)

known as the “translation mode” and “shape mode” [73], are plotted in Figure 2.
Lg(y) = 0 and Ls(y) = − 3

2
s(y). The eigenfunctions with λ > 2 are extended or

“phonon” modes.

−2 2

y

φ(y)

g(y)

s(y)

Fig. 2. The kink shape function, φ(y), is shown in blue. Also shown are the functions
g(y) and s(y), eigenfunctions of the operator L with eigenvalues 0 and − 3

2
. α = 1.

The inhomogeneous stochastic field χt(y) may now be decomposed using the
eigenfunctions of L. As t → ∞, at first order in ǫ, χt(y) is Gaussian with mean
zero; the amplitudes of the extended modes are independent Ornstein-Uhlenbeck
processes with variance proportional to ǫ2. At second order, the mean amplitude
of the shape mode is nonzero. So too is the antisymmetric part of every second
extended mode. Exchange of energy between these modes adds terms proportional
to ǫ2 to the diffusivity of a kink.

5 Nucleation of kink-antikink pairs

New kinks and antikinks never appear alone, but are created in pairs in “nucleation”
events, when a fluctuation causes part of a configuration to surmount the energy bar-
rier separating the two wells at −1 and +1. Similarly, kinks and antikinks disappear
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in pairs, when their Brownian wanderings intersect. How frequent are nucleation
events? We seek the rate Γ of nucleation events, per unit length and time.

It is possible, in principle, to calculate the rate of occurrence, per unit length in a
large system, of fluctuations large enough to provoke nucleation [74,75]. Intuitively,
the rate should be proportional to exp(−2αβEk) because the nucleation event re-
sults in the creation of two localised structures, each with energy Ek [9, 74, 76–83].
Alternatively, it is illuminating to consider the balance between nucleation and an-
nihilation events:

Γτ = ρk, (37)

where τ is the mean lifetime of a kink and ρk is the number of kinks per unit
length. The RHS of (37) is known from the stationary density of the SPDE and
the transfer integral that allows the correlation length to be evaluated (Section 2):
ρk ∝ exp(−αβEk). The mean lifetime τ can be calculated by considering the life
histories of kinks and antikinks, created in pairs and then diffusing until colliding and
annihilating [84–88]. The diffusivityD is also well understood (Section 4). If the kink-
antikink separation at the time of nucleation, b, is independent of β and much smaller
than the typical distance between nearest-neighbour kinks and antikinks, then then
most annihilation events are, in fact, recombination events between kink-antikink
pairs that were nucleated together [9,84]. Exact expressions exist for this diffusion-
limited reaction scenario. The steady-state density in terms of the parameters Γ , D
and b is given by [87]

ρk →
(

bΓ

2D

)1/2

as

(

2Γ

D

)1/3

b→ 0.

Thus, because the steady-state density of kinks is proportional to exp(−αβEk),
we conclude that the nucleation rate of kink-antikink pairs is proportional to
exp(−2αβEk), consistent with intuition. Independently, the appropriate value for
the parameter b has been estimated, from first-passage type numerical experiments
on small-to-intermediate-sized domains, as 8αEk [13]. It is also possible to perform
numerical experiments to evaluate the nucleation rate directly, as a function of β,
to measure kink lifetimes and to distinguish recombinant and non-recombinant an-
nihilation events [9].

Numerical experiments on large domains and over long times, while maintaining
accurate spatial and temporal resolution, were only possible on computer clusters
10-20 years ago [9,89] but are more accessible to desktop experiments nowadays. An
example is given in Figure 3, where numerical counts of numbers of kinks per unit
length are compared with the predictions obtained using (20). The larger the value
of β, the smaller the steady-state number of kinks per unit length, and the longer
the equilibration time.

6 Discussion

On the one hand, it is indispensable to perform numerical simulations of a detailed
model of a physical system, on the largest domain and with the highest spatial
resolution feasible, for as long a time as possible. Such numerical work is comple-
mented by developing theoretical methods that efficiently identify the structures of
interest and predict their number, form, dynamics and interactions. Some questions
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Fig. 3. Density of kinks versus time at different values of β. The solid lines are the
predictions using (20). Dotted lines are numerical solutions with α = 1, ∆x = 0.4
and ∆t = 0.032.

one can ask are: How many coherent structures are there, on average, in the long
term? How do they move and interact with their environment and with each other?
How strongly do these properties answers depend on parameters such as the tem-
perature? In such circumstances, exact theoretical results are extremely valuable as
benchmarks for numerical algorithms.

On the other hand, many theoretical results are approximations whose accu-
racy increases as the temperature decreases. However, low temperatures require
large amounts of computer time because the timescales of the system typically in-
crease as temperature decreases (so one must perform runs of increasing duration
to sample adequately) and because the density of coherent structures also decreases
with decreasing temperature (so larger systems are needed). Often, even a small de-
crease in temperature results in an order-of-magnitude increase in computing time
required. The continuing increase in computing power available year by year, impres-
sive though it is, will not be sufficient to break new ground without the assistance
of new theoretical insights and new numerical methods.

Understanding of the noisy φ4 equation in multiple space dimensions [7, 90,
91] is advancing. There are surely many interesting dynamical features of coherent
structures in two and three space dimensions waiting to be discovered. Systems with
multiplicative noise [92] tend to exhibit intermittent behaviours that are challenging
for the theorist, numericist and physicist.



Stochastic φ4 kinks January 22, 2019 13

Acknowledgements

I am grateful for many years of friendship and scientific discussions with Salman
Habib and Franz Mertens. I am grateful to the Isaac Newton Institute programme
Stochastic dynamical systems in biology: numerical methods and applications (2016).

References

1. A. C. Scott, F. Chu and D. McLaughlin Proceedings IEEE 61, 1443 (1973)
2. A. Bishop, J. Krumhansl and J. Schrieffer Physica D 1, 1 (1980)
3. A. Sánchez and A. Bishop SIAM Review 40, 579 (1998)
4. M. J. Ward Studies in Applied Mathematics 91, 51 (1994)
5. T. Dauxois and M. Peyrard Physics of Solitons (Cambridge University Press)

(2006)
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Appendix: python code

# GDL 2 0 1 8 . p y t h o n 3
# Ph i 4 SPDE w i t h ( a d d i t i v e ) s p a c e t i m e w h i t e n o i s e
# Measu r e <ph i> and c o r r e l a t i o n f u n c t i o n .
# Coun t k i n k s u s i n g sm o o t h i n g f u n c t i o n h ( x ) .
# e x amp l e command l i n e s
# i ) t o s t a r t f r om t =0:
# p y t h o n Coun t 06 . py 5 0000 1 0 0 0 0 0 0 . 2 0 . 0 1 1 0 . 0
# i i ) t o s t a r t f r om w r i t t e n c o n f i g u r a t i o n :
# p y t h o n Coun t 06 . py C o n f i g 1 0 2 0 1 0 1 0 0 . d a t 1 0 000
i m p o r t n u m p y a s n p

i m p o r t os , s y s

i f l e n ( s y s . a r g v ) ==6:
# s t a r t f r om t =0
N , t m a x = i n t ( s y s . a r g v [ 1 ] ) , f l o a t ( s y s . a r g v [ 2 ] )
dx , d t = f l o a t ( s y s . a r g v [ 3 ] ) , f l o a t ( s y s . a r g v [ 4 ] )
b e t a = f l o a t ( s y s . a r g v [ 5 ] )
t = 0.0
t s t a r t = m i n ( t m a x /2 ,1000)
p h i = n p . z e r o s ( N )

e l s e :
# s t a r t f r om e x i s t i n g f i l e
s t a r t f i l e = o p e n ( s y s . a r g v [ 1 ] , ’ r ’ )
p r i n t ( l e n ( s y s . a r g v ) )
i t e m s = s y s . a r g v [ 1 ] . s p l i t ( ’ ’ )
p r i n t ( i t e m s )
dx , d t = i n t ( i t e m s [ 2 ] )∗ 0 . 0 1 , i n t ( i t e m s [ 3 ] )∗0 . 0 0 0 1
b e t a = f l o a t ( i t e m s [ 0 ] . r e p l a c e ( ’ Config ’ , ’ ’ ) )
t = i n t ( i t e m s [ 4 ] . s p l i t ( ’ . ’ ) [ 0 ] )∗ 1 0 0 0 . 0
t m a x = t + f l o a t ( s y s . a r g v [ 2 ] )
p r i n t ( dx , dt , b e t a , t , t m a x )
f o r l i n e i n s t a r t f i l e :

o l d c o n f i g = l i n e . s p l i t ( )
p h i = n p . a r r a y ( [ f l o a t ( p ) f o r p i n o l d c o n f i g ] )
N = l e n ( p h i )
t s t a r t = t

t i n t = m a x ( ( t m a x /1000) ,100)
k , f a c , n c = 1.0/ ( d x ∗ d x ) , n p . s q r t (2∗ d t /( b e t a ∗ d x ) ) , i n t (100/ d x )

d e f p h i c u b ( p h ) :
’ ’ ’ c u b e o f p h i ’ ’ ’
r e t u r n p h ∗ p h ∗ p h

d e f l a p 2 ( p h i ) :
’ ’ ’ l a p l a c i a n o f p h i ’ ’ ’
r e t u r n n p . a p p e n d ( p h i [ 1 : ] , p h i [ 0 ] ) + n p . a p p e n d ( p h i [ −1] , p h i [ : −1 ] ) − 2∗ p h i

d e f m y r a 2 ( N , m y s d ) :
’ ’ ’ N d r aw s f r om g a u s s i a n d i s t r i b u t i o n ’ ’ ’
r e t u r n n p . r a n d o m . n o r m a l (0 , m y s d , N )

d e f e u l e r ( p h i , g , dt , k ) :
’ ’ ’ one E u l e r s t e p ’ ’ ’
r e t u r n p h i + d t ∗( p h i−p h i c u b ( p h i )+ k∗ l a p ( p h i ) ) + g

d e f h e u n 2 ( p h i , g , dt , k ) :
’ ’ ’ one Heun s t e p , k e e p i n t e r m e d i a t e t o a v o i d r e c a l c u l a t i o n ’ ’ ’
p h i t = p h i . c o p y ( )
p i n c = p h i − p h i c u b ( p h i ) + k∗ l a p 2 ( p h i )
p h i t = p h i + d t ∗( p i n c ) + g

p h i = p h i + d t ∗( p i n c + p h i t − p h i c u b ( p h i t ) + k∗ l a p 2 ( p h i t ) )/2
r e t u r n p h i + g

d e f p h i p ( x ) :
’ ’ ’ d e r i v a t i v e o f k i n k s h a p e f u n c t i o n ’ ’ ’
r e t u r n 1 . 0/ ( n p . c o s h ( x / n p . s q r t (2) ) )∗∗2

d e f s e p a r a t i o n ( i , i i ) :
’ ’ ’ mo du l u s N ’ ’ ’
j = a b s ( i−i i )
i f j > N /2 :

j = N−j

r e t u r n j

d e f m a k e h ( ) :
’ ’ ’ h ( x ) i s smo o t h e d v e r s i o n o f p h i ( x ) ’ ’ ’
p h i p l = [ p h i p ( i∗ d x ) f o r i i n r a n g e ( N ) ]
h = [ ]
w = i n t (30/ d x ) # w i d t h f o r i n t e g r a t i o n
f o r i i n r a n g e ( N ) :

h . a p p e n d ( s u m ( [ p h i [ i i%N ]∗ p h i p l [ s e p a r a t i o n ( i , i i ) ] f o r i i i n r a n g e ( i−w , i+w ) ] ) )
r e t u r n [ h h ∗ d x ∗ n p . s q r t (2)/4 f o r h h i n h ]

d e f c x ( p h i , i ) :
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’ ’ ’ sum o f p r o d u c t o f p h i ( x ) and p h i ( x+ i ) ’ ’ ’
r e t u r n n p . s u m ( p h i ∗ n p . r o l l ( p h i , i ) )

p i d = o s . g e t p i d ( )
s d t , s d x = s t r ( i n t ( d t ∗10000)) , s t r ( i n t ( d x ∗100))
s t m , s L = s t r ( i n t ( t m a x /1000)) , s t r ( i n t ( N∗ d x /1000))
s f n a m e = ’ Phis ’+s t r ( i n t ( b e t a ))+ ’ ’+s t r ( p i d )+ ’ ’+s d x+’ ’+s d t+’ ’+s t m+’ . dat ’
s f i l e = o p e n ( s f n a m e , ’w ’ )
l f n a m e = ’ Length ’+s t r ( i n t ( b e t a ))+ ’ ’+s t r ( p i d )+ ’ ’+s d x+’ ’+s d t+’ ’+s t m+’ ’+s L+’ . dat ’
l f i l e = o p e n ( l f n a m e , ’w ’ )
c f n a m e = ’ Config ’+s t r ( i n t ( b e t a ))+ ’ ’+s t r ( p i d )+ ’ ’+s d x+’ ’+s d t+’ ’+s t m+’ . dat ’
c f i l e = o p e n ( c f n a m e , ’w ’ )

d e f w r i t e s t u f f ( s u m 2 , n u m 2 , s u m c , s u m h i s t ) :
’ ’ ’ w r i t e t o f i l e s ’ ’ ’
h = m a k e h ( )
n k = l e n ( [ i f o r i i n r a n g e ( N−1) i f h [ i ]∗ h [ i+1]<0])
p r i n t ( i n t ( t +0.4) , nk , l e n ( [ i f o r i i n r a n g e ( N−1) i f p h i [ i ]∗ p h i [ i +1]<0]))
s f i l e . w r i t e ( ’%f \n ’%( s u m 2 / n u m 2 ) )
l f i l e . w r i t e ( ’%.0 f %.2 f %.2 f %i \n ’%(t , n p . m e a n (− d x c / n p . d i f f ( n p . l o g ( s u m c ) ) ) ,

n p . s t d (− d x c / n p . d i f f ( n p . l o g ( s u m c ) ) ) , n k ) )
s u m 2 , n u m 2 = 0.0 ,0
s u m c , s u m h i s t = n p . z e r o s ( l e n ( i l i s t ) ) , n p . z e r o s ( l e n ( t h i s h i s t ) )
t t t = d t /100
f o r t h i s f i l e i n ( s f i l e , l f i l e , c f i l e ) :

t h i s f i l e . f l u s h ( )

h o s t = o s . g e t e n v ( ’HOSTNAME’ ) . s p l i t ( ’ . ’ ) [ 0 ]
p r i n t ( ’N =’ , N , ’ tmax =’ , t m a x )
p r i n t ( ’ dx =’ , dx , ’ dt =’ , dt , ’ beta =’ , b e t a )
s f i l e . w r i t e ( ”# %i %.0 f %.4 f %.5 f %s\n”%(N , t m a x , dx , dt , h o s t ) )
l f i l e . w r i t e ( ”# %i %.0 f %.2 f %s\n”%(N , t m a x , t i n t , h o s t ) )
x m i n , x m a x = 10 .0 , 40 . 0
di , d x c = i n t ( 1 . 0/ d x ) , i n t ( 1 . 0/ d x )∗ d x

i l i s t = [ ]
i = i n t ( x m i n / d x )+1
w h i l e i∗ d x < x m a x :

i l i s t . a p p e n d ( i )
i += d i

m y b i n s=n p . l i n s p a c e ( −2.0 ,2 .0 ,401 , e n d p o i n t=T r u e )
tt , t t t = d t /100 , d t /100
s u m 2 , n u m 2 = 0.0 ,0
s u m c , s u m h i s t = n p . z e r o s ( l e n ( i l i s t ) ) , n p . z e r o s ( l e n ( m y b i n s )−1)

############## main l o o p #################################
w h i l e t < t m a x−d t :

g = m y r a 2 ( N , f a c )
p h i = h e u n 2 ( p h i , g , dt , k )
t += d t

t t += d t

i f t t > t i n t :
t t = d t /100
i f t > t s t a r t :

t h i s s u m s = n p . s u m ( p h i ∗ p h i )
s u m 2 += t h i s s u m s / N

n u m 2 += 1
f o r i i n r a n g e ( l e n ( i l i s t ) ) :

s u m c [ i ]+= c x ( p h i , i l i s t [ i ] ) / t h i s s u m s

t t t += t i n t

t h i s h i s t=n p . h i s t o g r a m ( p h i , b i n s=m y b i n s , n o r m e d=T r u e ) [ 0 ]
s u m h i s t += t h i s h i s t

w r i t e s t u f f ( s u m 2 , n u m 2 , s u m c , s u m h i s t )
e l s e :

p r i n t ( i n t ( t +0.4) , l e n ( [ i f o r i i n r a n g e ( N−1) i f p h i [ i ]∗ p h i [ i +1]<0]))
######################################################

f o r i i n r a n g e ( N ) :
c f i l e . w r i t e ( ’ %.3 f ’%p h i [ i ] )

f o r t h i s f i l e i n ( s f i l e , l f i l e , c f i l e ) :
t h i s f i l e . c l o s e


