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ABSTRACT: A framework is presented for the calculation of novel
alignment-free descriptors of molecular shape. The methods are based on
the technique of spectral geometry which has been developed in the field of
computer vision where it has shown impressive performance for the
comparison of deformable objects such as people and animals. Spectral
geometry techniques encode shape by capturing the curvature of the surface of an object into a compact, information-rich
representation that is alignment-free while also being invariant to isometric deformations, that is, changes that do not distort
distances over the surface. Here, we adapt the technique to the new domain of molecular shape representation. We describe a
series of parametrization steps aimed at optimizing the method for this new domain. Our focus here is on demonstrating that
the basic approach is able to capture a molecular shape into a compact and information-rich descriptor. We demonstrate
improved performance in virtual screening over a more established alignment-free method and impressive performance
compared to a more accurate, but much more computationally demanding, alignment-based approach.

■ INTRODUCTION

The development of in silico methods for shape-based
searching of small molecules has been a topic of considerable
interest for many years.1−3 This is due to shape being
fundamental to molecular recognition events such as a drug
binding to a biological receptor. Given one or more known
active compounds, shape searching can be used to identify
molecules within databases that can adopt similar shapes to the
query compound(s) and therefore may also bind to the
receptor of interest. Shape-based searching forms one of a
number of virtual screening methods that are applied in the
absence of the 3D structure of the receptor. A key advantage of
shape searching over 2D fragment-based methods is that it is
more amenable to scaffold hopping, that is, finding hits that
belong to different chemical series. This is important for drug
discovery projects since it allows them to be moved into new
areas of chemical space, thus increasing the chance of
generating new intellectual property while also mitigating
against potential side effects or synthetic intractability
associated with existing compounds.
The different approaches to shape-based virtual screening

can be divided into alignment-based and alignment-free
approaches. Alignment-based methods require that a database
molecule is superimposed on the query prior to calculating
shape similarity. The aim of the alignment step is to maximize
the similarity, for example, by finding the maximum overlap of
the molecules which can be time consuming. ROCS, Rapid
Overlay of Chemical Structures,4 the industry-standard align-
ment method, uses Gaussian functions to represent atomic
volumes which allow the rapid calculation of the overlap
volume of aligned molecules. Other 3D alignment methods

include the use of spherical harmonics5 and field-based
representations.6 The computational complexity of align-
ment-based methods is such that they struggle to cope with
the sizes of data sets, real and virtual, that are currently
available for search. For example, the ExCAPE-DB database,
compiled from ChEMBL and PubChem, consists of 70 million
SAR (structure−activity relationship) data points.7 The
Enamine REAL database consists of 680 million compounds
that are available for purchase through one-step synthesis, and
the GDB-17 database of virtual compounds with up to 17
heavy atoms consists of 166 billion compounds.8

A number of alignment-free approaches have been
developed in which shape is represented in vector form.
They typically involve abstracting the 3D features of a
molecule, such as interatomic distances and/or angles, into a
vector representation. The resulting descriptors are intrinsic;
that is, they are independent of the embedding space, which
means that they are independent of the orientation of the
molecule in 3D space and invariant to rotation and translation.
Thus, the descriptors can be compared directly without the
need to superimpose the molecules. For example, in UFSR
(UltraFast Shape Recognition), a vector description of shape is
calculated from interatomic distance distributions derived from
a set of four reference locations.9 Although, alignment-free
methods allow rapid pairwise comparisons to be made, there is
significant information loss in the representation which can
affect performance accuracy. For comprehensive reviews of 3D
similarity searching methods, see refs 1−3.
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Whether alignment-based or alignment-free, the handling of
molecular flexibility is a major challenge for 3D similarity
searching. Most methods require explicit 3D models with
conformational space being explored prior to searching
through the enumeration of an ensemble of conformers for
each molecule. The aim is to sample conformational space at a
resolution that is sufficient to include all low energy
conformations but not so exhaustive that excessive numbers
of conformers are produced. Typical sampling strategies are
based on a threshold on strain energy, or root-mean-square
deviation of atom positions, or simply on the maximum
number of conformers permitted.10 Ideally, the sampling
method will ensure that the bioactive conformations of the
molecules are represented; however, it may be that the bound
conformation is not a minimum energy conformation. The
ensemble approach clearly increases the number of discrete
comparisons required, typically by a further 1 or 2 orders of
magnitude, depending on the resolution of the conformational
search. Although 3D similarity methods are appealing
conceptually, the issue of conformational flexibility makes
them considerably more complex than 2D methods, and
effective conformational sampling remains a challenging
area.11,12

Shape matching is a topic which has received considerable
attention in the field of computer vision where a very active
area of research is the development of techniques to recognize
shapes that can undergo deformations, for example, people or
animals that can adopt different poses. Spectral geometry
techniques have become the method of choice for this
challenging problem. These techniques encode shape by
capturing the curvature of the surface of an object into a
compact, information-rich representation. As for the align-
ment-free descriptors mentioned above, spectral geometry
descriptors are intrinsic and therefore independent of the
embedding space. A key element of spectral geometry that
differs from the above approaches is the encoding of geodesic
distances, that is, distances over the surface of a shape rather
than Euclidean or through-space distances. Taking the earth as
an example, the geodesic distance between two cities is the
distance measured over the surface of the earth, whereas the
Euclidean distance is the shortest through-space distance and
would pass through the earth. This property means that as well
as being invariant to rotation and translation, the descriptors
are also invariant to isometric deformations, that is, to changes
to the “pose” of an object that preserve distances over its
surface. The typical example from computer vision is
recognizing a person in different poses, for example, standing
and sitting. In this case, the property of isometry is illustrated
by measuring the geodesic distance between the head and the
feet over the surface of the body; this distance remains the
same regardless of the pose, whereas the head and feet are
much closer in the sitting pose when measured using Euclidean
distance.
The original spectral shape method was developed by Reuter

et al.13 who showed that the spectrum (eigenvalues and
eigenfunctions) of the Laplace−Beltrami operator over the
surface of a shape can be used to develop a descriptor of the
isometric geometry of the shape. The descriptors are generated
by first representing the surface as a mesh. Geometric
properties of the mesh then form the input to an
eigendecomposition which transforms the original space into
a set of eigenpairs (eigenvalues and corresponding eigenfunc-
tions). The eigenpairs are orthonormal and are ordered on the

extent to which they capture the original untransformed data.
The process of transforming the geometric properties of a
mesh over the surface of an object into eigenpairs can be
considered analogous to transforming a high dimensional space
to a low dimensional space using principal components
analysis (PCA). Reuter et al.’s original descriptor consisted
of the eigenvalues of the spectrum only, represented as a vector
of non-negative numbers. They named the descriptor Shape-
DNA to emphasize that it captures the intrinsic geometry of
shape, in analogy to DNA, which characterizes an individual
according to their gene sequence.
While the Shape-DNA descriptor was shown to be useful as

a shape signature, it is limited in the extent to which it captures
rich descriptions of shape. Following Reuter et al.’s work, local
geometry descriptors were developed by mapping the
geometric information contained in the eigenfunctions of the
spectrum onto points on the surface of a shape. Local
geometry descriptors are feature vectors that are assigned to
each vertex. The mapping is achieved by applying functions to
the spectrum to amplify different parts of it. The most
commonly used functions are the Heat Kernel Signature,
HKS,14 and the Wave Kernel Signature, WKS.15 Local
geometry descriptors have been applied to tasks such as
establishing correspondences between shapes and shape
segmentation. Techniques have also been developed to
aggregate local descriptors into whole object, or global,
descriptors for domain-specific applications.16 A survey of
spectral geometry methods is provided by Li and Hamza17 and
the results of a recent benchmark study on a wide range of
objects in different poses in which spectral geometry showed
excellent performance is summarized by Lian et al.18

Diffusion distance (DD) is a related technique that has been
applied to protein structure comparison.19,20 DDs are based on
topological (inner) distances which may be more appropriate
for capturing the large articulations seen in protein
conformations than spectral geometry, which is susceptible
to distortions arising from surface “stretching” for large
movements. DDs were also applied to small molecules;20

however, we believe surface geometry will be significantly more
discriminating than inner distances at representing the shapes
of small molecules. We also believe that small molecules will be
much less susceptible to distortion effects than proteins since
the conformational changes of small molecules do not result in
significant “stretching” of the surface.
In this paper, we present a framework for the application of

spectral geometry methods to molecular shape comparison. To
our knowledge, this is the first time that the technique has been
applied to shape comparison of small molecules. The
framework consists of a number of discrete steps each of
which is parametrized for shape-based virtual screening. The
aim of the work reported here is to demonstrate that the basic
approach is effective in generating a compact and effective
descriptor of molecular shape. To this end, we apply the
methods to virtual screening based on a single conformer as
input for each molecule and compare our results with
established alignment-based and alignment-free methods.
While we believe there is considerable potential for handling
conformational flexibility, and indeed, this is one of the
attractions of the approach, this aspect will be explored in
future publications, following on from this work.
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■ METHODS

Overview. The framework for generating spectral geometry
descriptors for molecular shapes is shown in Figure 1. (The
discussion of methods has been simplified for ease of
exposition, and the reader is referred to the Supporting
Information for a detailed mathematical description of spectral
geometry.) The first step is to generate a molecular surface in
the form of a discrete triangulated mesh. Geometric properties
of the surface are captured by solving the Laplace−Beltrami
operator, Δ, over the mesh to give the spectrum:7

ϕ λϕΔ = − (1)

The spectrum is a set of k eigenpairs represented as a k-
dimensional vector of eigenvalues (λ) and an N × k matrix of
eigenfunctions (ϕ). The spectrum then forms the basis of the
computation of local geometry descriptors which are calculated
for each point of the mesh. Finally, the local geometry
descriptors are used to generate the global geometry descriptor
which represents the shape descriptor of a molecule. Each of
these steps is now described in further detail.
Representation of Molecular Shape. The mesh used to

represent the surface of a molecule must meet a number of
conditions in order that the Laplace−Beltrami operator can be
solved.21,22 First, the mesh should be triangulated. A mesh is a
lattice graph in 3D space composed of vertices and edges: Each
vertex has (x, y, z) coordinates, and a connection between two
vertices is called an edge. The vertices are connected such that
each edge forms the boundary of an enclosed region which is
known as a face. Figure 2 shows a triangulated mesh with six

vertices, {A, B, C, D, E, F} and five faces {(A,B,C), (A,C,D),
(A,D,E), (A,E,F), (A,F,B)}. As all edges must form the
boundary of an enclosed face, this means that each edge must be
a member of at least one face and that a mesh may be described
entirely by its vertices and faces. A 3D mesh, X, can therefore
be defined by a set of N vertices, = { }v v v v, , ..., , ...,i N1 2¥ ,
and M faces, = { }f f f f, , ..., , ...,

i M1 2
l .

Second, the mesh must be such that it is possible to trace a
path over edges between any two vertices. This ensures that a
notion of distance exists for all points on the mesh and that no
parts of the mesh are disconnected from other parts. Third,
there must be a strictly positive distance between all points. In
practice, this means that duplicate vertices cannot exist. Finally,
the mesh must not contain nonmanifold vertices and edges
since these cannot be handled by most algorithms due to the
geodesic behavior around them being poorly defined.22 A
nonmanifold vertex is one where two surfaces meet at a single
point, as illustrated on the left of Figure 3. A nonmanifold edge

is a member of more than two faces, creating a self-
intersection, right of Figure 3. Note that a mesh may still
have a boundary, that is, a collection of edges that only belong
to one face. A mesh with no boundary edges is called a closed
mesh.

Computing the Spectrum. The spectrum of the Lap-
lace−Beltrami operator can be computed using techniques in
linear algebra either directly or indirectly. The direct approach
defines the Laplace−Beltrami operator as a matrix, LN×N,
where N is the number of vertices in the mesh, and the
elements of the matrix are assigned weights to represent the
relationship between any two vertices. The cotangent
weighting scheme, first described by Pinkall and Polthier,23

defines the elements of the matrix as

=

=

≠ ∧ ∈

lmoooooonooooooL

i j

w i j j R i

1 if

if ( )

0 otherwise

i j i j, ,

(2)

where i and j are vertices and R(i) is the set of vertices
connected to vertex i. The diagonal of the matrix (i = j) is
assigned values of 1. Geometric information is computed for
adjacent vertices using the average cotangent of the opposite

angles, that is, θ θ= +w (cot cot )i j,
1

2 1 2 as illustrated in Figure

4 for the weight between vertices A and C. Then, in order to
obtain the spectrum of the Laplace−Beltrami operator, eq 3 is
solved numerically,

ϕ λϕ=L (3)

Figure 1. Framework for applying spectral geometry to generate molecular shape descriptors. The surface is represented by a triangulated mesh
consisting of N vertices, ¥ , and M faces, L . The eigendecomposition results in a k-dimensional vector of eigenvalues (λ) and an N × k matrix of
eigenfunctions (ϕ). The local geometry descriptors of dimension D are derived for each vertex of the mesh. The local geometry descriptors are then
aggregated to form an alignment-free global geometry descriptor.

Figure 2. Triangular mesh consisting of six vertices {A, B, C, D, E, F}
and five faces {(A,B,C), (A,C,D), (A,D,E), (A,E,F), (A,F,B)}.

Figure 3. Illustration of nonmanifold vertices, see text for details.
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where ϕ are the eigenfunctions and λ the corresponding
eigenvalues. Note this is a very sparse system as the vast
majority of vertices are not connected, and therefore, it can be
solved using sparse eigenvalue methods.
The spectrum can also by computed indirectly using the

Finite Element Method (FEM), which makes it less dependent
on the underlying mesh representation.13 The FEM algorithm
is mathematically complex and the details are not reported
here as the cotangent method provides a more intuitive
explanation of the method. In brief, the FEM algorithm
constructs local stiffness and mass matrices for the vertices on
the mesh and combines them over the whole mesh. The
Laplace−Beltrami spectrum is then recovered from computing
the generalized eigenvalue decomposition of these two
matrices. Both the direct and indirect approaches were
implemented and applied to the surface meshes used here
(see later). Preliminary results, not reported here, demon-
strated the superiority of FEM so that all spectra reported in
this paper are computed using FEM.

The eigenpairs are orthonormal and are ordered on the
extent to which they capture the original untransformed data
(compare with principal components analysis where the first
principal components are most significant in terms of encoding
the variance of the original space). Eigenpairs that are near the
beginning of the sequence encode global properties of the
shape, whereas those lower down in the sequence encode more
local features. For a mesh of N vertices, a full eigendecompo-
sition would result in N eigenpairs; however, as the
information content of successive eigenpairs is reduced, the
number of eigenpairs is usually truncated. We use the variable
k in Figure 1 to refer to the number of eigenpairs that is
calculated so that the output from the eigendecomposition is a
k-dimensional vector of eigenvalues (λ) and an N × k matrix of
eigenfunctions (ϕ).

Local Geometry Descriptors. Local geometry descriptors
consist of feature vectors that are assigned to each vertex
(mesh point) on the surface and describe the shape around the
vertex. They are generated using functions that act on the
spectrum. The HKS consists of an exponential function of the
eigenvalues that acts over the matrix of eigenfunctions and
captures the notion of heat decay at each vertex, x, at time t, eq
4.14

∑ λ ϕ= −
=

x t xHKS ( ) exp( ) ( )t

i

k

i i
1

2

(4)

The HKS function is evaluated as a 1 × N vector where each
element corresponds to a vertex on the mesh. For each vertex,
it can be interpreted as a sample of the heat dissipation over
time, t, and since heat dissipation is determined by the intrinsic
geometry of the surface, it forms a descriptor of the local
geometry of the vertex. The exponential function is shown
graphically in Figure 5(a). For small values of t, greater weight

Figure 4. Cotangent weighting scheme. See text for details.

Figure 5. Illustration of the HKS and WKS functions used to derive local geometry descriptors.
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is given to eigenfunctions that occur later in the spectrum and
represent local geometry. As t increases, more emphasis is
given to global features. Sampling the heat at D time points
gives an N × D matrix where each row is a vertex in the mesh
and each column is the HKS at a given time. Thus, each row of
the matrix can be considered as a local geometry descriptor for
that vertex represented by a D-dimensional vector with each
element representing a different balance of global and local
geometry features, eq 5.

=p x x x( ) (HKS ( ), ..., HKS ( ))D1 (5)

The WKS is an alternative local geometry descriptor that has
its roots in quantum mechanics and is parametrized by
frequency rather than time.15 The WKS samples the spectrum
for a specified number of intervals, called evaluations in the
original paper by Aubry et al. The spectrum is divided into
equally sized intervals/evaluations and a Gaussian function is
centered at the middle of each to amplify the signal around
that point. For a given interval, E, the WKS at vertex x is

∑
λ

σ
ϕ= −

−

=

ikjjjjj y{zzzzzx c
e

xWKS ( ) exp
(log log )

2
( )E E

i

k
i

i
1

2

2
2

(6)

where e is the mean value in the Eth interval and the
nominator is the squared distance of the log of the ith
eigenvalue to the log of the middle of the interval. The σ2 in
the denominator is an arbitrary parameter that represents the
variance of the log-normal distribution. Previous work has
established that the value of σ2 = 7 gives best performance and
this is therefore adopted here.15 As the WKS moves across the
spectrum, the contribution shifts from global to local features
(Figure 5(b)). In order to weight the contributions over
different intervals equally, a normalization constant, cE, is

applied so that the area under each function is the same
(Figure 5(c)). The number of intervals, or evaluations, used to
calculate the WKS determines the number of elements in the
local geometry descriptor assigned to each vertex and is
referred to as D for consistency with the local geometry
descriptors calculated using HKS. Thus, as for the HKS, each
vertex is described by a D-dimensional vector with each
element representing a different balance between local and
global features:

=p x x x( ) (WKS ( ), ..., WKS ( ))D1 (7)

Global Geometry Descriptors. The local geometry
descriptors must be mapped to a global geometry descriptor
in order to quantify the similarity of two objects in an
alignment-free way. We have explored two options here: the
covariance matrix method and the bag-of-features.
The covariance matrix method does not require any

parametrization. It maps all shapes represented by N × D
local geometry descriptors to the same space, that is, the space
of D × D covariance matrices.24 Therefore, the size of the
covariance matrix is dependent only on D, the number of
dimensions chosen for the local geometry descriptors, and not
on the size of the mesh (or the underlying molecule). The
covariance matrix is expressed as the covariance between the
columns of the local geometry descriptors and is also
independent of the ordering of the vertices in the mesh. The
covariance matrices for two molecules in arbitrary orientation,
C1 and C2, can be compared directly element-by-element using
the Bray−Curtis metric25 as follows:

=
∑ | − |

∑ | + |
d C C

c c

c c
( , ) i i i

i i i
1 2

1, 2,

1, 2, (8)

Figure 6. Bag-of-features method for generating global descriptors. (a) Vertices extracted from a set of molecules are clustered on their local
geometry descriptors and a representative subset selected for use as a codebook. (b) Three different encoding schemes are used to map a given
vertex onto the codebook.
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where i moves over all D × D elements of the two covariance
matrices. This element-by-element metric was chosen over a
vector−space method such as cosine, which relies on the inner
product, since the inputs are flattened matrices.
Bag-of-features descriptors are the most common form of

global geometry descriptor used in computer vision.16 They
have a longer history in the field of image processing and signal
compression and originate as descriptors for text retrieval.26

The method uses a codebook that represents key geometric
features, or codewords, in feature space. The vertices of a given
shape are mapped to the representative features, in a process
known as encoding, and the frequency of occurrence of the
codewords is aggregated. For example, suppose the codebook
contains a codeword which is the local geometry descriptor of
a vertex in a cupula-like region of a molecular shape. Then,
each vertex of a given shape can be characterized on cupula-
likeness by determining how close its local geometry descriptor
is to the cupula codeword. In practice, codewords do not
necessarily have nameable geometric properties. A key
advantage of the bag-of-features approach compared to the
covariance descriptor is that it is more compact: for a
codebook with V codewords, an N × D matrix will be mapped
to a 1 × V vector rather than the D2 matrix generated using the
covariance method. However, there are a number of
parameters that control the generation of bag-of-features
descriptors, and these need to be optimized for the domain.
The basic approach is presented here and parametrization
experiments are reported below.
An overview of the workflow used to develop bag-of-feature

descriptors is presented in Figure 6. First, a codebook, V, is
computed from the set of local geometry descriptors, x1,
x2...xM, extracted from a sample of N molecules, X1,X2...XN. The
local geometry descriptors are clustered using k-means and a
subset selected to form the representative features in the
codebook. This process is shown schematically in Figure 6(a),
where the local geometry descriptors are two dimensional. The
blue vertices represent valley-like features. The red vertices
represent cupula-like features, and the purple vertices represent
flat regions. The codebook, V, is formed by selecting the
centroid vertex in each cluster and consists of three codewords,
v1, v2, and v3, in the illustration. Given the large number of data
points to be clustered, to avoid running into convergence
issues with traditional k-means, we used the Mini-batch k-
means algorithm which uses a subsampling strategy to provide
fast training convergence.27

The process of calculating a global shape descriptor for an
input molecule is illustrated in Figure 6(b) and involves
comparing the local geometry descriptor at each vertex (mesh
point) with each of the features in the codebook. The resulting
encodings are aggregated to form a histogram. Three different
encoding schemes were used here: Hard Vector Quantization;
Soft Vector Quantization, and KNN-Soft Vector Quantization.
Let θ(x) denote the encoding of a vertex, x ∈ X. Hard

Vector Quantization (HQ) is the simplest encoding method
whereby each vertex, x ∈ X, is assigned to the closest
codeword in the codebook based on its local descriptor g(x),

θ = { }
∈

x d g x v( ) argmin ( ( ), )
V

i
vi (9)

for codewords vi ∈ V.
Soft Vector Quantization (SQ) attempts to reduce the

amount of information lost by allocating a vertex to a single
codeword by assigning a vector of probabilities to each vertex.

Each vertex, x ∈ X, is assigned a vector of size 1 × V, where V
is the number of codewords in the codebook. Then the ith
element of the vector represents the probability that the local
geometry of the vertex is close to the ith codeword in the
codebook,

θ = { | | }x p v x p v x( ) ( ), ..., ( )V1 (10)

where the probability scores are determined using the softmax
formula,16

σ
| =

−ikjjjjjj y{zzzzzzp v x c x
g x v

( ) ( )exp
( )

2
i

i 2
2

2
(11)

where c(x) is a normalization constant that ensures θ(x)1 = 1.
KNN-Soft Vector Quantization (KNN) is an attempt to

balance the trade-off between the information loss of HQ with
the increased noise of SQ due to the allocation of distant
points to codewords. This encoding method assigns the
softmax probability to the K-nearest codewords to each local
descriptor. The encoding is therefore defined as

θ σ=

−
∀ ∈

lmoooooonoooooo
ikjjjjjj y{zzzzzzx

c x
g x v

v
( )

( )exp
( )

2
KNN

0 otherwise

i

i
2
2

2

(12)

where KNN is the set of the K-nearest codewords to the local
descriptor g(x). In Figure 6(b), when K = 2 nearest neighbors,
the descriptor will assign a stronger membership of the blue
dot than the orange dot, which reflects its closer proximity to
blue, and will assign a zero value to the purple feature as this
feature is not a near neighbor.
For all encoding methods, the vertex encodings are

aggregated over the shape to produce a frequency histogram.

Finally, the histogram is 2r normalized to give the global shape
descriptor. This is done by dividing each element of the

histogram by the 2r norm, θ2, which is the square root of the
sum of the squared elements in the histogram

∑θ θ=
v

v2
(13)

for all v elements in the histogram. For all bag-of-features
methods, the distance between the shape descriptors of two
molecules is calculated using cosine distance. As these
descriptors are vectors, the normalized inner-product distance
was considered the natural metric in this descriptor space.

Data Sets. The performance of the spectral geometry
descriptors has been evaluated on virtual screening experi-
ments on the DUD-E data set.28 DUD-E consists of sets of
actives and decoys for 102 biological targets and was designed
to provide a benchmark data set for docking programs by
providing challenging decoys which were chosen to have
similar physicochemical properties to the actives but dissimilar
2D topologies. DUD-E is not appropriate for evaluating ligand-
based virtual screening using 2D chemical descriptors since the
decoys are dissimilar by design thereby biasing the retrieval
toward the known actives. Such a bias does not apply here,
however, since the focus is on identifying ligands that have
similar shape to a query active regardless of their 2D topology.
In order to avoid dependence on conformation generation
techniques, the 3D structures available in the data set
download were used directly, and all of the experiments
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reported here are based on this single rigid conformation per
DUD-E entry.
First, a series of experiments was conducted on a subset of

the targets extracted from DUD-E in order to parametrize the
spectral geometry descriptors for virtual screening. The subset
consisted of the following 10 targets: ada, comt, esr1, glcm,
hxk4, kit, mapk2, pa2ga, ptn1, tysy. For each target, 20 active
molecules were selected at random and mixed with 380
randomly selected decoy molecules. Each active was then used
as a query, and the virtual screening performance was
measured using AUC and BEDROC scores with the values
averaged over each active and each target.
Following the parametrization experiments, virtual screening

was carried out for all targets in DUD-E except for the 10 used
in the parametrization experiments (and except target fgrf for
which there were no 3D structures available in the download).
First, the crystal ligand was used as query for each target. Next,
a more extensive set of experiments was conducted in which 20
active molecules were selected randomly as queries for each
target and searched over all actives and decoys in the set, and
the results were averaged first for each target and then over all
targets. To ensure the virtual screening results were not biased
by multiple occurrences of the same molecule in the rankings,
once the virtual screening had been performed against a query
molecule, the results were filtered to find the best performing
structure for each unique CHEMBL ID prior to the AUC and
BEDROC scores being calculated.

■ RESULTS

Mesh Generation. The first step in generating spectral
geometry descriptors is to compute meshes over the surfaces of
the molecules. We generated meshes using the recent
TMSmesh program, which was created for analytical use of
meshes.29,30 TMSmesh uses an atom-centered Gaussian that
can be parametrized to approximate different molecular
surfaces. The meshes output by TMSmesh are consistent
with the requirements for computing the spectrum of the
Laplace−Beltrami operator. Parameters were chosen that best
approximate the solvent accessible surface.30 These are a mesh
density setting of H = 0.2, a Gaussian surface decay rate of D =
0.4, and the Gaussian surface isovalue, which controls the
volume enclosed by the surface, of C = 1.2. TMSmesh is
configured by specifying a density parameter rather than a
specific number of mesh vertices so that the number of vertices
in the mesh is not controlled. The overall distribution of mesh
sizes is presented in Figure 7. The mean number of vertices in
the mesh is 10,490 with the range being between 1367 and
20,130 (standard deviation 1,985). The mean number of
vertices in the meshes generated for the actives and decoys for
each DUD-E target ranges from 7900 to 12,900.
Visualizing the Spectrum. The eigenpairs of the

spectrum are output in increasing order of eigenvalue and
are structured such that the information content of the
eigenfunctions moves from encoding global geometric features
to more localized features. This is illustrated in Figure 8 for an
example molecule which shows different eigenfunctions
(columns of the N × k spectrum) plotted onto the surface
of the molecule. Figure 8(c) shows the first eigenfunction with
the colors aligned along the longest part of the molecule, which
can be thought of as the x-axis. This eigenfunction can be
considered analogous to the first component in PCA and
shows the direction of largest variation in geometric terms. As
the eigenvalues increase in size, the corresponding eigenfunc-

tions show orthogonal directions (or axes) which capture
smaller degrees of geometric variation. The fifth eigenfunction
shows global shape variation in two directions, along the z-axis
as well as starting in the middle and moving out along the y-
axis. Figure 8(e) and (f) show the 10th and 250th
eigenfunctions, respectively, which show more local variation
over small sections of the surface of the molecule. Therefore,
the smaller eigenvalues encode global intrinsic geometry, with
the larger eigenvalues corresponding to local geometry.

Visualizing the Local Geometry Descriptors. Figure 9
illustrates local geometry descriptors calculated using the HKS
at three different time points. For a given time t, the HKS
function is evaluated as a 1 × N vector where each element
corresponds to a vertex on the mesh, and the distribution of
values can be plotted over the surface. At time t = 5, the HKS
emphasizes eigenfunctions that occur later in the spectrum and
encode local geometry features. This is evident by the similar
colors (red) assigned to the convex regions which differ from
the concave regions (blue). Some noise from surface rendering
is also evident, for example, at the bottom of the right-hand
lobe, particularly at t = 5. At time t = 15, some smoothing has
occurred as the earlier eigenfunctions which represent more
global geometry are given greater emphasis, shown by the
reduced noise effects, with the regions of different curvature
still evident. At time t = 300, the convex features on the left
and right are colored red/yellow; however, there is now a blue
band across the middle of the molecule which also includes a
convex region.
Figure 10 illustrates local geometry descriptors calculated

using the WKS evaluated over 100 intervals. Figure 10(a)
shows the second evaluation which encodes global curvature.
At higher evaluations, Figure 10(b), more local features are
encoded until the final evaluation in Figure 10(c) appears to
encode noise and general artifacts of the mesh generation
process.

Parametrizing the Number of Eigenpairs. The
computational cost of performing the eigendecomposition
increases with the number of eigenpairs computed. This effect
is illustrated in Figure 11(a) for a single molecule of mesh size
5985 vertices at increasing numbers of eigenpairs and shows an
increasing, nonlinear relationship between k and time. The
computation time for 100 eigenpairs is around 1 s and
increases to 5 s for 300 eigenpairs and 16 s for 500 eigenpairs.
Figure 11(b) shows the time taken to compute 300 eigenpairs
for a random sample of 250 molecules with mesh sizes varying
from around 3000 to 12,000. In addition to depending on the

Figure 7. Distribution of the number of vertices in the meshes of the
DUD-E data set.
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value of k, the time to compute the eigenpairs increases
approximately linearly with the size of the mesh. The number
of vertices for the sample molecule is at the lower end of the
distribution of mesh sizes and therefore computation times;
the longest computation time is around 15 s for a mesh with

approximately 12,000 vertices. Although the eigendecomposi-
tion computation is a one-time cost (since it is required when
computing the descriptors rather than during virtual screening
run time), it is still beneficial to keep this to a minimum.
Hence, the first parametrization experiment was to determine
the optimum value of k.
Spectral geometry descriptors were calculated for the

following numbers of eigenpairs, k: 5, 10, 20, 30, 40, 50,
100, 200, 300, 400, and used in virtual screening experiments
on the 10 targets with each active compound used as query, in
turn. In all cases, the local geometry descriptors were
calculated using the WKS (with number of evaluations set at
D = 100), and the local descriptors were aggregated to a global
descriptor using the covariance matrix. The covariance matrix
was chosen as the global descriptor as no parametrization is
required, unlike for the bag-of-features global descriptors, the
parametrization of which is described later. Virtual screening
performance was evaluated using area under the curve (AUC),
and BEDROC (α = 20), and the results averaged over all
targets are presented in Figure 12 with 95% confidence
intervals computed using 10,000 bootstrap iterations. On
average, the best performance measured using BEDROC was
obtained for k = 20, and no performance gain was evident for

Figure 8. Molecule from the Zinc database (ZINC12885854) with eigenfunctions plotted over the surface along with their corresponding
eigenvalues.

Figure 9. HKS plotted for all vertices at three different time points.

Figure 10. WKS plotted for all vertices for three different evaluations.
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using higher numbers of eigenpairs. The AUC shows better
average performance at k = 10. However, the early enrichment
measures are better indicators of virtual screening perform-
ance; therefore, all subsequent experiments are based on k = 20
eigenpairs.
Parametrizing the Local Geometry Descriptors. The

effect of varying the number of descriptors and the sample time
points, t, for the HKS were investigated. Six sets of parameters
were chosen as shown in Table 1. The local descriptors were

aggregated to global descriptors using the covariance matrix
method. The first set of parameters, T0, consists of six time
points that were found to be the optimum for deformable
human shape data.31 However, visual inspection of the HKS
values suggested that there was little or no variation at higher
time points, indicating that molecular shape has little local
geometry variation in comparison to more complex deformable

shapes such as human models. Therefore, smaller time ranges
were also selected. Times T1, T2, and T3 also have six elements
but sample the time space up to 2500, 1500, and 700,
respectively. To investigate whether performance would be
substantially improved by sampling more data points, ranges
up to 700 and 1000 were sampled at 1000 equally spaced
points in time samples T4 and T5. In all cases, the time points
were handled as real numbers.
The results are shown in Figure 13 where it can be seen that

the best parameters from the literature, T0, perform the worst,
showing that molecular shape has its own domain-specific
features. Performance increases as the maximum value of t
decreases. Overall, the higher dimension descriptors perform
marginally better, and time samples T3 (6 dimensions) and T4

(1000 dimensions) were selected for subsequent experiments.
The effect of varying the number of evaluations for the WKS

was investigated. Results are shown in Figure 14 for the
following numbers of evaluations: 32, 64, 100, 500, 750, 1000.
On average, D = 32 performs worse than all other parameters
in terms of both the AUC and BEDROC statistics, and early
enrichment performance improves with increasing D. How-
ever, as the covariance descriptors are of size D2, the
comparison time for each descriptor increases quadratically
with D. Consequently, in order to balance the performance
improvement of higher evaluations with comparison efficiency
of lower evaluations, the parameters chosen for the virtual
screening of the full DUD-E data set are D = 64 and D = 100.
Comparing the results obtained using the HKS (Figure 13)

with those obtained using the WKS (Figure 14) shows that the

Figure 11. (a) Variation in computational time to compute increasing number of eigenpairs, k, for a sample molecule with mesh size 5985. (b)
Variation in computational time to compute 300 eigenpairs for a sample of 250 molecules with varying numbers of mesh vertices.

Figure 12. Virtual screening performance over 10 targets for different numbers of eigenpairs.

Table 1. Number of Descriptors, D, and Time Points Used
To Calculate Local Geometry Descriptors for HKS

Parameter Values of t Number of descriptors, D

T0 [1024, 1351, 1783, 2353, 3104,
4096]

6

T1 [50, 100, 500, 1000, 2500] 6

T2 [20, 70, 300, 500, 900, 1500] 6

T3 [20, 70, 150, 275, 400, 700] 6

T4 In range 1..700 1000

T5 In range 1..1000 1000
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WKS signature outperforms HKS both in terms of the AUC
and early enrichment. Thus, only the WKS descriptors were
considered for virtual screening on the full DUD-E data set.
Parametrizing the Global Geometry Descriptors. The

two different methods for generating global geometry
descriptors were investigated: the covariance matrix and the
bag-of-features methods. As stated in the Methods, the

covariance matrix does not require any parametrization with

the size of the resulting descriptor being determined by the size

of the local descriptors. Therefore, the two different covariance

methods that are investigated below are Covariance 64

(corresponding to WKS with D = 64) and Covariance 100

(corresponding to WKS with D = 100).

Figure 13. Virtual screening results evaluated on three targets using the HKS with the parameters shown in Table 1.

Figure 14. Virtual screening results evaluated on 10 targets using the WKS.

Figure 15. Effect of varying the number of codewords in the codebook on the HQ (red) and SQ (blue) encoding methods for bag-of-features.
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The bag-of-features approach has a number of steps which
require parametrization and which were investigated. These are
the number of molecules required to optimize the codebook,
number of codewords in the codebook, and the encoding
method. Local geometry descriptor space was sampled by
randomly selecting 2000 molecules from the DUD-E data set.
The WKS, D = 100, descriptors were computed for each
molecule and collected in one large matrix which was used as
the input for a mini-batch k-means algorithm. The centroids of
the k-means clusters were then used as the codewords.
The effects of varying the number of codewords in the

codebook are shown in Figure 15 for the HQ (Hard Vector
Quantization) and SQ (Soft Vector Quantization) encoding
methods. They show that the HQ encoding method performs

best on average for the early recognition problem. The HQ
histograms with 100 and 500 codewords, respectively, were
taken forward to the final screen. Increasing the number of
codewords in the descriptor increases the number of features
in the descriptor space, which is demonstrated by the average
improvement in early recognition. However, as these features
are likely to be near each other in the descriptor space, there is
likely to be a large amount of overlap in the SQ encoding,
which would explain why the SQ encoding does not improve.
The effect of varying the number of nearest neighbors for

the KNN encoding method is shown in Figure 16. The KNN
descriptors were computed using the 100 word codebook that
was used for the HQ 100 encoding. The results show that the
virtual screening results are insensitive to the number of

Figure 16. Effect of varying the number of nearest neighbors in the KNN encoding method for bag-of-features.

Figure 17. Average virtual screening results for the DUD-E data sets using the crystal ligand as query.
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nearest neighbors and the performance values are worse than
the HQ encoding; however, they still perform better than the

SQ encoding. Therefore, a KNN encoding histogram K = 10
was taken forward to the full screen.

Figure 18. Pairwise virtual screening results for the DUD-E data sets using the crystal ligand as query: AUC, top; BEDROC, bottom. Each of the
smaller plots compares two different methods with the individual data points showing the performance for a given target for each method. When
the majority of plots are above the diagonal line, this indicates that the method on the y-axis outperforms that on the x-axis for the majority of the
targets and vice versa. The histograms show the distribution of scores across all targets for a given method.
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Virtual Screening Experiments. Following the para-
metrization experiments, the spectral geometry methods were
applied to large scale virtual screening experiments on the full
DUD-E data set. The parameters for calculating the local
geometry descriptors were fixed as k = 20 and WKS with D =
100, and the different methods for generating global geometry
descriptors were compared. The latter including the covariance
matrix method (Covariance 64 and Covariance 100) and three
bag-of-features methods: HQ 100, HQ 500, and KNN 10. The
spectral geometry methods were compared with established
alignment-based and alignment-free methods, namely, Shape-it
and CDK D-Moments, respectively. Shape-it is an open source
alignment-based method that is similar to ROCS in that it is
based on an atom-centered Gaussian representation of
molecule shape (Shape-IT version v1.0.1 compiled against
RDKit). The CDK D-Moments method is open source and
similar to the UFSR method (CDK D-Moments in KNIME).
The first set of results shown in Figures 17 and 18 are based

on using the crystal ligand as reference for each of the DUD-E
targets. The virtual screening performance was evaluated
statistically by comparing mean performance with a pairwise t
test using posthoc Tukey HSD adjustments. Three of the bag-
of-features spectral geometry methods, namely, KNN 10, HQ
100, and HQ 500, are compared with CDK D-Moments and
Shape-IT. Figures 19 and 20 show the results of virtual
screening experiments based on 20 actives chosen at random
for each of the targets in DUD-E. Here, the covariance spectral
geometry descriptors are also included for comparison with the
bag-of-features spectral geometry methods. Full tabular results
are presented in the Supporting Information.

■ DISCUSSION

Both the crystal ligand experiment (Figure 17) and the larger
scale experiment based on multiple active compounds (Figure
19) indicate that there is little difference between the spectral
geometry methods based on the performance measures (with
the exception of Covariance 64 which shows reduced
performance in the larger experiment). This finding is
consistent for both the AUC, which considers the distribution
of actives throughout the entire ranked lists, and the BEDROC
statistic, which considers early enrichment and is arguably
more relevant for virtual screening. As might be expected, the
HQ 500 and HQ 100 descriptors are highly correlated, as
shown by the pairwise plots (Figures 18 and 20); however, HQ
500 (consisting of a vector of 500 values) outperforms HQ 100
(a vector of 100 values) by a marginal amount indicating that
the larger number of dimensions offers increased discrim-
inatory power. The KNN 10 method is similar in performance
to HQ 500, although it shows a decreased AUC for the larger
virtual screening experiment. Although the performances of the
Covariance 100 and HQ 500 descriptors are similar, the HQ
500 descriptor is significantly more compact than Covariance
100, which is a 100 × 100 matrix; thus, the similarity
comparisons based on HQ 500 are significantly faster.
Comparing the spectral geometry descriptors with CDK D-

Moments, which represents a more established alignment-free
descriptor, the spectral geometry methods show significantly
improved performance in both experiments and considering
both early enrichment and AUC. For example, the pairwise
comparison of the means shown in Figure 17 using Tukey
HSD adjustments confirmed that all other methods are
statistically significantly better than CDK D-Moments for

Figure 19. Average virtual screening results for the DUD-E data sets based on 20 actives per target.
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both AUC (at an α = 0.001 significance level) and BEDROC
(at an α = 0.005 significance level). Furthermore, Figures 18
and 20 show pairwise comparisons for each of the target classes
in DUD-E where it can be seen that the spectral geometry

descriptors generally outperform the CDK D-Moments in
almost all cases. This finding supports our hypothesis in the
Introduction that the spectral geometry descriptors, which
capture properties of shape over the surface of a molecule,

Figure 20. Pairwise virtual screening results for the DUD-E data sets based on 20 actives per target: AUC, top; BEDROC, bottom. See Figure 18
for an explanation.
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provide a richer description of shape than descriptors that are
based on interatomic distances. Although our best performing
descriptors are larger than the CDK D-Moments which are
based on 12 distance measures, this finding also holds true for
the more compact spectral geometry descriptors, for example,
HQ 100.
The spectral geometry descriptors also show good perform-

ance against the alignment-based method Shape-it which is
based on the same principles as the industry-standard ROCS

method. In the crystal ligand experiment, the HQ 500
descriptors perform better on average than Shape-it on both
AUC and BEDROC and in the larger virtual screening
experiment, HQ 500 is comparable to Shape-it in terms of
AUC, although it is intermediate between CDK D-Moments
and Shape-it in terms of early enrichment. Overall, however,
this represents impressive performance given that the HQ 500
descriptors are invariant to alignment and are therefore
considerably faster to compare than using a method such as

Figure 21. Top three actives retrieved for the crystal ligand in FABP4 for Shape-it, CDK D-Moments, and HQ 500, respectively. The histograms
show the distribution of actives for each method.
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Shape-it that requires the optimum alignment to be found
prior to calculating similarity.
Interestingly, optimal virtual screening performance for the

spectral geometry global shape descriptors was achieved with
relatively few eigenvalues (k = 20) with higher numbers of
eigenvalues leading to reduced performance. As the lower
eigenvalues correspond to the more global features of 3D
molecular shape, this suggests that the more global features of

a molecule’s intrinsic geometry are the most important for
discriminating between actives and inactives. In general, small
molecules occupy a small subspace of all possible 3D shapes
and minor variations in the 3D shapes of molecules are likely
to come from predominantly global features resulting from
atoms occupying volumes of space, rather than from minor
local variations on the surface such as creases, which are more
likely the result of the mesh generation with no chemical

Figure 22. Top three retrieved actives against the crystal ligand in DHI1 for Shape-it, CDK D-Moments, Covariance 100, and HQ 500,
respectively. The histograms show the distribution of actives for each method.
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meaning. Consequently, molecule shape can be described with
a relative small number of eigenvalues. An alternative
explanation is that the decrease in performance at higher
numbers of eigenvalues suggests that the small variations in
shape may be lost in noise from the surface generation process.
The handling of noise and signal amplifications is at the heart
of finding the optimal parameters for virtual screening. A
similar case was observed in the parametrization of the WKS
(Figure 14). The AUC performance declined markedly, and
the BEDROC performance reached a plateau after D = 100
evaluations. As higher numbers of evaluations increase the
granularity, and therefore the capacity to encode local
geometry features, this might also suggest the dominance of
surface noise in the descriptor. The balance of noise and signal
for the covariance descriptors is managed at the level of the
parameters of the local geometry descriptor. For the bag-of-
features descriptors, this is handled through the number of
codewords and the encoding method with HQ encoding and a
codebook of 500 words performing best for virtual screening. A
further interpretation of the codebook is that it captures the
dominant intrinsic geometry features in molecular shape space.
The relatively few number of necessary codewords, which is in
the 100s rather than 1000s, also suggests that there is a
relatively small number of geometric features in molecular
shape.
While the virtual screening performance statistics give an

overview of the retrieval of actives over a large number of
targets, it does not show the types of actives that are being
retrieved. Figures 21 and 22 show the shape properties of the
top retrieved actives against the crystal ligands taken from two
targets, FABP4 and DHI1, respectively. The FABP4 query in
Figure 21 is an example where the spectral geometry
descriptors performed better than the baseline methods. The
top retrieved actives from Shape-it are structurally very similar
both to themselves and the query: They all share the same
fused ring system, and they differ only in the substituents on
the peripheral phenyl ring. It would therefore be expected that
a method that prioritizes volume overlap would identify these
are being highly similar. On the other hand, although the top
active retrieved by CDK D-Moments (CHEMBL516023) is
also in the Shape-it top three, the next two hits are structurally
more distinct. Nevertheless, all three exhibit similar global
geometry properties. The top three actives retrieved by HQ
500 are more structural diversity compared to those retrieved
by Shape-it and CDK D-Moments. The HQ 500 descriptor
represents shape as a vector of local surface geometry features
and, therefore, gives greater emphasis to local geometry
compared to either Shape-it and CDK D-Moments, which can
explain the greater diversity of the hits in terms of their 2D
skeletons. HQ 500 is the top performing method with respect
to the BEDROC statistic for this example, suggesting that local
3D shape features can be more important for 3D similarity
than global volume overlap in some cases.
Figure 22 shows the top actives retrieved for the crystal

ligand in the DHI1 data set. This is an example of a query
molecule where the baseline methods performed significantly
better than the spectral geometry methods. The best
performing method, Shape-it, returns actives that are very
similar in terms of the 3D conformation of the query. Again,
there is very little structural diversity in the best performing
actives. The top actives for CDK D-Moments retain the
parabola-like global shape of the crystal ligand and the Shape-it
hits, while providing more structural diversity. In contrast, the

top performing actives for the HQ 500 method do not retain
this global structural form. This suggests that the relative
frequency of surface features allows a recognition of common
local shape features that is independent of the rigid pose.
Figure 22 suggests that the baseline methods perform best
when all the actives have a common, dominant global shape
structure, which is likely to be a dominant scaffold.
Overall, the examples suggest that the baseline methods

(Shape-it and CDK D-Moments) perform best when the
actives have the same pose or share a scaffold that dominates
the global shape features. On the other hand, the spectral
geometry descriptors retrieve a more diverse set of structures
with common local shape features on the surface that are
independent of global shape. The conformations in an
ensemble are merely a (sometimes quite coarse) sample of a
continuum that the molecule can adopt, so a descriptor that is
tolerant of small changes of global shape is a better
representation of the physical reality. Moreover, it suggests
that spectral geometry descriptors encode different geometry
features to those of the baseline methods and offer a
complementary approach for virtual screening.

■ CONCLUSIONS

We have described a framework for applying spectral geometry
to the problem of molecular shape comparison for 3D virtual
screening. We have used the framework to develop a rich yet
compact descriptor of molecular shape that is alignment
independent. When compared to established 3D shape
comparison methods on large scale virtual screening experi-
ments on the DUD-E data set, the spectral geometry
descriptors outperform the alignment-free CDK D-Moments,
an open source implementation of UFSR. Furthermore, our
descriptors show comparable performance to a Gaussian
overlap method, namely, Shape-it, when measured using
AUC. The alignment-based method gave better performance
on early enrichment when averaged over a range of active
molecules; however, the spectral geometry methods are
considerably faster in operation since they involve vector
comparisons only and do not require that an optimum
alignment is found prior to calculating similarity. This decrease
in computational time together with the compact nature of the
spectral geometry descriptors can lead to a significant increase
in the throughput of 3D virtual screening experiments. Given
the reduced performance with respect to early enrichment, one
possibility would be to use the spectral geometry method as a
prescreen prior to using a more computationally demanding
approach. Thus, spectral geometry could sit at the top of a
shape-based virtual screening cascade providing a fast way of
reducing a very large data set to a more manageable size for
subsequent refinements using a more accurate alignment-based
method.
As mentioned in the Introduction, spectral geometry has

become the method of choice in computer vision for
comparing deformable shapes such as people and animals,
and there has been substantial development of the basic
approach in this field, for example, to deal with issues such as
color over the surface, partial matching, and mappings between
different shapes. Our work presented here has focused on
adapting the basic approach to the domain of small molecules.
We describe this as a framework to emphasize the different
steps required to produce the descriptors, each of which has
required parametrization. We have optimized these here for
the comparison of rigid shapes in large scale virtual screening
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experiments on the DUD-E data set. The rationale for this first
publication has been to demonstrate the potential of the basic
approach through comparing rigid molecules on shape only;
thus, this first approach has been blind to chemistry. Having
demonstrated significant potential on this more restricted
problem, we are currently extending the basic approach to
include properties encoded on the surface of a molecule and
will describe this work in a future publication.
As well as being invariant to alignment, we see one of the

key advantages of spectral geometry as the invariance of the
descriptors to isometric deformations, which is the key
property that has been exploited in the computer vision field.
In the context of people, it is usually desirable to identify the
same person whatever pose they have adopted. However, the
relationship between conformation and shape in the world of
small molecules is more complex given that a receptor
recognizes a particular shape. In general, there is a conflict
between the desire to identify a single molecule from its
different conformations and to distinguish between the
different conformations of a given molecule that may have
different activity. Typically, a conformational ensemble is
created by generating, either systematically or stochastically, a
large number of conformations. Similar conformations are
discarded, usually by RMSE of atom position, and the
remaining ordered by ascending energy. The lowest energy
N within an energy window are selected as the ensemble. The
strength of the spectral geometry approach is that it encodes
flexibility in a way that is formally defined and well understood
which could provide a rational basis for handling conforma-
tional flexibility. The spectral geometry approach could allow
the conformation selection to be based on a more relevant
metric, the shape, allowing for a wider representation of shapes
in the same number of conformers or a smaller number of
conformers covering the same shape space. Either should
improve virtual screening performance, the former by
improving the quality of the ensembles, the latter by increasing
the number of molecules that can be handled. A more rational
approach to handling conformational flexibility compared to
the current approaches of using energy or distance thresholds
could have significance for a wide range of applications based
on 3D structure, for example, pharmacophore mapping, 3D
QSAR, and molecular dynamics simulations.
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