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Abstract: We present an analysis of over 23,000 globally distributed wildfire smoke plume injection

heights derived from Multi-angle Imaging SpectroRadiometer (MISR) space-based, multi-angle

stereo imaging. Both pixel-weighted and aerosol optical depth (AOD)-weighted results are given,

stratified by region, biome, and month or season. This offers an observational resource for

assessing first-principle plume-rise modelling, and can provide some constraints on smoke dispersion

modelling for climate and air quality applications. The main limitation is that the satellite is in a

sun-synchronous orbit, crossing the equator at about 10:30 a.m. local time on the day side. Overall,

plumes occur preferentially during the northern mid-latitude burning season, and the vast majority

inject smoke near-surface. However, the heavily forested regions of North and South America, and

Africa produce the most frequent elevated plumes and the highest AOD values; some smoke is

injected to altitudes well above 2 km in nearly all regions and biomes. Planetary boundary layer (PBL)

versus free troposphere injection is a critical factor affecting smoke dispersion and environmental

impact, and is affected by both the smoke injection height and the PBL height; an example assessment

is made here, but constraining the PBL height for this application warrants further work.

Keywords: MISR; biomass burning; smoke plume height

1. Introduction

The altitude at which wildfire smoke is injected into the atmosphere is an important predictor of

how long smoke will stay aloft, how far it will travel, and ultimately, its environmental impact. Model

simulations of smoke dispersion are especially sensitive to the difference between injection into the

planetary boundary layer (PBL) and into the free troposphere above it. The elevation within the free

troposphere can often matter significantly as well, due to wind shear aloft e.g., [1,2].

Although the majority of smoke plumes remain within the PBL, and many modelling efforts

assume all smoke is introduced into this well-mixed, near-surface atmospheric layer, some larger fires

produce both great quantities of biomass burning particles, and sufficient buoyancy to inject them to

higher elevations. Early observational studies have shown that smoke injection height varies with

geographic location, vegetation type, and season. For example, using plume heights derived from

Multi-angle Imaging SpectroRadiometer (MISR) stereo imagery for Alaska and the Yukon during

summer 2004, Kahn et al. [3] found that about 18% of fires in this region, vegetated primarily by boreal

Remote Sens. 2018, 10, 1609; doi:10.3390/rs10101609 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9715-0504
https://orcid.org/0000-0002-5234-6359
http://www.mdpi.com/2072-4292/10/10/1609?type=check_update&version=1
http://dx.doi.org/10.3390/rs10101609
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1609 2 of 18

forest, injected some smoke above the PBL. Val Martin et al. [4] looked more broadly at MISR plumes

for all of North America over five years, and showed that, conservatively, between 4% and 12% of fires

overall injected above the PBL. However, they also noted there were distinct biome and season-related

patterns (e.g., as much as 25% was injected aloft by shrubland fires), as well as significant interannual

variability. Above-PBL injection occurred preferentially in the boreal region and in summer, whereas

smoke from cropland and grassland remained primarily within the PBL. For peat and tropical forest

fires in Borneo and Sumatra, Tosca et al. [5] concluded, from an analysis of MISR plume heights

lasting from 2001 to 2009, that although fire occurrence was modulated by El Niño, nearly all smoke

injection in that region remained within the PBL. However, Mims et al. [6] showed that in Australia,

even grassland fires could in fact create sufficient buoyancy to place smoke into the free troposphere.

In extreme cases, where latent heating is also involved, smoke can actually be carried through the

troposphere and into the lower stratosphere e.g., [7–9]. A further conclusion reached by several of

these early studies is that when smoke is injected into the free troposphere, it tends to accumulate

within layers of relative atmospheric stability aloft [4,10].

However, despite the need to accurately input smoke injection height for climate analysis and air

quality forecasting, calculating plume rise from first principles has proven difficult. Physically, injection

height depends primarily on the dynamical heat flux generated by the fire, the ambient atmospheric

stability structure, and the degree to which ambient air is entrained into the rising plume [10,11].

Yet, constraining theses quantities adequately for plume-rise calculations is not straightforward.

The 4-micron brightness temperature anomaly, retrieved by space-based remote sensing instruments

such as the NASA Earth Observing Systems MODerate resolution Imaging Spectroradiometer (MODIS)

and labelled Fire Radiative Power (FRP), is widely used as a proxy indicator of dynamical heat

flux [12,13]. In practice, FRP loosely correlates with injection height e.g., [4,10,14], but quantitatively,

it tends to underestimate heat flux, due in part to (1) 1 km2 MODIS pixels only partly filled by

fire, (2) overlying smoke opacity at 4 microns, and (3) fire elements having non-unit emissivity

(e.g., smoldering) at 4 microns [3]. In both diagnostic and prognostic plume-rise models, 4-micron

brightness temperature interpreted as fire-generated heat flux must be multiplied by factors of 5 or more

to produce sufficient buoyancy to match observed smoke injection height e.g., [10,14]. Among the three

main physical factors, the ambient atmospheric stability structure is generally the best-constrained,

a result of the advanced state of numerical weather prediction and reanalysis modelling, at least for

relatively homogeneous and cloud-free, over-land cases, e.g., [15]. The parameterizations generally

used to represent entrainment are even less well-constrained than the dynamical heat flux [10,14],

likely due to the complex spatial and temporal distribution of convective elements in burning areas.

In a detailed evaluation of the state-of-the-art Freitas et al. [16] plume-rise model, in which the key

input parameters were varied systematically over a broad range of values, Val Martin et al. [14] show

that statistically, the model smoke plumes reaching higher altitudes are characterized by higher FRP

and weaker atmospheric stability conditions than those remaining at lower altitude, typically confined

within the PBL. However, the model simulations generally underestimate the plume-height dynamic

range observed by MISR and do not reliably identify plumes injected into the free troposphere. A main

conclusion of the study is that an observationally based, statistical summary of wildfire smoke-plume

injection heights, stratified by region, biome, and season, might offer the best available constraints,

particularly for global-scale climate modelling [14]. Paugam et al. [11] comprehensively review the

status of plume-rise modelling and reach a similar conclusion, as did Kukkonen et al. [17].

In this paper, we develop and present a 3-year record of smoke plume injection heights, stratified

by region, biome, and season (Figure 1), based on over 23,000 plume heights retrieved from MISR

stereo imagery. The tools used, aggregation and weighting approaches applied, and some limitations

of the MISR plume-height record and our attempts at compensating for them, are discussed in Section 2.

Results are given in Section 3, beginning with overall statistics on the collection of cases included

in this study, then region-by-region smoke plume injection-height summaries, correlations of plume
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behaviour with meteorological factors, and an assessment of interannual variability. Conclusions are

presented in Section 4.

2008
2009
2010

North America

South America

Africa

South Asia

Australia

Europe

Boreal Eurasia

Figure 1. Geographic regions used in this study, and associated land-cover types, with dots indicating

individual cases included in the dataset.

2. Methodology

The primary tool used here for deriving plume heights from MISR imagery is the MISR INteractive

eXplorer (MINX) software [18]. MISR flies aboard the NASA Earth Observing System’s Terra satellite,

along with MODIS and three other Earth-observing instruments. MODIS 4-micron brightness

temperature anomalies [19] (https://modis.gsfc.nasa.gov/data/dataprod/mod14.php) are used to

help locate fires in the MISR imagery. This section summarizes the data and analysis approach used,

along with the strengths and limitations of the MISR smoke plume injection-height dataset.

2.1. MISR Plume-Height Retrievals–MINX

The MISR instrument obtains imagery of each location within its 380 km-wide swath at nine view

angles, ranging from 70◦ forward, through nadir, to 70◦ aft, along the orbit track, in each of four spectral

bands centred at 446 (blue), 558 (green), 672 (red), and 866 nm (near infrared, NIR) wavelengths [20].

As it takes about 7 min for all nine views of a given location to be acquired, these data can be used

to extract both the parallax and the proper motion of contrast features such as those in clouds and

aerosol plumes [21,22]. For wildfire smoke, desert dust, and volcanic plumes in particular, more

precise results can be obtained if the aerosol source, wind direction, and plume horizontal extent are

specified explicitly by inspection of the imagery. The MINX tool asks an operator to provide these

inputs interactively, and then calculates the wind speed and the elevation of contrast elements in the

1.1 km pixel data [18]. Both zero-wind and wind-corrected height retrievals are produced from both

the red and blue-band imagery. The red-band data are acquired by MISR at 275 m horizontal resolution

at all nine MISR view angles, and these provide the highest vertical resolution from the geometric

retrieval approach. However, where contrast is poor within plume features and between the plume

and the surface, blue-band retrievals, acquired only at 1.1 km in the MISR off-nadir cameras, usually

provide better plume-element discrimination. More information about the MINX tool and digitizing

examples are found in Val Martin et al. [4], Kahn et al. [10], and Nelson et al. [18].

https://modis.gsfc.nasa.gov/data/dataprod/mod14.php
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In this work, we selected plumes digitized having “good” or “fair” MINX quality flags, with the

MISR color band (i.e., blue-band or red-band retrievals) judged as superior for each digitized aerosol

region given within the database. As nearly all the smoke plumes in the current study were observed

over-land, blue-band retrievals yielded better quality results for 94% of the plumes in the database.

In practice, vertical resolution of the MINX results is between 250 and 500 m. Heights reported by

MINX are measured above mean sea level (MSL) in 250 m bins from 0 up to at least 12 km; where

needed, terrain elevation must be taken into account explicitly.

As plume digitizing with MINX is a labor-intensive process, teams of students at the Jet Propulsion

Laboratory, the NASA Goddard Space Flight Center, and the University of Sheffield, UK, participated

over a period of years in collecting the data used in this study (see Acknowledgments, below). Global

smoke-plume data for the years 2008, 2009, and 2010 are included in the dataset. Data acquired for

individual plumes were stratified by region, season, and biome, and stored by geographic region

in MINX digitized aerosol region (DAR) files. Biomes are associated with geographic regions based

on the Global Land-cover Types; there are 18 vegetated land-cover types from among the 22 in this

database [23]. For the current study, the wildfire plumes were stratified into 12 of these biomes, covering

the major vegetation types around the globe (Figure 1): Evergreen Needleleaf Forest (“EN Forest”),

Evergreen Broadleaf Forest (“EB Forest”), Deciduous Needleleaf Forest (“DN Forest”), Deciduous

Broadleaf Forest (“DB Forest”), “Mixed Forest”, “Closed Shrub”, “Open Shrub”, “Woody Savannah”,

“Savannah”, “Grassland”, “Wetland” and “Cropland”. Plume coverage and distribution statistics for

this dataset are summarized in Section 3.1 below.

2.2. Determining Stereo Height Retrieval Smoke Concentration for Individual Plumes

To develop a parameterization of fire emission injection height, we need to determine the

percentage of smoke injected into different altitude bins. The distributions of AOD and smoke

plume stereo-height values are both involved. For pixels within the plume having both AOD and

height retrievals, we assign the AOD to the retrieved height. This assumes that the column mid-visible

aerosol optical depth at 558 nm (AOD558) for each pixel is concentrated in the retrieved-altitude layer

of that pixel. Although this might not be true for the pixels immediately around the fire source due to

the vertical extent of the smoke column, for the plume overall, smoke tends to concentrate either in the

PBL or within thin (∼1 km) layers of relative atmospheric stability aloft [4,10]. With this assumption,

the smoke amount at a specific elevation for the entire plume is equal to the sum of AOD values

associated with all pixels in the plume region assigned to that elevation. AOD from the MISR Standard

Version 22 aerosol product is reported at 17.6 km resolution and is included in the MINX output for

each plume. The 1.1 km MINX pixels within the AOD retrieval region are given this value.

However, the distributions of smoke plume stereo-height and AOD values each can have

near-source biases. The percentage of available and missing individual retrievals with AOD and

stereo-height values in the dataset, stratified by biome, is shown in Figure 2. The forest biomes

have fewer samples though generally bigger fires than the crop, shrub, grass, and savannah biomes.

Partitioning of retrieval results also tends to vary more among the forest biomes. Overall, between

about 45% and 65% of all pixels in all designated plume areas have stereo-height retrievals and between

35% and over 80% have AOD results. But only about 2–15% of all pixels are missing both AOD and

height values.

This dichotomy is explained as follows: very high plume AOD favours height but not AOD

retrievals, whereas low AOD favours AOD but not plume-height retrievals. Specifically, when the

aerosol mid-visible optical depth exceeds a value between about 0.4 and 1, the retrieval tends to

underestimate AOD [24]. Furthermore, when the AOD exceeds values around 2 or 3, the plume

becomes too optically thick for the surface to be visible in the multi-angle imagery, and the AOD

retrieval is altogether indeterminate. This occurs in the optically thickest parts of large plumes

(see Section 2.3 below).
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Figure 2. Data availability in the 2008 plume dataset determined per biome. Bars represent percentage

of individual pixels with both stereo-height and AOD retrievals (blue), percentage with height but

missing AOD retrievals (red), percentage with AOD but missingstereo-height retrievals (green) and

percentage with missing both stereo-height and AOD retrievals (black). The number of plumes included

in each distribution is given above the bar plots.

Conversely, at very low AOD, contrast features in the plume can be difficult to discern in the

imagery, and stereo height retrieval becomes progressively more difficult to obtain. The specific

conditions under which this occurs depend on the aerosol and the surface properties. In practice,

the percent of pixels missing height retrievals depends on how much of the plume has well-defined

or poorly defined features, and also on how the MINX operator defines the limits of the plume area.

Picking a larger plume area, where the AOD in places might be low and the existence of the plume

might be ambiguous, will yield a larger percent of pixels missing height retrievals. This is illustrated

in Figure 3, which gives an example of a plume with high stereo-height retrieval density and one with

low stereo-height retrieval density.

a) Plume O045402-B047-SPWR01

b) Plume O045820-B057-SPWR02 

Figure 3. Examples of Plume Stereo-height Retrieval Density. (a) Plume O045402-B047-SPWR01

with high retrieval density (PtctHtsFilled = 84%) and high AOD (mean AOD558 = 1.05); (b) Plume

O045820-B057-SPWR02 with low retrieval density (PtctHtsFilled = 40%) and lower AOD (mean

AOD558 = 0.2).

We designate the percentage of stereo heights that fills the plume area as a measure of

“stereo-height retrieval density” (PcntHtsFilled in the DAR files). This density is given by the number
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of successful stereo-height retrievals multiplied by the area of a single retrieval pixel (1.21 km2) and

divided by the total area of the plume (km2). We examine the relationship between mid-visible

AOD and PcntHtsFilled in plumes in Figure 4, which shows the distribution of AOD relative to

PcntHtsFilled for evergreen needle-leaf forest. As expected, the largest average AOD values (0.5) are

associated with the largest PcntHtsFilled values (75–100%). Similar relationships are found for each

biome considered in the study, except for deciduous boreal forests and grasslands (see Figure S1 in

Supplemental Materials).

Evergreen Nedleleaf Forest

0.0

0.2

0.4

0.6

0.8

1.0
M

e
a
n
 A

O
D

Percentage Filled

0-25 25-50 50-75 75-100

   21    39    55    28

Figure 4. Distribution of mean AOD558 with respect to percentage of the DAR filled with successful

retrievals (PcntHtsFilled) over evergreen needle-leaf forest. The medians (red circles) and the means

(black squares) are shown along with the central 67% (light blue box) and the central 90% (black

whiskers). Similar plots for other biomes are given in Figure S1 in Supplemental Materials. The number

of cases is indicated at the top of each boxplot.

We aim for a practical approach that makes use of the unique information these data provide, and

then characterize the uncertainties to the extent possible.

2.2.1. Pixel-Weighted Method

Filling missing stereo-height values for the current application requires an involved process.

The low number of stereo heights retrieved for plumes with low PcntHtsFilled is generally associated

with poor plume optical quality (i.e., low AOD, situations for which we usually have measured AOD

but not height values), rather than a complete lack of smoke within the DAR. To reduce the potential

bias that would occur by treating all raw individual stereo-height retrievals equally, we therefore

smooth out inconsistencies among plumes characterized by different stereo-height retrieval densities

using the AOD-PcntHtsFilled relationship. Our approach is to fill the non-retrieved height points

within the DAR using points randomly sampled from a distribution that best fits the available retrieved

height points. The underlying assumption here is that smoke elevation for locations within the plume

area that do not produce height retrievals follow a height distribution statistically similar to that of

the locations for which retrievals were obtained. This assumption is supported by the typically thin

smoke layering downwind of the immediate source, and is explained by the extent to which the main

factors determining the actual smoke plume height are affected more by initial plume buoyancy and

atmospheric stability structure than by smoke amount.

To identify the statistical distributions of plume height, we carried out a fitting analysis separately

for each biome. This consists of a linear regression of the dataset
{

fΘ(zi), Θ−1[ (i−0.5)
N ]

}

, i = 1, 2, ..., N,

where zi is the MISR stereo height, Θ−1 is the inverse of the theoretical cumulative distribution



Remote Sens. 2018, 10, 1609 7 of 18

frequency (CDF, computed numerically), N is the number of successful retrievals in a plume, and f is a

function that relates zi to N, and depends on the type of CDF under consideration [25]. The fit analysis

is conducted by testing different types of CDF (e.g., uniform, log normal, etc.). The “goodness” of fit

for the sampled distribution is assessed based on the accuracy with which the zi versus N regression

line approximates the sample. This accuracy is quantified in relation to how well the coefficient of

determination r2 approaches unity. An analysis of the robustness of this filling approach is given with

Figure S2 in Supplemental Materials.

Our fitting analysis shows that for the MISR plume database, 46% of the plumes best fit a

normal effective N versus height distribution, and 54% fit a lognormal distribution. The difference

is probably related to differences in the vertical stability structure of the atmosphere at the altitude

of the smoke layer. For example, Val Martin et al. [14] (Figures 1 and 6) show cases where normal

vertical distributions are associated with weak atmospheric stability, and lognormal distributions

correspond with strong stability. The r2 values exceed 0.85, 0.90 and 0.95 for about 94%, 86%, and 58%

of the plumes, respectively. For each plume, the new points are sampled from a distribution, either

normal or lognormal, having the same average as the points successfully retrieved and a standard

deviation calculated from that of the successful retrievals appropriately increased to account for the

±500 m measurement uncertainty associated with MISR plume heights. In addition, to avoid including

points very near to or on the ground, we limit the minimum height to 250 m. Table S1 summarizes

the equations used in this fitting approach. Figure 5a,c shows examples of the pixel-count-weighted

vertical distribution of the stereo-height retrievals for two plumes that fit normal and lognormal

distributions, respectively, with and without the smoothing approach.

Normal Distribution (O045820-B057-SPWB02) LogNormal Distribution (O042786-B081-SPWB02)
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% Retrievals
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e
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Original+Filled
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b) AOD-Weighted d) AOD-Weightedc) Pixel-Weighted a) Pixel-Weighted

Original
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Original+Filled

Figure 5. Examples of stereo-height retrieval vertical distributions for smoke plumes with

normal (O045820-B057-SPWB02, shown in Figure 3 bottom row; panels (a,b) here) and lognormal

(O042786-B081-SPWB02; panels (c,d) here) distribution fits. (a,c) Distributions weighted by pixel counts.

Solid black lines indicate original successful retrievals, dashed black lines represent missing retrievals

that were filled as described in Section 2.2, and red lines are the sum of original and filled retrievals.

(b,d) Distributions weighted by AOD. Solid black lines indicate original retrievals with AOD values,

and red lines are the sum of original AOD and filled retrievals, in which missing AOD values were

filled by the maximum AOD in each plume.

2.2.2. AOD-Weighted Method

The missing AODs are most likely very high AODs, for which the retrieval fails because the

surface is not visible in the multi-angle views. This is discussed in previous papers e.g., [3,10], and is

evident from the observation that the missing pixel AODs occur primarily or exclusively in the thickest
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parts of the plumes. As such, we filled missing AOD values with the maximum AOD recorded in that

plume. Lacking additional information, this provides at least lower bound on the AOD, and in most

cases, the highest AOD pixels represent a small fraction of the total plume area.

As an alternative approach to determining the vertical distribution of entire plumes by simply

counting the pixels at each elevation, we present the AOD-weighted vertical distribution of smoke,

by calculating the percentage of smoke in each 250 m MINX vertical bin using the derived AOD values.

For that, we first calculate the total AOD in each 250-m bin for the entire plume, and then determine

the corresponding percentage with respect to the total column. As with the stereo-height retrievals,

and to avoid including a potential bias due to missing stereo-height retrievals without AOD values,

we first filled the missing AOD data with the maximum AOD recorded in each plume, as discussed

above. Figure 5b,d shows examples of AOD-weighted vertical profiles with the original and original +

filled AOD values.

2.3. Aggregation by Region and Biome

Individual cases, as treated in Section 2.2 above, are then aggregated by region and biome, giving

percent injection heights at the MISR 250 m levels. Figure 6 shows examples of the normalized, pixel

and AOD-weighted heights as retrieved by MISR for each 250 m altitude bin, including all the plumes

over the North American mixed forest fires and African woody savannah. These are clear examples

in which the filling technique yields vertical distributions of stereo-height retrievals slightly spread

out towards the tails of the original distribution. This effect is important for plumes characterized

by low numbers of successful retrievals. Additional vertical distributions for other biomes are

given in Figures S3 and S4 in Supplemental Materials for the pixel-weighted and AOD-weighted

distributions, respectively.

Evgrn Ndlf Forest

 

Woody Savanna

         252         3280Orig
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Figure 6. Vertical distribution of percentage of pixel-weighted and AOD-weighted stereo-height

retrievals in 250-m bins for original retrievals (grey) and the missing height and AOD-filled retrievals

(hatched red), over North American evergreen needle-leaf forest and African woody savannah.

Numeric annotations indicate the number of plumes in each classification.

2.4. Limitations of the MISR Plume-Height Record Sampling

Some limitations of the MISR plume-height record sampling include: (1) the 380 km-wide MISR

swath, which limits global coverage to about once per week, varying with latitude from 8 days at the

equator to 2 days near the poles, (2) the day-side equator crossing time for the Terra satellite carrying

the MISR instrument is 10:30 a.m., well before the afternoon peak in fire activity at most locations and

during typically more stable conditions in the lower troposphere, (3) the inability to observe smoke

plumes in the presence of overlying cloud cover, and (4) the lower bounds on fire and plume size that

are detectable from remote sensing. There are also sampling issues that affect MODIS observation
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of fire pixels e.g., [3]. In addition, it is difficult to estimate the number of plumes that were missed,

in part because there is no “truth” dataset with which to compare. Yet, satellites offer the best global

inventory of smoke plumes currently available. A brief assessment of the biases associated with these

issues, and attempts at compensating for them, are covered here.

As digitizing plumes is a labor-intensive process, some plumes may have been overlooked by

the digitizers, particularly small plumes and diffuse smoke clouds. Sensitivity to the distribution of

plumes varies immensely with location due to the diversity of fire types, and the numbers alone might

not be a good indication of smoke abundance, for example, in areas where small-scale agricultural

burning is common. As such, care has been taken to minimize missing fire events. We developed a

user guide for MINX to make the digitizing process as complete and homogenous as possible [26].

Also, all the digitized plumes and most of the MISR images have passed a quality control process

independent of the original digitizers. For the analysis, we only considered plumes digitized with good

and fair quality so we removed from the original dataset about 15% of the digitized plumes, many of

which contained only a few 1.1 km pixel retrievals, and were rendered insufficient for inclusion in the

analysis.

Perhaps the best indication of missing fires is the region-specific frequency of small fires, assessed

from MODIS 4-micron hot spots and suborbital data by Randerson et al. [27]. The vast majority of

small fires inject smoke only into the PBL. To account for small fires that are typically under-detected

by MISR, we apply a correction to the lowest level of our vertical profiles (0–250 m). Based on

Randerson et al. [27], we calculate the fraction of small fires that were potentially missed by MISR,

using the area burned estimated by the GFED4s inventory from large and small fires in each of our

regions, biomes and burning seasons. We classify seasons as northern hemisphere spring (MAM),

summer (JJA), fall (SON) and winter (DJF). Table S2 in Supplemental Materials summarizes the

minimum and maximum correction fractions applied to the lowest level of our distributions to account

for small fires. To normalize the distribution throughout the column, we adjust the remaining fractions

evenly to sum to unity. Figure S5 shows two examples of this correction. For cropland fires over

Europe during the summertime, we apply a correction of 30%, and the percentage of smoke injected

in the lowest level is increased from 11.6 to 15.2%. The fraction of small fires over forests in North

America is smaller (13%) and a lower increase from 5.1 to 5.7% is applied.

Validation of the multi-angle stereo-height technique is described in Nelson et al. ([18] and

references therein). Further comparisons between MISR-retrieved plume heights and the vertical

distribution of spatially and temporally matching smoke aerosols identified by the Cloud-Aerosol

Lidar with Orthogonal Polarization (CALIOP) instrument have been done over the Amazon [28] and

more are in progress [M. Tosca, personal communication]. Note that the CALIOP instrument is more

sensitive to very low aerosol extinction than the MISR contrast-element technique MINX uses to derive

plume heights; as such, CALIOP tends to obtain higher maximum plume heights where very thin

aerosol resides above a denser aerosol layer e.g., [29].

Accounting for other MISR sampling limitations is more difficult. For example, at least a

qualitative assessment of the diurnal representativeness of the MISR plume-height record might

be made by comparing the FRP from Terra MODIS with corresponding values from satellites in other

polar orbits, such as the MODIS instrument on NASA’s Aqua satellite that crosses the equator at

1:30 p.m. local time, and possibly geostationary FRP detectors. Such extensions would be worth

exploring, but are beyond the scope of the current study.

3. Results and Discussion

We begin this section with summary statistics characterizing the plume-height dataset overall,

followed by the analysis of more detailed, region-specific behaviour. The section concludes with a

brief consideration of possible relationships between the observed plume injection and boundary

layer height.
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3.1. Smoke Plume Coverage and Distribution Statistics

Figure 7 presents a statistical summary of the number of plumes stratified by year, month,

geographic region and biome. The largest number of plumes were digitized for the year 2008, with

about 13,000 plumes (56% of the total database), versus about 5700 and 4600 plumes in 2009 and 2010,

respectively. We note that the 2008 plume record is missing two weeks in October (1st–16th) due to a

MISR instrument technical problem and that the 2010 record includes plumes for all but three months:

April, June, and December.
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Figure 7. Summary of the MISR plume-height database stratified by (a) year, (b) region and year,

(c) biome and year, (d) month and year, (e) biome and region, and (f) month and region. The 12 biomes

included in this dataset are listed at the end of Section 2.1, and illustrated in Figure 1.

Most of the plumes in this database (40%) occurred between July and September (Figure 7d),

which is typically the peak of the burning season in mid-latitude vegetated regions. Boreal fire counts

peak in northern spring and early summer (May–July; Figure 7f). The fire season in Africa has two

peaks, in northern mid-late summer (JAS) and in southern early mid-winter (NDJ). Africa is also the

fire region with the largest number of plumes (47%; Figure 7b), though they are generally smaller

than boreal forest fires, and tend to produce less smoke per fire. The dominant biomes in terms of fire

counts are woody savannah (32%) and savannah (25%), follow by croplands (13%).

Some additional characteristics of the overall dataset are included in Supplemental Materials.

In particular, Figures S6 and S7 summarize the maximum plume heights and mean AOD, respectively,

stratified by region and biome, and Table S3 provides maximum height and AOD data, stratified by

biome and year. Sampling varies considerably by biome and region, in part because some biomes
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dominate in certain regions. Furthermore, individual fires occur much more frequently in some biome

types, such as savannah and cropland, than in forests. As anticipated from Figure 2, in Africa, South

America, and Boreal Eurasia, the savannah, grass, and crop maximum plume-height distributions

tend to be similar (Figure S6). The mean AOD, shown in Figure S7, depends in part on how the plume

area is defined (e.g., Figure 3), and is much more variable than maximum height for most regions.

In regions containing substantial areas of thick forest, such as North and South America and Africa,

the forest biomes tend to produce the highest mean and most extreme AOD plumes, as might be

expected. For Boreal Eurasia, open shrubland and woody savannah tend to produce comparably

elevated plumes.

Our dataset is designed primarily to assess injection height for fires in the dominant biomes of

each major biomass burning region. These are statistically well-represented in our dataset. Within the

sampling limitations discussed in Section 2.4 above, the patterns suggest that we have sufficient

statistics for this purpose, at least for early to mid-day local time, which is when MISR acquires data.

3.2. Global and Region-Specific Plume Injection Height Statistics

The main result of this paper is illustrated in Figure 8, which shows the AOD-weighted and

pixel-weighted plume-height distributions for the entire dataset, aggregated over each of the seven

primary biomass burning regions and four most widely distributed biomes in our dataset. The full

AOD-weighted and pixel-weighted digital data are presented in Tables S4 and S5, respectively. Similar

plots, for all 12 biomes, are given in Figures S3 and S4 in Supplemental Materials for pixel-weighted

and AOD-weighted vertical distributions, respectively, with the full digital data in Table S6.

The dominance of near-surface injection is evident in Figure 8. However, smoke is injected to

altitudes well above 2 km at times in nearly all the regions and biomes shown. This is easier to discern

in Figure 9, which provides zonally averaged, seasonally stratified, AOD-weighted percent injection

as a function of longitude and altitude. (The corresponding pixel-weighted values, and plots of the

difference between AOD-weighted and pixel-weighted values, are given in Figure S8 in Supplemental

Materials. There is very little difference between the AOD and pixel-weighted plots with this broad

aggregation.) Averaged over the western hemisphere, smoke is injected into the mid-troposphere in

northern spring, summer, and autumn, with peak heights occurring in summer, as might be expected.

The eastern hemisphere produces a secondary peak in the global distribution that actually spans the

entire year, and includes most of the region during northern spring and summer, but tends to be

concentrated in the western and eastern extremes in autumn and winter. Injection-height seasonal

variations show considerable regional dependence, and they tend to be greater in the boreal regions

than in the tropics, also as expected. This appears in Figure S9 in Supplemental Materials, which

presents injection heights stratified regionally for boreal North America, western US, Amazon, Sahel,

Australia and Siberia. Seasonal differences are greatest over North America (where summertime boreal

fires tend to be most severe), are also significant but more muted over the Sahel, Australia and Siberia,

but are negligible over the Amazon.
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Figure 8. Vertical distribution of percentage of pixel-weighted (grey) and AOD-weighted (hatched

red) stereo-height retrievals in 250-m bins. Profiles show the stereo-height retrievals pixel-filled and

AOD-filled and adjusted by the GFED4s to account small fires. Numeric annotations indicate the

number of plumes in each classification.

Fire severity also varies significantly from year to year, especially on a regional basis e.g., [30].

This is illustrated in Figure 10, which shows the zonally and annually averaged, AOD-weighted

plume height distribution covering available data for the three years in our dataset. Interannual

differences in the zonally and annually averaged plume-height distributions are given in Figure S10.

Even in the averaged data, it is evident, for example, that in the western hemisphere, the peak injection

heights, e.g., around longitude −120, were greater for 2008 than 2009 and 2010, corresponding to an

especially severe summer fire season in California, when over 380,000 acres burned, compared to about

81,000 acres in 2009 and under 134,500 acres in 2010 [31]. In the eastern hemisphere, peak injection

was less and injection was concentrated closer to the surface in 2008 than in 2009 and 2010.



Remote Sens. 2018, 10, 1609 13 of 18

MAM JJA

DJFSON

Figure 9. Zonal (80◦S–80◦N) averages of vertical distribution of biomass burning injection heights with

the AOD-weighted method (%) for northern spring (MAM), summer (JJA), fall (SON) and winter (DJF).

The 2008 data were used for these plots.

2008 2009 2010

Figure 10. Zonal (80◦S–80◦N) annual averages of vertical distribution of biomass burning injection

heights with the AOD-weighted method (%) for 2008, 2009 and 2010.

There is a deeper question that addresses when and where smoke tends to be injected above

the local PBL into the free troposphere (FT). The challenge here is defining the PBL height for this

application, which is not straightforward e.g., [4]. Modelling results vary, and measurements are

best primarily in the few locations globally where radiosonde or LiDAR data are acquired. To make

a preliminary assessment of where and when injection height above the boundary layer was more

frequent, we use the PBL heights given by the second Modern Era Retrospective-analysis for Research

and Applications (MERRA-2) [32], shown in Figure 11. These PBL height data are at a horizontal

resolution of 0.625◦ longitude by 0.5◦ latitude and a vertical resolution of 42 levels of vertical

pressure-levels between the surface and 0.01 hPa. MERRA-2 provides hourly PBL above ground

level and we determine the PBL height at the time of the MISR overpass time at each MERRA grid, that

is, we average the PBL heights at 10:00 a.m.–1:00 p.m. local time. Figure 11 presents one assessment

of the PBL-FT injection-height dichotomy. Given the uncertainties in the plume and PBL heights,

in Figure 11, we added 500 m to the nominal MERRA-2 BL height values, providing a conservative

estimate of the fraction of plumes injected into the FT. We also included the percentage of smoke
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above 2 km altitude to provide a second metric for high-altitude smoke plume injection independent

of the PBL-based definition. Globally, injection occurs most often into the PBL (and at altitudes

below 2 km), and significant injection into the FT is found primarily in the boreal forests of North

America and Siberia in northern summer. As the PBL itself is generally lower in the local winter season

(Figure 11b), the percent injection into the FT based on the MERRA assessment expands geographically

in northern winter to include parts of the eastern US and Canada, as well as parts of subtropical

west Asia (Kazakhstan) and northeast China. Given the uncertainties discussed above, more detailed,

regional assessments, beyond the scope of the current paper, would be needed to take advantage of

the quantitative injection-height values derived from the multi-angle stereo observations e.g., [28].
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Figure 11. Percentage of total column biomass burning emissions injected into the PBL and into

the FT (above PBL + 500 m to 6 km and above 2 km to 6 km) in each grid cell based on the

estimated AOD-weighted injection heights (a) and global diurnal planetary boundary layer height

from MERRA-2 (b). Hourly PBL heights were average from 10:00 a.m. to 1:00 p.m. (LT) to represent the

MISR overpass time over the regions. Results are shown for northern summer (JJA) and winter (DJF).
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4. Conclusions

We present an analysis of over 23,000 wildfire smoke plume injection heights derived from MISR

space-based, multi-angle stereo imaging. The results are aimed at providing an observational resource,

to complement and help improve first-principle attempts at modelling wildfire plume rise, and as a

constraint on modelling smoke dispersion for climate and air quality applications. Both pixel-weighted

and AOD-weighted statistics are included, and the results are stratified by region, biome, and month

or season. Interannual variability is assessed by comparing the full global dataset from 2008 with

partial data from 2009 and 2010, which captures moderate and severe fire seasons in different regions.

The main limitation of the dataset as a constraint on general smoke-plume-injection modelling

is that diurnal coverage is precluded by the sun-synchronous MISR orbit, crossing the equator at

approximately 10:30 a.m. local time on the day side. There is also a lower limit to the size of wildfires

that can be detected by the spacecraft instrument, though most such fires inject smoke only into

the PBL, and meteorological cloud masking underlying smoke is an issue in some regions. Missing

AOD values occur preferentially in the optically thick parts of plumes, whereas missing stereo-height

retrievals are found most often in the thin plume periphery. We filled the missing AOD values with

the maximum AOD values observed in the plume, which provides a conservative lower bound on the

actual AOD for those pixels in most cases. The missing stereo heights were filled based on the statistical

distribution of observed heights for the plume in question, as the missing height retrievals tend to

occur in low AOD regions towards the plume edges. These filling techniques yield stereo-height

vertical distributions that are slightly spread out towards the tails of the original distributions.

Within the MISR plume database, the retrieved elevations of smoke pixels for about half the

plumes are best represented as a normal distribution, whereas about half are better fit with a lognormal

distribution. The difference is probably related to differences in the vertical stability structure of the

atmosphere at the altitude of the smoke layer. Overall, the plumes occur preferentially (about 40%

of the total) during the northern mid-latitude burning season, between July and September, but with

significant regional differences (Figure 7). The savannah biomes provide the highest fire counts,

whereas the heavily forested regions of North and South America, and Africa produce the highest

mean and most extreme AOD plumes. Open shrubland and woody savannah in Boreal Eurasia also

tend to produce comparably elevated plumes.

Figure 8 and Figures S3 and S4 in Supplemental Materials summarize the features of the database,

and Tables S4–S6 in Supplemental Materials present the digital data for both pixel-weighted and

AOD-weighted results. The dominance of near-surface injection is evident in these data, but some

smoke is injected to altitudes well above 2 km at times in nearly all regions and biomes. Injection-height

seasonal variations tend to be greater in the boreal regions than in the tropics; interannual variability is

also substantial, especially on a regional basis.

Determination of PBL versus FT injection requires estimates of the PBL height, which entails

additional uncertainties. We present an example using PBL heights derived from the MERRA-2

reanalysis (Figure 11); the combination of more elevated plumes and lower model-based PBL height

mediates the results. This important question, which affects simulations of smoke-climate impacts

as well as downwind air quality predictions warrants further study with PBL heights obtained

from different sources. Recent efforts at using MISR stereo-derived plume heights to initialize

model plume injection, and to begin assessing the impacts on downwind smoke dispersion, include

Vernon et al. [2] and Zhu et al. [33]. The information can be also used to validate 1-D plume rise models.

Vernon et al. [2] show how initializing the widely used NOAA HYSPLIT model with MISR plume

heights rather than the nominal model initialization provides better simulations of smoke downwind

dispersion in some cases. A comprehensive example where the MISR-based injection-height scheme is

implemented and evaluated within GEOS-Chem, a major global chemical transport model, is given in

Zhu et al. [33]. Further work is also indicated in terms of expanding the database. Digitizing plumes is

labor-intensive [18], and fully automating the process using artificial intelligence (AI) techniques has

thus far proved elusive e.g., [34]. Yet, with more than 18 years of MISR global observations, the raw



Remote Sens. 2018, 10, 1609 16 of 18

data exist to strengthen the statistics presented here, to better quantify interannual variability and to

derive smoke-injection-height characteristics in regions where fire plumes are less abundant in the

current dataset.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/10/1609/
s1, Figure S1: Distributions of mean AOD558 with respect to percentage of the DAR filled with successful retrievals
(PcntHtsFilled) over 12 biomes for this study, Figure S2: Histogram of originally retrieved MISR plume heights,
Figure S3: Histogram of originally retrieved MISR plume heights, originally retrieved and fitted depending on
distribution type with and without ±500 m factor, and originally retrieved and fitted to a normal distribution
with 1xSD and 2xSD, Figure S4: Vertical distribution of number of stereo-height retrievals in 250-m bins for
successful retrievals and successful+filled retrievals (Pixel-weighted results), Figure S5: Vertical distribution of
percentage of smoke in 250-m bins for original AOD retrievals and final AOD retrievals (AOD-weighted results),
Figure S6: Vertical distribution of percentage of smoke calculated with the original+AOD-filled retrievals and
original+AOD-filled retrievals adjusted with the GFED4s fraction to account for small fires, over cropland fire in
Europe and forest fires in North America, Figure S7: MISR maximum plume height summaries by region and
biome, Figure S8: MISR mean AOD by region and biome, Figure S8: Zonal (80◦S–80◦N) averages of vertical
distribution of biomass burning injection heights with the pixel-weighted method for northern summer and
winter, and the difference between the AOD-weighted and pixel-weighted methods, Figure S9: Regional zonal
averages of vertical distribution of biomass burning injection heights with the AOD-weighted method, Figure S10:
Differences in the zonal (80◦S–80◦N) annual average vertical distribution of biomass burning injection heights with
the AOD-weighted method for 2008–2009 and 2008–2010, Table S1: Summary of equations used to calculate the
fitting technique parameters, Table S2: Percentages (minimum and maximum) applied to the vertical distribution
lowest level to account for small fires under-detected by MISR, Table S3: Statistical summary of maximum plume
heights and mean AOD per biome in the MISR database, Table S4: AOD-weighted percentages of fire smoke
injection heights per fire region, main biomes and seasons, Tables S5: Pixel-weighted percentages of fire smoke
injection heights per fire region, broad biomes and seasons.
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