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Abstract. We propose a planning and control approach to physics-based ma-

nipulation. The key feature of the algorithm is that it can adapt to the accuracy

requirements of a task, by slowing down and generating “careful” motion when

the task requires high accuracy, and by speeding up and moving fast when the task

tolerates inaccuracy. We formulate the problem as an MDP with action-dependent

stochasticity and propose an approximate online solution to it. We use a trajectory

optimizer with a deterministic model to suggest promising actions to the MDP, to

reduce computation time spent on evaluating different actions. We conducted ex-

periments in simulation and on a real robotic system. Our results show that with

a task-adaptive planning and control approach, a robot can choose fast or slow

actions depending on the task accuracy and uncertainty level. The robot makes

these decisions online and is able to maintain high success rates while completing

manipulation tasks as fast as possible.

Keywords: Manipulation & Grasping, Motion and Path Planning

1 INTRODUCTION

We propose a planning and control algorithm for non-prehensile manipulation. The key

feature of our algorithm is task-adaptivity: the planner can adapt to the accuracy re-

quirements of a task, performing fast or slow pushes. For example in Fig. 1 (top), the

robot is pushing an object on a narrow strip. The task requires high-accuracy during

pushing — otherwise the object can fall down. The controller therefore generates slow

pushing actions that make small but careful progress to the goal pose of the object.

In Fig. 1 (bottom), however, the object is on a wide table and the goal region for the

object is large (circle drawn on the table). In this case, the controller generates only

a small number of fast pushing actions to reach the goal quickly — even if this cre-

ates more uncertainty about the object’s pose after each action, the task can still be

completed successfully. We present a controller that can adapt to tasks with different

accuracy requirements, such as in these examples. There has been significant recent

interest in non-prehensile pushing-based manipulation. Most existing work use motion

planning and open-loop execution to address the problem of generating a sequence of

actions to complete a non-prehensile manipulation task[16, 17, 7, 23, 11]. Others de-

veloped closed-loop approaches. Ruiz-Ugalde et al. [26] proposed a compact predictive

model for sliding objects and a feedback controller to push an object to a desired loca-

tion. Hogan and Rodriguez [9] proposed a model predictive controller that uses integer
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Fig. 1: Task-adaptive pushing with 21 slow actions for a high accuracy task (top) and a

single fast action for a low accuracy task (bottom).

programming to handle the different contact modes associated with the pusher-slider

system. Arruda et al. [2] considered the task of pushing an object to a goal region while

avoiding regions of high predictive uncertainty through model predictive path integral

control. We take a similar model predictive control (MPC) approach and propose a

closed-loop planning and control algorithm for pushing tasks.

A common feature of existing work is the reliance on the quasi-static model of

pushing [21, 10]. While one reason of the popularity of the quasi-static model may

be the simpler analytic equations of motion it enables one to derive, another reason is

the slow nature of quasi-static interactions, which keeps the uncertainty during pushing

tightly bounded and therefore easier to control accurately.

However, accuracy is not the main criterion for every task, as we illustrate in Fig. 1.

Fast motions, even if inaccurate, may be desired during some tasks. We humans also

adapt our actions to the task (Fitts’s law [8]). Imagine reaching into a fridge shelf that

is crowded with fragile objects, such as glass jars and containers. You move slowly and

carefully. However, if the fridge shelf is almost empty, only with a few plastic containers

that are difficult-to-break, you move faster with less care.

The major requirements to build a task-adaptive planner/controller are:

1. The planner must consider a variety of actions (different pushing speeds): The

robot should not be limited to moving at quasi-static speeds. It must consider dy-

namic actions wherever possible to complete a given task as fast as possible.

2. The planner must consider action-dependent uncertainty: Different actions can

induce different amounts of uncertainty into the system. For example, pushing an

object for a longer distance (or equivalently pushing faster for a fixed amount of

time) would induce more uncertainty than pushing a short distance (or equivalently

pushing slower for a fixed amount of time) [31].

One way to build such a controller is to model the problem as a Markov Decision

Process (MDP) with stochastic dynamics, where the stochasticity is action-dependent.
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Then, if this MDP is solved for an optimal policy under a cost that includes time to

reach the goal, the resulting policy will use fast actions when it can, and fall back to

slow actions for tasks that require higher accuracy.

In this paper, we model the problem as an MDP. However, we do not search for a

globally optimal policy as this would be prohibitively computationally expensive. In-

stead, we solve the MDP online [24, 15] with an approximate solution. Even in this

online setting, evaluating the value of all possible actions (including actions of a wide

variety of speeds), proves computationally expensive, since the cost of physics-based

predictions is high. Therefore, instead of evaluating all possible actions, at any given

state, we first use a fast trajectory optimizer to suggest a reduced set of promising ac-

tions, i.e. actions that are known to drive the system to the goal under the deterministic

setting. We then evaluate these actions under uncertainty to pick the best one.

Our specific contributions include a task-adaptive online solution to the stochastic

MDP for pushing-based manipulation and a trajectory optimizer to generate actions for

evaluation under the MDP setting. Additionally, we compare our task-adaptive planner

with a standard model predictive control approach using only slow actions for high and

low accuracy tasks under different levels of uncertainty. We show that our approach

achieves higher success rates in significantly smaller amounts of time, especially for

tasks that do not require high accuracy. Finally, we implement our approach on a real

robotic system for tasks requiring different accuracy levels and compare it with standard

MPC. Results can be found in the video at https://youtu.be/A77CACvow5g.

2 PROBLEM FORMULATION

We consider the problem where a robot must plan a sequence of non-prehensile actions

to take an environment from an initial configuration to a desired goal configuration. We

consider two task categories: In the pushing task the goal is to push a target object into a

goal region; and in the grasping in clutter task the goal is to bring a target object, among

other objects, into the robot’s hand. Our scenes contain D dynamic objects. qi refers to

the full pose of each dynamic object, for i “ 1, . . . ,D. We assume a flat working surface

and the robot is not allowed to drop objects off the edges.

Our robot is planar with a 1-DOF gripper. The robot’s configuration is defined by

a vector of joint values qR “ tθx,θy,θrotation,θgripperu. We represent the complete state

of our system as xt at time t. This includes the configuration and velocity of the robot

and all dynamic objects; xt “ tqR
,q1

, . . . ,qD
, 9q

R
, 9q

1
, . . . , 9q

Du. Our control inputs are

velocities: ut “ 9q
R applied to the robot’s joints. We then define the stochastic discrete

time dynamics of our system as:

xt`1 “ f pxt ,utq ` ζ putq (1)

where f is a deterministic function that describes the evolution of state xt given the

action ut . We induce stochasticity in the system dynamics through ζ putq9||ut ||, which

is proportional to the magnitude of action ut . When we push an object over a long

distance, there is a large number of interactions/contacts especially in cluttered envi-

ronments. This implies that the uncertainty in the resulting state at the end of a long

push should be larger than that for a shorter push.
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We assume an initial state of the system x0. Our goal is to generate a sequence of

actions for the robot such that the desired final goal configuration of the environment

is reached as quickly as possible without dropping objects off the edge of our working

surface. In the foregoing paragraphs, U “ tu0,u1, . . . ,un´1u denotes a sequence of con-

trol signals of fixed duration ∆t applied in n time steps and we use brackets to refer to

the control at a certain time step, i.e. Urts “ ut . Similarly, X is a sequence of states.

To build a task-adaptive controller, we formulate our problem as an MDP, and we

provide an approximate solution to it. An MDP is defined by a tuple ă S,A,P,L1 ą,

where S is the set of states, A is the set of actions, P is the probabilistic transition

function, and L1 defines the costs. In our problem S is given by all possible values of

xt . Similarly, A is given by all possible values of ut , and P can be computed using the

stochastic transition function in Eq. 1. The optimal policy for an MDP is given by:

π˚pxtq “ argmin
ut PA

„
L1pxt ,utq ` γ ¨

ż

S

Ppxt`1|xt ,utq ¨V ˚pxt`1q ¨ dxt`1


(2)

where 0 ă γ ă 1 is the discount factor, and V ˚ is the optimal value function. An on-

line one-step lookahead approximate solution to the MDP problem can be found by

sampling and evaluating the average value over samples as in [24, 15]:

rπpxtq “ argmin
ut PA

»
–L1pxt ,utq `

1

Q
¨

ÿ

xt`1PSpxt ,ut ,Qq

rV pxt`1q

fi
fl (3)

where Spxt ,ut ,Qq is the set of Q samples found by stochastically propagating pxt ,utq,

and rV is an approximation of the value function. For our problem, to compute the cost

L1pxt ,utq, we use a cost function L which also takes into account the next state xt`1:

Lpxt ,xt`1,utq “
Dÿ

i

twe ¨ ek¨di
P ` ws ¨ pxi

t`1 ´ xi
tq

2u ` kact (4)

The first term in the cost which we call the edge cost penalizes pushing an object close

to the table’s boundaries or static obstacles. We show the edge cost in Fig. 4 where we

define a safe zone smaller than the table’s boundaries. If an object is pushed out of this

safe region as a result of an action between t and t `1, we compute the pushed distance

dp. Also note that k is a constant term and no edge costs are computed for objects in the

safe zone. The second term is the environment disturbance cost which penalizes moving

dynamic objects away from their current states. The third term, kact is a constant cost

incurred for each action taken by the robot. We use we and ws to represent weights for

the edge and environment disturbance costs respectively. Then, we compute L1pxt ,utq
using the same set of Q samples:

L1pxt ,utq “
1

Q
¨

ÿ

xt`1PSpxt ,ut ,Qq

Lpxt ,xt`1,utq

This solution requires propagating Q samples for every possible action ut, to find the

one with the minimum total cost. Performing this for all actions ut P A is not feasible

for our purposes for a variety of reasons: First, we are interested in actions that span

a wide range of speed profiles (i.e. fast and slow), which make our potential action
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Initialization Trajectory optimization
Action evaluation under

uncertainty

U0

U1

U0˚

U1˚

U0˚r0s

U1˚r0s

Fig. 2: First column: Initialization of our task-adaptive approach with control sequences

including fast (top) and slow (bottom) actions. Second column: Stochastic trajectory

optimization of the initial candidate control sequences. Last column: Action evaluation

under uncertainty through sampling.

set large; second, each propagation in our domain is a physics simulation which is

computationally expensive; and third, our goal is closed-loop pushing behaviour close

to real-time speeds.

3 PROPOSED APPROACH

Instead of considering a large action set in our online MDP solution (Eq. 3), we propose

to use a small set of promising actions including both fast and slow actions. We identify

such a set of actions using a trajectory optimizer based on the deterministic dynamics

function f of the system.

Note that our approach does not discretize the action space or the state space a pri-

ori. We adaptively sample the action space using a trajectory optimizer to find high

value actions to consider at a given current state. We also get stochastic next state sam-

ples by applying these actions through a physics simulator.

In Alg. 1, we present our online approximate solution to the MDP.

Consider the scene in Fig. 2, where we have a planar gripper and an object. Our

task is to push the object to a desired goal location (the red spot) while avoiding

the rectangular black obstacle. We begin by generating N candidate action sequences

tU0
, . . . ,UN´1u to the goal by using the GetActionSequences procedure (line 1). The

number of actions in each sequence varies between nmin and nmax, and each action is of

fixed duration ∆t . In the example task (Fig. 2), we show the candidate action sequences

in the first column where N “ 2, nmin “ 2, and nmax “ 4. Since each action is of fixed

duration, the set of action sequences contain both fast (top) and slow (bottom) actions.

Details of how we generate these candidate control sequences are explained in Sec 4.
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Algorithm 1: Online MDP solver

Input : x0: Initial state

Parameters : Q: Number of stochastic samples

N: Number of initial candidate control sequences

nmin: Minimum number of control actions in a control sequence

nmax: Maximum number of control actions in a control sequence

1 tU0
, . . . ,UN´1u ÐGetActionSequencespx0,nmin,nmax,Nq

2 while task not complete do

3 tU0˚
, ¨ ¨ ¨ ,UN´1˚u, trV0

, ¨ ¨ ¨ , rVN´1
u ÐGetOptActionSequencespx0,tU0

, . . . ,UN´1uq
4 for i Ð 0 to N ´ 1, do

5 V i “ 0

6 for each sample in Q, do

7 x1 “StochasticExecutionpx0,U
i˚r0sq

8 V i “ V i ` Lpx0,x1,U
i˚r0sq ` rVi

r0s

9 V i “ V i{Q

10 imin = argminiPN V i

11 x1 Ð execute Uimin r0s
12 check task completion

13 x0 Ð x1

14 tU0
, . . . ,UN´1u Ð tGetActionSequencespnmin,nmax,N ´ 1q, Uimin r1 : n ´ 1su

Using a trajectory optimizer (Sec. 5), the procedure GetOptActionSequences re-

turns N optimized control sequences tU0˚
, ¨ ¨ ¨ ,UN´1˚u, and an approximation of the

value function trV0
, ¨ ¨ ¨ , rVN´1

u along the optimal trajectories. We visualize the opti-

mized trajectories for the example task in the second column.

We seek a one-step lookahead solution to the MDP, hence, we get the first actions

Ui˚r0s from each of the optimized control sequences. Our task is now to select the

best amongst N actions even under uncertainty. We apply each action Q times to the

stochastic state transition function in Eq. 1 to yield Q next state samples (line 7). More

specifically, using our system dynamics model, we apply the controls (velocities) to the

robot for the control duration ∆t and thereafter we wait for a fixed extra time trest for

objects to come to rest before returning the next state and computing the cost. We can

see the Q samples in the third column (Fig. 2) for the example pushing task. Thereafter,

on line 8, for each sample we add the immediate cost L to the approximate value rVi
r0s

for the resulting state. We use the same approximate value for all Q samples. We then

compute an average value for each action (line 9), select the best one and execute it

(line 11). If the task is not yet complete, we repeat the whole process but also re-use the

remaining portion of the best control sequence Uiminr1 : n´1s from the current iteration.

This algorithm chooses slow, low velocity actions for tasks that require high accuracy

but faster actions for tasks that allow inaccuracies.

In the example pushing task, Fig. 2 (third column), we see a wider distribution in

the resulting state for the fast action (top) compared to the slower action (bottom) as a

result of our uncertainty model. Such a wide distribution in the resulting state increases

the probability of undesired events happening especially in high accuracy tasks. For

example, we see that some samples for the fast action result in collisions between the
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Algorithm 2: GetActionSequences (x0,nmin,nmax,N)

Output : tU0
, . . . ,UN´1u: A set of candidate action sequences

Parameters : ∆t : Control duration for each action in an action sequence

1 for k Ð 0 to N ´ 1 do

2 nk “ r
nmax ´ nmin

N ´ 1
ks ` nmin

3 Ukr0 : nk ´ 1s “ t
Distance to goal

nk∆t
u1

4 return tU0
, . . . ,UN´1u

Algorithm 3: GetOptActionSequences(x0,tU0
, . . . ,UN´1u)

Output : tU0˚
, ¨ ¨ ¨ ,UN´1˚u: Optimized set of action sequences

trV0
, . . . ,

rVN´1
u Ź Approx. value function along N optimal trajectories

1 for i Ð 0 to N ´ 1 do

2 Ui˚
,
rVi

ÐTrajectoryOptimization(x0,U
i)

3 return tU0˚
, ¨ ¨ ¨ ,UN´1˚u, trV0

, ¨ ¨ ¨ , rVN´1
u

robot and the obstacle. This implies high costs with respect to the slower action, hence

our planner chooses the slow action in this case, executes it and starts the whole process

again from the resulting state.

4 GENERATING A VARIERTY OF ACTIONS

At each iteration of our online MDP solver, we provide N actions that are evaluated

under uncertainty. First, using the GetActionSequences procedure in Alg. 2, we gener-

ate N candidate action sequences where the number of actions in an action sequence

increases linearly from nmin to nmax (line 2).

On line 3, each of the action sequences is set to a straight line constant velocity

profile to the goal. This is a simple approach, other more complicated velocity profiles

could also be used here. Furthermore, in the GetOptActionSequences procedure, Alg. 3,

we use these candidate action sequences to initialize a stochastic trajectory optimization

algorithm (Sec. 5). The algorithm quickly finds and returns a locally optimal solution

for each of the candidate control sequences. It also returns an approximation of the value

function along N optimal trajectories. We use this approximate value while evaluating

actions in our online MDP solver.

5 TRAJECTORY OPTIMIZATION

Trajectory optimization involves finding an optimal control sequence U˚ for a planning

horizon n, given an initial state x0, an initial candidate control sequence U, and an

objective J which can be written as:

JpX,Uq “
n´1ÿ

t“0

Lpxt ,xt`1,utq ` w f L f pxnq (5)

J is obtained by applying the control sequence U starting from a given initial state and

includes the sum of running costs L and a final cost L f . We use the constant w f to
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Algorithm 4: Stochastic Trajectory Optimization

Input : x0: Initial state

U: Candidate control sequence containing n actions

Output : U˚: Optimal control sequence

Parameters : K: Number of noisy trajectory rollouts

ν : Sampling variance vector

Cthresh: Success definition in terms of cost

Imax: Maximum number of iterations

1 X,C ÐTrajectoryRolloutpx0,Uq
2 while Imax not reached and SumpCq ą Cthresh do

3 for k Ð 0 to K ´ 1 do

4 δUk Ð Np0,νq Ź Random control sequence variation

5 Uk “ U ` δUk

6 Xk
,Ck ÐTrajectoryRolloutpx0,U

kq

7 U˚ ÐUpdateTrajectorypU,tδU0
, . . . ,δUK´1u,tC0

, . . .CK´1uq
8 X˚

,C˚ ÐTrajectoryRolloutpx0,U
˚q

9 if SumpC˚q ă SumpCq then

10 U Ð U˚, X Ð X˚, C Ð C˚

11 for j Ð 0 to n ´ 1 do

12 rVr js “
řn´1

h“ j C˚rhs Ź Approx. value function for state x˚
j along the optimal

trajectory

13 return U˚
,
rV

weight the terminal cost with respect to the running cost. We consider a deterministic

environment defined by the state transition function xt`1 “ f pxt ,utq. This is a constraint

that must be satisfied at all times. Then the output of trajectory optimization is the

minimizing control sequence:

U˚ “ argmin
U

JpX,Uq (6)

In this work, we consider stochastic trajectory optimization methods such as STOMP

[13] and MPPI [30]. With parallel rollouts on multiple cores of a PC, these methods

show impressive speed. They also easily accept arbitrary cost functions that do not have

to be differentiable. In contrast with sampling-based methods such as RRTs and PRMs

[16, 23], optimization approaches are able to produce lower cost trajectories within a

time limit even if they do not take the system to the desired goal state. These benefits

make stochastic trajectory optimization very attractive. In this work, we propose Alg. 4

which adapts the STOMP algorithm [13] for non-prehensile object manipulation.

We begin with an initial candidate control sequence U and iteratively seek lower cost

trajectories (lines 2-10) until the cost reaches a threshold or until the maximum number

of iterations is reached (line 2). We add random control sequence variations δUk on the

candidate control sequence to generate K new control sequences at each iteration (line

5). Thereafter on line 6, we do a trajectory rollout for each sample control sequence

using the Tra jectoryRollout procedure in Alg. 5. It returns the corresponding state

sequence X and costs C calculated for each state along the resulting trajectory. I.e Crts
is the cost of applying action ut in state xt . After generating K sample control sequences

and their corresponding costs, the next step is to update the candidate control sequence
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Algorithm 5: TrajectoryRolllout

Input : x0: Initial state

U: Control sequence with n actions

Output : X :State sequence

C :Costs along the trajectory

1 for t Ð 0 to n ´ 1 do

2 xt`1 “ f pxt ,utq
3 Crts “ Lpxt ,xt`1,utq Ź Calculate cost using Eq. 4

4 if t ““ n ´ 1 then

5 Crts “ Crts ` L f pxt`1q Ź Add final cost

6 return X,C

using the U pdateTra jectory procedure. One way to do this is a straightforward greedy

approach where the minimum cost trajectory is selected as the update:

k˚ “ argmin
k

n´1ÿ

t“0

Ckrts , U˚ “ U ` δUk˚ (7)

Another approach is a cost-weighted convex combination similar to [30]:

U˚rts “ Urts `

řK´1
k“0 rexpp´p 1

λ
qCkrtsqsδUkrts

řK´1
k“0 expp´p 1

λ
qCkrtsq

(8)

Where λ is a parameter to regulate the exponentiated cost’s sensitivity. In our experi-

ments, for a small number of noisy trajectory rollouts K (e.g. K “ 8), a greedy update

performs better. Hence, we use the greedy update in all our experiments.

Once the trajectory update step is complete, we update the candidate control se-

quence only if the new sequence has a lower cost (line 9, Alg. 4). The trajectory

optimization algorithm then returns the locally optimal control sequence and an ap-

proximation of the value function for each state along the trajectory, where the value

function is approximated using the sum of costs starting from that state.

The cost terms for the state-action sequences in this algorithm are equal to the run-

ning costs in Eq. 4, with the addition of a terminal cost on the final state depending on

the task. The terminal cost for the pushing task is given by:

L f “

#
0 if Ro ´ Rg ă 0

pRo ´ Rgq2 if Ro ´ Rg ą 0

where Ro is the distance between the pushed object and the center of a circular goal

region of radius Rg. The terminal cost term for the task of grasping in clutter is given

by: L f “ d2
T ` wφ ¨ φ 2

T . We show how the distance dT and the angle φT are computed in

Fig. 3. First, create a vector from a fixed point in the gripper to the target object where

dT is the length of this vector and φT is the angle between the forward direction of the

gripper and the vector. We use wφ to weight angles relative to distances.

6 BASELINE APPROACH

We implement a standard model predictive control algorithm (MPC) as a baseline ap-

proach. It involves repeatedly solving a finite horizon optimal control problem using the
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stochastic trajectory optimizer presented in Alg. 4 and proceeds as follows: optimize a

finite horizon control sequence, execute the first action, get the resulting state of the en-

vironment and then re-optimize to find a new control sequence. When re-optimizing, we

warm-start the optimization with the remaining portion of the control sequence from the

previous iteration such that optimization now becomes faster. We initialize the trajec-

tory optimizer for standard MPC with actions at the quasi-static speed. In addition, we

propose another baseline approach to compare against in this work: uncertainty aware

model predictive control (UAMPC). This is a version of our online MDP solver where

only low speed actions are considered. Specifically, all the candidate control sequences

are generated with the maximum number of actions i.e. nmin Ð nmax.

7 EXPERIMENTS

We call our planning approach task-adaptive model predictive control (TAMPC). We

verify how well our approach is able to handle uncertainty and adapt to varying tasks.

First, we compare the performance of TAMPC with a standard model predictive control

(MPC) approach. Here we hypothesize that TAMPC will complete a given pushing task

within a significantly shorter period of time and will be able to adapt to different tasks,

maintaining a high success rate under varying levels of uncertainty.

Next, we compare the performance of our approach with uncertainty aware MPC

(UAMPC). Here we hypothesize that: UAMPC will have a similar success rate and will

take a longer amount of time to complete the task in comparison with TAMPC.

We conduct experiments in simulation and on a real robotic system. We consider

the tasks of pushing an object to a goal region and grasping an object in clutter. Given

an environment for planning, we create two instantiations:

˝ Planning environment: The robot generates plans in the simulated planning envi-

ronment. The trajectory optimizer (Alg. 4) uses deterministic physics during plan-

ning and our online MDP solver uses stochastic physics to evaluate actions.

˝ Execution environment: Here, the robot executes actions and observes the state

evolution. It is the physical world for real robot experiments but it is simulated for

simulation experiments. The execution environment is stochastic.

For the planning environment and the execution environment when it is simulated,

we use a physics engine, Mujoco[28], to model the deterministic state transition func-

tion f in Eq. 1. We model stochasticity in the physics engine by adding Gaussian noise
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(a) Success rates for low accuracy tasks (b) Success rates for high accuracy tasks

(c) Total elapsed time for low accuracy tasks (d) Total elapsed time for high accuracy tasks

Fig. 5: Success rate and total elapsed time versus uncertainty level for low and high

accuracy tasks.

on the velocities t 9q
R
, 9q

1
, . . . , 9q

Du of the robot and objects at every simulation time step:

t 9rqR
,

9rq1
, . . . ,

9rqDu “ t 9q
R
, 9q

1
, . . . , 9q

Du ` µ, µ „ N p0,β putqq (9)

where N is the Gaussian distribution and β is an action dependent variance function.

We create a linear model for the variance function as:

β putq “ b||ut || (10)

Where b is a constant. In our simulation experiments, uncertainty level refers to the de-

gree of stochasticity dictated by the slope b of the variance function β used to generate

the Gaussian noise µ injected at every simulation time step in Eq. 9.

7.1 Push planning simulation experiments

We present a high accuracy task in Fig. 1 (top). It is made up of a thin strip and a small

goal region. We also define a low accuracy task in Fig. 1 (bottom) which is a much

larger table with a wider goal region. We create 200 such planning environments for

each of the high and low accuracy tasks. For each environment:

1. We randomly select the shape (box or cylinder) of the pushed object.
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Initial scene After 1 action After 8 actions Goal in 15 actions

Initial scene After 10 actions After 40 actions Goal in 45 actions

Fig. 6: Push planning in a changing environment (top) using a single fast push initially

and then slow pushes later on due to the narrow strip. For the L-shaped environment

(bottom), the robot executes many actions to successfully navigate the edge.

2. For each object, we randomly1 select shape dimensions (radius and height for the

cylinder, extents for the boxes), mass, and coefficient of friction.

3. We randomly2 select a position on the working surface for the pushed object.

We create four uncertainty levels: no uncertainty, low uncertainty, medium uncer-

tainty and high uncertainty. For the no uncertainty case, no extra noise was added to the

physics engine. For low, medium and high levels of uncertainty, b “ t0.05,0.075,0.1u
respectively. We test the different planning and control approaches and specify a time-

out of 3 minutes including all planning, re-planning and execution.

Success rates: We declare success when the robot is able to push an object to the target

region without dropping it off the edge of the table within the specified time limit. We

plot the results in Fig. 5a and Fig. 5b. For the low accuracy level push planning task

(Fig. 5a), TAMPC and UAMPC were able to maintain a 100 % success rate while MPC

showed a slight decrease in success rates as uncertainty grew. For the high accuracy

pushing task (Fig. 5b), TAMPC and UAMPC were also able to maintain a good average

success rate. MPC on the other hand maintains a poor success rate. The major reason

for this is uncertainty.

Total time: The total time in our experiments includes all planning and execution time.

Fig 5c and Fig 5d show the average of 200 scenes with 95 % confidence interval of the

mean. For the low accuracy level task, our TAMPC planner is able to achieve the goal

in under 5s (Fig 5c), while UAMPC and MPC took significantly more time to complete

the task. This clearly shows that our method is able to generate successful fast actions

while maintaining a high success rate. For the high accuracy level task (Fig 5d), our

planner is able to generate as many small actions as needed as the uncertainty grew.

1 The uniform range used for each parameter is given here. Box x-y extents: r0.05m,0.075ms;
box height: r0.036m,0.05ms; cylinder radius:r0.04m,0.07ms; cylinder height:r0.04m,0.05ms;
mass:r0.2kg,0.8kgs; coef. fric.:r0.2,0.6s.

2 The random position for the pushed object is sampled from a Gaussian with a mean at the

lower end of the table (0.1m from the edge of a 0.6m long table along the center axis and a

variance of 0.01m.)
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Initial scene After 3 actions After 7 actions Goal in 11 actions

Fig. 7: Grasping in clutter: The robot uses fast actions initially but chooses slower ac-

tions as it gets closer to the goal object near the edge of the table.

Hence it was able to maintain a high success rate and still complete the task within a

very small amount of time in comparison with the baseline approach. Furthermore, we

also test the adaptive behavior of our approach for the environments in Fig. 6. In the

changing environment (Fig. 6, top), the robot begins with a fast push due to a large

initial area. Thereafter, it naturally switches to slow pushes on the thin strip to complete

the task. For pushing in the L-shaped environment (Fig. 6, bottom), the robot generally

pushes slow. However, it spends a lot of time to navigate the corner.

7.2 Grasping in clutter simulation experiments

We conducted simulation experiments for grasping in clutter in scenes similar to Fig. 7.

Our scenes are randomly generated containing boxes and cylinders. In addition, our

robot now has four control inputs (including the gripper). We tested our task adaptive

planner in clutter to observe how the planner adapts given different environment config-

urations. We see that the robot manipulates clutter and is able to grasp the target object.

An example scene is shown in Fig. 7 where the aim is to grasp the target object in green

without pushing any other objects off the edge of the table. The robot initially begins

with fast actions to push obstacles out of the way. However, as the robot gets closer to

the target object, it chooses slower actions due to a higher probability of task failure in

that region.

7.3 Real robot experiments
In the real robot experiments we use a UR5 robot with a Robotiq 2 finger gripper. We

restrict the motion of the gripper to a plane parallel to the working surface such that

we have a planar robot. We use OpenRave[6] to find kinematics solutions at every time

step. For the push planning experiments, the gripper is completely open such that the

robot receives three control inputs ut “ p 9θx,
9θy,

9θrotationq at every time step. We use a

medium uncertainty level to model the real world stochasticity. We place markers on

the pushed object and track its full pose with a motion capture system (OptiTrack).

We manually replicated three execution worlds for each task accuracy level from the

randomly generated environments we created during push planning simulation experi-

ments. We tested our planners in these environments. We show snapshots from our real

robot experiments. In Fig. 8 (top), we have a low task accuracy environment where the

standard MPC approach is successful after 20 actions. However, by using a single dy-

namic push in Fig. 1 (bottom), our task-adaptive control approach is able to complete

the push planning task in under 2 seconds.
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Fig. 8: MPC using a large number of actions to complete a low accuracy level task (top),

and causing the pushed object to fall off for a high accuracy level task (bottom).

Moreover, for the high task accuracy problem, MPC was unable to push the target

object to the desired goal location (Fig. 8 (bottom)). It executes actions without rea-

soning about uncertainty and pushed the goal object off the edge. Our task-adaptive

controller was able to consider uncertainty while generating small pushes (Fig. 1 (top))

to complete the task. These results can be found in the accompanying video at https:

//youtu.be/A77CACvow5g.

8 RELATED WORK
Robots are becoming increasingly capable of performing complex manipulation tasks

[33] by leveraging the environment’s physics [29]. A traditional approach to complete

manipulation tasks is motion planning [18, 14], followed by open-loop execution. How-

ever, these plans are likely to fail due to uncertainty. Others [27, 32, 11, 19] have pro-

posed using conservative open-loop motion plans that are robust to uncertainty. Re-

cently, MPC algorithms for manipulation [2, 9, 4, 1] have been developed. They use

feedback and can handle bounded uncertainty [22]. We take a similar closed-loop ap-

proach to non-prehensile manipulation in this paper.

There are recent works that develop learning-based uncertainty-aware controllers

in robotics mainly for navigation and collision avoidance. Richter and Roy [25] pro-

posed safe visual navigation with deep learning. Given that current deep learning meth-

ods produce unsafe predictions when faced with out-of-distribution inputs, they detect

these novel inputs using the reconstruction loss of an autoencoder and switch to a rule-

based safe policy. Similarly, Choi et al. [5] switch between a learned policy and a rule-

based policy for autonomous driving. However, they estimate uncertainty using a single

mixture density network without Monte Carlo sampling. We focus on non-prehensile

manipulation where designing a rule-based policy for each new task is not feasible.

Furthermore, Kahn et al. [12] proposed an uncertainty-aware controller for au-

tonomous navigation with collision avoidance. First, they estimate uncertainty from

multiple bootstrapped neural networks using dropout. Thereafter, they consider a very



large number of fixed action sequences at a given current state. They evaluate these

action sequences under an uncertainty-dependent cost function within an MPC frame-

work. The resulting policy chooses low speed actions in unfamiliar environments and

naturally chooses high speed actions in familiar environments. While this approach re-

lieves the burden of designing a rule-based policy, it requires the evaluation of a large

number of a priori fixed action sequences.

Our approach of adaptively sampling the action space given a current state is simi-

lar to prior work [3, 20] which propose sampling-based planning in continuous action

MDPs. We use a trajectory optimizer to guide our action sampling process.

9 DISCUSSION AND FUTURE WORK

We presented a closed-loop planning and control algorithm capable of adapting to the

accuracy requirements of a task by generating both fast and slow actions.This is an

exciting first step toward realizing task-adaptive manipulation planners. In this work,

we use a stochastic trajectory optimizer that outputs locally optimal control sequences.

Thus, the resulting policy can get stuck in a local optima. Moreover, the trajectory

optimizer may not return a good control sequence that reaches the goal for a given task

if some design parameters (e.g. nmax) are chosen poorly. Furthermore, our uncertainty

model is simple and is only an approximation of the real world stochastic phenomena.

We will work toward finding uncertainty models that better describe the real world

physics stochasticity especially for manipulation in clutter. Finally, we will investigate

the generalization of our task-adaptive approach to other manipulation primitives.
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