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Abstract 

This study aims to present a practical method for optimization of symmetric cold-formed steel 

(CFS) beam-column members using Genetic Algorithm (GA). To eliminate impractical cross-

section shapes from the optimization results, a range of manufacturing and construction constraints 

are incorporated into the optimization process. Axial forces are applied with different eccentricities 

(0 to 30 mm) to cover the full spectrum of beam-column actions from pure axial compression to 

pure bending. The effect of element length on the optimization results is investigated by using short, 

intermediate and long beam-column members. A total of 132 beam-columns with different cross 

section shape complexity (4 to 12 rollers/nodes and 1 to 3 lips) are optimized. The compression and 

bending moment strengths are obtained based on direct strength method (DSM) using CUFSM 

software by accounting for local, distortional and global buckling modes. The results show that 

using more complex shapes does not necessarily lead to better design solutions. Increasing the 

eccentricity generally leads to more spread optimum sections particularly when distortional 

buckling is the predominant mode in short and intermediate-length beam-columns. In cases where 

local and global buckling modes govern the design, however, less spread sections with higher turn 

angles generally provide higher strength capacities. With the variation of eccentricity, the ultimate 

strength of optimum beam-column sections normalised by the strength of a reference lipped-

channel are in the range of 110-163%, 128-194% and 160-222% for short, medium and long 

members, respectively. The results of this study, should prove useful in more efficient design of 

CFS beam-column elements in practice.       

 

Keywords: Cold-formed steel; Shape optimization; Genetic Algorithm; Beam-columns; Buckling 

modes 
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1. Introduction 

Light steel frames (LSF) made of cold-formed steel (CFS) sections are growing popularity in 

construction industry to provide cost-effective and sustainable buildings due to the advantages such 

as ease of off-site manufacturing and faster construction, light weight and high flexibility in 

obtaining various cross-sectional shapes, and highly adaptable manufacturing process [1]. A range 

of CFS cross-section shapes can be manufactured from simple C channel sections to more complex 

shapes with multiple segments, stiffeners and lips [2]. The use of more complex CFS sections aims 

to achieve increased local buckling resistance and improved load-deformation characteristics of 

CFS elements. This motivates research on shape optimization of CFS sections for different 

structural elements and various loading conditions. Previous studies have demonstrated that CFS 

beam and column members are mainly affected by local, global and distortional modes of buckling, 

and therefore, their yielding strength cannot be generally reached due to the premature failure 

modes [3-5]. This highlights the importance of using optimization tools to increase the buckling 

resistance of CFS elements and develop more economic design solutions with higher strength-to-

weight ratios.  

Leng et al. [6] investigated the application of different optimization tools to maximize the 

compressive strength of CFS open cross-sections. They determined local, distortional and global 

buckling loads using the open source CUFSM software [7, 8] and then adopted the Direct Strength 

Method (DSM) [9] to estimate the nominal compressive strength of the CFS elements. Ostwald and 

Rodak [10] presented a method for multi-criteria optimization of CFS beams with open sections 

subjected to various loading conditions. In their work, the concept of Pareto optimality was used to 

solve the multi-criteria optimization problem, in which the cross-section area and deflection of 

beams were considered as the main objective functions. In another relevant study, Moharrami et al. 

[11] used a combination of Genetic Algorithm (GA) and Gradient Descent Optimization (GDO) to 

investigate the effect of different boundary conditions on the optimum design of CFS elements 

under axial loads. To provide more practical design solutions, Leng et al. [12] adopted a simulated 

annealing (SA) algorithm to optimize CFS columns subjected to predefined manufacturing 

constraints. Maderia et al. [13] also investigated the optimal shape of CFS columns sing a multi-

objective optimization method. In their study, the objective functions were the maximum local-

global buckling strength and the maximum distortional buckling strength of the sections calculated 

based on DSM [9].  

Ma et al. [14] employed GA to optimize the shape of CFS channel sections in compression or 

bending by adding double-fold lips, inclined lips and triangular stiffeners based on the effective 
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width method in Eurocode 3 [15, 16]. They also investigated the influence of the shift of the neutral 

axis on the optimization results of the CFS compression sections with different member lengths. 

Using the same design concept, Ye et al. [17, 18] utilized Particle Swarm Optimization (PSO) to 

optimize CFS beam elements for maximum bending capacity. The results of their study indicated 

that optimized folded-flange sections can provide up to 57% higher bending capacity compared to 

standard optimized shapes with the same amount of structural material. In a follow-up study, Ye et 

al [19] developed optimum CFS beam sections with maximum energy dissipation capacity through 

a shape optimization framework, which links the PSO algorithm to detailed finite element (FE) 

models. It was concluded that, compared to commercially available lipped channels, optimized 

cross-sectional shapes can dissipate up to 60% more energy through plastic and yielding 

deformations, and therefore, provide better design solutions for seismic applications. 

As discussed above, the focus of the CFS optimization research to date has been on isolated beam 

and column members, in which the axial load-bending moment interaction has not been considered. 

However, the application of CFS as beam-column members, for instance in CFS moment-resisting 

frame systems [20], requires bending-compression interaction effects to be incorporated in the 

design and optimization process. While the effect of bending moment-axial force interaction on 

optimal design of hot rolled members has been investigated in the past (e.g. [21]), this can be a 

challenging task for CFS elements due to their complex behavior affected by different local and 

global buckling modes. In this study, for the first time, an efficient optimization framework is 

proposed to optimize CFS beam-column members by taking into account the axial load-bending 

moment interaction effects. A Genetic Algorithm (GA) is adopted to maximize the ultimate 

capacity of short, intermediate and long length beam-column elements, while a wide range of 

practical end-use and manufacturing constraints (described in Section 3) are considered to improve 

the feasibility of the optimized sections. To define the objective function, a new design formulation 

is developed based on DSM [9] to take into account the axial compression force-bending moment 

interactions calculated by using CUFSM software [8]. The proposed optimization framework is 

then used to optimize 132 beam-columns to investigate the influence of different design parameters 

and provide practical recommendations for more efficient design of CFS beam-column elements.  

2. The Objective Function 

This section provides detailed information about the proposed optimization framework including 

design variables (cross-section components), practical and end-use constraints, and the adopted 

strength calculation method and fitness function.   
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2.1 Cross-section components  

Fig. 1 illustrates a typical beam-column section consisting of finite strips with intersections at the 

nodes, which represent the location of the rollers used to fold the cross-section. The cross-section is 

considered to be on the XY plane with the origin of the coordinate system at the tip of the first strip. 

All CFS beam-column cross-sections are assumed to be manufactured from a coil sheet with a fixed 

width and thickness to use the same amount of structural material. As can be seen in Fig. 1, the 

width of the strips, Li, and the turn-angles in the counterclockwise direction, și, can define the 

whole geometry of the section, and therefore, are considered as the main design variables in the 

optimization process.  

  

 

                                                                                                                       
 

 

 

Fig. 1.  Definition of design variables in constrained shape optimization 

In this study, the number of rollers (nroll) is assumed an even number between 4 and 12. As 

mentioned before, the non-zero turn-angles represent the locations of the rollers to form a 

symmetric section. For the symmetric cross-sections identified as above, the design variables are 

defined for half of the section with the axis of symmetry positioned at the mid-height parallel to the 

X-axis (see Fig. 1). The total width of the coil (d) is equal to the sum of all strips:  ݀ ൌ σ ௜ଶ௡௜ୀଵܮ                                                                                                                                                           ȋͳȌ 

where n is the number of half cross-section strips calculated by:   

n α nw Ϊ nf Ϊ nl                                                                                                                                                    ȋʹȌ 

The half cross-section design variables nl, nf and nw are the number of strips corresponding to the 

lip, flange and web, respectively. Subsequently, the number of required rollers nroll can be 
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calculated by: 

nroll =2n- 2                                                                                                                                          ȋ͵Ȍ 

For instance, based on the above definitions, the design variables of the example section shown in 

Fig. 1 are nroll= 6, nl= 1, nf = 1, nw= 2 and n= 4. 

To identify the location of the ith strip, the following labels are utilized in this study:  

       L     if   iİ nl 
       F     if nlήͳİiİnlήnf                                                                                                    ȋͶȌ                                                                                                                    

       W    otherwise   

where L, F and W denote lip, flange and web strips, respectively, as shown in Figure 2. The same 

notations have been used by Leng et al. [12] for shape optimization of CFS columns. 

  

 

 

 

 

 

 

Fig. 2.  Identification of lip, flange and web strips 

2.2. Fitness function 

In this study, DSM [9] is adopted to determine the nominal compression capacity (Pn) and the 

bending strength (Mn) of CFS beam-column elements based on the minimum of their local (Pnl, 

Mnl), distortional (Pnd, Mnd) and global (Pne, Mne) buckling loads as follows: 

  ௡ܲ ൌ min ൛ ୬ܲ୪ ǡ ୬ܲୢ ǡ ௡ܲୣൟ   ܯ௡ ൌ min ൛ܯ୬୪ ǡ  ୬ୣൟ                                                ȋͷȌܯ୬ୢ ǡܯ
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The critical elastic local, distortional and global compression loads (Pcrl, Pcrd, Pcre) and bending 

moments (Mcrl, Mcrd, Mcre) are calculated by using CUFSM software [8] and fed into DSM 

equations to obtain the buckling loads in Eq. (5). The compression-bending moment design 

interaction has been adopted from [22] as given in the equation below after rearranging the original 

equation (see Appendix A): 

  ቀିఆ೎మெ౤౮௉ు ቁ Ǥ ܲଶ ൅ ቀߗ௖ܯ୬୶ ൅ ୠߗ ௡ܲܥ୫୶ Ǥ ݁ ൅ ௉౤ Ǥெ౤౮ఆ೎௉ಶ ቁ ܲ െ ୬ܲ Ǥ ୬୶ܯ ൌ Ͳ                                              ȋ͸Ȍ 
In the above equation, e is the eccentricity of the design axial load, which produces the required 

bending moment (M=P.e). Using an axial load eccentricity factor provides a practical way to 

present the code design equations for optimization of beam-column elements. In this case, the 

ultimate capacity of the member (P) can be considered as the objective function of the optimization 

problem as follows:  

   maximize ሼ݌ሺxሻሽ 

   Subjected to: giȋxȌİͲ   for iαͳǡ ʹǡ ǥǡ N                                                                                      ȋ͹Ȍ                       

 where N is the number of design constraints as defined in the following section.  

3. Manufacturing and End-Use Design Constraints 

To obtain optimized beam-column elements with feasible and practical cross-sections, various 

end-use and manufacturing geometrical constraints are considered in this study. Practical limitations 

on rounded corner turn-angles and minimum strip width (e.g. for ease of manufacturing process and 

connection of the elements to flooring or walling panels) are incorporated in the beam-column 

optimization problem as end-use constraints. The sections are also designed to have symmetrical 

shapes that can be used for back-to-back sections, have open sections suitable for cold-rolling 

manufacturing process and satisfy minimum utility pass-through allowance as will be discussed in 

more detail below. 

Considering the axis of symmetry parallel to the X-axis (see Fig. 1) and assuming n as the 

number of strips in half of the section, the symmetry constraint equation is given by [12]: ߠଶ୬ି୧ା ൌ ൅ߠ௜ାଵ      for    ݅ ൌ ͳǡʹǡ ǥ ǡ ௡౨౥ౢౢଶ                                                              ȋͺȌ 

The utility pass-through constraint allows the building utilities to be positioned inside the roofing 

system through the CFS webs. To provide this, a minimum opening distance (݀௖ in Fig. 1) of 25.4 

mm has been considered as suggested by Leng et al. [12].  
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In addition, to facilitate perforation and installation of the utilities, the two middle web strips are 

considered to be perpendicular to the flanges (i.e. X-axis in Fig. 1) to form a flat web. As a result, 

the turn-angle at the mid-point is always zero while the number of rollers (or bending points) should 

be even. Considering the geometry of the sections, ߠ௡ and ߠ௡ାଵ can be easily obtained from the 

following equations [12]: 

௡ߠ    ൌ อെ ஠ଶ                                 if        ݊௪ ൌ ͳ െ ஠ଶ െ σ ௜௡ିଵ௡ಽା௡ಷାଵߠ            otherwise        
௡ାଵߠ     ൌ Ͳ                                                                                                                                                       ȋͻȌ 

It should be noted that Eq. (9) implies that ߠ௡ and  ߠ୬ାଵ are dependent design variables. To 

enable the attachment of flooring or walling panels to the CFS sections, the flanges of the beam-

column sections are designed to be parallel to the X-axis with a minimum width of 25.4 mm. These 

conditions can be achieved by satisfying Eqs. (10) and (11), which also imply that the flange turn-

angle is a dependent variable. To obtain feasible shapes, the Y coordinate of the lower flange strip 

has been assumed to be less than the other strips.  ܮ୊ ൌ ௡ైାଵܮ ൒ ʹͷǤͶ mm                                                                                                                            ȋͳͲȌ  ߠ୬ైାଵ ൌ െɎ െ σ ௜ߠ   ௡ಽ௜ୀଵ                                                                                                                                ȋͳͳȌ                                                                                                                          
For the lip stiffeners and the non-vertical components of the web, a minimum strip width 

constraint of 6.35 mm is used to provide sufficient distance between the roller points in the cold-

rolling process as recommended by Leng et al. [12].  

To avoid expensive manufacturing process, in this study the maximum number of rollers has 

been capped to 12. As discussed before, the number of rollers (or bending points) should be also an 

even number to satisfy the symmetry and utility pass-through allowance constraints. Considering 

Eqs (2) and (3), the maximum number of lip strips (݊௟ǡ୫ୟ୶ ) can be equal to 1, 2 and 3 when the 

number of half cross-section strips (n) is 3, 4 and greater than 5, respectively.    

Open section and rounded corner constraints were also applied to avoid overlapping of the cross-

sectional strips and sharp corners, respectively. The rounded corner radius-to-thickness ratio of less 

than 5 has been assumed, which is double the limit specified in AISI-S100-07 [9]. Finally, to 

facilitate connecting double back-to-back sections, the X coordinate of the central strip on the web 

was forced to be less than the other strips. 
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4. Implementation of the GA 

The objective of the optimization procedure is to maximize the ultimate capacity of the CFS 

beam-columns under the combined effects of axial load and bending moment, while also satisfying 

the design constraints explained in the previous section. A Genetic Algorithm (GA) approach was 

adopted to solve this complex optimization problem. GA is a random search method based on 

principles of natural evolution, in which a population of candidate solutions is evolved through 

special selection rules to optimize the fitness function (optimization target) during the evolution 

process [23-25]. To achieve this, a primitive population of chromosomes is first created, each 

representing a possible answer to the problem. These chromosomes are then evaluated based on the 

optimization goal, and the best design solutions (i.e. with higher fitness values) have a greater 

chance of re-producing the problem answers. The formulation of the chromosome evaluation 

function is key to achieve convergence towards a global optimal answer and to reduce the 

computational cost.  

Fig. 3 illustrates the flowchart of the process to create feasible cross-sections by implementing 

the design constraints used in this study. In the adopted method, the number of rollers (nroll), lip 

strips (nl) and flange strips (nf) for the half cross-section are first specified. The number of web 

strips (nw) and the total number of strips in the whole cross-section (2n) are then calculated by using 

Eqs. (2) and (3). Subsequently, two design variable vectors of length and turn-angle are randomly 

generated for half of the cross-section by considering the minimum and maximum bounds discussed 

in Section 3. Since the cross-sections are considered to be symmetric, these variable vectors can 

represent the whole cross-section. After completing the constraint checks, DSM [9] is adopted to 

calculate the compression and bending strength of the feasible beam-column cross-sections as 

explained in Appendix A. 
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Fig.3. Flowchart of feasible cross-section creations 

A summary of the Genetic Algorithm used in this study is given in Fig. 4. The analysis was 

started with a population size of 80 individuals (npop=80) and was run for 100 generations 

(nmax=100). The mutation rate in the optimization process was considered to be rm =0.02. Based on 

repeated runs with 20, 50, 80 and 100 generations, the optimum solution was not found to change 

significantly past 50 generations. The “roulette wheel” method was used to select parents, while a 

single point crossover was used to exchange variable design information vectors between two 

parents. The crossover and mutation operators were applied on both length variable and turn-angle 

variable vectors.  
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Fig.4. Flowchart of the adopted GA optimization process 
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5. Optimization Results 

The proposed framework was used to optimize the CFS beam-columns with short, intermediate 

and long lengths (1000, 2000, and 3000 mm, respectively) aiming for the maximum ultimate 

capacity incorporating the aforementioned practical and manufacturing constraints. The total width 

and the thickness for the steel plate were d=320 mm and t=1 mm, respectively. The modulus of 

elasticity of E = 210 GPa and the yield stress of Fy = 350 MPa were used as a typical steel material. 

The beam-column members were subjected to axial compressive loads with eccentricities of e vary 

from 0 to 30 mm (with 10 mm intervals) to create different levels of bending moment about the X-

axis (see Fig. 3 for the reference shape). The cross-sectional shapes were based on using variations 

number of rollers (even numbers from 4 to 12) and lips (1, 2 or 3). The choice of the design shapes 

was to increase the cross-section complexity through increasing the number of rollers and lips. 

Therefore, only one lip was considered for the sections made with four rollers, up to two lips were 

used for the sections made with six and eight rollers, and lastly, up to three lips were used for the 

sections with ten or twelve rollers. This creates eleven cross-sectional shapes, which can be 

identified by a two-digit number standing for the number of rollers and the lip strips. For example, 

cross-section 4-1 represents a section with four rollers and one lip strip as shown in Table 1. 

The following subsections present the optimization results for three sets of 1000, 2000 or 3000 

mm long beam-column members, each with four eccentricity levels (e = 0, 10, 20 and 30 mm) and 

eleven design shapes as explained above. These generate a total of 132 independent non-linear 

optimization problems. Fig. 5 shows the dimensions of a standard lipped channel section used as a 

reference in this study.  

 

 

Fig. 5. Reference standard lipped channel section 
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Table 1. Optimized cross-sections for 1000 mm long beam-columns 
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5-1. Results for short beam-columns 

Table 1 illustrates the optimal cross-sections obtained for the short (1000 mm long) beam-

columns with different design shapes and eccentricity levels. For better comparison, Table 2 also 

presents the corresponding warping coefficient (Cw), the nominal axial compression and bending 

moment normalized by the yielding axial force and moment (Pn/ Py and Mnx / Myx), and the ultimate 

capacity of the beam-column member P (objective function) calculated from Eq. (6). For each 

element, the dominant buckling modes for the axial compression and bending moment are 

calculated through elastic buckling analysis using CUFSM [8] and denoted by the letter “l”, “d” and 

“g” for local, distortional and global buckling modes, respectively. The last column in Table 2 

shows the ratio of the optimum beam-column strength to that of the standard lipped channel section 

(Fig. 5) with the same plate width and thickness. This number can be used to assess the efficiency 

of each optimum design solution. 

Table 2. Warping coefficient, normalized nominal loads and optimized strength for 1000 mm long 

beam-columns with different eccentricities. 
e = 10 mm  e = 0 ܎܍ܚ࢖࢖ P(kN) 

 ܠܡࡹܠܖࡹ
 cm  WC design)6 ( ܡ࢖ܖ࢖

shape 
 

  P (kN) ܎܍ܚࡼࡼ
࢞࢟ࡹ࢞࢔ࡹ  

 cmW C  design)6( ܡࡼܖࡼ
shape 

1 19.6 0.73(l) 0.34 (l) 782 Lipped 
channel 1 21.1  0.73 (l)  0.34 (l)  782  Lipped 

channel 
1.31 25.7 0.6817 (d) 0.4963 (d) 1023 4-1  1.48 31.3 0.6506 (d) 0.5032 (d)  858.7  4-1 
1.89 37 0.7900 (d) 0.6977 (d) 970 6-1  2.18 46.1  0.7659 (d)  0.7405 (d)  986  6-1  
1.52 29.8 0.7621 (d) 0.6250 (d) 831 6-2  1.93 40.8  0.7777 (d)  0.6557 (d)  1093  6-2  
2.22 43.6 0.8711 (d) 0.8166 (l,g) 906 8-1  2.42 51.1  0.8745 (d)  0.8221 (l,g)  1002  8-1  
2.21 43.4 0.9477 (d) 0.8533 (d) 1496 8-2  2.52 53.2  0.9326 (d)  0.8540 (d)  1817  8-2  
2.27 44.6 0.9502 (d) 0.8277 (l,g) 968 10-1  2.45 51.7  0.8972 (d)  0.8304 (l,g)  1076  10-1  
2.36 46.3 1 0.8767 (l,g) 1144 10-2  2.63 55.6  0.9856 (d)  0.8935 (l,g)  1921  10-2  
2.25 44.2 1 0.8867 (l,g) 1940 10-3  2.62 55.3  1  0.8897 (l,g)  2207  10-3  
2.26 44.4 0.9479(d) 0.8254 (l,g) 993 12-1  2.45 51.7  0.8918 (d)  0.8311 (l,g)  1082  12-1  
2.36 46.2 1 0.8754 (l,g) 1388 12-2  2.47 52.2  1  0.8865 (l,g)  1976  12-2  
2.35 46.1 1 0.8844 (l,g) 1449 12-3  2.67 56.3  1  0.9055 (l,g)  1977  12-3 

e = 30 mm  e = 20 mm 

1 17.2 0.73 (l) 0.34 (l) 782 Lipped 
channel  1 18.3 0.73 (l) 0.34 (l) 782 Lipped 

channel 
1.13 19.5 0.7644 (d) 0.4758 (d) 989 4-1  1.2 22 0.7397 (d) 0.4894 (d) 975 4-1 
1.70 29.3 0.8073 (d) 0.7038 (d) 790 6-1  1.78 32.4 0.7892 (d) 0.7134 (d) 950 6-1 
1.26 21.6 0.8396 (d) 0.5867 (d) 1332 6-2  1.38 25.3 0.8420 (d) 0.6151 (d) 1041 6-2 
1.98 34 0.9574 (d) 0.7793 (l,g) 791 8-1  2.09 38.2 0.8898 (d) 0.8095 (l,g) 908 8-1 
1.90 32.7 0.9370 (d) 0.8044 (l,g) 1283 8-2  1.96 35.9 0.9279 (d) 0.8196 (d) 1589 8-2 
2.06 35.4 1 0.8114 (l,g) 899 10-1  2.15 39.4 0.9701 (d) 0.8180 (l,g) 890 10-1 
2.10 36.2 1 0.8574 (l,g) 1172 10-2  2.2 40.3 1 0.8611 (l,g) 1220 10-2 
2.10 36.1 1 0.8574 (l,g) 1125 10-3  2.02 37 1 0.8628 (l,g) 1683 10-3 
2.05 35.4 1 0.8167 (l,g) 956 12-1  2.12 38.9 0.9735 (d) 0.8059 (l,g) 884 12-1 
2.10 36.1 1 0.8462 (l,g) 1093 12-2  2.2 40.2 1 0.8565 (l,g) 1221 12-2 
2.01 34.6 1 0.8577 (d) 1354 12-3  2.19 40 1 0.8701 (l,g) 1324 12-3 
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The optimized shapes in Table 1 indicate that all the constraining requirements specified in 

Section 3 have been satisfied through the adopted GA optimization. A clear change of optimized 

shapes can be traced when eccentricity increased from 0 to 30 mm particularly in more complex 

sections with higher numbers of rollers (bending points) and lips. This is more evident in 8-2, 10-2, 

12-2 and 12-3 section shapes showing a clear approach to more spread sections in the case of high 

bending moments compared to more lumped sections in pure axial compression.  

The optimum ultimate strength, P, values in Table 2 indicate that, as expected, section 4-1 

produces the lowest strength compared to more complex shapes having more rollers and lips. The 

ultimate strengths of section 4-1 with different eccentricity levels, however, are still higher than the 

strength of the reference lipped channel by 48, 31, 20 and 13% for the beam-columns with 0, 10, 20 

and 30 mm eccentricity, respectively. This decreasing trend shows that the standard lipped channel 

sections are more suitable when bending moment governs the design (i.e. high eccentricity values). 

This conclusion is general and a similar trend is observed for the other cross sections.  

It is shown in Table 2 that the maximum increase in the strength belongs to the more complex 

cross-section shapes. Amongst which, section 10-2 shows 163, 136, 120 and 110% higher strength 

than the reference standard channel section for 0, 10, 20 and 30 mm eccentricities, respectively. 

This reduction trend can be attributed to the change of the optimized cross-sections towards more 

spread shapes as the eccentricity of the load is increases. The results indicate that using more 

complex shapes did not necessarily lead to better design solutions. For example, it can be noted that 

the ultimate strengths of 10-2 sections (10 rollers and 2 lips) were generally higher than the most 

complex 12-3 sections (12 rollers and 3 lips) particularly at higher eccentricity levels. The only 

exception is for the pure axial compression case (i.e. e = 0), where 12-3 section reached the highest 

normalized strength of 167% which is slightly higher than that of the 10-2 section. As a result, 10-2 

sections can be recommended as the most cost-effective design solutions for short beam-column 

members, with less complexity and higher strength compared to 10-3, 12-1, 12-2 and 12-3 sections.   

  In the calculation of nominal axial compression forces (Pn) for the optimum beam-column 

sections with lower number of rollers, the predominant buckling mode was always distortional 

buckling of the optimized sections, whilst local and global buckling modes were dominant when 

higher number of rollers were used (see Table 2). This can be due to the increase of the warping 

constant, Cw, in the more complex sections, which led to higher distortional buckling resistance for 

such sections. Distortional buckling, dominates the design for nominal bending moment, Mn, with 

the exception of the reference lipped channel section (see Fig. 5), where local buckling was the 

most critical mode of failure. In the more complex shapes, however, yielding bending moment 
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generally preceded the elastic modes of buckling.   

Fig. 6 compares the optimized strength, P, and the warping constant, Cw, normalized by those of 

the reference lipped channel (denoted by solid and dashed lines, respectively) for the whole range of 

the design cross-section shapes from 4-1 to 12-3. To quantify the level of complexity of the design 

sections, the number of rollers and lips are added and assumed as the degree of complexity 

displayed in the bottom horizontal axis corresponding to the section labels shown at the top. From 

the strength curves, it can be noted that the more complex 6-2 section has lower strength than 6-1 

section for the whole range of eccentricities. This confirms that increasing the number of the lips is 

not necessarily effective when the number of rollers (i.e. sectional nodes) is insufficient. In general, 

it is shown that the higher number of lips can be useful when the number of rollers is also increased, 

particularly in the case of pure axial compression (i.e. e = 0). This can be underpinned by 

comparing sections 10-1 and 12-2 with sections 10-3 and 12-3, respectively.  

It is shown in Fig. 6 that after a sharp increase in the optimum strength values from section 6-2 to 

8-1, increasing the number of rollers and lips generally results in less significant changes in the 

ultimate strength of the beam-column sections, particularly for high eccentricity levels. The higher 

number of lips; however, increases the warping constant, Cw, which can affect the dominant mode 

of buckling. For instance, sections 10-3 and 12-1 have the same degree of complexity as defined 

herein with reasonably close range of strength, but the former with higher number of lips has 

significantly greater Cw.  

 

Fig. 6.  Normalized strength and warping constant for 1000 mm long beam-columns 

Fig. 7 shows the variation in height of the optimized sections normalized by the height of the 

reference section (i.e. 200 mm) as a function of load eccentricity. It can be noticed that there is a 

general trend towards deeper sections by increasing the eccentricity (or bending effects) as 
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indicated before based on the results of Table 1. It is shown in Fig. 7 that the deepest sections 

belong to 8-1, 10-1 and 12-1 groups (see Table 1), all of which are single-lip sections with a trend 

towards the shape of the reference lipped channel section. The heights of the 10-2 group sections, 

the most cost-effective solutions for short beam-columns as identified above, are lower than the 

single-lip sections but significantly higher than the two ineffectively lipped sections of 6-2 and 10-3 

(see thicker dashed lines in Fig. 7).  

 

 

 

 

 

 

 

 

Fig. 7.  Variation of normalized height with eccentricity for 1000 mm long beam-columns 

 

5-2. Results for intermediate and long lengths beam-columns   

The results obtained for the intermediate and long beam-columns with 2000 and 3000 mm 

lengths are presented in Tables 3 to 5 in a similar format to those of the 1000 mm long beam-

columns. The results in Table 3 show a less noticeable change in the optimum design shapes due to 

the variation of eccentricity than those presented in Table 1 for the short-length beam-columns. The 

main reason for this difference is that the local and global buckling modes govern the bending 

moment design in the intermediate and long beam-columns (particularly in more complex sections 

as can be noted in Tables 4 and 5) as opposed to the predominant distortional buckling or yielding 

failure modes in short beam-columns. As a result, cross-section shapes with larger turn-angles 

between the strips and higher moment of inertia about their principle axes can respectively provide 

higher local and global buckling resistances. The larger turn-angles can also lead to a higher 

stiffening effect for the adjacent strips, and therefore, result in a higher local buckling resistance.  
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Table 3. Optimized cross-sections for 2000 mm and 3000 mm long beam-columns 
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Table 4. Warping coefficient, normalized nominal loads and optimized strength for 2000 mm long 

beam-columns with different eccentricities. 
 e = 10 mm   e = 0 ܎܍ܚࡼࡼ P (kN) ࢞࢟ࡹ࢞࢔ࡹ 

 cmW C design)6( ܡࡼܖࡼ
shape 

࢞࢟ࡹ࢞࢔ࡹ  P (kN) ܎܍ܚࡼࡼ   
 cmW C  design)6( ܡࡼܖࡼ

shape 
1 13.4 0.58 (l) 0.23 (l) 782 Lipped 

channel 
1 14.3  0.58 (l)  0.23 (l)  782  Lipped 

channel 
1.65 22.1 0.6316 (d) 0.4313 (l,d) 1562 4-1  1.89 27 0.6145 (d) 0.4346 (l,d)  1607  4-1 
2.27 30.4 0.6838 (d) 0.5773 (l,d) 1313 6-1  2.51 35.9  0.6883 (d)  0.5771 (l,g)  1298  6-1  
1.77 23.7 0.8769 (d) 0.4465 (l) 1994 6-2  2.03 29.1  0.8158 (d)  0.4671 (l)  1919  6-2  
2.28 30.5 0.6993 (d) 0.5735 (l) 1261 8-1  2.51 35.9  0.7048 (d)  0.5772 (l,g)  1312  8-1  
2.60 34.9 0.9834 (l,g) 0.6647 (l,g) 1663 8-2  2.93 42  1  0.6746 (l,g)  1910  8-2  
2.29 30.7 0.7303 (d) 0.5709 (l,g) 1265 10-1  2.47 35.4  0.7134 (d)  0.5686 (l,g)  1351  10-1  
2.55 34.2 1 0.6635 (l,g) 1894 10-2  2.88 41.2  1  0.6623 (l,g)  1998  10-2  
2.56 34.3 1 0.6669 (l,g) 1788 10-3  2.94 42  1  0.6754 (l,g)  1986  10-3  
2.23 29.9 0.7199 (d) 0.5569 (l,g) 1256 12-1  2.43 34.8  0.7520 (d)  0.5593 (l,g)  1329  12-1  
2.57 34.5 0.9965 (l,g) 0.6668 (l,g) 1785 12-2  2.89 41.4  1  0.6650 (l,g)  1908  12-2  
2.61 35 0.9903 (l,g) 0.6695 (l,g) 1753 12-3  2.94 42  1  0.6746 (l,g)  1961  12-3 

e = 30 mm    e = 20 mm   
1 11.9 0.58 (l) 0.23 (l) 782 Lipped 

channel 
 1 12.6 0.58 (l) 0.23 (l) 782 Lipped 

channel  
1.44 17.2 0.6439 (d) 0.4068 (l,d) 1437 4-1  1.51 19 0.6382 (d) 0.4249 (l,g) 1526 4-1 
2.02 24 0.7328 (d) 0.5533 (l,g) 1135 6-1  2.08 26.2 0.6893 (d) 0.5702 (l,g) 1321 6-1 
1.57 18.7 0.8855 (d) 0.4390 (l) 1947 6-2  1.66 20.9 0.8811 (d) 0.4442 (l) 1975 6-2 
2.08 24.8 0.8144 (d) 0.5517 (l,g) 1144 8-1  2.17 27.4 0.7324 (d) 0.5774 (l,g) 1203 8-1 
2.28 27.1 0.9610 (l,g) 0.6367 (l,g) 1490 8-2  2.36 29.8 0.9814 (d) 0.6465 (l) 1671 8-2 
2.04 24.3 0.7765 (d) 0.5480 (l,g) 1176 10-1  2.11 26.6 0.7307 (d) 0.5557 (l,g) 1231 10-1 
2.24 26.7 0.9749 (l,g) 0.6435 (l,g) 1601 10-2  2.40 30.3 0.9715 (l,g) 0.6529 (l,g) 1577 10-2 
2.29 27.2 0.9599 (l,g) 0.6516 (l,g) 1495 10-3  2.38 30 0.9851 (l,g) 0.6459 (l,g) 1677 10-3 
2.01 23.9 0.7869 (d) 0.5339 (l,g) 1142 12-1  2.10 26.5 0.7499 (d) 0.5488 (l,g) 1209 12-1 
2.25 26.8 0.9722 (l,g) 0.6254 (l,g) 1567 12-2  2.39 30.1 0.9754 (d) 0.6510 (l,g) 1598 12-2 
2.29 27.3 0.9736 (l,g) 0.6388 (l,g) 1596 12-3  2.41 30.4 0.9788 (l,g) 0.6464 (l,g) 1644 12-3 
 

Based on the results presented in Tables 4 and 5, similar conclusions can be drawn as those of 

the short beam-columns discussed in Section 5-1. The only difference is that for both 2000 and 

3000 mm long beam-columns, section shape 8-2 is identified as the most cost-effective design 

solution. Compared to the standard lipped channel section, 8-2 sections with 2000 mm length 

provided 193, 160, 136 and 128% higher ultimate strength for 0, 10, 20 and 30 mm eccentricities, 

respectively. The corresponding strength improvements increased to 222, 195, 174 and 160% in 

3000 mm length members. While section shape 8-2 has less degree of complexity compared to 10-

3, 12-1, 12-2 and 12-3 sections, it is shown in Tables 4 and 5 that its efficiency is not very different 

from those sections. So this cross-section shape can be considered as the most efficient design for 

intermediate and long lengths beam-columns.   
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Table 5. Warping coefficient, normalized nominal loads and optimized strength for 3000 mm long 

beam-columns with different eccentricities. 

 e = 10 mm   e = 0 ܎܍ܚࡼࡼ P (kN) ࢞࢟ࡹ࢞࢔ࡹ 
W C ܡࡼܖࡼ

)6cm( 
design 
shape 

࢞࢟ࡹ࢞࢔ࡹ  P (kN) ܎܍ܚࡼࡼ   
 cmW C  design)6( ܡࡼܖࡼ

shape 
1 7.6 0.35(l) 0.13 (l) 782 Lipped 

channel 
1 8.1  0.35(l)  0.13 (l)  782  Lipped 

channel 
2.17 16.5 0.6018 (d) 0.3103 (l) 1778 4-1  2.38 19.31 0.6023(d,g) 0.3103 (l)  1807  4-1 
2.54 19.3 0.6386 (d) 0.3517 (l,g) 1354 6-1  2.67 21.6  0.6375 (d)  0.3479 (l)  1442  6-1  
2.29 17.4 0.8783 (d) 0.3143 (l) 1933 6-2  2.42 19.6  0.8792 (d)  0.3149 (l)  1891  6-2  
2.50 19 0.6358 (d) 0.3454 (l,g) 1459 8-1  2.65 21.5  0.6391 (d)  0.3449 (l,g)  1452  8-1  
2.95 22.4 0.8817 (l,g) 0.4215 (l,g) 1918 8-2  3.22 26.1  0.8266 (d)  0.4200 (l,g)  1949  8-2  
2.42 18.4 0.6357 (d) 0.3325 (l) 1411 10-1  2.58 20.9  0.6372 (d)  0.3358 (l,g)  1491  10-1  
2.96 22.5 0.8938 (l,g) 0.4244 (l,g) 2104 10-2  3.20 25.9  0.8857 (l,g)  0.4168 (l,g)  1977  10-2  
2.96 22.5 0.8852 (l,g) 0.4244 (l,g) 1943 10-3  3.22 26.1  0.8928 (l,g)  0.4201 (l,g)  1954  10-3  
2.37 18 0.6398 (d) 0.3261 (l) 1575 12-1  2.58 20.9  0.6386 (d)  0.3370 (l,g)  1454  12-1  
2.88 21.9 0.8851 (l,g) 0.4100 (l,g) 1973 12-2  3.16 25.6  0.8350 (d)  0.4119 (l,g)  1970  12-2  
2.94 22.4 0.8876 (l,g) 0.4211 (l,g) 1988 12-3  3.21 26  0.8881 (l,g)  0.4186 (l,g)  1989  12-3 

e = 30 mm    e = 20 mm   
1 6.8 0.35(l) 0.13(l) 782 Lipped 

channel 
 1 7.2 0.35(l) 0.13(l) 782 Lipped 

channel  
1.91 13 0.6189 (d) 0..3049 (l) 1688 4-1  2.01 14.5 0.6103 (d) 0.3085 (l,g) 1756 4-1 
2.32 15.8 0.6346 (d) 0.3516 (l) 1371 6-1  2.39 17.2 0.6344 (d) 0.3480 (l) 1397 6-1 
2.12 14.4 0.8664 (d) 0.3127 (l) 1854 6-2  2.18 15.7 0.8651 (d) 0.3127 (l,g) 1844 6-2 
2.26 15.4 0.6363 (l,g) 0.3388 (l,g) 1408 8-1  2.36 17 0.6422 (d) 0.3415 (l,g) 1421 8-1 
2.60 17.7 0.8776 (l,g) 0.4172 (l,g) 1907 8-2  2.74 19.7 0.8706 (l,g) 0.4517 (l,g) 1870 8-2 
2.29 15.6 0.6461 (d) 0.3431 (l,g) 1145 10-1  2.33 16.8 0.6342 (d) 0.3343 (l,g) 1413 10-1 
2.60 17.7 0.8566 (l,g) 0.4089 (l,g) 1826 10-2  2.74 19.7 0.8855 (l,g) 0.4193 (l,g) 1971 10-2 
2.60 17.7 0.8726 (l,g) 0.4147 (l,g) 1885 10-3  2.75 19.8 0.8855 (l,g) 0.4224 (l,g) 1957 10-3 
2.20 15 0.6546 (d) 0.3223 (l,g) 1439 12-1  2.31 16.6 0.6382 (d) 0.3298 (l,g) 1453 12-1 
2.51 17.1 0.8553 (l,g) 0.3846 (l,g) 1764 12-2  2.71 19.5 0.8718 (l,g) 0.4058 (l,g) 1897 12-2 
2.56 17.4 0.8892 (l,g) 0.4057 (l,g) 1994 12-3  2.74 19.7 0.8843 (l,g) 0.4184 (l,g) 1969 12-3 

 

Fig. 8 shows the variation of the normalized strength and warping constant of the 2000 and 3000 

mm long beam-columns with different design shapes as a function of degree of complexity as 

previously defined. It can be observed that P and Cw curves corresponding to the more complex 

sections with higher number of rollers (section 8-1 onwards) follow a similar trend for the whole 

range of the eccentricities. Unlike the results obtained for the short columns (see Fig. 6), both P and 

Cw for intermediate and long columns are noticeably increased by increasing the number of lips, 

particularly from a single-lip section to a double-lip section. Increasing the number of lips from two 

to three, however, does not result in a significant improvement in the ultimate strength of the 

optimum sections. Amongst the less complex sections with lower number of rollers, section 6-1 

shows higher strength than section 6-2, though the warping constant of section 6-2 is higher than 

that of section 6-1. These reverse trends in the strength and warping constant curves is observed in 

4-1 to 8-1 range of beam-column sections. This again emphasizes the previous conclusion that the 
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higher number of lips is not necessarily effective for the sections with insufficient number of rollers 

(or bending points). Based on the results of this study, in general, minimum 8 rollers are required 

for the sections with more than one lip.  
 

 

 

  

 

  

   

  

 

   

 
 
 

Fig. 8. Normalized strength and warping constant for (a) 2000 mm and (b) 3000 mm long beam-

columns 
 

The normalized heights of the optimum intermediate and long beam-column sections with 

different cross-section shapes are compared in Figs. 9 (a) and 9 (b), respectively, as a function of 

load eccentricity. In general, the results follow a similar trend as the short beam-columns (see Fig. 

7). However, by increasing the load eccentricity a less significant increase in the height of the 

optimum sections is observed in the intermediate and long beam-columns (less than 15%). This can 

be attributed to their tendency to remain as a lumped section with larger turn-angles between the 

strips as explained before. Similar to the short beam-columns, the deepest shapes belong to single-
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lip 6-1 to 12-1 section groups. The height of section 8-2, the most cost-effective solution for 

intermediate and long beam-columns as identified above, falls between that of single-lip 6-1 to 12-1 

sections and the ineffective 4-1 and 6-2 sections (see thicker dashed line in Fig. 9). 
     

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Variation of normalized height with eccentricity for (a) 2000 mm and (b) 3000 mm long 

beam-columns 

6. Summary and Conclusions 

An efficient optimization framework was developed based on Genetic Algorithm (GA) to 

optimize the cross-section shape of cold-formed steel (CFS) beam-column elements by taking into 

account a wide range of practical and manufacturing constraints. The compression and bending 

moment strengths of the members were obtained using direct strength method (DSM) by accounting 

for local, distortional and global buckling loads. Three sets of short, intermediate and long beam-

columns with 1000, 2000 and 3000 mm lengths were considered with axial compression loads 

applied with eccentricity magnitudes of e = 0, 10, 20 and 30 mm to cover the full spectrum of 

beam-column actions. In total 132 beam-columns were optimized using eleven different cross-
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section shapes (4 to 12 rollers/nodes and 1 to 3 lips), which created a range of practical sections 

with different sectional complexity. 

It was shown that, for the same amount of material, the optimized sections lead to significantly 

higher strength values compared to the reference standard lipped channel section for the whole 

range of length and eccentricity levels, while they satisfied all the geometric end-use and 

manufacturing design constraints. A general trend was observed in the shape of the optimized 

beam-column cross-sections, where the optimum solutions changed from lumped to more spread 

shapes as the load eccentricity increased. It was discussed that the shape of the optimum sections 

depends on the critical buckling modes, such that when local and global buckling modes are 

dominant (mainly in intermediate and long columns), lumped sections with higher turn-angles 

provide higher strength capacities.  

It was shown that increasing the complexity of CFS sections does not necessarily lead to better 

design solutions. Especially increasing the number of lips does not increase the capacity of the 

beam-column sections when the number of rollers (or bending points) is insufficient. Based on the 

results, sections 10-2 and 8-2 were identified as the most cost-effective design solutions for short 

and intermediate to long beam-columns, respectively, by providing a balance between efficiency 

and complexity. With variation of the load eccentricity, using the suggested optimum cross sections 

could increase the capacity of the members in the range of 110-163%, 128-193% and 160-222% for 

short, intermediate and long members, respectively, compared to the reference standard lipped 

channel section. Therefore, the results of this study should prove useful for more efficient design of 

CFS beam-column members in practical applications.  
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Appendix A. Objective Function Equation     

Direct strength method (DSM) has been adopted in accordance with [9] to determine the nominal 

axial and flexural strength of beam-column members as follows:     ୬ܲ ൌ min ൛ ୬ܲ୪ ǡ ୬ܲୢ ǡ ୬ܲୣൟ    ܯ୬ ൌ min ൛ܯ୬୪ ǡ  ୬ୣൟ                                       ȋAǦͳȌܯ୬୪ǡܯ

where Pnl, Pnd, Pne and Mnl, Mnd, Mne are local, distortional and global axial and flexural buckling 

strengths, respectively. Given that DSM does not currently provide the interaction equation between 

axial compression force and bending moment, the following has been adopted from [22]. 

ఆౙ௣௣౤ ൅ ఆౘ௖ౣ౮ெ౮ெ౤౮ן౮ ൅ ఆౘ஼ౣ౯ெ౯ெ౤౯ן౯ ൑ ͳ                               ȋAǦʹȌ 
where P, Mx and My, are respectively the axial load and bending moments about the x and y-axes as 

determined from conventional linear elastic analysis. Mx is considered equal to P.e with the 

assumption of e representing the eccentricity in y-axis direction (no eccentricity was considered 

about x-axis). Cm is the moment gradient factor (about x or y-axes) for a simply supported beam-

column.  Į is the moment amplification factor (about x or y-axes) given by Eq. (A-3). ߙ ൌ ͳ െ  π೎௉௉ಶ                                                                                              ȋAǦ͵Ȍ 

where PE is the elastic buckling load calculated by ୉ܲ ൌ πమாூሺ௞௅ሻమ ;  and ߗୡ ൌ ͳǤͺ and  ߗୠ ൌ ͳǤ͸͹ are 

safety factors for axial and flexural loads, respectively.    

By rearranging Eq. (A-2) with the adoption of the inputs as above, one can obtain Eq. (A-4) 

which has been incorporated in the optimization framework presented in this paper using P as the 

objective function.               

ቀିఆౙమெ౤౮௉ు ቁ Ǥ ܲଶ ൅ ቀߗୡܯ୬୶ ൅ ୠߗ ୬ܲܥ୫୶ Ǥ ݁ ൅ ௉೙ Ǥெ౤౮ఆౙ௉ు ቁ ܲ െ ୬ܲ Ǥ ୬୶ܯ ൌ Ͳ                                          ȋAǦͶȌ 


