

This is a repository copy of Systematic Review and Meta-analysis: Optimal Salvage Therapy in Acute Severe Ulcerative Colitis..

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/140951/

Version: Accepted Version

Article:

Choy, MC, Seah, D, Faleck, DM et al. (10 more authors) (2019) Systematic Review and Meta-analysis: Optimal Salvage Therapy in Acute Severe Ulcerative Colitis. Inflammatory bowel diseases, 25 (7). pp. 1169-1186. ISSN 1078-0998

https://doi.org/10.1093/ibd/izy383

© 2019 Crohn's & Colitis Foundation. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This is a pre-copyedited, author-produced version of an article accepted for publication in Inflammatory Bowel Diseases following peer review. The version of record is available online at: https://doi.org/10.1093/ibd/izy383.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted for publication 26/11/18

TITLE

Systematic Review and Meta-analysis: Optimal salvage therapy in Acute Severe Ulcerative Colitis

Matthew C Choy^{1,2,3}, Dean Seah¹, David M Faleck⁴, Shailja C Shah^{4,5}, Che-Yung Chao^{6,7}, Yoon-Kyo An⁸, Graham Radford-Smith⁸, Talat Bessissow⁶, Marla C Dubinsky⁴, Alexander C Ford^{9,10}, Leonid Churilov¹¹, Neville D Yeomans³ & Peter P De Cruz^{1,3}

¹Department of Gastroenterology, Austin Hospital, Australia

²Department of Gastroenterology, St Vincent's Hospital, Australia

³Department of Medicine, Austin Academic Centre, University of Melbourne, Australia

⁴The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY USA

⁵Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN USA

⁶Division of Gastroenterology, McGill University, Canada

⁷Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia

⁸Department of Gastroenterology, Royal Brisbane and Women's Hospital, Australia

⁹Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK

¹⁰Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK

¹¹Statistics and Decision Analysis Academic Platform, Florey Institute of Neuroscience & Mental Health, The University of Melbourne

Author list

- 1. Dr Matthew C Choy, MBBS BMedSci FRACP, Gastroenterologist, Senior Research Fellow, Austin Health, University of Melbourne; <u>matthew.choy@austin.org.au</u>
- 2. Dr Dean Seah, MD, Resident Medical Officer, Austin Health; seah.dean@gmail.com
- 3. Dr David M Faleck, Gastroenterology Fellow, Mount Sinai Hospital; <u>david.faleck@mountsinai.org</u>
- 4. Dr Shailja C Shah, MD, Gastroenterologist, Vanderbilt University Medical Center; <u>shailja.c.shah@vanderbilt.edu</u>
- 5. Dr Che-Yung Chao, MBBS FRACP, Consultant Gastroenterologist, Princess Alexandra Hospital; <u>Che-Yung.Chao@health.qld.gov.au</u>
- Dr Yoon-Kyo An, MBBS Gastroenterology Registrar, Royal Brisbane and Women's Hospital <u>yoonkyoan@gmail.com</u>

- Associate Professor Graham Radford-Smith, MBBS, FRACP, Head of Inflammatory Bowel Disease Unit, Royal Brisbane and Women's Hospital; <u>Graham.Radford-</u> <u>Smith@qimrberghofer.edu.au</u>
- 8. Assistant Professor Talat Bessissow, MD, McGill University; talat.bessissow@mcgill.ca
- 9. Professor Marla C Dubinsky, MD, Professor of Pediatrics, Susan and Leonard Feinstein IBD Center, Icahn School of Medicine, Mount Sinai Hospital; <u>marla.dubinsky@mssm.edu</u>
- 10. Professor Alexander C Ford, MBChB MD MRCP, Leeds Teaching Hospitals NHS Trust; alexf12399@yahoo.com
- Professor Leonid Churilov, Head of Statistics and Decision Analysis Academic Platform, Florey Institute of Neuroscience & Mental Health, University of Melbourne; leonidc@unimelb.edu.au
- 12. Professor Neville D Yeomans, MD, DSc (hc), FRACP Director of Research, Austin Health;<u>ndyeomans@bigpond.com</u>
- 13. Dr Peter De Cruz, MBBS PhD FRACP, Head of Inflammatory Bowel Disease Unit, Austin Health; ppdecruz@gmail.com

Correspondence:

Dr Peter De Cruz Department of Gastroenterology, Austin Health 145 Studley Road Heidelberg VIC 3084 Australia Tel: +61 3 9496 5353 Fax: +61 3 9496 3487 Email: ppdecruz@gmail.com

Conference Presentation:

Preliminary results of this study were presented at ECCO 2018 in Vienna and DDW 2018 in Washington.

ABBREVIATIONS

ASUC, Acute Severe Ulcerative Colitis; CFS, Colectomy Free Survival; CI, Confidence Interval; CRP, C-reactive protein; DI, Dose Intensified; IFX, Infliximab; ITT, Intention to treat; Medical Subject Headings (MeSH); OR, Odds Ratio; PRISMA, Preferred Reporting Items for Systematic Review and Meta-Analyses; RCT, Randomized Controlled Trial; SCCAI, Simple Clinical Colitis Activity Index); SD, standard deviation; SI, Standard induction; TLW, Truelove and Witt's.

ACKNOWLEDGEMENTS

We would also like to acknowledge the following investigators for providing additional study data for our analysis: Alex Al-Khoury, Lauren Beswick, Anthony Croft, Eugeni Domenech, David Faleck, Alexander Ford, Samuel Fernandes, David Gibson, Davide Ribaldone, Anne Ten Hove & Abhinav Vasudevan.

CONFLICTS OF INTEREST AND SOURCE OF FUNDING

1. Conflicts of interest: MCC has received travel and educational grants from Abbvie, Ferring, Shire, Orphan and Takeda; has served as a speaker for DiaSorin; and, received research support from Janssen. GRS has served as a consultant, an advisory board member, or a speaker for AbbVie, Ferring, Janssen, Shire, Protagonist, Pfizer and Takeda Pharmaceuticals. TB has served as a speaker for Janssen, Abbvie, Takeda, Pendopharm, Shire and Ferring; as a consultant for Janssen, Abbvie, Takeda, Pfizer; and, received research support from Janssen, Pentax and Abbvie. MCD has served as a consultant for Janssen, Abbvie, Pfizer, Takeda, Prometheus labs, Celgene, Merck and Amgen, and received research support from Janssen, Abbvie and Prometheus Labs. PDC has served as a consultant, an advisory board member, or a speaker for AbbVie, Baxter, Ferring, Janssen, Shire and Takeda, and received research support from Ferring, Janssen and Shire. NDY has served as an advisory board member for Pfizer. DS, DMF, SCS, CYC, YKA, ACF and LC have no relevant disclosures.

2. Sources of funding: This work was funded in part by an Australian Research Training Scholarship from the University of Melbourne (MCC), Gandel Philanthropy Grant (MCC), David Bickart Clinician Research Award from the University of Melbourne (PDC) and Bushell Postdoctoral Award from the Gastroenterological Society of Australia (PDC) and National Health & Medical Research Council Early Career Fellowship (PDC).

ABSTRACT

Background

Infliximab is an effective salvage therapy in acute severe ulcerative colitis; however, the optimal dosing strategy is unknown. We performed a systematic review and meta-analysis to examine the impact of infliximab dosage and intensification on collectomy-free survival in acute severe ulcerative colitis.

Methods

Studies reporting outcomes of hospitalized steroid-refractory acute severe ulcerative colitis treated with infliximab salvage were identified. Infliximab use was categorized by dose, dose number and schedule. The primary outcome was collectomy-free survival at 3 months. Pooled proportions and odds ratios with 95% confidence-intervals were reported.

Results

41 cohorts (n=2158 cases) were included. Overall colectomy-free survival with infliximab salvage was 79.7% (95%CI 75.48-83.6%) at 3 months and 69.8% (95%CI 65.7-73.7%) at 12 months. Colectomy-free survival at 3 months was superior with 5mg/kg multiple (\geq 2) doses compared to single dose induction (OR 4.24 (95% CI 2.44-7.36, p<0.001)). However, dose-intensification with either high-dose or accelerated strategies was not significantly different to 5mg/kg standard induction at 3 months (OR 0.70 (95% CI 0.39-1.27, p=0.24) despite being utilized in patients with a significantly higher mean C-reactive protein and lower albumin levels.

Conclusions

In acute severe ulcerative colitis, multiple 5mg/kg infliximab doses are superior to single dose salvage. Dose-intensified induction outcomes were not significantly different to standard induction and were more often used in patients with increased disease severity which may have confounded the results. This meta-analysis highlights marked variability in the management of infliximab salvage therapy and need for further studies to determine the optimal dose strategy.

KEYWORDS

Acute severe ulcerative colitis, Infliximab, Colectomy

INTRODUCTION

Acute severe ulcerative colitis (ASUC) is a potentially life-threatening condition which has historically resulted in emergency colectomy in 30% of patients within 3 months of presentation.(1) Twenty-five per cent of patients with ulcerative colitis develop ASUC during their disease course and 15% have two or more episodes.(2) Corticosteroids represent first-line therapy for ASUC; however, approximately one-third of patients do not respond(1). Infliximab (IFX) and cyclosporine have demonstrated equivalent efficacy as medical salvage therapies in ASUC in randomized controlled trials (RCT); however, non-randomized studies have suggested a better treatment response and reduced risk of colectomy at 12 months with IFX.(3)

The standard induction schedule for IFX, which comprises three doses at 5mg/kg given at weeks 0, 2 and 6, has been derived from studies in Crohn's disease and moderate-severe outpatient ulcerative colitis.(4, 5) However, these conditions differ in their biology and inflammatory disease burden from ASUC. New insights into the pharmacokinetics of IFX in the setting of ASUC that have shown increased drug clearance,(6) low serum levels(7) and fecal drug loss(8), have led to an interest in dose intensification. In a survey of gastroenterologist members of the International Organization For the Study of Inflammatory Bowel Diseases, the majority preferred dose intensified or accelerated schedules(9) to standard schedule induction; however, the evidence to support such an approach is conflicting.(10-14)

Despite conflicting data, we hypothesized that IFX dose intensification either via higher dose therapy or shorter dose intervals would result in a reduction in colectomy rates. In this meta-analysis, we sought to examine the efficacy of IFX induction in ASUC and the impact of dosage, dose number and dose intensification on colectomy-free survival (CFS).

METHODS

Search strategy

A systematic literature search was performed independently by two investigators (MCC, DS) in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (supplementary appendix 1). A broad search strategy was utilized, using Medical Subject Headings (MeSH) and keywords related to ASUC and treatment with IFX therapy (supplementary appendix 2).

Studies were identified from the PubMed/MEDLINE, EMBASE and CENTRAL databases, from January 1999 to July 2018. The reference lists of included articles were manually reviewed and a hand search of the main gastroenterology conference abstract directories was performed in order to identify additional studies for inclusion. Relevant abstracts from BSG/DDW/ECCO/UEGW from the year 2014 to July 2018 were included. Discrepancies with regards to article inclusion were resolved by consensus in consultation with the senior authors.

Inclusion and exclusion criteria

Studies were included if they met the following selection criteria: (i) observational or interventional design; (ii) patients were hospitalized or had acute severe flares of UC, refractory to oral or intravenous (IV) corticosteroids; and (iii) treatment with IFX as rescue therapy was given. Furthermore, in order to be eligible for inclusion, criteria for IFX use, dosing and schedule of IFX administration and CFS had to be reported.

Studies were excluded if patients had been treated previously with a rescue therapy (e.g. cyclosporine, tacrolimus) during the same presentation of ASUC. Studies were also excluded if there was concomitant Clostridium difficile infection or cytomegalovirus colitis as these represent distinct clinical entities that have a different clinical course and have traditionally been excluded from both clinical trials and observational studies. Pediatric studies and studies that focused primarily on chronic active colitis were also excluded. Conference abstracts that had not been published as full text within the last four years (prior to 2014) were excluded.

Outcomes of interest

The primary outcome was CFS at 3 months following commencement of IFX therapy. Secondary outcomes included CFS survival at 1 and 12 months, adverse drug events, mortality and postoperative complications.

The use of IFX was categorized by dosage (5mg/kg or 10mg/kg), dose number (single or multiple dose induction) and dose schedule. Dose schedule was defined as follows: a) standard schedule induction - three IFX doses at weeks 0, 2 and 6; b) accelerated schedule induction - three doses within 4 weeks; c) dose intensified induction - use of either multiple 10mg/kg doses or an accelerated schedule with 5mg/kg (incorporating (b)). The IFX schedule was classified on the basis of the reported intention to treat (ITT) strategy.

Data Extraction and Quality Assessment

Data were extracted from included studies by two reviewers independently (MCC, DS). In studies with multiple treatment arms, data extraction was performed in IFX-treated populations only. Corresponding authors were contacted to obtain additional data where required. Risk of bias and study quality were evaluated independently by two reviewers (MCC, DS) and any discrepancies were resolved in consultation with senior authors. Quality of single arm/extracted cohort studies that described proportions of CFS cases were treated as prevalence studies and assessed with a critical appraisal tool designed by the Joanna-Briggs Institute(15). Quality of non-randomized studies was assessed with the Newcastle Ottawa Scale.(16) Quality of randomized studies was assessed with the Cochrane risk of bias table.

Statistical analysis

Data were analyzed on ITT principles. A random-effects model for these analyses was selected to provide a more conservative estimate than a fixed-effects model. Weighted pooled proportions of CFS were derived from studies by combining individual proportions and 95% confidence intervals (CI) using the Freeman-Tukey double arcsine transformation method. Subgroups of IFX strategy

were determined from studies that contained sufficient discriminatory information. Analysis of comparative studies that contained combinations of individual treatment groups was performed by converting binary data into pooled odds ratios (OR).

Potential confounding covariates such as age, disease duration, IV steroid therapy, baseline Creactive protein (CRP) and albumin levels were also examined. Continuous variables were reported as mean ± standard deviation (SD). Reported medians and interquartile ranges or ranges were converted to means and SD according to formulae provided by Wan et al.(17) Where required, means and variances of treatment groups within studies were pooled for analyses.

Analyses were performed with MIX 2.0 Pro (MIX 2.0 – Professional software for meta-analysis in Excel. Version 2.0.1.5. BiostatXL, 2016) to derive pooled proportions and RevMan 5.3 (Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) to determine ORs in comparative studies and mean covariate differences. A two-tailed P value <0.05 considered statistically significant.

Heterogeneity and Publication bias

Heterogeneity was assessed with the l² test.(18) The l² statistic estimates the percentage of variation across studies that is due to heterogeneity, rather than chance. Following Higgins et al(18), we considered l² values of 25%, 50%, and 75% as low, moderate, and high. These categories do not refer to the absolute amount of observed heterogeneity, but rather to the proportion of the observed effect variance that would remain if the sampling error were to be eliminated. Subgroup analyses were performed if there was moderate or high heterogeneity in pooled effect estimates. Publication bias was assessed with Egger's test.(19)

RESULTS

Search Results

The literature search identified 1944 citations (Figure 1), of which 105 met the criteria for full text review. A total of 62 studies were subsequently excluded (Figure 1) - 12 were in non-ASUC cohorts; five reported on already included cohorts; one examined primary non-responders to IFX; one investigated IFX maintenance therapy; and one investigated the post-operative setting. Three studies were excluded due to co-morbid CMV colitis. There was insufficient information regarding IFX dosing and/or timing of administration in ten studies. Four studies did not adequately report clinical outcomes. Nineteen studies were excluded on the basis of pooled outcome reporting without exclusion of patients with moderately severe UC and/or chronic active UC. The full-text versions of four studies were not available. One abstract was not published as full text within four years and one was not in English.

Overall, 43 full-text articles were included for meta-analysis(10-12, 14, 20-58). Two articles, published by Laharie et al.(37, 38), and similarly, articles published by Jarnerot et al.(33) and Gustavsson et al.(29) reported outcomes on the same respective cohorts and were therefore merged for quantitative analysis. Thus, a total of 2158 patients across 41 separate study cohorts were included.

Characteristics of included studies

There were five RCTs, 30 retrospective and six prospective observational cohorts. Study characteristics and considerations for analysis are outlined in Table 1. Of the five RCT populations, three reported on IFX versus placebo (28, 33, 48) and two reported on IFX versus cyclosporine.(37, 38, 54) Only the IFX treated arms from these RCTs were extracted for this review. Additional data were obtained from twelve studies by correspondence:(10-12, 20, 22, 24, 26, 27, 30, 40, 47, 53). Unadjusted data were utilized for the analysis.

Twelve study populations reported on single dose induction(22-24, 29, 31, 33, 34, 36, 48, 50, 51, 53) and 35 studies reported on multiple dose IFX induction.(10-12, 14, 20-22, 25-28, 30, 32, 35-47,

49-54, 56-58) Dose intensified induction strategies were employed in eleven studies, (10-12, 14, 20, 22, 32, 49, 56-58) Of these, ten studies utilized an accelerated dosing schedule, (10-12, 20, 22, 32, 49, 56-58) four utilized 10mg/kg dose induction therapy(11, 12, 14, 32) and four studies investigated accelerated induction in conjunction with high dose IFX.(11, 12, 32, 58) One study was a single dose finding RCT(48). One abstract assessed standard versus accelerated schedule induction.(14) However, as both arms contained patients who were treated with a combination of 5 and 10mg/kg dosing, this study was excluded from the comparative meta-analysis. Extracted data for the analysis are detailed in Table 1 and Supplementary Appendix 3.

Pooled colectomy free survival

The overall pooled colectomy free survival following IFX therapy for ASUC from all included studies was 79.7% (95%CI 75.5-83.6%, I2=77%, 36 studies, 1659/2129 cases) at 3 months. Pooled CFS at 1 month was 85.7% (95%CI 82.0-89.0%, I2=70.6%, 36 studies, 1550/1860 cases); and 69.8% (95%CI 65.7-73.7%, I2=67%, 33 studies, 1357/1943 cases), Figure 2) at 12 months.

Pooled CFS with 5mg/kg single dose induction was 67.3% (57.1-76.8%, I2=55.1%, 10 studies, 200/307 cases) at 3 months; 78.8% (95%CI 68.4-88.0%, I2=40.2%, 9 studies, 127/168 cases) at 1 months; and 57.0% (40.7-72.7%, I2=60.2, 6 studies, 75/127 cases) at 12 months.

Pooled CFS with 5mg/kg standard week 0, 2, and 6 induction was 84.0% (78.3-89.1%, I2=80.5%, 25 studies, 923/1152 cases) at 3 months; 89.4% (83.9-93.9%, I2=81.5%, 24 studies, 882/1038 cases) at 1 months; and 73.8% (67.9-79.4%, I2=74.6%, 24 studies, 772/1080 cases) at 12 months.

Pooled CFS with dose intensified induction was 78.5% (70.8-85.4%, I2=49.2%, 11 studies, 254/325 cases) at 3 months; 84.8% (78.0-90.6%, I²=46.1%, 11 studies, 274/325 cases) at 1 months; and 70.1% (60.2-79.2%, I2=65.9%, 10 studies, 231/321 cases) at 12 months.

CFS proportions by IFX strategy are described in Table 2.

Comparative cohort meta-analysis

a) 5mg/kg multiple dose induction versus 5mg/kg single dose induction (Figure 3A)

Amongst comparative studies, 5mg/kg multiple dose induction was superior to 5mg/kg single dose induction with respect to CFS at 3 months (OR 4.24 (95% CI 2.44-7.36), p<0.001, $I^2 = 0\%$, five studies).(22, 50, 51, 53, 59) Multiple dose induction was numerically superior at 1 and 12 months, but this did not reach statistical significance.

b) Dose intensified induction versus standard induction (Figure 3B)

Dose intensification was not found to be significantly different to standard induction with CFS at 3 months (OR 0.70 (95% CI 0.39-1.27), p=0.24, $l^2 = 48\%$; eight studies, 736 cases).(10, 12, 20, 49, 56-58, 60) CFS was also not significantly different at 1 month (OR 0.76 (95% CI 0.34-1.68), p=0.49, $l^2 = 54\%$) or 12 months (OR 0.83 (95% CI 0.55-1.25), p=0.31, $l^2 = 20\%$).

c) Subanalyses

Subanalyses were performed to examine 5mg/kg standard induction compared to individual treatment strategies of 5mg/kg accelerated, 10mg/kg standard, and 10mg/kg accelerated induction.

1. 5mg/kg standard vs 5mg/kg accelerated induction

Five studies (391 patients)(10, 20, 49, 56, 60) reported the outcomes of patients treated with 5mg/kg standard schedule and 5mg/kg accelerated schedule induction. CFS was not statistically different between the two groups at 1 month (OR 1.04 (95% CI 0.29-3.69), p=0.96, $l^2 = 66\%$), 3 months (OR 0.93 (95% CI 0.39-2.22), p=0.87, $l^2 = 56\%$), and 12 months (OR 0.96 (95% CI 0.52-1.78), p=0.89, $l^2 = 32\%$).

2. 5mg/kg standard vs 10mg/kg standard induction dose

Two studies (169 patients)(12, 60) reported the outcomes of 5mg/kg standard vs 10mg/kg standard induction. CFS was not statistically different between the two groups at 1 month (OR 0.30 (95% CI 0.08-1.15), p=0.08, $l^2 = 0\%$), 3 months (OR 0.37 (95% CI 0.12-1.16), p=0.09, $l^2 = 0\%$) and 12 months (OR 0.53 (95% CI 0.19-1.45), p=0.21, $l^2 = 0\%$), favouring 5mg/kg standard induction.

3. 5mg/kg standard induction vs 10mg/kg accelerated dose

Two studies (137 patients)(12, 60) reported the outcomes of 5mg/kg standard vs 10mg/kg accelerated induction. CFS was not statistically different between the two groups at 1 month (OR 0.27 (95% CI 0.01-13.07), p=0.51, $l^2 = 74\%$), 3 months (OR 0.32 (95% CI 0.00-31.34), p=0.62, $l^2 = 84\%$) and 12 months (OR 0.56 (95% CI 0.01-41.34), p=0.79, $l^2 = 83\%$), favouring 5mg/kg standard induction.

Influence of covariates and confounders

Covariate analysis was performed to assess the relationship of demographic and biochemical factors to outcomes between dose intensified induction versus standard induction. A meta-regression was not performed due to the small number of studies available. Dose intensified induction patients had a higher mean CRP compared with standard induction (mean difference CRP +14.78mg/L (7.91 to 21.65) p<0.001)) as well as lower serum albumin (mean difference -1.95g/L (-2.81 to -1.09), p<0.001)). There was no significant difference in age, disease duration or IV steroid duration between the two groups (Figure 4).

A narrative synthesis was performed on other studies reporting on the impact of confounders. Hypoalbuminemia was noted to be an independent poor prognostic factor and associated with colectomy risk.(10, 23, 39, 51, 60) Elevated CRP at baseline was associated with risk of colectomy(22, 30, 43, 44, 60) and a lower likelihood of achieving mucosal healing.(20) Fecal calprotectin was predictive of poor outcome, with a level of >1,922.5 mcg/g associated with an 87% risk of colectomy in 1 year.(61) Endoscopic features were also prognostic, with presence of severe endoscopic lesions found to be associated with a higher risk of colectomy by Monterubbianesi et al. (RR = 7.0; 95%Cl 1.09–44.7).(43) Conversely, achievement of mucosal healing with induction therapy was associated with increased long-term CFS.(29) These risk factors were not addressed with dose intensification in these studies.

Multiple studies analyzed outcomes according to IFX strategy. In studies that reported on IFX dose number, single induction was found to have an increased risk of colectomy in two studies(36, 53) with a relative risk of 5.76 (95% CI 1.54–21.62, p=0.005) reported by Kohn et al.,(36) although no significant difference was found in a third study by Sjoberg et al.(51) Although the study by Govani et al. was not included in our formal analysis due to mixed 5mg/kg and 10mg/kg dosing within standard schedule and accelerated schedule cohorts, they found that an accelerated schedule induction had higher 90-day colectomy rates compared with standard schedule (47.1% vs 12.5% p=0.01)(14). However, accelerated schedule patients also had a higher baseline CRP (58 mg/L +/-39 vs 37 mg/L +/-3.0, p=0.06).

Of the studies that reported dose intensification, none had documented a strategy of a-priori dose intensification for all patients. Seven of these studies had reported that the decision for dose acceleration was based on insufficient clinical or biochemical response to the first infliximab dose (10, 14, 20, 32, 49, 58, 62). The reason for dose escalation was not reported in the remaining four studies (12, 56, 57, 60). In the study by Nalagatla et al., an initial dose of 10mg/kg was selected in patients with more severe clinical, biochemical or endoscopic disease activity, and among the subgroup of patients who were dose accelerated, an upfront dose of 10mg/kg was associated with a lower risk of colectomy compared to those who first received 5mg/kg.(58)

In individual studies, the use of maintenance therapy either with IFX(43) and/or immunomodulators(28) following induction was associated with reduced colectomy compared with no maintenance (HR = 0.26; 95% CI 0.09 to 0.85; p = 0.02).(43) Subanalyses to assess the effect of maintenance therapy amongst our included cohorts was unable to be performed to due to highly variable combinations of aminosalicylates, thiopurines and infliximab (Supplementary appendix 3).

Adverse Events, Post-operative complications and Mortality

The pooled adverse drug event rate was 26.1% (344/1319) from 24 studies; the pooled postoperative complication rate was 42.2% (155/367) from 13 studies, and; the mortality rate was 1.0% (13/1342) from 22 studies. There were insufficient data to make meaningful comparisons on adverse events, postoperative complications and mortality between dose intensified and standard dose induction across studies. Only one study provided data on adverse drug event rates and post-operative complication rates between 5mg/kg and 10mg/kg patients.(11) The adverse drug event rate was 42.9% (48/112) in those treated with 5mg/kg induction vs 28.6% (4/14), p=0.394 in those treated with 10mg/kg. The post-operative complication rate was 78.8% (26/33) amongst those treated with 5mg/kg vs 0% (0/4) treated with 10mg/kg (p=0.005).

Study Quality, Heterogeneity and Publication Bias

In all studies, cases were representative of hospitalized, steroid refractory ASUC and colectomy was utilized as an objective outcome measure. However, the majority of studies were uncontrolled with respect to case selection and disease severity on admission. There were recurrent issues of incomplete outcome reporting and inconsistency in reporting of relevant data (demographics/biochemistry and complication rates). A quality assessment utilising the Newcastle Ottawa Scale and the Cochrane risk of bias table demonstrated that the majority of included studies in the meta-analysis were of poor quality. Details of study quality assessment can be found in Supplementary Appendix 4.

In our heterogeneity assessment, we identified variability regarding the definition of disease severity and definition of steroid failure. Amongst all pooled studies, the l² test was 67.0-77.0% indicating a high proportion of variation across studies due to heterogeneity rather than chance. This was subsequently investigated with subgroup analyses of different IFX strategies. There was no significant publication bias (Egger's intercept = 0.26, p=0.74 at 3 months). In the comparative cohort meta-analysis: 5mg/kg single versus 5mg/kg multiple dose induction comparisons, there was a low level of heterogeneity between the five studies at 3 months (l² =0.0%). Amongst dose intensified versus standard induction comparisons, the l² test was 48% indicating a moderate amount of heterogeneity.

DISCUSSION

In this systematic review and meta-analysis, we summarize the published experience of IFX induction and CFS in ASUC under different induction strategies. Despite being used for over 15

years, the optimal IFX dose strategy in ASUC is unknown, due to the infrequency of this lifethreatening condition and difficulty in performing well constructed RCTs. IFX salvage in ASUC has evolved from single dose 5mg/kg induction, to high dose and short interval therapy, based on studies in vastly different clinical settings and clinician experience. Apart from a single RCT by Sands and colleagues exploring different IFX doses in ASUC which was terminated due to slow recruitment,(48) no published RCTs have investigated dose induction strategies in ASUC. The lack of strong evidence guiding the optimal use of IFX in ASUC has consequently led to marked variability in clinical management.

In this study, 5 mg/kg multiple dose IFX induction was superior to 5mg/kg single dose rescue therapy for CFS at 3 months. This supports current consensus statements on multiple IFX 5mg/kg salvage therapy dosing in ASUC(63) provides evidence to avoid the use of single dose 5mg/kg induction which has been proposed in older guidelines(64). 5mg/kg multiple dose induction CFS was favoured at 1 and 12 months; however, efficacy at these time-points did not reach statistical significance, likely due to the small number of studies that have compared these strategies over time.

Contrary to current trends in clinical practice, dose intensification to 10mg/kg or dose acceleration with 5mg/kg was not associated with improved outcomes over 5mg/kg standard dose induction. However, we found that dose intensified strategies were used in patient groups with an overall higher CRP and lower albumin, biochemical profiles indicating greater disease severity and associated with increased likelihood of colectomy. Although these biochemical differences should be interpreted with caution due to the risk of aggregation bias of mean data, this may mask the true benefit of dose intensification and its potential effect of attenuating the rate of colectomy in high risk patients. This indicates the need for clinical trials to control for these parameters of disease severity in the future.

Whilst a recent meta-analysis by Nalagatla and colleagues(58) also concluded no difference between dose intensified and standard induction, our systematic review has for the first time, quantified the differences in existing cohort severity with respect to CRP and albumin, includes a larger cohort, and demonstrates the poor quality of current source data. Although we recognize that performing a meta-analysis with these available studies of variable quality may be controversial, our paper draws together the current available evidence and highlights the optimal dosing regimen for infliximab salvage therapy for ASUC remains unclear. It is also important to note that these findings may be confounded by patient selection and provider bias with respect to how dose intensification strategies were adopted in the included observational cohorts.

The basis on which to apply IFX dose intensification is unknown. Elevated CRP,(65) low albumin, anti-drug antibodies and increased body mass index(66) are factors that have been associated with increased IFX drug clearance. Although increased IFX drug clearance and a reduced serum half-life has recently been shown to be associated with therapeutic failure in ASUC, it is unclear if dose intensification in this circumstance will improve therapeutic success.(67) Higher IFX drug exposure in the ASUC induction phase has not presently been shown to be associated with treatment success (67, 68) with one study in fact finding that lower IFX drug exposure within the first week in ASUC was associated with clinical response.(69) Whilst this counter-intuitive finding may be explained by responders needing less drug overall, there are likely to be differences in the pharmacokinetics alone. Hence, as clinicians increasingly turn to dose escalation, timely clinical assessment of response to rescue therapy is imperative. Although signals exist and algorithms have been proposed regarding dose escalation of IFX based on baseline biochemical profiles(70, 71) or CRP and albumin response following induction,(13, 72) they have either not been validated or not shown to improve outcomes.(14)

Emergent colectomy is associated with a significantly higher mortality rate in comparison with elective surgical management.(73) Although perioperative IFX therapy has not been shown to increase UC surgical complications in a recent meta-analysis,(74) the impact of high dose therapy is unknown. Decisions regarding dose-escalated salvage therapy versus colectomy in ASUC require careful consideration of adverse events associated with intensive immunosuppression versus the risk of postoperative complications. Failure to make appropriate decisions on treatment futility and delayed surgical intervention can lead to increased morbidity, mortality and healthcare costs.(75)

Although the overall pooled mortality rate of 1% in our present study is in line with published data,(3) the studies examined in this analysis did not provide sufficient information to robustly ascertain complication or mortality rates of dose intensification versus standard induction. Although dose intensification in outpatient UC has not been associated with increased complications(5) it is important that future studies assess adverse events and postoperative complications carefully in ASUC.

There were several limitations of our meta-analysis. Of all the eligible studies, only eleven assessed outcomes prospectively. Infliximab levels were not reported in these cohorts which represents an important potential confounder of the analysis. Whilst two cohorts(11, 58) were analysed by propensity scoring methodology to adjust for increased biochemical severity in the dose intensified cohort compared with standard dose patients, no differences in colectomy rate were observed between dose intensified and standard dose induction with matched and unmatched cohorts and hence, unadjusted data was utilized for the analysis. Accelerated induction and high-dose induction were grouped as a single category, owing to the limited number of studies. Additionally, two studies by Gibson and colleagues(10, 56) may have included patients that overlapped between the cohorts; however, we were unable to obtain this information from the authors. As this likely affected <10% of the Gibson cohort, the studies were included; exclusion of either study did not affect the meta-analysis findings. A high degree of heterogeneity as measured by the I² test also relates to how the use of IFX has evolved over time. Although we assessed for baseline covariates, we were unable to control for all potential confounding factors due to variable study quality and data.

Though this analysis only included hospitalized, steroid refractory UC, the definition of UC severity and steroid failure was variable and may have resulted in clinical heterogeneity between studies. Clinical response and remission were not examined in this study, given the variable definition of these clinical entities and lack of reporting. Whilst we attempted to address potential outcome bias for those treated with a single dose of IFX by applying an ITT analysis, the outcomes of single dose induction may have been adversely impacted, as those who proceeded to colectomy may not have had an opportunity to receive more than one dose. Maintenance therapy was also variable between the cohorts and may have affected long term colectomy rates. Despite these limitations, these data provide confident estimates of CFS with IFX salvage therapy under different strategies in real-world practice.

This meta-analysis highlights the challenges associated with performing controlled trials in ASUC. In particular, the variance in clinical practice and IFX induction permutations presented here underscore the complexity of interpreting data in this setting. Given that placebo-controlled trials of IFX are no longer ethically feasible when exploring optimal IFX dose induction it is likely that future trials of IFX will require an active control. Although standard schedule arms may be utilized as comparators to dose intensified strategies, current practice in patients who are not responding to a first dose is generally to dose escalate, rather than proceed directly to colectomy. This calls into question whether trials in ASUC should use colectomy as a primary endpoint, or instead, utilize clinical response or need for further rescue dosing as a pragmatic outcome. Estimates of colectomy rate in this study with standard schedule dose induction may therefore serve as a useful historical comparator for future studies.

In conclusion, IFX 5mg/kg multiple dose induction is effective as medical salvage therapy for ASUC. Although our data do not presently demonstrate superiority of dose intensification over standard induction, it remains to be seen whether a dose intensified strategy can further reduce the risk of colectomy when applied uniformly to all patients. However, this approach risks over-treating patients who are destined for a favorable outcome at the expense of increased costs and potential morbidity. Prospective RCTs comparing dose intensified to standard dose therapy in ASUC are both planned(71) and underway (PREDICT UC; <u>Clinicaltrials.gov: NCT02770040</u>) which may provide more clarity, allow the generation of precise risk profiles and facilitate prediction of outcome for patients who present with this highly challenging clinical condition.

REFERENCES

1. Kaplan GG, Seow CH, Ghosh S, et al. Decreasing colectomy rates for ulcerative colitis: a population-based time trend study. The American journal of gastroenterology. 2012;107:1879-1887

Dinesen LC, Walsh AJ, Protic MN, et al. The pattern and outcome of acute severe colitis.
 Journal of Crohn's & colitis. 2010;4:431-437

3. Narula N, Marshall JK, Colombel JF, et al. Systematic Review and Meta-Analysis: Infliximab or Cyclosporine as Rescue Therapy in Patients With Severe Ulcerative Colitis Refractory to Steroids. The American journal of gastroenterology. 2016;111:477-491

4. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 2002;359:1541-1549

5. Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. The New England journal of medicine. 2005;353:2462-2476

 Kevans D, Murthy S, Iacono A, et al. Sa2031 Accelerated Clearance of Serum Infliximab During Induction Therapy for Acute Ulcerative Colitis is Associated With Treatment Failure. Gastroenterology. 2012;142:S384-S385

7. Seow CH, Newman A, Irwin SP, et al. Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut. 2010;59:49-54

8. Brandse JF, van den Brink GR, Wildenberg ME, et al. Loss of Infliximab Into Feces Is Associated With Lack of Response to Therapy in Patients With Severe Ulcerative Colitis.

Gastroenterology. 2015;149:350-355.e352

9. Herfarth HH, Rogler G, Higgins PD. Pushing the pedal to the metal: should we accelerate infliximab therapy for patients with severe ulcerative colitis? Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2015;13:336-338

10. Gibson DJ, Heetun ZS, Redmond CE, et al. An accelerated infliximab induction regimen reduces the need for early colectomy in patients with acute severe ulcerative colitis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2015;13:330-335 e331

11. Shah SC, Naymagon S, Panchal HJ, et al. Accelerated Infliximab Dosing Increases 30-Day Colectomy in Hospitalized Ulcerative Colitis Patients: A Propensity Score Analysis. Inflammatory bowel diseases. 2018;24:651-659 12. Al Khoury A, Chao Cy, Aruljothy A, et al. P495 Intensified infliximab rescue therapy for acute severe ulcerative colitis does not improve long term colectomy-free survival. Journal of Crohn's & colitis. 2017;11:S330-S331

13. Choy MC, Seah D, Gorelik A, et al. Predicting response after infliximab salvage in acute severe ulcerative colitis. Journal of gastroenterology and hepatology. 2018;33:1347-1352

Govani SM, Waljee AK, Stidham RW, et al. Accelerated Dosing of Infliximab Prevents
 Colectomy Within 90 Days in Only Half of Patients With Severe Ulcerative Colitis. Gastroenterology.
 2016;150:S106-S106

15. Munn Z, Moola S, Lisy K, et al. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. International journal of evidence-based healthcare. 2015;13:147-153

16. Wells G, Shea B, O'Connell D. The Newcastle-Ottawa Scale (NOS)

for assessing the quality of nonrandomised studies in meta-analyses. 2011. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 20 October 2017,

17. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135

Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Bmj.
 2003;327:557-560

19. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315:629-634

20. An Y, Chen C, White L, et al. Accelerated dosing of infliximab induction and endoscopic
 mucosal healing in patients with acute severe ulcerative colitis. Australian Gastroenterology Week.
 Gold Coast, Australia; 2017

21. Aratari A, Papi C, Clemente V, et al. Colectomy rate in acute severe ulcerative colitis in the infliximab era. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2008;40:821-826

22. Beswick L, van Langenberg DR, Rosella O, et al. Tu1288 The Predictive Value of Early Serum Infliximab, CRP and Faecal Calprotectin Levels Post-First Infliximab Rescue Dose for Acute Severe Colitis: Day 1 to 3 Is Key. Gastroenterology. 2015;148:S-848-S-849

23. Bressler B, Law JK, Al Nahdi Sheraisher N, et al. The use of infliximab for treatment of

hospitalized patients with acute severe ulcerative colitis. Canadian journal of gastroenterology = Journal canadien de gastroenterologie. 2008;22:937-940

 Croft A, Walsh A, Doecke J, et al. Outcomes of salvage therapy for steroid-refractory acute severe ulcerative colitis: ciclosporin vs. infliximab. Alimentary pharmacology & therapeutics.
 2013;38:294-302

25. Dean KE, Hikaka J, Huakau JT, et al. Infliximab or cyclosporine for acute severe ulcerative colitis: a retrospective analysis. Journal of gastroenterology and hepatology. 2012;27:487-492

26. Duijvis NW, ten Hove AS, Ponsioen CIJ, et al. Similar short-and long-term colectomy rates with ciclosporin and infliximab treatment in hospitalised ulcerative colitis patients. Journal of Crohn's and Colitis. 2016;10:821-827

27. Fernandes SR, Santos P, Miguel Moura C, et al. The use of a segmental endoscopic score may improve the prediction of clinical outcomes in acute severe ulcerative colitis. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva. 2016;108:697-702

28. Florholmen J, Overland G, Olsen T, et al. Short-and long-term clinical outcomes of infliximab in fulminant ulcerative colitis. Ulcers. 2011;(no pagination)

29. Gustavsson A, Jarnerot G, Hertervig E, et al. Clinical trial: colectomy after rescue therapy in ulcerative colitis - 3-year follow-up of the Swedish-Danish controlled infliximab study. Aliment Pharmacol Ther. 2010;32:984-989

30. Halpin SJ, Hamlin PJ, Greer DP, et al. Efficacy of infliximab in acute severe ulcerative colitis: a single-centre experience. World journal of gastroenterology : WJG. 2013;19:1091-1097

31. Ho GT, Lee HM, Brydon G, et al. Fecal calprotectin predicts the clinical course of acute severe ulcerative colitis. The American journal of gastroenterology. 2009;104:673-678

32. Hulkower B, Fischer M, Sagi S, et al. Severe corticosteroid-refractory ulcerative colitis successfully treated with serial high-dose infliximab during hospitalization. American Journal of Gastroenterology. 2016;111:S846

Jarnerot G, Hertervig E, Friis-Liby I, et al. Infliximab as rescue therapy in severe to moderately severe ulcerative colitis: A randomized, placebo-controlled study. Gastroenterology. 2005;128:1805-1811

34. Kaser A, Mairinger T, Vogel W, et al. Infliximab in severe steroid-refractory ulcerative colitis: a

pilot study. Wien Klin Wochenschr. 2001;113:930-933

35. Kim EH, Kim DH, Park SJ, et al. Infliximab versus Cyclosporine Treatment for Severe Corticosteroid-Refractory Ulcerative Colitis: A Korean, Retrospective, Single Center Study. Gut and liver. 2015;9:601-606

 Kohn A, Daperno M, Armuzzi A, et al. Infliximab in severe ulcerative colitis: Short-term results of different infusion regimens and long-term follow-up. Alimentary Pharmacology and Therapeutics.
 2007;26:747-756

37. Laharie D, Bourreille A, Branche J, et al. Ciclosporin versus infliximab in patients with severe ulcerative colitis refractory to intravenous steroids: A parallel, open-label randomised controlled trial. The Lancet. 2012;380:1909-1915

38. Laharie D, Bourreille A, Branche J, et al. Long-term outcome of patients with steroid-refractory acute severe UC treated with ciclosporin or infliximab. Gut. 2018;67:237-243

39. Lees CW, Heys D, Ho GT, et al. A retrospective analysis of the efficacy and safety of infliximab as rescue therapy in acute severe ulcerative colitis. Aliment Pharmacol Ther. 2007;26:411-419

40. Llao J, Naves JE, Ruiz-Cerulla A, et al. Improved outcome of acute severe ulcerative colitis while using early predictors of corticosteroid failure and rescue therapies. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2016;48:608-612

41. Lowenberg M, Duijvis NW, Ponsioen C, et al. Length of hospital stay and associated hospital costs with infliximab versus cyclosporine in severe ulcerative colitis. European Journal of Gastroenterology and Hepatology. 2014;26:1240-1246

42. Mocciaro F, Renna S, Orlando A, et al. Cyclosporine or infliximab as rescue therapy in severe refractory ulcerative colitis: early and long-term data from a retrospective observational study. Journal of Crohn's & colitis. 2012;6:681-686

43. Monterubbianesi R, Aratari A, Armuzzi A, et al. Infliximab three-dose induction regimen in severe corticosteroid-refractory ulcerative colitis: Early and late outcome and predictors of colectomy. J Crohns Colitis. 2014;8:852-858

44. Mortensen C, Caspersen S, Christensen NL, et al. Treatment of acute ulcerative colitis with infliximab, a retrospective study from three Danish hospitals. Journal of Crohn's & colitis. 2011;5:28-33
45. Ordas I, Domenech E, Manosa M, et al. Long-Term Efficacy and Safety of Cyclosporine in a

Cohort of Steroid-Refractory Acute Severe Ulcerative Colitis Patients from the ENEIDA Registry (1989-2013): A Nationwide Multicenter Study. The American journal of gastroenterology. 2017

46. Regueiro M, Curtis J, Plevy S. Infliximab for hospitalized patients with severe ulcerative colitis. J Clin Gastroenterol. 2006;40:476-481

47. Ribaldone DG, Dileo I, Pellicano R, et al. Severe ulcerative colitis: predictors of response and algorithm proposal for rescue therapy. Ir J Med Sci. 2017

48. Sands BE, Tremaine WJ, Sandborn WJ, et al. Infliximab in the treatment of severe, steroidrefractory ulcerative colitis: a pilot study. Inflamm Bowel Dis. 2001;7:83-88

49. Seah D, Choy MC, Gorelik A, et al. Examining maintenance care following infliximab salvage therapy for acute severe ulcerative colitis. Journal of gastroenterology and hepatology. 2018;33:226-231

50. Shepherd S, Wright EK, Holmes JA, et al. Outcomes of salvage therapy for acute severe colitis treatment in a single tertiary center: Infliximab v. cyclosporine. Journal of gastroenterology and hepatology. 2014;29:123

51. Sjoberg M, Magnuson A, Bjork J, et al. Infliximab as rescue therapy in hospitalised patients with steroid-refractory acute ulcerative colitis: a long-term follow-up of 211 Swedish patients. Alimentary pharmacology & therapeutics. 2013;38:377-387

52. Sood A, Midha V, Sharma S, et al. Infliximab in patients with severe steroid-refractory ulcerative colitis: Indian experience. Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology. 2014;33:31-34

53. Van Langenberg DR, Vasudevan A. Infliximab salvage outcomes in a single australian inflammatory bowel disease centre: Highly efficacious and significantly reduces future healthcare utilization in patients with acute severe colitis. Gastroenterology. 2015;1):S255

54. Williams JG, Alam MF, Alrubaiy L, et al. Infliximab versus ciclosporin for steroid-resistant acute severe ulcerative colitis (CONSTRUCT): a mixed methods, open-label, pragmatic randomised trial. Lancet Gastroenterol Hepatol. 2016;1:15-24

55. Yamamoto-Furusho JK, Uzcanga LF. Infliximab as a rescue therapy for hospitalized patients with severe ulcerative colitis refractory to systemic corticosteroids. Dig Surg. 2008;25:383-386

56. Gibson D, McNally M, Doherty J, et al. Medium to long-term outcomes in patients receiving accelerated dose infliximab induction for acute severe ulcerative colitis (ASUC) in a multi-centre cohort.

Journal of Crohn's and Colitis. 2018;12 (Supplement 1):S333

57. Sly N, Werner S, Pitt R, et al. Accelerated dosing of infliximab is not associated with improved colectomy rates in hospitalized severe ulcerative colitis patients. American Journal of Gastroenterology. 2017;112 (Supplement 1):S382-S383

58. Nalagatla N, Falloon K, Tran G, et al. Effect of Accelerated infliximab induction on short- and long-term outcomes of acute severe ulcerative colitis: A retrospective multi-center study and metaanalysis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2018

59. Kohn A, Daperno M, Armuzzi A, et al. Infliximab in severe ulcerative colitis: short-term results of different infusion regimens and long-term follow-up. Alimentary pharmacology & therapeutics. 2007;26:747-756

60. Shah S, Naymagon S, Panchal H, et al. PD-007 YI High-dose Infliximab Lowers 30-Day Colectomy Rates in Hospitalized Ulcerative Colitis Patients: A Propensity-Score Weighted Analysis. Inflammatory bowel diseases. 2017;23:S7-S8

61. Sandborn WJ, Rutgeerts P, Feagan BG, et al. Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab. Gastroenterology. 2009;137:1250-1260; quiz 1520

62. Beswick L, Van Langenberg DR, Rosella O, et al. The predictive value of early serum infliximab, crp and faecal calprotectin levels post-first infliximab rescue dose for acute severe colitis: 'Day 1 to 3 is key'. Journal of Gastroenterology and Hepatology (Australia). 2015;30:118

63. Chen JH, Andrews JM, Kariyawasam V, et al. Review article: acute severe ulcerative colitis evidence-based consensus statements. Alimentary pharmacology & therapeutics. 2016;44:127-144

64. Kedia S, Ahuja V, Tandon R. Management of acute severe ulcerative colitis. World journal of gastrointestinal pathophysiology. 2014;5:579-588

65. Brandse JF, Jansen JM, Baars PA, et al. Serum CRP is a better early marker for response to infliximab induction therapy than fecal calprotectin in patients with moderate to severe ulcerative colitis. Gastroenterology. 2014;146:S55-S56

66. Dotan I, Ron Y, Yanai H, et al. Patient factors that increase infliximab clearance and shorten half-life in inflammatory bowel disease: a population pharmacokinetic study. Inflammatory bowel diseases. 2014;20:2247-2259

67. Kevans D, Murthy S, Mould DR, et al. Accelerated Clearance of Infliximab is Associated With

Treatment Failure in Patients With Corticosteroid-Refractory Acute Ulcerative Colitis. Journal of Crohn's & colitis. 2018

68. Ungar B, Mazor Y, Weisshof R, et al. Induction infliximab levels among patients with acute severe ulcerative colitis compared with patients with moderately severe ulcerative colitis. Alimentary pharmacology & therapeutics. 2016

69. Beswick L, Rosella O, Rosella G, et al. Exploration of Predictive Biomarkers of Early Infliximab Response in Acute Severe Colitis: A Prospective Pilot Study. Journal of Crohn's & colitis. 2018;12:289-297

70. Brandse JF, Mathot RA, van der Kleij D, et al. Pharmacokinetic Features and Presence of Antidrug Antibodies Associate With Response to Infliximab Induction Therapy in Patients With Moderate to Severe Ulcerative Colitis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2016;14:251-258 e251-252

71. Hindryckx P, Novak G, Vande Casteele N, et al. Review article: dose optimisation of infliximab for acute severe ulcerative colitis. Alimentary pharmacology & therapeutics. 2017;45:617-630

72. University of Michigan Severe Ulcerative Colitis Protocol.

http://www.med.umich.edu/ibd/docs/severeucprotocol.pdf; 2016

73. Singh S, Al-Darmaki A, Frolkis AD, et al. Postoperative Mortality Among Patients With
 Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis of Population-Based Studies.
 Gastroenterology. 2015;149:928-937

Lau C, Dubinsky M, Melmed G, et al. The impact of preoperative serum anti-TNFalpha therapy levels on early postoperative outcomes in inflammatory bowel disease surgery. Annals of surgery.
2015;261:487-496

75. Randall J, Singh B, Warren BF, et al. Delayed surgery for acute severe colitis is associated with increased risk of postoperative complications. Br J Surg. 2010;97:404-409

TABLES AND FIGURES

Figure legends:

- 1. Figure 1. PRISMA flowchart
- 2. Figure 2. Forest plot using random-effects model for overall pooled colectomy free survival (proportions)
- Figure 3. Forest plot using random-effects models assessing CFS at month 1,3 and 12 for (A) 5mg/kg multiple dose vs 5mg/kg single dose induction and (B) dose intensified vs 5mg/kg standard schedule induction.
- 4. Figure 4. Forest plot using random-effects model to assess mean differences in covariates between dose intensified and 5mg/kg standard schedule cohorts

Table legends:

- Table 1. Study characteristics and considerations for analysis
 Abbreviations: CFS (colectomy free survival), IFX (Infliximab), ITT (intention to treat), RCT
 (Randomized controlled trial), TLW (Truelove and Witt's), SCCAI (simple clinical colitis
 activity index)
- 2. Table 2. Pooled colectomy free survival (random effects model), expressed as N%(95%CI)

Supplementary Appendices:

- 1. PRISMA Checklist
- 2. PICO and search strategy
- 3. Supplementary data extracted for analysis
- 4. Quality assessment

Table 1. Study characteristics and considerations for analysis

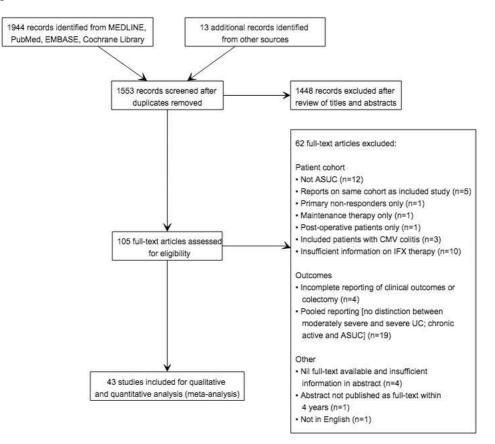
													CFS (N)		
Author	Year	Country	Type of Study	Abstract or full- text	Definition of severity	Eligibility for rescue therapy	Sample Size	Subgroups	IFX dose	IFX dose number (ITT)	IFX dose strategy (ITT)	Month 1	Month 3	Month 12	Considerations for the meta-analysis
Al Khoury	2017	Canada	Retrospective	Abstract	Mayo severity score 6-12 with Mayo endoscopi c score ≥2	IV steroid- refractory (Oxford criteria)	72					69	67	64	
								37	5mg/kg	3	Standard	36	35	33	
								35	10mg/kg	3	Standard	30	30	29	
								5	10mg/kg	3	Accelerated	3	2	2	
An	2017	Australia	Retrospective	Abstract	TLW criteria	IV steroid- refractory	44		5mg/kg			38	35	34	
								16		3	standard	15	13	13	
								28		3	Accelerated	23	22	21	
Aratari	2008	Italy	Retrospective	Full-text	TLW criteria and Powell Tuck	IV steroid- refractory	11		5mg/kg	3	Standard	11	11	10	
Beswick	2016	Australia	Prospective observational	Abstract	TLW criteria	IV steroid- refractory	24		5mg/kg			22	22	19	
								3	5mg/kg	1	Single dose	3	3	3	
								9	5mg/kg	≥2	Standard	9	9	9	
								12	5mg/kg	≥2	Accelerated	10	10	7	
Bressler	2008	Canada	Retrospective	Full-text	Hospitalis ed UC	IV steroid- refractory	21		5mg/kg	1	Single dose	16	13	NS	
Croft	2013	Australia	Prospective observational	Full-text	TLW criteria	IV steroid- refractory	38		5mg/kg	1	Single dose	31	28	24	
Dean	2011	New Zealand	Retrospective	Full-text	Hospitaliz ed UC	IV steroid- refractory	19		5mg/kg	1-5	Single or multiple dose	NS	15	12	

Г

Duijvis	2016	Netherla nds	Retrospective	Full-text	Hospitaliz ed UC	IV or oral steroid- refractory	22		5mg/kg	3	Standard	21	16	12	Mixture of moderate-severe and severe patients
Fernand es	2016	Portugal	Retrospective	Full-text	TLW criteria	IV steroid- refractory (Oxford criteria)	25		5mg/kg	3	Standard	20	20	19	
Florhom en	2011	Norway	RCT	Full-text	TLW criteria	IV steroid- refractory	13		5mg/kg	3	Standard	13	13	NS	
Gibson	2015	Ireland	Retrospective	Full-text	Hospitaliz ed UC	IV steroid- refractory	50					36	32	29	
								35	5mg/kg	3	Standard	22	20	18	
								15	5mg/kg	3	Accelerated	14	12	11	
Gibson	2018	Ireland	Retrospective	Abstract	Hospitaliz ed UC	IV steroid- refractory	145								
								87	5mg/kg	3	Standard	71	66	60	
								58	5mg/kg	3	Accelerated	53	49	44	
Govani	2016	USA	Retrospective	Abstract	Hospitaliz ed UC	IV steroid- refractory	55					44	42	33	Mixture of 5mg/kg and 10mg/kg given to patients in both accelerated and high dose cohorts, unable to include into the meta- analysis
								17	10mg/kg starting dose	3	NA	10	9	9	
								38	5mg/kg starting dose	3	NA	34	33	24	
Jarnerot/ Gustavs son	2005/2 010	Sweden	RCT/Retrospe ctive	Full-text	Seo index	IV steroid- refractory (failure to improve according to Seo index)	24		4- 5mg/kg	1	Single dose	17	17	14	Jarnerot and Gustavsson cohorts merged; mixture of moderate-severe and severe patients

Halpin	2013	UK	Retrospective	Full-text	TLW criteria	IV steroid- refractory	44		5mg/kg	3	Standard	34	34	31	IV steroid- refractory
Но	2009	UK / Scotland	Prospective observational	Full-text	TLW criteria	IV steroid- refractory (Oxford criteria or Ho index)	21		5mg/kg	1	Single dose	10	NS	NS	
Hulkowe r	2016	United States	Prospective observational	Abstract	Hospitaliz ed UC / Mayo score >9	IV steroid- refractory	4		10mg/kg	2-3	accelerated	4	4	NS	
Kaser	2001	Austria	Prospective observational	Full-text	Hospitaliz ed UC	IV steroid- refractory	6		5mg/kg	1	Single dose	6	6	NS	
Kim	2015	South Korea	Retrospective	Full-text	Hospitaliz ed UC	IV steroid- refractory	33		5mg/kg	3	Standard	33	33	32	
Kohn	2007	Italy	Retrospective	Full-text	TLW criteria	IV steroid- refractory	83		5mg/kg			NS	71	NS	2 month analysed as 3 month outcomes; mixture of moderate-severe and severe patients
								26		1	Single dose	NS	17	NS	
								57		≥2	Week 0,2,4, or 0,2,6	NS	54	NS	
Laharie	2012/2 017	France	RCT	Full-text	Lichtiger score >10	IV steroid- refractory	55		5mg/kg	3	Standard	NS	45	38	Laharie 2012/2017 cohorts merged; 2 patients excluded as received CyA; 12 month outcome derived % estimate
Lees	2007	UK	Retrospective	Full-text	TLW criteria	IV steroid- refractory	39		5mg/kg	1-3	Single or multiple dose	26	26	24	
Llao	2016	Spain	Retrospective	Full-text	Montreal classificati on / TLW	IV steroid- refractory	14		5mg/kg	3	Standard	14	14	11	
Lowenb erg	2014	Netherla nds	Retrospective	Full-text	TLW criteria	IV steroid- refractory (Oxford criteria)	16		5mg/kg	3	Standard	15	12	10	

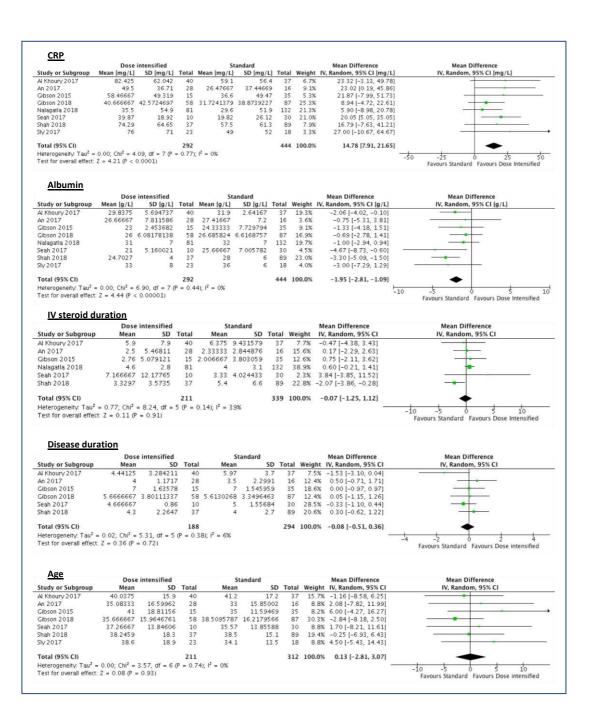
Mocciar o	2012	Italy	Retrospective	Full-text	TLW criteria	IV steroid- refractory	30		5mg/kg	3	Standard	25	25	25	
Monteru bbianesi	2014	Italy	Retrospective	Full-text	TLW criteria (modified by Chapman)	IV steroid- refractory	113		5mg/kg	3	Standard	96	91	83	
Mortens en	2011	Denmar k	Retrospective	Full-text	Hospitaliz ed UC / SCCAI	IV or oral steroid- refractory	56		5mg/kg	1-9	Single or Standard	46	39	NS	
Nalagatl a	2018	USA	Retrospective	Full-text	Hospitaliz ed UC	IV steroid- refractory	213								
								132	5mg/kg	>2	Standard	121	113	96	
								81	5- 10mg/kg	>2	Accelerated/Int ensified	74	65	58	
Ordas	2017	Spain	Retrospective	Full-text	Hospitaliz ed UC	IV steroid- refractory	131		5mg/kg	1 or 3	Single or Standard	NS	112	100	
Regueir o	2006	United States	Retrospective	Full-text	Partial Mayo score >=9	IV steroid- refractory	11		5mg/kg	3	Standard	7	4	2	
Ribaldon e	2017	Italy	Retrospective	Full-text	TLW criteria	IV steroid- refractory	20		5mg/kg	3	Standard	19	19	15	
Sands	2001	United States	RCT	Full-text	TLW criteria / Lichtiger score	IV steroid- refractory	11					7	4	NS	
								3	5mg/kg	1	Single dose	3	1	NS	
								3	10mg/kg	1	Single dose	2	1	NS	
								2	20mg/kg	1	Single dose	2	2	NS	
Seah	2017	Australia	Retrospective	Full-text	TLW criteria	IV steroid- refractory	41		5mg/kg	3		37	36	30	
								30			Standard	28	28	24	
								10			Accelerated	9	8	6	
Shah	2018	United States	Retrospective	Full-text	Hospitaliz ed UC	IV or oral steroid- refractory	126			3		106	97	89	
								89	5mg/kg		Standard	78	72	65	
								23	5mg/kg		Accelerated	16	14	14	
								8	10mg/kg		Standard	6	5	4	


								6	10mg/kg		Accelerated	6	6	6	
Shepher d	2014	Australia	Retrospective	Abstract	TLW criteria	IV steroid- refractory	15		5mg/kg	1-3		12	10	6	
								11		1	Single dose	8	6	4	
								4		≥2	Multiple dose	4	4	2	
Sjoberg	2013	Sweden	Retrospective	Full-text	TLW criteria	IV steroid- refractory (fulminant colitis index - Lindgren 1998 or Seo index)	211		5mg/kg			153	149	133	
								124		1	Single dose	NS	76	NS	
								87		2-3	Standard	NS	73	NS	
Sly	2017	USA	Retrospective	Abstract	Hospitaliz ed UC	IV steroid- refractory	41								
								18	5mg/kg	3	Standard	16	16	13	
								23	5- 10mg/kg	3	Accelerated	16	14	11	
Sood	2014	India	Retrospective	Full-text	Lichtiger score	IV steroid- refractory	28		5mg/kg	3	Standard	25		19	
Van Langenb erg	2015	Australia	Retrospective	Abstract	TLW criteria	IV steroid- refractory	88		5mg/kg			80	76	67	
- 5								41		1	Single dose	33	31	28	
								47		≥2	Standard	47	45	39	
Williams	2016	UK	RCT	Full-text	TLW criteria or clinical judgement	IV steroid- refractory	135		5mg/kg	3	Standard	106	96	88	Moderate severity TLW in 27%
Yamam oto- Furusho	2008	Mexico	Prospective observational	Full-text	TLW criteria	IV steroid- refractory	10		5mg/kg	1	single dose	NS	2	2	

Abbreviations: CFS (colectomy free survival), IFX (Infliximab), ITT (intention to treat), RCT (Randomized controlled trial), TLW (Truelove and Witt's), SCCAI (simple clinical colitis activity index), NS (not stated)

 Table 2. Pooled colectomy free survival (random effects model), expressed as N%(95%CI)

	Month 1	Month 3	Month 12
Overall Colectomy free survival	85.7% (82.0-89.0%, l²=70.6%, 36 studies, 1550/1860 cases)	79.7% (75.48-83.6%, I ² =77%, 36 studies, 1659/2129 cases)	69.8% (65.7-73.7%, l ² =67%, 33 studies, 1357/1943 cases)
5mg/kg Single dose	78.8% (68.4-88.0%, l ² =40.2%, 9 studies, 127/168 cases)	67.3% (57.1-76.8%, l²=55.1%, 10 studies, 200/307 cases)	57.0% (40.7-72.7%, l ² =60.2, 6 studies, 75/127 cases)
5mg/kg - Multiple dose	90.0% (86.1-93.3%, l²=67.7%, 25 studies, 1027/1189 cases)	85.1% (80.9-89.0%, I²=71.7%, 28 studies, 1125/1379 cases)	72.8% (68.2-77.2%, l²=60.2%, 25 studies, 881/1231 cases
5mg/kg - Standard 026 induction	89.4% (83.9-93.9%, l²=81.5%, 24 studies, 882/1038 cases)	84.0% (78.3-89.1%, l ² =80.5%, 25 studies, 923/1152 cases)	73.8% (67.9-79.4%, l²=74.6%, 24 studies, 772/1080 cases)
5mg/kg - Accelerated induction	86.3% (78.5-92.8%, l ² =21.7%, 6 studies, 125/145 cases)	79.7% (72.3-86.2%, l ² =0%, 6 studies, 115/145 cases)	71.2% (63.1-78.6%, l ² =0%, 5 studies, 103/145 cases)
Dose intensified induction	84.8% (78.0-90.6%, l²=46.1%, 11 studies, 274/325 cases)	78.5% (70.8-85.4%, l²=49.2%, 11 studies, 254/325 cases)	70.1% (60.2-79.2%, l ² =65.9%, 10 studies, 231/321 cases)
10mg/kg multiple dose induction	81.0% (65.4-93.2%, l ² =39.9%, 4 studies, 59/75 cases)	76.7% (59.1-91.1%, l²=48.3%, 4 studies, 56/75 cases)	69.6% (54.0-83.3%, l ² =37.3%, 3 studies, 50/71 cases)
10mg/kg standard schedule	84.9% (71.6-95.0%, l ² =0%, 2 studies, 36/43 cases)	79.4% (53.9-97.1%, l ² =50.1%, 2 studies, 35/43 cases)	71.5% (36.4-96.9%, l ² =69.7%, 2 studies, 33/43 cases)
10mg/kg accelerated schedule	92.7% (60.3-100%, I ² =43.7%, 3 studies, 13/15 cases)	88.3% (63.5-100%, I ² =68.9%, 3 studies, 12/15 cases)	78.8% (8.3-100%, l ² =81.7%, 2 studies, 8/11 cases)


Figure 1

Month 1					
Author Min Northomen Jarnerot/Guitavsson Sands Aratari Beswick Bressler Croft Duijvis Fernandes Gibson Govanl Halpin Ho Hulkower Halpin Ho Hulkower Hulkower Halpin Ho Hulkower Kim Lase Lese Lase Lese Lase Monterubblanesi Monterubblanesi Monterubblanesi Shah Shepherd Sjoberg Siy Sy Arat Langenberg Siy Man Langenberg Sy Monterubblanesi Shah Shepherd Sjoberg Sy Man Langenberg Mullams Synthesis	Year 2017 2011 2005/10 2005/10 2005/10 2008 2018 2016 2013 2016 2015 2016 2015 2016 2015 2018 2016 2013 2019 2019 2019 2007 2016 2007 2016 2007 2016 2017 2017 2014 2017 2017 2017 2017 2017 2017 2017 2017	Sample size 44 13 24 24 24 25 55 55 55 55 55 55 44 4 6 6 33 9 9 145 55 55 44 4 6 6 33 9 145 55 53 44 4 6 6 33 9 113 15 120 121 145 55 54 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 54 145 55 55 55 54 145 55 55 55 54 145 55 55 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 54 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 55 55 145 14	$\begin{array}{l} \textbf{Massure}(\mathbf{C})\\ 0.56 (0.74, 0.95)\\ 0.56 (0.74, 0.95)\\ 0.71 (0.51, 0.88)\\ 0.71 (0.51, 0.88)\\ 0.95 (0.95, 0.92)\\ 1.0.085, 11\\ 0.76 (0.55, 0.92)\\ 0.82 (0.67, 0.93)\\ 0.82 (0.67, 0.93)\\ 0.82 (0.67, 0.93)\\ 0.83 (0.62, 0.94)\\ 0.72 (0.59, 0.84)\\ 0.72 (0.59, 0.84)\\ 0.72 (0.59, 0.94)\\ 0.72 (0.59, 0.94)\\ 0.72 (0.59, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.72 (0.51, 0.94)\\ 0.73 (0.51, 0.94)\\ 0.75 (0.51, 0.94)\\ 0.75 (0.51, 0.94)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 11)\\ 0.94 (0.75, 0.94)\\ 0.95 (0.81, 0.94)\\ 0.95 (0.81, 0.94)\\ 0.95 (0.81, 0.94)\\ 0.95 (0.81, 0.76)\\ 0.95 (0.81$	Wardpt % 3115% 3125% 1.64% 3.6% 1.64% 2.5% 2.3% 3.6% 2.4% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2	
Author	Year	Sample size	Measure (CI)	Weight %	
An Jarnerot/Gustavsson Laharie Sa Khoury Aratari Bressler Croft Dean Duijvis Dean Duijvis Dean Duijvis Croft Dean Duijvis Croft Dean Duijvis Gibson Govani Halpin Huikower Xaser Xim Moctaros Monterubbianesi Mortensen Nalagatia Ordas Shepherd Sjoberg Sjv Yamanoto-Furusho Synthesis	2017 2011 2005/10 2012/17 2012/17 2012/17 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018	44 13 24 25 11 27 12 21 28 29 22 25 25 25 25 25 25 25 25 25	$\begin{array}{l} 0.8 \ (0.66; 0.9) \\ 1 \ (0.87; 0.48) \\ 0.2 \ (0.7; 0.43) \\ 0.3 \ (0.5; 0.84) \\ 0.4 \ (0.7; 0.43) \\ 0.4 \ (0.7; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.43) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.5; 0.53) \\ 0.4 \ (0.7; 0.64) \\ 0.4 \ (0.7; 0.63) \\ $	2.85% 2.35% 2.34% 2.31% 3.01% 3.01% 3.18% 1.18% 2.34% 2.21% 2.23% 2.23% 2.23% 3.01% 2.85% 3.01% 2.85% 3.01% 2.85% 3.01% 3.01% 3.02% 3.	
Month 12					
Author An Jarnerot/Gustavsson Laharie Laharie Al Khoury. Aratari Beswick Croft Dean Duilyis Fernandes Gilsson Gouani Haipin Kim Gouani Haipin Lees Liao Lees Liao Lees Liao Lowenberg Mocclaro Monterubianesi Naiagatia Ordas Reguerio Ribaldone Seah Sisah Shepherd Sjoberg Sjoberg Sjoberg Sjoberg Sjoberg Siy Sood Van Langenberg Williams Yamamoto-Furusho Synthesis	Year 2017 2005/10 2005/10 2012/17 2017 2018 2016 2016 2016 2015 2018 2018 2018 2018 2018 2018 2018 2019 2018 2019 2018 2019 2019 2019 2019 2019 2014 2012 2014 2012 2014 2017 2017 2017 2017 2017 2017 2017 2017	Sample size 44 44 24 25 55 72 21 24 25 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 145 55 145 55 145 55 145 55 145 55 145 55 145 55 145 55 145 55 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 145 55 50 113 113 113 113 113 113 113 11	Measure (C) 0.77 (0.44 (0.88) 0.58 (0.38; 0.77) 0.69 (0.56 (0.81) 0.79 (0.64; 0.93) 0.51 (0.55; 1) 0.79 (0.65; 0.93) 0.53 (0.47; 0.78) 0.55 (0.35; 0.75) 0.57 (0.57; 0.93) 0.57 (0.57; 0.93) 0.57 (0.44; 0.79) 0.57 (0.44; 0.79) 0.57 (0.44; 0.79) 0.57 (0.45; 0.23) 0.57 (0.87; 1) 0.57 (0.46; 0.78) 0.57 (0.87; 1) 0.57 (0.87; 0.83) 0.73 (0.55; 0.81) 0.73 (0.55; 0.81) 0.75 (0.53; 0.92) 0.73 (0.55; 0.81) 0.55 (0.57; 0.73) 0.58 (0.49; 0.84) 0.75 (0.57; 0.73) 0.58 (0.59; 0.73) 0.58 (0.5	Weight % 3.21% 2.44% 3.48% 3.78% 3.78% 2.44% 3.03% 2.44% 3.03% 2.43% 3.21% 3.27% 4.4% 3.42% 3.21% 3.22% 2.23% 3.22% 4.65% 4.33% 1.52% 3.22% 3.12% 4.65% 4.64% 3.12% 4.64% 3.12% 4.64% 3.12% 4.65% 4.35% 1.42% 1.42% 1.42%	
					0 0.2 0.4 0.6 0.8 1 Proportion

Figure 3

Month 1	5ma/ka	g Multiple	e Dose	5mg/kg Singl	e Dose		Odds Ratio		Odds	s Ratio
tudy or Subgroup		ents	Total	Events			M-H, Random, 95% C	1		dom, 95% Cl
swick 2016		19	21	3		3 30.5%	1.11 [0.04, 28.52		-	-
epherd 2014		4	4	8		1 31.7%	3.71 [0.15, 88.75		-	
in Langenberg 2015		47	47	33	4	1 37.8%	24.10 [1.34, 432.09	1		
otal (95% CI)			72		5	5 100.0%	5.22 [0.82, 33.14	1		
otal events		70		44	-					
eterogeneity: Tau ² = est for overall effect:		= 2.15, 0		= 0.34); l ² = 7%	6			0.01	0.1 Favours Single dose	1 10 10 Favours Multiple dose
Month 3 udy or Subgroup		g Multiple ents	e Dose Total	5mg/kg Singl Events			Odds Ratio M-H, Random, 95% C	e.		s Ratio dom, 95% CI
swick 2016	LVG	19	21	3		3 2.9%	1.11 (0.04. 28.52		M-II, Kalic	
hn 2007		54	57	17		6 15.2%	9.53 [2.31, 39.26			— — — — — — — — — — — — — — — — — — —
epherd 2014		4	4	6	1		7.62 [0.33, 175.01			N2-1
berg 2013		73	87	76	12		3.29 [1.67, 6.48			
n Langenberg 2015		45	47	31	4	1 12.1%	7.26 [1.49, 35.44	1		
tal (95% CI)			216		20	5 100.0%	4.24 [2.44, 7.36	1		•
tal events		195		133						
terogeneity: Tau ² = st for overall effect:				$= 0.55$); $I^2 = 0\%$	5			0.01 F	0.1 Favours Single Dose	1 10 10 Favours Multiple Dose
Ionth 12		g Multiple		5mg/kg Singl			Odds Ratio			s Ratio
udy or Subgroup	Eve	ents	Total	Events	Tota		M-H, Random, 95% C		M-H, Rand	dom, 95% Cl
swick 2016 epherd 2014		16 2	21	3 4		3 8.1% 1 14.6%	0.43 [0.02, 9.67 1.75 [0.17, 17.69		_	1 ×
n Langenberg 2015		39	47	28		1 77.3%	2.26 [0.83, 6.19		1	
							• • • • • • • • • • • • • • • • • • • •	-		200
tal (95% CI)			72		5	5 100.0%	1.91 [0.79, 4.62	1		-
tal events terogeneity: Tau ² = st for overall effect:				35 0.60); I ² = 0%	;			0.01	0.1 Favours Single Dose	1 10 10 Favours Multiple Dose
lonth 1										
Month 1 udy or Subgroup	Dose inten Events	Total		Standard induc ents	Total		Odds Ratio -H, Random, 95% CI			s Ratio dom, 95% Cl
udy or Subgroup Khoury 2017						Weight M 8.5% 9.0%		·		
udy or Subgroup Khoury 2017 2017 bson 2015	Events 23 33 14	Total 28 40 15		15 36 22	Total 16 37 35	8.5% 9.0% 9.0%	-H, Random, 95% CI 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42]			
udy or Subgroup Khoury 2017 2017 bson 2015 bson 2018	Events 23 33 14 53	Total 28 40 15 58		ents 15 36 22 71	Total 16 37 35 87	8.5% 9.0% 9.0% 17.7%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93]	; <u></u>		
udy or Subgroup Khoury 2017 2017 oson 2015 oson 2018 lagatla 2018	Events 23 33 14 53 74	Total 28 40 15 58 81		15 36 22 71 121	Total 16 37 35 87 132	8.5% 9.0% 9.0% 17.7% 18.4%	-H, Random, 95% Cl 0.31 (0.03, 2.89) 0.13 (0.02, 1.12) 8.27 (0.97, 70.42) 2.39 (0.82, 6.93) 0.96 (0.36, 2.59)	_		
Idy or Subgroup Khoury 2017 2017 Joson 2015 Joson 2018 Jagatla 2018 ah 2017	Events 23 33 14 53	Total 28 40 15 58		ents 15 36 22 71	Total 16 37 35 87	8.5% 9.0% 9.0% 17.7%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95]			
Idy or Subgroup Khoury 2017 2017 55on 2015 55on 2018 Jagatla 2018 ah 2017 ah 2018	Events 23 33 14 53 74 9	Total 28 40 15 58 81 10		15 36 22 71 121 28	Total 16 37 35 87 132 30	8.5% 9.0% 9.0% 17.7% 18.4% 7.2%	-H, Random, 95% Cl 0.31 (0.03, 2.89) 0.13 (0.02, 1.12) 8.27 (0.97, 70.42) 2.39 (0.82, 6.93) 0.96 (0.36, 2.59)			
udy or Subgroup Khoury 2017 2017 bson 2015 bson 2018 ulgatia 2018 ah 2017 ah 2018 /2017	Events 23 33 14 53 74 9 28	Total 28 40 15 58 81 10 37 23		15 36 22 71 121 28 78	Total 16 37 35 87 132 30 89 18	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59]			
udy or Subgroup Khoury 2017 2017 5500 2015 5500 2018 Jagatia 2018 ah 2017 ah 2018 / 2017 tal (95% CI)	Events 23 33 14 53 74 9 28 16	Total 28 40 15 58 81 10 37		15 36 22 71 121 28 78 16	Total 16 37 35 87 132 30 89 18	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5%	-H, Random, 95% Cl 0.31 (0.03, 2.89) 0.13 (0.02, 1.12) 8.27 (0.97, 70.42) 2.39 (0.82, 6.93) 0.96 (0.36, 2.59) 0.64 (0.05, 7.95) 0.44 (0.16, 1.17)			
udy or Subgroup Khoury 2017 2017 oson 2015 oson 2018 ulagatla 2018 ah 2017 ah 2018 2017	Events 23 33 14 53 74 9 28 16 250 0.64; Chi ² =	Total 28 40 15 58 81 10 37 23 292 • 15.08, 0	Ev	ents 15 36 22 71 121 28 78 16 387	Total 16 37 35 87 132 30 89 18 444	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68]	.01 Favour	M-H, Ranc	
Idy or Subgroup Khoury 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2017 2017 2018 2017 2017 2018 2017 2017 2018 2017	Events 23 33 14 53 74 9 28 16 250 0.64; Chi ² = Z = 0.68 (P	Total 28 40 15 58 81 10 37 23 292 = 15.08, (= 0.49) stified	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 Standard induc	Total 16 37 35 87 132 30 89 18 444 % tion	8.5% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] Codds Ratio	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 son 2015 son 2018 agata 2018 h 2017 h 2018 2017 cal (95% CI) al events erogeneity. Tau ² = th for overall effect: 2 onth 3 dy or Subgroup	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = 2 0.68 (P Dose inten Events	Total 28 40 15 58 81 10 37 23 292 = 15.08, c = 0.49) stifted Total	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 Standard induce ents	Total 16 37 35 87 132 30 89 18 444 % tion Total	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2018 agatla 2018 h 2018 2017 tal (95% Cl) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = Z = 0.68 (P Dose inten Events 22	Total 28 40 15 58 81 10 0 37 23 292 = 15.08, c = 0.49) total Total 28	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 Standard induce ents 13	Total 16 37 35 87 132 30 89 18 444 % tion Total 16	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0% Weight M 9.8%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2018 2017 A 2018 2017 A 2018 2017 CI) al vents erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = 2 0.68 (P Dose inten Events	Total 28 40 15 58 81 10 37 23 292 = 15.08, c = 0.49) stifted Total	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 Standard induce ents	Total 16 37 35 87 132 30 89 18 444 % tion Total	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0%	-H, Random, 95% CI 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] Odds Ratio -H, Random, 95% CI 0.85 [0.18, 3.97] 0.23 [0.05, 1.16]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2018 agata 2018 h 2017 h 2018 2017 al (95% Cl) al events erogeneity. Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 2017	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = 2 0.68 (P Dose inten 22 32 12 49	Total 28 40 15 58 81 10 0 37 23 292 = 15.08, c = 0.49) sified Total 28 40 15 58 81 10 28 81 10 57 82 81 10 81 10 82 81 10 82 82 81 10 82 82 82 82 82 82 82 82 82 82	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induc ents 13 35	Total 16 37 35 87 132 30 89 18 444 % tion Total 16 37	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0% Weight M 9.8% 9.2%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 5on 2015 son 2018 agata 2018 h 2017 h 2018 2017 al (95% Cl) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 son 2015 son 2018 agata 2018	Events 23 33 14 9 28 16 250 0.64; Chi² = Z 28 28 31 14 9 28 16 250 0.64; Chi² = 2 2 22 22 12 49 65	Total 28 40 15 58 81 10 37 23 292 = 15.08, o = 0.49) stified Total 40 15 58 81 10 37 23 292 = 15.08, o = 0.49) 55 88 81 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 Standard induce ents 13 35 20 66 113	Total 16 37 35 87 132 30 89 18 444 % tion Total 16 37 35 87 132 132 89 18 444 %	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.33] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup thoury 2017 2017 2017 2017 2017 2017 2018 2018 2017 al (95% Cl) al events erogeneity. Tau ² = t for overall effect: : onth 3 dy or Subgroup thoury 2017 2017 2017 2015 son 2015 son 2015 son 2015 son 2018 agatla 2018 h 2017	Events 23 33 14 53 74 9 28 16 2500 0.64; Chi² = 2 32 2 33 34 35	Total 28 40 15 58 81 10 37 23 292 • 15.08, 6 = 0.49) osified Total 28 40 15 58 81 10 37 23 292 • 15.08, 6 = 0.49) osified 15 58 81 10 10 15 58 81 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 10 10 10 10 10 10 10 1	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induce ents 13 35 20 66 113 28	Total 16 37 87 132 30 89 18 444 % tion Total 16 37 35 87 132 30 16 37 35 87 132 30 18 444 37 18 18 18 18 18 18 18 18 18 18	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8% 19.9% 12.5%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.49 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2017 h 2018 2017 h 2018 2017 al (95% Cl) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 son 2015 son 2018 agatta 2018 h 2017 h 2018	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = 2 2 0.68 (P Dose inten 22 32 12 49 65 8 25	Total 28 40 15 58 81 10 37 23 292 = 15.08, 6 = 0.49) sified Total 28 40 15 58 81 10 37 38 58 81 37 28 40 10 37 23 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 28 28 292 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 28 28 28 28 2	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 e 0.04); l ² = 54 5tandard induce ents 13 35 20 66 113 28 72	Total 16 37 35 87 132 89 18 444 % tion Total 16 37 35 87 132 30 0 89 18 444 %	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 9.2% 10.8% 19.9% 6.2% 17.7%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.86 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2018 2017 al (95% CI) al events erogeneity. Tau ² = t for overall effect: 3 onth 3 dy or Subgroup (houry 2017 2017 2017 2017 2018 agata 2018 agata 2018 agata 2018 h 2017 h 2018 2017	Events 23 33 14 53 74 9 28 16 2500 0.64; Chi² = 2 32 2 33 34 35	Total 28 40 15 58 81 10 37 23 292 • 15.08, 6 = 0.49) osified Total 28 40 15 58 81 10 37 23 292 • 15.08, 6 = 0.49) osified 15 58 81 10 10 15 58 81 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 10 10 10 10 10 10 10 1	Ev df = 7 (P = 5mg/kg §	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induce ents 13 35 20 66 113 28	Total 16 37 87 132 30 89 18 444 % tion Total 16 37 35 87 132 30 16 37 35 87 132 30 18 444 37 18 18 18 18 18 18 18 18 18 18	8.5% 9.0% 9.0% 17.7% 18.4% 7.2% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8% 19.9% 12.5%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.49 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2018 2018 2018 2017 al (95% Cl) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2	Events 23 23 33 14 9 28 16 250 0.64, Chi² = 2 28 2 28 22 12 49 65 8 25 14 12	Total 28 40 15 58 81 10 37 23 292 = 15.08, 6 = 0.49) sified Total 28 40 15 58 81 10 37 38 58 81 37 28 40 10 37 23 292 28 28 28 292 28 28 292 28 28 28 292 28 28 28 292 28 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 292 28 28 28 28 28 292 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 292 28 28 28 28 28 28 28 28 28 2	Ev df = 7 (P = 5mg/kg §	step step 15 36 22 71 121 28 78 16 387 0.04); 1 ² = 54 Standard induction 35 20 66 113 28 72 16	Total 16 16 37 35 87 132 30 89 18 444 % ttion Total 16 37 35 87 132 30 89 18 16 37 37 35 87 132 30 89 18 18	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 9.2% 10.8% 19.9% 6.2% 17.7%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.86 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17]	.01 Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 son 2015 son 2018 agatla 2018 h 2017 al (95% CI) al events erogeneity: Tau² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 agatla 2018 h 2017 h 2017 al (95% CI) al events	Events 23 31 14 53 74 9 28 16 2500 0.64; Chi² = 2 32 22 32 12 49 65 8 25 14 227	Total 28 40 15 58 81 10 37 23 292 15.08,0 = 0.49) stified Total 28 40 15 58 81 10 37 23 292 292	Ev df = 7 (P - 5mg/kg 5 Ev	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induc ents 13 35 20 66 113 28 72 16 363	Total 16 16 37 35 87 132 30 89 18 444 % tion 16 37 35 87 132 30 89 18 444 % 444	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% 9.8% 9.2% 9.8% 9.2% 10.8% 9.2% 10.8% 17.7% 19.9% 6.2% 17.7%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.33] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.05 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27]	Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2017 2018 2018 2017 tal (95% CI) al events terogeneity: Tau ² = thor overall effect: 3 conth 3 dy or Subgroup (houry 2017 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017 1007 2017	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = 2 32 22 32 12 22 32 12 49 65 8 25 14 22 32 12 22 32 12 32 32 32 14 227 0.33, Chi² =	Total 28 40 15 58 81 10 37 23 292 • 15.08, (= 0.49) • 0.49) • 0.49) • 15 58 81 10 37 23 292 • 23 292 • 35 81 10 37 23 292 • 35 81 10 37 23 292 • 35 81 10 37 23 292 • 35 81 10 37 23 292 • 35 81 10 37 23 292 • 35 81 10 37 23 292 • 35 81 10 23 292 • 35 15 15 15 15 15 15 15 15 15 1	Ev df = 7 (P - 5mg/kg 5 Ev	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induc ents 13 35 20 66 113 28 72 16 363	Total 16 16 37 35 87 132 30 89 18 444 % tion 16 37 35 87 132 30 89 18 444 % 444	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% 9.8% 9.2% 9.8% 9.2% 10.8% 9.2% 10.8% 17.7% 19.9% 6.2% 17.7%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.33] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.05 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27]	Favour	M-H, Ranc	dom, 95% Cl
dy or Subgroup (houry 2017 2017 2017 2017 2017 2018 2018 2018 2017 cal (95% CI) al events erogeneity. Tau ² = t for overall effect: 2 onth 3 dy or Subgroup (houry 2017 2017 son 2015 son 2015 son 2015 son 2018 2017 cal (95% CI) al events erogeneity. Tau ² = t for overall effect: 2 cal (95% CI) cal (95% CI)	Events 23 33 14 53 74 9 28 16 250 0.64, Chi² = 2 32 22 32 12 22 32 12 49 65 8 25 14 22 32 12 22 32 12 32 32 32 14 227 0.33, Chi² =	Total 28 40 15 58 81 10 37 23 292 = 15.08, c = 0.49) asified Total 28 40 15 58 81 10 37 23 292 = 15.08, c = 0.49) asified 10 37 23 292 = 15.08, c = 0.49) = 28 40 10 37 23 292 = 15.08, c = 0.49) = 28 40 10 10 10 10 10 10 10 10 10 1	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P =	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induc ents 13 35 20 66 113 28 72 16 363	Total 16 16 37 37 35 87 132 30 9 18 444 % 16 37 35 87 132 30 89 18 444 % 444 % 444 % 444 % 444 % 444	8.5% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8% 19.9% 6.2% 17.7% 8.7% 100.0%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.33] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.75 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27]	Favour	M-H, Ranc	dom, 95% CI
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2018 2017 h 2018 2017 h 2018 2017 cal (95% CI) al events erogeneity. Tau ² = t for overall effect: 2 onth 3 dy or Subgroup (houry 2017 2017 son 2015 son 2015 son 2015 son 2018 2017 th 2018 2017 cal (95% CI) al events erogeneity. Tau ² = t for overall effect: 2 onth 12 dy or Subgroup	Events 23 31 14 53 74 9 28 16 250 0.64; Chi² = 22 32 12 29 8 25 8 25 2 25 2 25 2 25 2 25 2 25 12 25 14 25 15 16 227 25 12 25 25 12 23; Chi² = 24 12, 27 0.33; Chi² = 2 2 11, 17 (P Dose inter	Total 28 40 15 58 81 10 37 23 292 = 15.08, of = 0.49) osified Total 10 37 28 40 15 58 81 10 37 23 292 = 15.08, of 10 10 37 23 292 = 15.08, of 10 10 28 40 15 58 81 10 37 23 292 = 15.08, of 10 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 10 28 40 15 58 82 10 10 28 40 15 58 82 10 10 15 58 82 292 28 40 15 58 82 292 28 40 15 58 82 292 28 40 15 58 88 10 37 292 292 28 40 15 58 88 10 37 292 292 28 40 15 58 88 292 292 28 292 28 292 292	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P = 5mg/kg 5	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induc ents 13 35 20 66 113 28 72 16 35 20 66 113 28 72 16 5tandard induc ents 13 28 72 16 5tandard induc 6tandard induc 6tan	Total 16 16 37 37 35 87 132 30 89 444 % 16 37 35 87 18 444 % 16 30 89 18 444 % 444 % 18 444 % 5 7 18 444 % 18 444 %	8.5% 9.0% 9.0% 7.7% 18.4% 7.2% 18.5% 11.7% 100.0% 9.8% 9.2% 100.0% 9.8% 9.2% 10.8% 17.8% 19.9% 8.7% 10.9% 8.7% 100.0%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.33] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] Codds Ratio -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] Codds Ratio -H, Random, 95% Cl	Favour	M-H, Ranc	dom, 95% CI
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2017 h 2018 2017 al (95% CI) al events erogeneity. Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2018 2017 al events erogeneity. Tau ² = t for overall effect: : onth 12 dy or Subgroup (houry 2017	Events 23 33 14 53 74 9 28 16 250 0.64; Chi² = 2 32 12 22 32 12 49 65 8 25 14 227 32 12 20 32 12 65 8 25 14 227 0.33; Chi² = 2 1.17 (P Dose inters 21	Total 28 40 15 58 81 10 37 23 292 415.08, (= 0.49) asified Total 28 40 15 58 81 10 37 23 292 40 15 58 81 10 37 23 292 40 15 58 81 10 37 23 292 40 15 58 81 10 37 23 292 40 15 58 81 10 37 23 292 40 15 58 81 10 10 10 10 10 10 10 10 10 1	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P = 5mg/kg 5	sents 15 36 22 71 121 28 78 16 387 0.04); l ² = 54 Standard inducements 13 35 20 66 113 28 72 16 363 0.06); l ² = 48 Standard inducements 13	Total 16 37 37 389 18 444 % tion Total 16 37 35 89 18 444 % tion 16 37 30 89 18 444 % tion Total 18 444 %	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 9.2% 10.8% 17.8% 19.9% 6.2% 17.7% 8.7% 100.0% Weight M	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] 	Favour	M-H, Ranc	dom, 95% CI
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2018 2018 2017 al (95% Cl) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 al (95% Cl) al events erogeneity: Tau ² = t for overall effect: : onth 12 dy or Subgroup (houry 2017 2017 dy or Subgroup (houry 2017 2017	Events 23 31 14 9 28 16 250 0.64; Chl ² = 2 22 21 22 12 49 65 8 25 14 22 32 12 49 65 8 25 14 227 0.33; Chl ² = 2 2 14 227 0.33; Chl ² = 2 14 227 0.33; Chl ² =	Total 28 28 38 11 10 37 23 292 = 15.08, c = 0.49 asified Total 28 40 0 15 58 81 10 37 23 292 = 13.51, c = 0.24) asified Total 28 40	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P = 5mg/kg 5	sents 15 36 22 71 121 28 78 16 387 0.04); J² = 54 Standard induction 13 28 72 16 363 72 16 363 72 16 363 50.06); J² = 48 Standard induction 13 33	Total 16 16 37 37 35 87 132 30 89 444 % ttion 16 37 35 87 132 30 89 18 444 % 444 % 444 % 5 444 % ttion 162 6 7 700 37	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8% 19.9% 6.2% 10.8% 17.7% 8.7% 100.0% Weight M 14.1%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] 0.68 [0.35, 1.6] 0.42 [0.15, 3.16] 0.42 [0.12, 1.50]	Favour	M-H, Ranc	dom, 95% CI
dy or Subgroup (houry 2017 2017 son 2015 son 2018 agata 2018 h 2017 h 2017 al (95% CI) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 son 2015 son 2015 son 2015 son 2018 agata 2018 h 2017 2017 son 2015 son 2018 agata 2018 h 2017 color color al (95% CI) al events erogeneity: Tau ² = t for overall effect: : onth 12 dy or Subgroup (houry 2017 2017 son 2015	$\begin{array}{c} \hline {\bf Events} \\ 23 \\ 33 \\ 14 \\ 53 \\ 74 \\ 9 \\ 28 \\ 16 \\ \hline \\ 250 \\ 0.64 \\ Chl^2 = \\ 2 \\ 0.68 \\ (P \\ \hline {\bf Dose inten} \\ 22 \\ 32 \\ 12 \\ 49 \\ 65 \\ 8 \\ 25 \\ 14 \\ 227 \\ 0.33 \\ Chl^2 = \\ 21 \\ 117 \\ \hline {\bf Pose inten} \\ \hline \\ \hline {\bf Events} \\ 21 \\ 31 \\ 11 \\ \end{array}$	Total 28 40 15 58 81 10 37 23 292 = 15.08, of = 0.49) sisified Total 28 40 15 58 81 10 37 23 292 = 15.08, of = 0.49) sisified 10 37 28 40 15 58 81 10 37 23 292 = 15.08, of = 0.49) sisified 10 37 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 37 27 292 28 40 15 58 81 10 37 27 292 28 40 15 58 81 10 37 292 28 40 15 58 81 10 37 292 28 40 15 58 81 10 37 292 28 40 15 58 81 10 37 292 28 40 15 58 81 10 28 40 15 58 81 81 10 28 40 10 28 40 10 28 40 10 28 40 10 28 40 10 28 40 10 28 40 28 292 28 40 10 28 40 10 28 40 10 28 40 10 28 40 10 28 40 10 28 40 10 28 40 10 10 10 10 10 10 10 10 10 1	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P = 5mg/kg 5	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 5tandard induc ents 13 35 20 66 113 28 72 16 35 20 66 113 28 72 16 5tandard induc ents 13 35 20 66 113 28 72 16 5tandard induc ents 13 35 20 66 13 35 20 13 28 72 16 13 28 72 16 13 28 72 16 13 28 72 16 13 28 72 16 13 28 72 16 13 35 20 13 28 72 16 13 35 20 13 28 72 16 13 33 13 13 28 72 16 13 33 13 13 13 13 13 13 13 13	Total 16 16 37 37 35 87 132 30 89 444 % 16 37 35 87 132 30 89 18 444 % 444 % 444 % 444 % 444 %	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8% 19.9% 6.2% 10.8% 17.7% 8.7% 100.0% Weight M 14.1% 18.8% 17.8%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 1.25] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] 0.50 [0.15, 3.16] 0.69 [0.15, 3.16] 0.42 [0.12, 1.50] 2.60 [0.59, 9.75]	Favour	M-H, Ranc	dom, 95% CI
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2018 2017 h 2018 2017 h 2018 2017 al (95% CI) al events erogeneity: Tau ² = t for overall effect: : onth 3 dy or Subgroup (houry 2017 2017 son 2018 agatla 2018 h 2017 al (95% CI) al events erogeneity: Tau ² = t for overall effect: : onth 12 dy or Subgroup (houry 2017 2017 son 2018 agatla 2018 h 2017 al (95% CI) al events erogeneity: Tau ² = t for overall effect: : onth 12 dy or Subgroup (houry 2017 2017 2017	Events 23 31 14 9 28 16 250 0.64; Chl ² = 2 22 21 22 12 49 65 8 25 14 22 32 12 49 65 8 25 14 227 0.33; Chl ² = 2 2 14 227 0.33; Chl ² = 2 14 227 0.33; Chl ² =	Total 28 28 38 11 10 37 23 292 = 15.08, c = 0.49 asified Total 28 40 0 15 58 81 10 37 23 292 = 13.51, c = 0.24) asified Total 28 40	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P = 5mg/kg 5	sents 15 36 22 71 121 28 78 16 387 0.04); J² = 54 Standard induction 13 28 72 16 363 72 16 363 72 16 363 50.06); J² = 48 Standard induction 13 33	Total 16 16 37 37 35 87 132 30 89 444 % ttion 16 37 35 87 132 30 89 18 444 % 444 % 444 % 5 444 % ttion 162 6 7 700 37	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 17.8% 19.9% 6.2% 10.8% 17.7% 8.7% 100.0% Weight M 14.1%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] -H, Random, 95% Cl 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] -H, Random, 95% Cl 0.65 [0.15, 3.16] 0.42 [0.12, 1.50] 0.42 [0.15, 3.16] 0.42 [0.15, 3.15] 0.42 [0.15, 3.16] 0.42 [0.15, 3.16] 0.43 [0.42, 1.50] 2.60 [0.69, 9.75] 0.38 [0.08, 1.77]	Favour	M-H, Ranc	dom, 95% CI
dy or Subgroup (houry 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2017 tal (95% CI) al events terogeneity: Tau ² = th for overall effect: 2 Conth 3 dy or Subgroup (houry 2017 2017 100 - 2018 2017 100 - 2018 2017 100 - 2018 2017 101 - 2018 2017 201	$\begin{array}{c} \hline {\bf Events} \\ \hline 23 \\ \hline 33 \\ 14 \\ 9 \\ 9 \\ 28 \\ 16 \\ \hline 250 \\ 0.64 \\ Chi^2 = \\ 2 = 0.68 \\ (P \\ \hline {\bf Dose inten \\ Events} \\ \hline 22 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $	Total 28 40 15 58 81 10 37 23 292 = 15.08, o = 0.49) sified Total 28 40 15 58 81 10 37 23 292 = 15.08, o = 0.49) sified Total 10 37 23 292 = 15.08, o = 0.49) sified Total 10 37 23 28 40 15 58 81 10 37 23 292 = 15.08, o = 0.49) sified 15 58 81 10 15 58 81 10 10 15 58 81 10 10 15 58 10 10 15 58 81 10 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 15 58 81 10 10 10 10 10 10 10 10 10 1	Ev df = 7 (P = 5mg/kg 5 Ev df = 7 (P = 5mg/kg 5	ents 15 36 22 71 121 28 78 16 387 = 0.04); l ² = 54 Standard induce ents 13 33 16 Standard induce ents 13 33 18 24	Total 16 16 37 37 35 87 132 30 89 444 % tion 16 37 37 38 444 % 444 % 444 % 444 % 444 % 444 % 444 % 444 % 30 89 18 444 %	8.5% 9.0% 9.0% 9.0% 7.2% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 9.8% 9.2% 10.8% 9.2% 10.8% 9.2% 10.8% 19.9% 6.2% 8.7% 100.0% Weight M 14.1% 18.8% 17.8% 13.6%	-H, Random, 95% Cl 0.31 [0.03, 2.89] 0.13 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 1.25] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] 0.50 [0.15, 3.16] 0.69 [0.15, 3.16] 0.42 [0.12, 1.50] 2.60 [0.59, 9.75]	Favour	M-H, Ranc	dom, 95% CI
idy or Subgroup Khoury 2017 2017 2017 350n 2015 350n 2018 Iagatia 2018 ah 2018 2017 tal (95% CI) tal events terogeneity. Tau ² =	Events 23 31 14 53 16 250 0.64 21 22 32 32 24 9 8 25 14 53 24 9 8 25 12 29 65 8 25 14 9 0.33 Chi² = 1.17 (P Dose inter 21 31 11 6 24 93	Total 28 40 15 58 81 10 37 23 292 = 15.08, of = 0.49) siffied Total 28 40 15 58 81 10 37 23 292 = 13.51, of = 0.24) siffied Total 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 28 40 15 58 81 10 37 29 29 20 28 40 15 58 81 10 37 29 29 20 28 40 15 58 81 10 37 29 29 20 20 20 20 20 20 20 20 20 20	Ev df = 7 (P - 5mg/kg 5 Ev df = 7 (P - 5mg/kg 5 Ev	tents 15 36 22 71 121 28 78 16 387 = 0.04); $ ^2 = 54$ 5tandard inducements 13 20 66 113 28 72 16 363 = 0.06); $ ^2 = 48$ Standard inducements 13 363 = 0.06); $ ^2 = 48$ Standard inducements 13 18 24 65 153	Total 16 37 389 18 444 % 16 37 35 89 18 444 % 16 37 30 89 18 444 % 444 % 444 % 444 % 420 89 18 444 % 16 37 35 30 89 16 37 30 89 207	8.5% 9.0% 9.0% 9.0% 17.7% 18.4% 18.5% 11.7% 100.0% Weight M 9.8% 9.2% 10.8% 9.2% 10.8% 17.8% 19.9% 6.2% 17.8% 19.9% 6.2% 17.7% 8.7% 100.0% Weight M 9.8% 17.8% 17.8% 18.5% 11.7% 18.4% 17.8% 18.5% 19.8% 10.8%10.8% 10.8% 10.8% 10.8% 10.8%10.8% 10.8% 10.8% 10.8%	-H, Random, 95% Cl 0.31 [0.02, 1.12] 8.27 [0.97, 70.42] 2.39 [0.82, 6.93] 0.96 [0.36, 2.59] 0.64 [0.05, 7.95] 0.44 [0.16, 1.17] 0.29 [0.05, 1.59] 0.76 [0.34, 1.68] 0.76 [0.34, 1.68] 0.85 [0.18, 3.97] 0.23 [0.05, 1.16] 3.00 [0.72, 12.55] 1.73 [0.73, 4.11] 0.68 [0.33, 1.42] 0.29 [0.03, 2.36] 0.49 [0.21, 1.17] 0.19 [0.04, 1.06] 0.70 [0.39, 1.27] Codds Ratio -H, Random, 95% Cl 0.69 [0.15, 3.16] 0.69 [0.15, 3.16] 0.69 [0.15, 3.16] 0.42 [0.12, 1.50] 2.60 [0.69, 9.75] 0.38 [0.08, 1.77] 0.68 [0.30, 1.55]	Favour	M-H, Ranc	dom, 95% CI

