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Health analytics and disease 
modeling for better understanding of 
healthcare‑associated infections
Martin López-García, Meghana Aruru1, Saumyadipta Pyne2,3

Abstract:
Healthcare‑associated infections (HAIs) are a growing challenge and a major cause of health 
concern worldwide. It is difficult to understand precisely the dynamics of spread of hospital‑acquired 
infections owing to the usual involvement of different populations, risk factors, environments, and 
pathogens. Mathematical and computational models have proved to be useful tools in providing 
realistic representations of HAI dynamics and the means of evaluating interventions to minimize 
the risk of HAIs.
Keywords:
Agent‑based modeling, compartmental modeling, hospital‑acquired infections, nosocomial infections

Healthcare‑associated infections (HAIs), 
also known as “hospital‑acquired 

infections” or “nosocomial infections,” refer 
to infections that may occur in a patient 
following his/her hospital admission, 
infections that were neither present nor 
incubating at the time of admission. 
Infections acquired in the health‑care setting 
but manifesting postdischarge, along with 
occupational infections among facility staff, 
fall under the umbrella of HAIs.[1]

Commonly occurring HAIs include 
Clostridium difficile infections, central 
line‑associated bloodstream infections, 
p n e u m o n i a ,  m e t h i c i l l i n ‑ r e s i s t a n t 
Staphylococcus aureus (MRSA) infections, 
surgical site infections, urinary tract 
infections, and vancomycin‑resistant 
enterococci (VRE) infections, among 
others.[1] Factors contributing to HAIs 
and related costs include, but are not 
limited to, use of invasive devices, surgical 
procedures, selection pressure from 
excessive antibiotic use, contaminated 
air‑conditioning systems, physical layout 

of the facility, staffing (nurse to patient 
ratio), use of immunosuppressive agents, 
underlying conditions among patients, and 
their interactions.

The World Health Organization estimates 
that HAIs occur among 7%–12% of 
hospitalized patients globally and more 
than 1.4 million individuals globally suffer 
from complications of HAIs.[1,2] Estimated 
burden of HAIs is disproportionate for 
developing countries. It is estimated 
that there is a prevalence of 4.5% in the 
U.S (9.3 infections/1000 patient‑days) 
while in Europe, HAI prevalence is 
7.1% (19 infections/1000 patient‑days). 
The International Nosocomial Infection 
Control Consortium (INICC) conducted a 
cohort study in 55 intensive care units of 8 
developing countries, including India, and 
found an overall HAI prevalence rate of 
14.7% (22.5 infections/1000 patient‑days). 
Later studies in India have revealed varying 
prevalence estimates from as low as 4.4% to 
as high as 83%.[3] Nevertheless, HAIs act as 
major causes of death, disability, emotional 
suffering, and financial burden among 
hospitalized patients.[4‑7] 
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In India, accurate estimates of HAI burden are limited 
due to the absence of reliable and routine standardized 
surveillance data. Benchmarking by INICC enables 
development of standards and surveillance for HAIs in 
developing countries, thereby leading to identification 

of strategies to prevent and/or mitigate infections in 
health‑care facilities. Barriers to system‑wide policies 
for effective minimization of HAI risk include lack 
of mandatory hospital accreditation, lack of HAI 
surveillance systems, excessive antibiotic use, limitations 

Figure 1: Mathematical and computational models for healthcare‑associated infections. A model in which patients can be colonized or noncolonized by a given 
species of bacteria, surfaces in the hospital ward can be contaminated or uncontaminated by the bacteria, and health‑care workers can have their hands contaminated 

or uncontaminated. Transmission occurs between patients, health‑care workers, and surfaces over time. Top‑left: In an agent‑based model, the state of each individual is 
tracked over time, and the spatial movement, the interactions between agents and the duration of these interactions, as well as the transmission of the nosocomial pathogen 

can be simulated. Top‑right: In a compartmental‑based model, individuals are split into groups, where individuals in the same group are considered to behave equally. 
Heterogeneities among agents (e.g., the location of each agent in different rooms) can be incorporated by increasing the number of compartments. The transmission of the 

nosocomial pathogen among agents is represented by the movement of agents across different compartments through time, which occurs (stochastically or deterministically) 
according to some rates (i.e., model parameters). Bottom‑left: Compartmental‑based models with smaller number of compartments assume wide homogeneities among 

individuals, but depend on less parameters and generally require less data to be calibrated. Bottom‑right: Deterministic models (solid curves) lead to the same predictions 
given identical initial conditions. Stochastic simulations (dotted curves) lead to different results each time one simulates the model, due to randomness
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mathematical models on hospital‑acquired infections 
were mostly deterministic.[12] However, stochastic models 
were adopted soon due to the highly heterogeneous 
nature of the populations usually involved in nosocomial 
outbreaks, in which probabilistic events can have a 
significant impact on the infection spread dynamics.[13]

Common classes of stochastic models include Agent‑
based models (ABM) and Compartmental‑based 
models (CBM).  In an ABM, the model keeps track of 
the state (e.g., a patient colonized or noncolonized or 
a surface contaminated or uncontaminated by a given 
bacterium) of each agent (e.g., patients, HCWs, or 
surfaces) during the course of a nosocomial outbreak.[14,15] 
By computationally simulating the interactions between 
agents over time (e.g., a colonized patient contacting an 
HCW, touching a surface, being admitted or discharged), 
one can realistically simulate the transmission of the 
nosocomial pathogen among different agents or possibly 
the recovery of individuals (e.g., decolonization of a 
patient due to antibiotics).[13] ABMs allow for complex 
and precise representations of reality, in which highly 
heterogeneous populations and interactions can be 
modeled,[16] despite requiring significant computational 
resources for the model analysis[17] and calibration.[18,19]

A CBM is constructed by grouping individuals in 
compartments according to their disease state and 
the type of individual under consideration where all 
individuals in the same compartment are considered 
to behave identically regarding the infection dynamics. 
For instance, a given compartment may be formed by 
all colonized patients in the hospital ward or by all 
the HCWs with their hands contaminated by a given 
bacteria. CBMs are computationally and analytically 
more tractable and require less amount of data in 
order to be calibrated as they usually depend on a 
smaller number of parameters compared to ABMs. 
However, they assume wide homogeneity among 
individuals which might not be realistic in certain 
clinical situations.[20,21] While heterogeneities among 
individuals can be incorporated by increasing the 
number of compartments, the tradeoff between 
the number of compartments, the computational 
requirements, and the availability of data must be 
considered [Figure 1].

Bayesian approaches may be used to find plausible values 
of the model parameters so that the model predictions 
compare well with these data.[22] Once the model can 
realistically represent the infection dynamics for a given 
hospital ward and nosocomial pathogen, one can carry 
out sensitivity analysis of the model, in which parameters 
are varied (to represent, for example, interventions based 
on infection control strategies or the implementation 
of novel surveillance policies) and the impact on the 

in sterilization and disinfection practices, and limited 
access to microbiology services.

Many hospitals have begun infection control committees 
with targeted interventions such as the use of infection 
prevention and control bundles to prevent surgical site 
infections and infections from inserted devices.[8] While 
efforts to strengthen hospital surveillance and build 
capacity are underway, systematic surveillance including 
data generation and rapid analytics need to be adequately 
addressed. In the mathematical and computational 
sciences, models have been developed to identify 
predictive pathways to understand emergence and spread 
of pathogens among hospitalized patients or compare 
efficacy of different interventions across health‑care 
facilities. In this paper, we discuss such mathematical and 
computational models and their usefulness in providing 
realistic representations of HAI dynamics.

Models of Healthcare‑Associated Infection

Mathematical and computational models of spread of 
HAI usually depend on a number of parameters that 
directly affect and determine disease dynamics, for 
example, admission and discharge rate of patients in 
a given ward, antibiotic prescription rates, average 
patient length of stay in the ward, or contact rates 
between the health‑care workers (HCWs) and patients. 
By calibrating these models using hospital infection 
data, they could become realistic representations of the 
infection dynamics occurring in the modeled health‑care 
facilities. Furthermore, one can study and measure the 
impact of different control interventions[9,10] or assess the 
role played by each potential route of transmission[11] 
(e.g., endogenous and exogenous routes, airborne 
spread, environmental contamination, HCW‑patient 
direct contact transmission, etc.) in the dynamics of a 
nosocomial outbreak.

Models can be analyzed from either deterministic or 
stochastic points of view. In a deterministic approach, 
identical initial conditions (say, a given nosocomial 
pathogen is introduced in a hospital setting by the 
admission of a colonized patient) lead to the same final 
outcomes (i.e., if the nosocomial outbreak is simulated 
twice in a deterministic model, the same number 
of patients will become colonized during these two 
outbreaks). In a stochastic representation, identical initial 
conditions may lead to different outcomes resulting from 
random sequences of events.

Often, deterministic approaches are chosen for modeling 
dynamics of infection spread in large and widely 
homogeneous populations. Their main advantage is that 
they are more tractable from a computational perspective 
than their stochastic counterparts, which is why the early 
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dynamics is studied. This can lead to quantitative 
measures of the relative efficacy of these interventions, 
which may be validated using clinical data.[23]

In the Medical Research Council of the United Kingdom 
funded project, “Mathematical modeling of the 
emergence and spread of antibiotic‑resistant bacteria in 
healthcare settings: a stochastic approach (MMARB),” 
new mathematical models are being developed, together 
with methodologies for analyzing and simulating these 
models, in order to better understand nosocomial 
infection dynamics. A number of recently published 
works within this project[17,20,24‑28] have focused on a wide 
range of factors (antibiotic resistance, environmental 
contamination, airborne spread, strain competition, 
genetic heterogeneities, surveillance and screening 
policies, or infection control strategies), which are usually 
involved in the spread of hospital‑acquired infections.

The Road Ahead

This section will focus on infection control strategies 
and surveillance policies, assessing the role played by 
environmental contamination, and other factors and 
current challenges regarding HAIs.

One of the primary objectives when developing 
mathematical models in this area is to quantify the 
efficacy of the different control strategies commonly 
implemented for controlling nosocomial outbreaks. 
For example, models have focused on the efficacy of 
the following interventions: improving hand‑hygiene 
compliance levels among HCWs,[29] environmental 
cleaning,[30] active colonization screening among patients 
and HCWs,[31] isolation of colonized individuals and 
patient cohorting,[13] or antibiotic prescription.[32] Recent 
studies[24] within the MMARB project focus on modeling 
such interventions through a unified framework, 
which allows assessment of the role played by the 
different transmission routes during a nosocomial 
outbreak (e.g., environmental contamination or 
HCW‑patient transmission) and thus, to measure the 
relative efficacies of the modeled control strategies.

A number of recent studies have highlighted the 
role played by environmental contamination in the 
spread of some nosocomial pathogens since it has 
been observed that pathogens such as MRSA and 
VRE are able to survive on dry surfaces for weeks[33] 
and may be transmitted through a large number of 
surface‑to‑hand and hand‑to‑surface contacts. This 
has led to modeling of the amount of transmission 
that occurs during each surface‑hand contact,[34] the 
deposition of bacteria from the air on surfaces[35] to 
incorporate contaminated/uncontaminated surfaces as 
agents,[30] and to incorporate into these models realistic 

hand‑surface contact patterns carried out by patients 
and HCWs, as those actually observed in hospital 
settings in reality.[35]

Ventilation and airflow dynamics within a hospital 
ward are important factors affecting the spread of some 
nosocomial pathogens such as influenza, Norovirus, or 
tuberculosis.[17,24] A number of studies have incorporated 
the dynamic airflow within individual health‑care 
facilities into their models to study the airborne spread 
of such nosocomial pathogens.[36‑38] In this area, complex 
computational fluid dynamics models can be proposed, 
which focus on modeling the movement of air across 
different rooms and areas over time and the spread of 
airborne pathogen‑laden particles or bio‑aerosols.[38]

These models can be used to simulate how bio‑aerosol 
concentration of a given pathogen varies in space and time, 
how aerial dispersion and inhalation of these pathogens 
occurs, and how strategies related to hospital ventilation 
and outbreak management can be implemented for 
infection control. In a recent collaboration within the 
MMARB and the HECOIRA[39] projects, authors have 
focused on how to incorporate the aerial dispersion of a 
nosocomial pathogen into a mathematical model for the 
spread of this pathogen within a hospital ward, taking 
into account the ventilation of the health‑care facility 
under analysis and the spatial location of the patients 
in this facility.

The transmission of a nosocomial pathogen among 
patients and HCWs in a hospital ward depends, 
among others, on two factors: the interactions between 
HCWs and patients, where specific HCWs treat only 
some patients in the ward (e.g., patient cohorting), 
and the spatial configuration of the hospital ward. For 
example, infection transmission between patients in 
the same room might be more likely than transmission 
between patients at different rooms. While some 
studies have tried to incorporate these spatial and 
contact network information into their mathematical 
models,[13] challenges remain on how such models may 
be calibrated[18] or to develop effective methodologies 
needed for handling model complexity in these 
situations.[17,24]

Only a few studies have looked at the dynamics of 
competition between bacterial strains in hospital 
settings, for example, antibiotic‑resistant versus 
antibiotic susceptible or hospital‑acquired versus 
community‑acquired strains. It is worth mentioning the 
seminal work by  Lipsitch,[32] in which authors consider 
a simple mathematical model to study the competition 
dynamics between an antibiotic‑resistant strain and an 
antibiotic‑sensitive strain in a hospital ward, and the effect 
of different antibiotic prescription policies in this situation.
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Studies have also looked at the competition between 
hospital‑acquired and community‑acquired strains,[40] or 
the impact of the introduction of community‑acquired 
strains on hospital settings,[41] but further research is 
needed in this area. In particular, within the MMARB 
project and when focusing on a number of antibiotic 
prescription policies, a new methodology for carrying 
out sensitivity analysis of the model (i.e., to study the 
impact that each parameter has on the final nosocomial 
outbreak outcome) was published recently.[25]

Moreover, the mathematical modeling of nosocomial 
infections has overwhelmingly focused on hospital 
settings, whereas healthcare‑related facilities other 
than hospitals (such as nursing homes or clinical 
microbiology laboratories) have been usually neglected. 
Developing new models for better understanding the 
nosocomial infection spread in these settings is a current 
challenge (that is also being addressed within the MMARB 
project[26]). Further, a variety of events occur within a 
host (such as the immune response or the emergence of 
antibiotic resistance) that can clearly have an impact on 
the nosocomial infection, and novel methodologies for 
analyzing this infection dynamics occurring across scales 
are needed. Here, it is worth mentioning a recent study 
which links infection processes across different scales, at 
the cellular, within‑host, and population levels, to model 
the dynamics of the spread of the bacteria Francisella 
tularensis within a microbiology laboratory.[26]

Finally, more collaborative efforts in the collection of 
hospital infection data through an interdisciplinary 
network of disease modelers, microbiologists, and 
clinicians are required. The models must be calibrated 
with data capturing the conditions that are specific to 
a nosocomial outbreak, including patients, pathogens, 
and hospital wards. The development of technological 
innovations such as microbiome analysis, proximity 
sensors, or individual location monitoring systems can 
generate detailed spatial and temporal data regarding 
individual behaviors and agent‑to‑agent interactions 
in hospital settings. Together, they allow integrated 
data‑driven models to be designed, which may lead 
to predictions and actionable insights required to 
improve the handling of the emergence and spread of 
hospital‑acquired infections.[42]

Discussion

HAIs present a complex and costly problem given 
the involvement of different populations, risk factors, 
environments, and pathogens. Due to the high mortality 
associated with HAIs, prevention and control remain the 
first‑line strategies to address HAIs. There is growing 
recognition around the world, including in many 
developing countries, for the need of policy and guidance 

documents to address the rising challenge of HAIs. In 
India, the Indian Council of Medical Research released 
in 2016 guidelines on infection prevention and control.[43] 
Addressing laboratory facilities and testing along with 
other systems‑related factors is critical.

Interventions in the public sphere including Swacch 
Bharat mission (Clean India) and Kayakalp (clean 
hospitals) may go on to demonstrate effectiveness in 
curbing infection spread. Cooperation between various 
health‑care entities and across sectors (public, private, etc.) 
is important and must entail detailed surveillance along 
with strengthening institutional capacity and building 
networks for rapid dissemination of information. The 
National Accreditation Board of Hospitals and National 
Health Mission in India have paved the way to sustain 
health‑care surveillance and incorporated infection 
control programs as a routine part of clinical care.

It is important to create a data‑driven culture with a 
strong commitment to improve health‑care outcomes. 
Monitoring the system for effectiveness and compliance 
is essential in order to develop practice standards that 
are consistent with established benchmarks. The use 
of analytics and modeling to track and evaluate the 
interventions and different programs is perhaps the next 
step in improving the HAI outcomes in India and other 
developing countries.
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