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Being able to estimate the electron mobility of colloidal quantum dot films is of great importance for determining their suitability to
specific applications and would lead to huge savings in terms of time and resources that may otherwise be wasted trying to build and
optimize a device whose transport characteristics can be predicted to be poor from the outset. This task is however complicated by
the complexity of the system and the large number of parameters that can potentially affect the final result. Here, we derive a simple,
fitting-parameter-free, order-of-magnitude-accurate expression to estimate the dark mobility of such 2D structures and validate it
by applying it to real systems and comparing its predictions with those of other recently proposed approaches and with available
experimental data. The results quantify the superiority of our expression to estimate mobilities in colloidal quantum dot films.

1. Introduction

The use of semiconductor colloidal quantum dots (CQDs) as
building blocks for optoelectronic and energy-harvesting
devices has become widespread [1–5]. Such applications usu-
ally require these nanostructures to be arrayed in 2D or 3D
supercrystals, whose optical properties retain similar charac-
teristics (i.e., optical gap) to their constituents. The transport
properties of these arrays, on the other hand, cannot be as
easily inferred from those of the single dots in solution. In
this respect, the evaluation of the filmmobility is of particular
interest, as its magnitude determines the range of applica-
tions the material would be better suited for [1, 2, 6–8]. Given
the complexity of the system, however, such an evaluation is
not trivial. A simple expression for estimating the maximum
dark mobility in 3D CQD supercrystals, obtained within the
k·p framework under the assumption that fluctuations in
the size of the CQDs represent the main source of electron
scattering, was proposed recently by Shabaev et al. [9].
Here, we derive, under the same assumptions, an alternative

expression for quantum dot films suitable for atomistic
approaches which does not make use of any fitting parameter
(the only unknown parameter being represented by the den-
sity of defects in the array) but only relies on the calculated
band structure of the film and of its constituents. When com-
pared with available experimental data and the results of the
expression proposed by Shabaev et al., our expression reveals
a superior accuracy and predicting power. In particular, for
arrays of CdSe and PbSe CQDs, our predicted mobilities
are consistent with those observed experimentally in these
systems [7, 10], whereas the mobility values obtained using
the expression from Ref. [9] are at least one order of magni-
tude smaller than our estimates and over a factor of 20
smaller than the experiment.

2. Method

2.1. The Wave Functions. We consider a 2D array of
quantum dots perfectly ordered in space. In order to solve
the Schrödinger equation for the system, we implement a
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tight-binding approach, where the wave functions of the
periodic system are described as linear combinations of iso-
lated quantum dot wave functions [9, 11], obtained here
within the framework of the atomistic semiempirical pseudo-
potential method [12]:

ψ r = 〠
m, R n

bm R n ϕm r − R n , 1

where m indicates a particular state of the isolated quantum

dot and R n is the position of each quantum dot in the array.
Although the standard tight-binding (T-B) approach,

traditionally employed in the modelling of semiconductor
bulk solids [13, 14], and its main equations are well known
in the case of the bulk, it is nevertheless instructive to show
their detailed derivation in the case of a 2D array of CQDs,
as is discussing the assumptions that lead to the different
approximations and simplifications. In this spirit, we will
therefore follow a more didactic route to obtain our expres-
sion for the electron dark mobility (most of Section 2.1 is
standard T-B [14] and can be skipped by the experienced
reader. The main result, its limits of applicability, and the
approximations used are discussed in detail in Sections 2.2
and 2.3).

According to Bloch’s theorem, the following relationship

holds between the coefficients bm R n and those at R n = 0,
bm 0 :

bm R n = ej q ⋅ R nbm 0 , 2

where q is a vector in reciprocal space. Therefore, the knowl-
edge of the coefficients for the reference quantum dot (the
one at the origin of coordinates) is sufficient to describe the
whole of the array. Substituting equation (2) into equation
(1), we get [14]

ψ r = 〠
m, R n

ej q ⋅ R nbm 0 ϕm r − R n 3

When using equation (3) to solve the Schrödinger equa-
tion of the periodic system, we obtain a set of eigenvalues
and wave functions for each q . Such eigenvalues can be
grouped into minibands in the same way as in the case of
the bulk semiconductor. Therefore, the resulting wave func-
tions depend on q and the specific miniband c [14]

ψq,c r = 〠
m, R n

ej q ⋅ R nbmqcϕm r − R n , 4

where, for ease of notation, we have simplified bmqc 0 as bmqc.
This expression for the wave function is inserted into the
Schrödinger equation, and both sides are left multiplied by
ϕm r —the wave functions of the reference quantum dot at

the origin—yielding a matrix equation, whose solution pro-
vides the eigenenergies and the coefficients bmqc.

The wave function needs now to be renormalized over
the entire space, so that it satisfies

ψ∗
qc r ψqc r d r = 〠

m, R n

e−j q ⋅ R nb∗mqc 〠
s, R t

ej q ⋅ R tbsqc

ϕ∗m r − R n ϕs r − R t d r = 1

5

Most of the integrals in equation (5) are negligible, as
there is no overlap between the wave functions of dots that

are far apart, except when R t and R n are the positions of
nearest neighbors. If N is the number of quantum dots, the

summation over R n can therefore be replaced by N times

the integral for a particular R n, e.g., R n = 0. This leads to
the following simplification:

ψ∗
qc r ψqc r d r =N〠

m

〠
s

b∗mqcbsqc δm,s + 〠
R p≠0

ej q ⋅ R p

ϕ∗m r ϕs r − R p d r ≡NK ,

6

where R p are the positions of the nearest neighbors of the

quantum dot at the origin (the case R p = 0 is represented
by the term δm,s), and

K ≡〠
m

〠
s

b∗mqcbsqc δm,s + 〠
R p≠0

ej q ⋅ R p ϕ∗m r ϕs r − R p d r

7

The wave function

ψq,c r = 〠
m, R n

ej q ⋅ R nbmqcϕm r − R n , 8

where

bmqc =
bmqc

NK
9

2 Journal of Nanomaterials



now satisfies

ψ∗
qc r ψqc r d r

=N〠
m

〠
s

b
∗
mqcbsqc δm,s + 〠

R p≠0

ej q ⋅ R p ϕ∗m r ϕs r − R p d r = 1

10

So far, we have followed standard T-B theory [14],
although applied to CQD films instead of bulk materials. In
the next section, we will introduce some working hypotheses
and approximations that will lead to a simplified, but never-
theless, order-of-magnitude-accurate expression to calculate
the dark electron mobility in these systems.

2.2. The Scattering Model. The Hamiltonian of the perfectly
periodic system is

T + 〠
R n

Vo r − R n ψ r = Eψ r 11

We introduce a small perturbation by replacing one of
the single quantum dot potentials with that of a smaller
quantum dot (here, we implicitly make the assumption that,
as pointed out recently [9], fluctuations in the size of the
CQDs represent the main source of electron scattering)

T + 〠
R n

Vo r − R n + Vother size r − R defect

−Vo r − R defect ψ′ r = E′ψ′ r

12

The scattering probability for the transition from state
i to state f due to this perturbation can be obtained
using Fermi’s golden rule [15]

Γi→f =
2π
ℏ
〠
f

δ Ef − Ei ψf ΔV ψi

2
, 13

where ΔV = Vother size r − R defect −Vo r − R defect , and
the matrix element can be expressed as

ψf ΔV ψi = 〠
m, R n

e−j q f ⋅ R nb
∗
mqf cf

〠
s, R t

ej q i ⋅ R tbsqici

ϕ∗m r − R n ΔVϕs r − R t d r

14

Here, the m and f subindices refer to the final states,
while s and i to the initial state.

In equation (14), R n and R t vary throughout the whole
system; however, for similar reasons to those discussed above
in relation to equation (5), most of the integrals are expected

to be negligible except those where R n = R t = R defect. Equa-
tion (14) can therefore be approximated by

ψf ΔV ψi ≃〠
m,s

ej q i− q f ⋅ R defectb
∗
mqf cf

bsqici ϕ∗m r

− R defect ΔVϕs r − R defect d r

15

If we now set, without loss of generality, R defect = 0, the
matrix element becomes

ψf ΔV ψi ≃〠
m,s

b
∗
mqf cf

bsqici ϕ∗m r ΔVϕs r d r 16

As a further approximation, we assume that all the
imperfections (i) are exactly the same, (ii) give the same
contribution, and (iii) are uncorrelated [14]. Following the
convention adopted for ionized impurity scattering in semi-
conductors [16], which process is formally similar to the scat-
tering mechanism considered here, the scattering rates for a
film containing Ndefects defects are obtained multiplying by
Ndefects the rate calculated for a single defect. We can there-
fore rewrite equation (13) as eq. (16.14) in [14], where, how-
ever, we have substituted the matrix element between the
properly normalised wave functions, appropriate for the case
of a CQD film:

Γi→f ≃
2π
ℏ
〠
f

δ Ef − Ei
Ndefects
N2KiK f

〠
m,s

b∗mqf cf
bsqici

ϕ∗m r ΔV r ϕs r d r

2 17

Finally, we replace∑f δ Ef − Ei with ρ E δ Ef − E dE,
where ρ E is the density of states, obtaining

Γi→f ≃
2π
ℏ
ρ Ef

Ndefects
N2KiK f

〠
m,s

b∗mqf cf
bsqici

ϕ∗m r ΔV r ϕs r d r

2 18

Around parabolic miniband extrema in a 2D system such
as a CQD film, the density of states can be expressed as

ρ E =
mmbNAuc
2πℏ2

, E > 0 ≡ Emin miniband ,

0, E < 0 ≡ Emin miniband ,
19
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where mmb is the miniband effective mass, Auc is the area of
the superlattice unit cell, and NAuc is the total area of the
system.

The scattering probability therefore becomes

Γi→f ≃
mmbAuc

ℏ3
Ndefects
NKiK f

〠
m,s

b∗mqf cf
bsqici ϕ∗m r ΔV r ϕs r d r

2 20

A fundamental step in the use of equation (20) is the cal-
culation of the product ϕ∗m r ΔV r ϕs r : the theoretical
framework adopted to compute its factors will crucially
determine the accuracy of this expression’s predictions.
The quantity ΔV can be calculated directly from the single
potentials for the two dot sizes. As these potentials nearly
coincide over a volume corresponding to the (smaller)
defect-dot core, and as they are considered at the same posi-
tion in space, their difference (ΔV) is negligible everywhere
except over the volume of a thin shell enclosing the surface
of the larger dot. Within a continuum-like approach, such
as the effective mass k·p method of Ref. [9], ΔV is constant
and depends only on the depth of the potential well U0,
when the single-dot potentials are square wells (i.e., one
assumes λ = 0 in the Woods-Saxon potential—see red line
in Figure 1—as it is done in Ref. [9] in the low-energy case).
Therefore, the difference in the magnitude of ΔV in differ-
ent materials would be equal to the difference in confining
potentials U0. As in Ref. [9] the latter are treated as fitting
parameters they are assumed to be the same for different
materials. As a consequence, the values of the wave func-
tions in the shell for different materials are also very

similar, as, in this approach, they depend on the effective
mass and the ground state energy, which, in turn, depends
on the confining potential. The difference in scattering
rates between identical films of CQDs that differ only in
the dot material is therefore determined mainly by the dif-
ference in the miniband effective masses. The same is
however not true in the case of atomistic methods. We
find [17] that the nanoscopic details of the material’s
atomic potentials (see blue line in Figure 1) and the mag-
nitude and symmetry of the atomistic electron wave func-
tions in this shell-shaped region in space play a crucial
role in the determination of the scattering rates and the
film mobility, which can differ by orders of magnitude
for materials with similar miniband effective masses.

2.3. Mobility in the Lowest Miniband of a CQD Film. Car-
rier mobility in semiconductors can be roughly estimated
using [18]

μ = e τ

mmb
, 21

where mmb is the effective mass in the miniband (obtained
here by approximating the miniband curvature around the
minimum (q = 0) with a parabola according to

mi =
ℏ2q2i

2 Ei − E0
, 22

where i = x, y are two perpendicular in-plane directions, Ei is
the calculated energy at q = qi (for small qi), E0 is the energy
at q = 0 - for an example of our calculated band structure for
a film of CdSe CQDs with D = 3 84 nm, see Figure 2), e is the
electron charge, and τ is the average scattering time.

Based on this model, we develop an approach to estimate
the mobility in CQD films, valid in the low-energy limit
under the assumption that transport occurs within the para-
bolic part of the spectrum [9]. As in this framework the elec-
trons mainly populate the minimum of the lowest-energy
conduction miniband, and since the scattering due to varia-
tions in the dot size is elastic, in the calculation of the average
scattering time, both initial and final states can be described
using the lowest-energy-state wave function. Indeed, the
absence of degeneracies around the lowest miniband minima
in the electronic structure calculated for a variety of materials
and configurations [19] supports the assumption that elastic
scattering is an intraminiband process in these systems. This
assumption restricts the validity of our calculated mobility to
the low-electric field case, where the electron state is not sig-
nificantly modified by drift.

As the scattering time can be expressed as the inverse of
the scattering probability obtained using Fermi’s golden rule,
the problem of calculating the mobility reduces to that of cal-
culating Γ

μ = q
Γmmb

23

Substituting equation (20) into equation (23), we there-
fore obtain
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Figure 1: Potential difference ΔV according to two different
theoretical approaches: atomistic semiempirical pseudopotential
method (SEPM, blue line) and the continuum-like k·p method of
Ref. [9] (red line). The contours of the two dot sizes they refer to
(the “normal” dot, black line, and the “defect” dot, orange line) are
also outlined.
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where ρdefects =Ndefects/N , which, importantly, is indepen-
dent of temperature, consistently with the expected temper-
ature independence of the scattering rate Γ in the case of
impurity scattering [18].

Equation (24) is an order-of-magnitude expression for
the mobility of an electron in the lowermost miniband of
a 2D CQD array, valid for an intraminiband elastic scat-
tering process.

From this expression, using Einstein’s relation

Ldiff = Dτ, 25

where D = μkBT/e, kB is the Boltzmann constant, T is the
temperature, and e the electron charge, an order-of-
magnitude estimate for the diffusion length in the system
can also be obtained as

LOMdiff =
μ

e
kBTmmb 26

3. Results and Discussion

In order to determine its accuracy, we will now employ equa-
tion (24) to estimate the mobility in films of CdSe and PbSe
CQDs (their electronic structures are calculated using the
pseudopotentials from [12] and [20], respectively) and com-
pare its predictions with those of a recently published expres-
sion [9] and with experiment. In a recent paper, Shabaev et al.
[9] derived, within the framework of the k·p approach, and
under the assumption thatfluctuations in the size of theCQDs
represent the main source of electron scattering, an approxi-
mate expression for the dark mobility in a simple cubic 3D
supercrystal, which, in the case of touching dots, reduces to

μmax
d = 28

3π3/2
eR2

ℏ
t5/2

χ2U2
0

1
kBT

27

Here,R is the dot radius, t is the overlap integral, χ the size
dispersion, U0 the confining potential for the electrons, T is
the temperature, and kB is the Boltzmann constant.

All quantities (integrals) to be inserted in equations (24)
and (27) were calculated using atomistic wave functions
obtained within the framework of the semiempirical pseudo-
potentialmethod [12] (up to12 single-dot stateswere included
in the calculations of the film’s band structure—an example
of which is presented in Figure 2 for the case of CdSe CQDs
with D = 3 84 nm). The results are summarized in Table 1.

As in the calculation of the isolated dot wave functions we
take the vacuum level as a reference zero energy, the depth
U0 of the electron well is determined by the absolute value
of the calculated position of the conduction band, in the limit

of infinitely large dots (which is in good agreement with the
asymptotic behavior observed in recent accurate photoelec-
tron spectroscopic measurements [21]).

For arrays of PbSe CQDs with D = 2 52 nm, equa-
tion (24) predicts very large mobilities, of the order of
65 cm2 V−1s−1, consistent with the record-high electron
mobilities (10 cm2 V−1s−1) measured recently in films of PbSe
dots with D = 6 nm [7] (whose mobility, given their larger
size, is expected to be considerably smaller than that calcu-
lated for the dots considered here). The estimate obtained
using equation (27), which, for the same reason, is expected
to be much larger than that observed for dots with D = 6
nm, is instead 0.8 cm2 V−1s−1.

In the case of wurtzite CdSe films with the parame-
ters listed in Table 1, equation (24) yields mobilities of
12 cm2 V−1s−1, again in good agreement with the dark
mobilities (27 cm2 V−1s−1) [10] observed experimentally in
these systems. In contrast, equation (27) predicts, for the
same parameters, a room temperature mobility of
1.27 cm2 V−1s−1, an order of magnitude smaller than the
estimate obtained using equation (24), and a factor of over
20 smaller than experiment. Indeed, in order to reproduce
experiment [10], an electron confining potential of about
0.6 eV (more appropriate for epitaxial dots than colloidal
nanocrystals) must be assumed in equation (27) (U0 is
treated as a fitting parameter in Ref. [9]). This is because
the continuum-like approach of Ref. [9] largely underesti-
mates the overlap integrals t. Any reduction in the electron
confinement leads, in fact, to a substantial increase in the
mobilities of equation (27), owing to the combined effect
of an increase in the overlap integral t (raised to the power
of 5/2 in the numerator of equation (27)) and the decrease
of U0 itself (raised to the power of 2 in the denominator of
equation (27)). As an example, a reduction of 0.5 [1.0] eV
in U0 alone (i.e., without considering the corresponding
increase in the overlap integral t) would lead to a 35%
[92%] increase in the mobility calculated for an array of
CdSe dots with D = 3 8 nm.

It is also worth noting that, while the mobility in equation
(24), together with an inverse dependence on the size differ-
ence between nominal-size dots and scatterers also exhibits
a crucial inverse dependence on the density of the scattering
centers as one would expect (see, e.g., eq. (5.58) in Ref. [18],
or eq. (16.14) in Ref. [14]), equation (27) only accounts for
the former through the size dispersion χ but lacks any
explicit dependence on the latter. As mentioned above, the
defects considered here consist of smaller dots, randomly
distributed within the array, with a 1% density. This
low-density limit ensures the absence of defect clustering
in the presence of which the present treatment would no
longer be valid. At the same time, this choice makes it easier

μOM = q

m2
mbAuc/ℏ3 Ndefects/NKiK f ∑m,sb

∗
mqf cf

bsqici ϕ∗m r ΔV r ϕs r d r
2 ≡

μ0OM
ρdefects

, 24
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for the reader to extrapolate our results to higher densities
(≤10%), by simply dividing the values reported here by the
desired defect density.

On the other hand, unlike in equation (27) (where the
temperature dependence has the form—T−1/2—expected for
acoustic phonon piezoelectric scattering [18]), there is no
temperature dependence in equation (24), as (i) in our
model, as in Ref. [9], we assume elastic scattering for the
electron; (ii) according to the “independent electron approx-
imation” adopted here (where the interaction of each elec-
tron with the impurity [defect CQD] is independent of the
other electrons), the scattering rate is independent of the
electronic distribution function [14]; (iii) the scattering
mechanism considered (fluctuations in the QD size) is for-
mally similar to (ionized) impurity scattering, where the
scattering rate is independent of temperature [18]; and (iv)
the density of the scattering centers (“defect” CQDs) is
clearly temperature independent.

Electron mobility in bulk semiconductor materials is
influenced by several factors (doping density, density of
defects/impurities, and temperature). It is however reason-
able to expect that an even larger number of sources

should affect it in colloidal quantum dot arrays, owing to
the increased complexity of the system, which includes
building blocks of potentially different sizes, shapes, mutual
orientations, and surface termination, placed at different
distances from one another and within a matrix made of
a different material. As stated in the introduction, our
model assumes size anisotropy as the main source of disor-
der in these systems, following the suggestion by Shabaev
et al. [9], and therefore, the theoretical treatment presented
here focuses exclusively on this aspect, neglecting the influ-
ence of the other factors mentioned above. Although this
may appear as a strong assumption, owing to its simplicity
it has been used as a working hypothesis in previous theo-
retical works [9, 11]. The other most important single
source of scattering has been identified [22] as positional
disorder. To our knowledge, however, there are no theoret-
ical works treating lattice disorder in CQD arrays within an
atomistic framework. This is due to the fact that, in order
to account for positional disorder, the supercell used in
the calculation of the electronic structure needs to contain
a large fraction of the array (i.e., hundreds of thousands of
atoms), leading to prohibitively intensive calculations.

Table 1: Parameters used in the mobility calculations. Calculated overlap integrals (t), miniband widths (W), and effective masses at Γ
(m∗

x and m∗
y are obtained along x and y by fitting the miniband curvature around q = 0 with a parabola, according to equation (22). As

they are anisotropic for the systems of interest, their arithmetic average m∗
∥ = m∗

x +m∗
y /2 is used in equation (24)) for films of closely

packed (interdot separation d = 1 bond length) CdSe and PbSe dots with diameter D. The values for the electron confining potential U0,
the density of defects ρdefects, and the size distribution χ (defined as the size difference between ‘defect’ and “regular” dots) are also
reported.

Material D (nm) U0 eV χ % ρdefects % t meV m∗
x m∗

y m∗
∥ W (meV)

CdSe (wz) 3.84 3.59 5 1 9.0 0.26 0.45 0.36 78

PbSe 2.52 4.56 9.2 1 20.6 0.16 0.20 0.18 257
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Figure 2: Calculated band structure for a 2D array of wurtzite CdSe CQDs with D = 3 84 nm, placed 1 bond length apart: the upper panel
displays the minibands in 3D; the lower panel presents the traditional 2D representation for the minibands. In both panels, states with the
same symmetry have the same color: red for the s-like ground state, blue for the p-like states, and orange for the d-like states.
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From an a posteriori point of view, knowing that both size
and positional disorder are likely to be present in experi-
mental samples [22], we can conclude that, since our
model reproduces the experimental mobilities to within a
factor of ≤1.5 by considering only the former effect, all
other effects, including positional disorder, contribute by
at most the same amount.

The role of the capping group is also expected to be impor-
tant, as specific ligands (or the absence thereof)may introduce
trap states that will hinder efficient transport, whereas the pas-
sivant length determines the interdot separation.We consider
films in which all trap states have been removed either
through effective passivation [3–5, 8, 23–27] or doping [10].

We tested our results by carrying out Monte Carlo
(MC) calculations of the scattering probabilities, consider-
ing trajectories for different values for the initial q-vector
of the electron, within a specific miniband, and following
energy-conserving scattering processes, for values of the
applied electric field E≤ 108V/cm, also consistent with stan-
dard experimental conditions [6]. We found a strong depen-
dence on the specific value of the initial q-vector. However,
the MC results for small values of q and the predictions of
equation (24) agree within a few percent in the case of films
of InAs CQDs.

As defect (or impurity) scattering is a temperature-
independent process, the effect of temperature on the
mobility can be included by introducing a thermal popula-
tion of higher q-vector states within the same miniband
(the separation between different minibands is much larger
than kBT at room temperature)

μ T = ∑iμi f ∈ i, T , EF ni
∑i f ∈ i, T , EF ni

28

Here, f ∈ i, T , EF is the occupation probability of the
i-th energy interval (the width of the miniband is divided into
a large number of intervals of equal width, within each of
which the energy is constant (within ~ 1 meV) and equal to
(the average value) ∈i ), containing ni states with (average)
energy εi and Monte Carlo mobility μi, and the sum is per-
formed on all intervals. Our recent results [19] are in very
good agreement with experiment [6] and confirm a much
weaker temperature dependence than predicted by equation
(27), in line with observation [6].

It is worth mentioning that other transport mechanisms
have been proposed to occur in CQD films: phonon-assisted
(or hopping) conduction [22, 28–32] and direct tunnelling
[2, 33–35]. This work focuses on band-like transport
instead, aiming to investigate recent claims from several
different groups, reporting bulk-like transport in CQD
films, and following the observation of record high mobil-
ities in these systems [6–8, 10, 36–38]. Our results (pre-
sented both in this work and in Ref. [19]) confirm that
band-like transport is indeed possible in CQD films and
can explain the high electron mobilities observed recently
in high-quality CQD films and their temperature dependence
[19], which is, instead, inconsistent with the predictions of
the conventional hopping model [22]. Furthermore, the

application of this simple but, at the same time, surpris-
ingly accurate approach to 2D dot arrays of different
materials, crystal structures, lattice arrangements, surface
stoichiometries, and morphologies allowed us [17] to pro-
vide general design guidelines to tune the electron mobility
in these systems.

The mechanism responsible for charge transport in
quantum dot films remains, however, controversial, as,
recently, transport by small polaron hopping was shown
[39] to exhibit, in some parameter range, the temperature
dependence observed experimentally [6, 10] and predicted
theoretically [19] for band-like transport.

4. Conclusions

In summary, we have derived an order-of-magnitude-accu-
rate expression for the evaluation of the mobility in CQD
films. Such an expression, based on simple assumptions
and free from any fitting parameter, underpinned recent
studies on structural and temperature dependence of the
mobility in CQD films, proving strikingly accurate (and
much superior to an alternative formula recently proposed
in the literature) in reproducing experiment both qualita-
tively and quantitatively. It therefore represents an effective
and useful tool for the prediction of the transport properties
of CQD films, which will provide valuable help optimizing
the choice of dot materials and their characteristics for spe-
cific device applications.

Data Availability

The paper presents a new theoretical framework for the
calculation of the electron mobility in nanocrystal films.
All data are included in the manuscript.
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