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H-CNN: Spatial Hashing Based CNN for 3D
Shape Analysis

Tianjia Shao,Yin Yang,Yanlin Weng, Qiming Hou, and Kun Zhou, Fellow, IEEE

Abstract—We present a novel spatial hashing based data structure to facilitate 3D shape analysis using convolutional neural networks

(CNNs). Our method builds hierarchical hash tables for an input model under different resolutions that leverage the sparse occupancy

of 3D shape boundary. Based on this data structure, we design two efficient GPU algorithms namely hash2col and col2hash so that

the CNN operations like convolution and pooling can be efficiently parallelized. The perfect spatial hashing is employed as our spatial

hashing scheme, which is not only free of hash collision but also nearly minimal so that our data structure is almost of the same size as

the raw input. Compared with existing 3D CNN methods, our data structure significantly reduces the memory footprint during the CNN

training. As the input geometry features are more compactly packed, CNN operations also run faster with our data structure. The

experiment shows that, under the same network structure, our method yields comparable or better benchmark results compared with

the state-of-the-art while it has only one-third memory consumption when under high resolutions (i.e. 2563).

Index Terms—perfect hashing, convolutional neural network, shape classification, shape retrieval, shape segmentation.

✦

1 INTRODUCTION

3D shape analysis such as classification, segmentation, and re-

trieval has long stood as one of the most fundamental tasks for

computer graphics. While many algorithms have been proposed

(e.g. see [1]), they are often crafted for a sub-category of shapes

by manually extracting case-specific features. A general-purpose

shape analysis that handles a wide variety of 3D geometries is still

considered challenging. On the other hand, convolutional neural

networks (CNNs) are capable of learning essential features out

of the raw training data. They have demonstrated great success

in various computer vision problems of 2D images/videos [2]–

[4]. The impressive results from these works drive many follow-

up investigations of leveraging CNNs to tackle more challenging

tasks in 3D shape analysis.

Projecting a 3D model into multiple 2D views is a straight-

forward idea which maximizes the re-usability of existing 2D

CNN frameworks [5]–[8]. If the input 3D model has complex

geometry however, degenerating it to multiple 2D projections

could miss original shape features and lower quality of the final

result. It is known that most useful geometry information only

resides at the surface of a 3D model. While embedded in R
3, the

boundary of a 3D model is essentially two-dimensional. Inspired

by this fact, some prior works try to directly extract features out

of the model’s surface [9], [10] using, for instance the Laplace-

Beltrami operator [11]. These methods assume that the model’s

surface be second order differentiable, which may not be the

case in practice. In fact, many scanned or man-made 3D models

are of multiple components, which are not even manifold with

the presence of a large number of holes, dangling vertices and

intersecting/interpenetrating polygons. Using dense voxel-based
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discretization is another alternative [12], [13]. Unfortunately, treat-

ing a 3D model as a voxelized volume does not scale up as both

memory usage and computational costs increase cubically with the

escalated voxel resolution. The input data would easily exceed the

GPU memory limit under moderate resolutions.

Octree-based model discretization significantly relieves the

memory burden for 3D shape analysis [14], [15]. For instance,

Wang et al. [15] proposed a framework named O-CNN (ab-

breviated as OCNN in this paper), which utilizes the octree to

discretize the surface of a 3D shape. In octree-based methods,

whether or not an octant is generated depends on whether or not its

parent octant intersects with the input model. As a result, although

octree effectively reduces the memory footprint compared to the

“brute-force” voxelization scheme, its memory overhead is still

considerable since many redundant empty leaf octants are also

generated, especially for high-resolution models.

In this paper, we provide a better answer to the question of

how to wisely exploit the sparse occupancy of 3D models and

structure them in a way that conveniently interfaces with various

CNN architectures, as shown in Figure 1. In our framework, 3D

shapes are packed using the perfect spatial hashing (PSH) [16]

and we name our framework as Hash-CNN or HCNN. PSH is

nearly minimal meaning the size of the hash table is almost the

same as the size of the input 3D model. As later discussed in

§ 6.3, our memory overhead is tightly bounded by O(N
4
3 ) in the

worst case while OCNN has a memory overhead of O(N2), not to

mention other O(N3) voxel-based 3D CNNs (here, N denotes the

voxel resolution at the finest level). Our primary contribution is

investigating how to efficiently parallelize CNN operations with

hash-based models. To this end, two GPU algorithms namely

hash2col and col2hash are designed to facilitate CNN

operations like convolution and pooling. Our experiments show

that HCNN achieves comparable benchmark scores in various

shape analysis tasks compared with existing 3D CNN methods.

However, HCNN consumes much less memory and it also runs

faster due to its compact data packing.
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Fig. 1. An overview of HCNN framework for shape analysis. We construct a set of hierarchical PSHs to pack surface geometric features of an input
airplane model at different resolution levels. Compared with existing 3D CNN frameworks, our method fully utilizes the spatial sparsity of 3D models,
and the PSH data structure is almost of the same size as the raw input. Therefore, we can perform high-resolution shape analysis with 3D CNN
efficiently. The final segmentation results demonstrate a clear advantage of high-resolution models. Each part of the airplane model is much better
segmented at the resolution of 5123, which is currently only possible with HCNN.

2 RELATED WORK

3D shape analysis [1], [17], [18] is one of the most fundamental

tasks in computer graphics. Most existing works utilize manually

crafted features for dedicated tasks such as shape retrieval and

segmentation. Encouraged by great successes in 2D images analy-

sis using CNN-based machine learning methods [19]–[21], many

research efforts have been devoted to leverage CNN techniques

for 3D shape analysis.

A straightforward idea is to feed multiple projections of a 3D

model as the CNN input [5]–[8] so that the existing CNN architec-

tures for 2D images can be re-used. SnapNet [22] further performs

semantic labeling on 3D point clouds by back-projecting the 2D

label predictions. However, self-occlusion is almost inevitable for

complicated shapes during the projection, and the problem of how

to faithfully restore complete 3D information out of 2D projections

remains an unknown one to us.

Another direction is to perform CNN operations over the ge-

ometric features defined on 3D model surfaces [23]. For instance,

Boscaini et al. [10] used windowed Fourier transform and Masci et

al. [9] used local geodesic polar coordinates to extract local shape

descriptors for the CNN training. These methods, however require

that input models should be smooth manifold, and therefore cannot

be directly used for 3D models composed of point clouds or

polygon soups. Alternatively, Sinha et al. [24] parameterized a

3D shape over a spherical domain and re-represented the input

model using a geometry image [25], based on which the CNN

training was carried out. Guo et al. [26] computed a collection of

shape features and re-shaped them into a matrix as the network

input, while Maron et al. [27] applied CNN to sphere-type shapes

using a global parametrization to a planar flat-torus.

Non-CNN-based deep neural networks can also be applied to

3D point clouds. Qi et al. [28] proposed PointNet to analyze 3D

point clouds. This method uses shared multi-layer perceptron and

max pooling for the feature extraction. A follow-up research called

PointNet++ [29] improves the original PointNet by incorporating

neighborhood information in the point cloud. PCPNet [30] is a

multi-scale variant of the PointNet architecture with emphasis on

local shape information. Kd-Net [31] partitions the raw point cloud

into a Kd-tree structure and constructs a network based on the Kd-

tree hierarchy. These methods are all memory efficient since they

take the raw point cloud as the network input, and they can obtain

good benchmark scores. However, because input point clouds are

not in a regular format, it is still unclear how to apply convolution

operations in these methods.

Similar to considering images as an array of 2D pixels,

discretizing 3D models into voxels is a natural way to organize the

shape information for CNN-based shape analysis. Wu et al. [12]

proposed 3D ShapeNets for 3D object detection. They represented

a 3D shape as a probability distribution of binary variables on

voxels. Maturana and Scherer [13] used similar strategy to encode

large point cloud datasets. They used a binary occupancy grid to

distinguish free and occupied spaces, a density grid to estimate

the probability that the voxel would block a sensor beam, and a

hit grid to record the hit numbers. Such volumetric discretization

consumes memory cubically w.r.t. the voxel resolution, thus is

not feasible for high-resolution shape analysis. Observing the fact

that the spatial occupancy of 3D data is often sparse, Wang et

al. [32] designed a feature-centric voting algorithm named Vote3D

for fast recognition of cars, pedestrians and bicyclists from the

KITTI database [33] using the sliding window method. More

importantly, they demonstrated mathematical equivalence between

the sparse convolution and voting. Based on this, Engelcke et

al. [34] proposed a method called Vote3Deep converting the

convolution into voting procedures, which can be simply applied

to the non-empty voxels. However, with more convolution layers

added to the CNN, this method quickly becomes prohibitive.

Octree-based data structures have been proven an effective

way to reduce the memory consumption of 3D shapes. For

example, Riegler et al. [14] proposed a hybrid grid-octree data

structure to support high-resolution 3D CNNs. Our work is most

relevant to OCNN [15], which used an octree to store the surface

features of a 3D model and reduced the memory consumption

for 3D CNNs to O(N2). For the octree data structure, an octant

is subdivided into eight children octants if it intersects with the

model’s surface regardless if all of those eight children octants

are on the model. Therefore, an OCNN’s subdivision also yields

O(N2) futile octants that do not contain useful features of the

model. On the other hand, we use multi-level PSH [16] to organize

voxelized 3D models. PSH is nearly minimal while retaining an as

cache-friendly as possible random access. As a result, the memory

footprint of HCNN is close to the theoretic lower bound. Unlike

in the original PSH work [16], the main hash table only stores the
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Fig. 2. Accessing the receptive field between different resolutions based
on PSH. Here, li and lo denote the input and output resolution levels.
For each output hash slot in Hlo , we obtain its voxel position in the
volume from the position tag (the red arrow). The input receptive field at
resolution level li for the voxel can be located based on the kernel size,
stride and padding (the black arrow). For each voxel within the receptive
field, we access its hash slot using the PSH hashing function (the yellow
arrows) so that its corresponding feature values in the data array can be
retrieved.

data index, and the real feature data is compactly assembled in a

separate data array. We investigate how to seamlessly synergize

hierarchical PSH-based models with CNN operations so that they

can be efficiently executed on the GPU. In the concurrent work by

Graham et al. [35], the similar idea of exploiting the data sparsity

is also realized via efficient convolution schemes named sparse

convolution (SC) and submanifold sparse convolution (SSC). The

SC operation is similar to the one used in [36], which avoids

applying convolution operations on empty voxels. SSC imposes

extra restrictions when the stride size is one. Concretely, SSC zero

pads the voxel grid to make sure that the convolution output has

the same resolution as the input, and SSC does not perform the

convolution unless the center of the receptive field on the input

grid is non-empty. Doing so prevents the convolution dilation

artifact and preserves the data sparsity. However, the performance

of SC/SSC highly relies on the employed hashing function, and

general-purpose hashing functions may not yield an optimal per-

formance for CNN operations. HCNN is orthogonal to SSC by

incorporating the PSH into the 3D CNN architecture for high-

resolution 3D shape analysis, which is both memory efficient and

collision free. In addition, HCNN does not need to build rule books

to establish the correspondence between the input and output of a

convolution or pooling operation, which on the other hand, must

be created on the fly in SSC.

3 ALGORITHM OVERVIEW

Coupling CNN architectures with spatial hashing is challenging.

Many CNN operations like convolution and pooling alter the

spatial arrangement of the 3D model’s geometry features, which

require our hash-based data structure being able to freely exchange

information between different resolutions. Unlike the child-parent

linkage in tree-based data structures however, a spatial hashing

does not possess such built-in hierarchical connections. Further-

more, we also need to bear in mind while designing our data

structure that CNN training is typically performed over a group of

3D models, i.e. a mini-batch, and we need to efficiently fetch

the correspondences of features under different resolutions for

all the models in the group. Finally, we would like to make

CNN operations GPU-friendly so they can be parallelized and

accelerated with modern GPU architectures.

To achieve these objectives, on the top of the regular PSH

data structure (§ 4.1), we design an auxiliary data structure named

model index table, which instantly returns the model’s index

within a mini-batch for a given hash query. The corresponding

geometry data can then be efficiently accessed with accumulated

index tables (§ 4.2). As we only use simple modulo functions

for the spatial hashing [16], we can efficiently locate the corre-

sponding data at a different resolution using constant indirections.

All the known CNN operations such as convolution can then be

parallelized with our data structure by assigning a CUDA thread to

collect necessary feature values within the receptive field for each

output hash slot per channel as illustrated in Figure 2 (§ 5).

4 SPATIAL HASHING FOR 3D CNN

For a given input 3D shape, either a triangle soup/mesh or a point

cloud, we first uniformly scale it to fit a unit sphere pivoted at the

model’s geometry center. Then, an axis-aligned bounding cube is

built, whose dimension equals to the sphere’s diameter. Doing so

ensures that the model remains inside the bounding box under

arbitrary rotations, so that we can further apply the training data

augmentation during the training (see e.g. §6.4). This bounding

cube is subdivided into grid cells or voxels along x, y, and z

axes. A voxel is a small equilateral cuboid. It is considered non-

empty when it encapsulates a small patch of the model’s boundary

surface. As suggested in [15], we put extra sample points on this

embedded surface patch, and the averaged normal of all the sample

points is fed to the CNN as the input signal. For an empty voxel,

its input is simply a zero vector.

4.1 Multi-level PSH

The core data structure of PSH includes a hash table and an

offset table. The size of hash table is almost the same as the

number of non-empty voxels, and the offset table is typically

much smaller than the hash table. By applying two simple modulo

functions separately on the two tables, we obtain a perfect hashing

mapping for all non-empty voxels. We call a hashing scheme

perfect meaning all the legal hash queries are collision free. Such

simple implementation helps greatly reduce the memory usage.

Based on the core PSH data structure, we build a set of hierarchical

PSHs. At each level of the hierarchy, we construct a data array D,

a hash table H, an offset table Φ and a position tag T . The data

array at the finest level stores the input feature (i.e. the normal

direction of the voxel).

Let U be a d-dimensional discrete spatial domain with u = ūd

voxels, out of which the sparse geometry data S occupies n grid

cells (i.e. n = |S|). In other words, U represents all the voxels

within the bounding cube at the given resolution, and S represents

the set of voxels intersecting with the input model. We seek for a

hash table H, which is a d-dimensional array of size m = m̄d ≥ n

and a d-dimensional offset table Φ of size r = r̄d . By building

maps h0 : U→ H and h1 : U→ Φ, such that h0(p) = p mod m̄

and h1(p) = p mod r̄, one can obtain the perfect hash function
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Fig. 3. An illustrative 2D example of the constitution of our PSH. The
domain U consists of 7× 5 2D voxels or pixels. The red-shaded pixels
stand for the input model. The green, blue, yellow and brown tables are
the offset table (Φ), hash table (H), position tag (T ) and data array (D)
respectively.

mapping each non-empty voxel on the 3D shape p ∈ S to a unique

slot s = h(p) in the hash table as:

h(p) = h0(p)+Φ[h1(p)] mod m̄. (1)

The hash table H possesses slightly excessive slots (i.e. m = m̄d ≥
n) to make sure that the hashing representation of S is collision

free. A NULL value is stored at those redundant slots in H. Clearly,

these NULL values should not participate in the CNN operations

like batch normalization and scale. To this end, we assemble all

the data for S into a compact d-dimensional array D of size n. H

only houses the data index in D. If a slot in H is redundant, it is

indexed as −1 so that the associated data query is skipped.

Empty voxels (i.e. when p ∈ U\S) may also be visited during

CNN operations like convolution and pooling. Because PSH is

only perfect for queries of voxels in S, plugging these empty

voxels’ indices into Eq. (1) is likely to return incorrect values that

actually correspond to other non-empty grid cells. To avoid this

mismatch, we adopt the strategy used in [16] adding an additional

position tag table T , which has the same size of H. T [i] stores

the voxel index for the corresponding slot at H[i]. Therefore when

a grid cell p is queried, we first check its data index in H or

H[h(p)]. If it returns a valid index other than -1, we further check

the position tag T [h(p)] to make sure T [h(p)] = p. Otherwise,

p ∈U\S is an off-model voxel and the associated CNN operation

should be skipped. In our implementation, we use a 16-bit position

tag for each x, y and z index, which supports the voxelization

resolution up to 65,5363.

Figure 3 gives an illustrative 2D toy example. The domain U

is a 7×5 2D pixel grid. The red-shaded pixels stand for the input

model, thus n = |S|= 8. We have a 3×3 hash table H (i.e. m̄ = 3

and it is the blue table in the figure) and a 2× 2 offset table (i.e.

r̄ = 2 and it is the green table in the figure). Assume that the

pixel p(3,1) is queried and h0 yields h0(3,1) = (3 mod m̄,1 mod

m̄) = (0,1). h1(3,1) = (3 mod r̄,1 mod r̄) = (1,1) gives the 2D

index in the offset table. Φ(1,1) = (1,2), which is added to h0(p)
to compute the final index in H: Φ(1,1) + h0(p) = (1+ 0 mod

m̄,2+1 mod m̄) = (1,0). Before we access the corresponding data

cell in D (the fourth cell in this example because H(1,0) = 3), the

position tag table (the yellow table) is queried. Since T (1,0) =
(3,1), which equals to the original pixel index of p, we know that

p ∈ S is indeed on the input model. Note that in this example,

H(2,1) is a redundant slot (colored in dark blue in Figure 3).

Therefore, the corresponding index is -1.

4.2 Mini-batch with PSH

During the CNN training, it is typical that the network parameters

are optimized over a subset of the training data, referred to

as a mini-batch. Let b be the batch size and l be the reso-

lution level. In order to facilitate per-batch CNN training, we

build a “super-PSH” by attaching H, Φ, T for all the models

in a batch: H∗l =
{

H1
l ,H

2
l , ...,H

b
l

}
, Φ∗l =

{
Φ1

l ,Φ
2
l , ...,Φ

b
l

}
, and

T ∗l =
{

T 1
l ,T

2
l , ...,T

b
l

}
as illustrated in Figure 4. That is we expand

each of these d-dimensional tables into a 1D array and concatenate

them together. The data array D∗l of the batch is shaped as a row-

major cl by ∑
b
i=1 |Si

l | matrix, where cl is the number of channels

at level l, and ∑
b
i=1 |Si

l | is the total number of non-empty voxels of

all the models in the batch. A column of D∗l is a cl-vector, and it

stores the features of the corresponding voxel. The dimensionality

of H i
l , Φi

l , and Di
l is also packed as m̄∗l =

{
m̄1

l , m̄
2
l , ..., m̄

b
l

}
,

r̄∗l =
{

r̄1
l , r̄

2
l , ..., r̄

b
l

}
, and n∗l =

{
n1

l ,n
2
l , ...,n

b
l

}
.

In addition, we also record accumulated indices for H, Φ and

D as: M∗l =
{

0,M1
l ,M

2
l , ...,M

b
l

}
, R∗l =

{
0,R1

l ,R
2
l , ...,R

b
l

}
and N∗l ={

0,N1
l ,N

2
l , ...,N

b
l

}
where

Mi
l =

i

∑
k=1

(m̄k
l )

d =
i

∑
k=1

mk
l , Ri

l =
i

∑
k=1

(r̄k
l )

d =
i

∑
k=1

rk
l , Ni

l =
i

∑
k=1

nk
l .

Indeed, M∗l , R∗l and N∗l store the super table (i.e. H∗l , Φ∗l , T ∗l ,

and D∗l ) offsets of the k-th model in the batch. For instance, the

segment of H∗l starting from H∗l
[
M∗l [k− 1]

]
to H∗l

[
M∗l [k]− 1

]

corresponds to the hash table Hk
l ; the segment from Φ∗l

[
R∗l [k−1]

]

to Φ∗l
[
R∗l [k]− 1

]
corresponds to the offset table Φk

l ; the segment

from T ∗l
[
M∗l [k−1]

]
to T ∗l

[
M∗l [k]−1

]
corresponds to the position

tag T k
l ; and the segment from D∗l

[
N∗l [k− 1]

]
to D∗l

[
N∗l [k]− 1

]

is the data array Dk
l . Lastly, we build a model index table

V ∗l =
{

V 1
l ,V

2
l , ...,V

b
l

}
for the inverse query. Here, V i

l has the same

size as H i
l does, and each of its slots stores the model’s index in a

batch: V i
l (·) = i.

5 CNN OPERATIONS WITH MULTI-LEVEL PSH

In this section we show how to apply CNN operations like convo-

lution/transposed convolution, pooling/unpooling, batch normal-

ization and scale to the PSH-based data structure so that they can

be efficiently executed on the GPU.

Convolution The convolution operator Ψc in the unrolled form

is:

Ψc(p) = ∑
n

∑
i

∑
j
∑
k

W
(n)
i jk ·F(n)(pi jk), (2)

where pi jk is a neighboring voxel of voxel p ∈ S. F(n) and W
(n)
i jk

are the feature vector and the kernel weight of the n-th channel.

This nested summation can be reshaped as a matrix product [37]

and computed efficiently on the GPU:

Do = W · D̃i. (3)

Let li and lo denote the input and output hierarchy levels of the

convolution. Do is essentially the matrix representation of the

output data array D∗lo . Each column of Do is the feature signal

of an output voxel. A row vector in W concatenates vectorized

kernel weights for all the input channels, and the number of rows

in W equals to the number of convolution kernels employed. We

design a subroutine hash2col to assist the assembly of matrix

D̃i, which fetches feature values out of the input data array D∗li
so that a column of D̃i stacks feature signals within the receptive

fields covered by kernels.
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Fig. 4. PSH data structures for a mini-batch of two models. All the feature data for the red-shaded pixels are stored in the super data array D∗,
which consists of the data arrays of each individual models. Super hash table H∗, position tag T ∗ and model index table V ∗ are of the same size.
For a give hash slot indexed at iH∗ , one can instantly know that this voxel, if not empty, is on the V ∗[iH∗ ]-th model in the batch by checking the
model index table V ∗. This information bridges the data sets from different hierarchy levels. With the auxiliary accumulated index tables R∗, M∗, and
N∗, we can directly pinpoint the data using local index offset by R∗[V ∗[iH∗ ]−1], M∗[V ∗[iH∗ ]−1] and N∗[V ∗[iH∗ ]−1] respectively. For instance in this
simple example, when the local hash index is computed using Eq. (1) for a non-empty voxel on the second model, its hash index in H∗ can then be
obtained by offsetting the local hash index by M∗[2−1] = 9.

The algorithmic procedure for hash2col is detailed in Al-

gorithm 1. In practice, we launch cli ·M∗lo [b] CUDA threads in

total, where cli is the number of input channels. Recall that M∗lo [b]
is the last entry of the accumulated index array M∗lo such that

M∗lo [b] = Mb
lo

, and it gives the total number of hash slots on H∗lo .

Hence, our parallelization scheme can be understood as assigning

a thread to collect necessary feature values within the receptive

field for each output hash slot per channel. The basic idea is to find

the receptive field Rli ⊂Uli that corresponds to an output voxel plo

and retrieve features for D̃i. A practical challenge lies in the fact

that output and input data arrays may reside on the voxel grids

of different hierarchy levels. In [35], this task is accomplished by

creating the rule book before a convolution is practically applied,

which requires extra temporary memory and slows the operation

(due to the pre-iteration). On the other hand, HCNN resorts to

the PSH mapping (Eq. (1)) and the position tag table to build the

necessary output-input correspondence.

Given a thread index ithrd (0 ≤ ithrd ≤ cli ·M∗lo [b]− 1), we

compute its associated channel index ic as ic =
⌊
ithrd/M∗lo [b]

⌋
.

Its super hash index iH∗
lo

(i.e. the index in H∗lo ) is simply

iH∗
lo
= ithrd − ic ·M∗lo [b], so that we know that this thread is for the

V ∗lo [iH∗lo
]-th model in the batch (recall that V ∗lo is the model index

table). If H∗lo [iH∗lo
] 6=−1 meaning this thread corresponds to a valid

non-empty voxel, the index of the column in Do that houses the

corresponding output feature is N∗lo
[
V ∗lo [iH∗lo

]−1
]
+H∗lo [iH∗lo

].

With the help of the position tag table T ∗lo , the index of the

output voxel in Ulo associated with the thread ithrd can be retrieved

by plo = T ∗lo [iH∗lo
], based on which we can obtain the input voxel

positions within the receptive field and construct the corresponding

column in D̃i. Specifically, if the stride size is one, indicating

the voxel resolution is unchanged after the convolution or li = lo,

the input model has the same hash structure as the output. In

this case, the receptive field associated with plo spans from plo −
(F−1)/2 to plo +(F−1)/2 along each dimension on Uli denoted

as Uli [plo − (F − 1)/2, plo + (F − 1)/2]d . Here, F is the kernel

size. On the other hand, if the stride size is larger than one, the

convolution will down-sample the input feature, and the receptive

field on Uli is Uli [plo ·Ss−Sp, plo ·Ss−Sp +F−1]d with the stride

size Ss and the padding size Sp. For irregular kernels [38], [39],

we can similarly obtain the corresponding receptive field on Uli

based on plo .

As mentioned, for a non-empty voxel pli ∈ Uli within the

receptive field of a given output voxel plo ∈ Ulo , we know that

it belongs to the v-th model of the batch, where v = V ∗lo [iH∗lo
].

Therefore, its offset index in Φ∗li can be computed as:

iΦ∗
li
= R∗li [v−1]+h1(pli), (4)

where R∗li is the accumulated offset index array at level li, and

R∗li [v− 1] returns the starting index of the offset table Φv
li

in the

super table Φ∗li . h1(pli) computes the (local) offset index. Thus,

the offset value of pli can be queried by Φ∗li [iΦ∗li
]. The index of pli

in the super hash table H∗li can be computed similarly as:

iH∗
li
= M∗li [v−1]+

(
h0(pli)+Φ∗li [iΦ∗li

] mod m̄li

)

= M∗li [v−1]+
(
h0(pli)+Φ∗li [R

∗
li
[v−1]+h1(pli)] mod m̄li

)
.
(5)

Here, h0(pli) and h1(pli) are maps defined on hierarchy level li. If

H∗li [iH∗li
] 6=−1 and the position tag is also consistent (i.e. T ∗li [iH∗li

] =

pli ), we fetch the feature from the data array by D∗li [iD∗li
], where

iD∗
li
= N∗li [v−1]+H∗li [iH∗li

]. (6)

Otherwise, a zero value is returned.

Back propagation & weight update During the CNN training

and optimization, the numerical gradient of kernels’ weights is

computed as:

δW = δDo · D̃⊤i , (7)

where δDo is the variation of the output data array Do. In order to

apply Eq. (7) in previous CNN layers, we also calculate how the

variational error is propagated back:

δ D̃i = W⊤ ·δDo. (8)

Clearly, we need to re-pack the errors in δ D̃i in accordance with

the format of the data array D∗li so that the resulting matrix δDi
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Input: b, cli , D∗li , H∗li , M∗li , R∗li , N∗li V ∗lo , T ∗lo , H∗lo , M∗lo , N∗lo , F , Ss, Sp

Output: D̃i

1: launch cli ·M∗lo [b] threads;
/* parallel for loop and ithrd is the thread index */

2: for ithrd = 0 : cli ·M∗lo [b]−1 do

3: ic←
⌊
ithrd/M∗lo [b]

⌋
; // ic is the channel index

4: iH∗
lo
← ithrd − ic ·M∗lo [b];

5: v←V ∗lo [iH∗lo
]; // v is the model index in the

mini-batch

6: col← N∗lo
[
v−1

]
+H∗lo [iH∗lo

]; // col is the column index

7: if H∗lo [iH∗lo
] =−1 then

8: return ; // iH∗
lo

points to an empty hash slot

9: end

10: else

11: plo ← T ∗lo [iH∗lo
]; // plo is the voxel position

12: Rli ← /0; // Rli is the receptive field on Uli

/* Ss and Sp are stride and padding sizes */

13: if Ss = 1 then

14: Rli ← Uli [plo − (F−1)/2, plo +(F−1)/2]3;
15: end

16: else

17: Rli ← Uli [plo ·Ss−Sp, plo ·Ss−Sp +F−1]3;
18: end

19: row← 0; // row is current row index in D̃i

/* iterate all the voxels within the kernel */

20: for pli ∈ Rli do

21: iΦ∗
li
← R∗li [v−1]+h1(pli );

22: iH∗
li
←M∗li [v−1]+

(
h0(pli )+Φ∗li [iΦ∗li

] mod m̄li

)
;

23: if H∗li [iH∗li
] 6=−1 and pli = T ∗li [iH∗li

] then

24: iD∗
li
← N∗li [v−1]+H∗li [iH∗li

];

25: D̃i[ic ·F + row,col]← D∗li [ic, iD∗li
];

26: end

27: else

28: D̃i[ic ·F + row,col]← 0;
29: end

/* assume pli is iterated according to its

spatial arrangement in Rli */

30: row← row+1;
31: end

32: end

33: end

Algorithm 1: hash2col subroutine

can be sent to the previous CNN layer. This process is handled by

the col2hash subroutine, outlined in Algorithm 2. As the name

implies, col2hash is quite similar to hash2col except at line

26, where variational errors from the receptive field is lumped into

a single accumulated error.

Pooling, unpooling & transposed convolution The pooling

layer condenses the spatial size of the input features by using a

single representative activation for a receptive field. This operation

can be regarded as a special type of convolution with a stride

size Ss > 1. Therefore, hash2col subroutine can also assist the

pooling operation. The average-pooling is dealt with as applying

a convolution kernel with all the weights equal to 1/F3. For

the max-pooling, instead of performing a stretched inner product

across the receptive field, we output the maximum signal after

the traversal of the receptive field (the for loop at line 20 in

Algorithm 1). Unlike OCNN [15], our framework supports any

stride sizes for the pooling since the PSH can be generated on the

grid of an arbitrary resolution.

The unpooling operation aims to partially revert the input acti-

vation after the pooling, which could be useful for understanding

the CNN features [40], [41] or restoring the spatial structure of the

input activations for segmentation [42], flow estimation [43], and

Input: b, cli , δ D̃i, H∗li , M∗li , R∗li , N∗li V ∗lo , T ∗lo , H∗lo , M∗lo , N∗lo , F , Ss, Sp

Output: δD∗li

1: δD∗li [:]← 0; // δD∗li is initialized as 0

2: launch cli ·M∗lo [b] threads;
/* parallel for loop and ithrd is the thread index */

3: for ithrd = 0 : cli ·M∗lo [b]−1 do

4: ic←
⌊
ithrd/M∗lo [b]

⌋
; // ic is the channel index

5: iH∗
lo
← ithrd − ic ·M∗lo [b];

6: v←V ∗lo [iH∗lo
]; // v is the model index in the

mini-batch

7: col← N∗lo
[
v−1

]
+H∗lo [iH∗lo

]; // col is the column index

8: if H∗lo [iH∗lo
] =−1 then

9: return ; // iH∗
lo

points to an empty hash slot

10: end

11: else

12: plo ← T ∗lo [iH∗lo
]; // plo is the voxel position

13: Rli ← /0; // Rli is the receptive field on Uli

/* Ss and Sp are stride and padding sizes */

14: if Ss = 1 then

15: Rli ← Uli [plo − (F−1)/2, plo +(F−1)/2]3;
16: end

17: else

18: Rli ← Uli [plo ·Ss−Sp, plo ·Ss−Sp +F−1]3;
19: end

20: row← 0; // row is current row index in δ D̃i

/* iterate all the voxels within the kernel */

21: for pli ∈ Rli do

22: iΦ∗
li
← R∗li [v−1]+h1(pli );

23: iH∗
li
←M∗li [v−1]+h0(pli )+

(
Φ∗li [iΦ∗li

] mod m̄li

)
;

24: if H∗li [iH∗li
] 6=−1 and pli = T ∗li [iH∗li

] then

25: iD∗
li
← N∗li [v−1]+H∗li [iH∗li

];

26: δD∗li [ic, iD∗li
]← δD∗li [ic, iD∗li

]+δ D̃i[ic ·F + row,col];

27: end

28: row← row+1;
29: end

30: end

31: end

Algorithm 2: col2hash subroutine

generative modeling [42]. During the max-pooling, we record the

index of the maximum activation for each receptive field (known

as the switch). When performing the max-unpooling, the entire

receptive field corresponding to an input voxel is initialized to

be zero, and the feature signal is restored only at the recorded

voxel index. The average-unpooling is similarly handled, where

we evenly distribute the input activation over its receptive field.

Transposed convolution is also referred to as deconvolution,

upconvolution or fractionally strided convolution [44], which has

been proven useful for enhancing the activation map [40], [45].

Mathematically, the transposed convolution is equivalent to the

regular convolution and can be dealt with using hash2col

subroutine. However, doing so involves excessive zero padding

and thus degenerates network’s performance. In fact, the deconvo-

lution flips the input and output of the forward convolution using

a transposed kernel as: D̃o = W⊤ ·Di, which is exactly how we

handle the error back propagation (i.e. Eq. (8)). Therefore, the

col2hash subroutine can be directly used for deconvolution

operations.

Other CNN operations Because all the feature values in HCNN

are compactly stored in the data array D∗, operations that are

directly applied to the feature values like batch normalization [46]

and scale can be trivially parallelized on GPUs.
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6 EXPERIMENTAL RESULTS

Our framework was implemented on a desktop computer equipped

with an Intel I7-6950X CPU (3.0 GHz) and an nVidia

GeForce 1080 Pascal GPU with 8 GB DDR5 memory. We

used Caffe framework [47] for the CNN implementation. The

3D models used are from ModeNet40 [12] and ShapeNet

Core55 [48]. Both are publicly available. The source code of

HCNN can be found in the accompanying supplementary file. The

executable and some of the training data in PSH format (4.4 GB

in total) can also be downloaded via the anonymous Google

Drive link, which can also be found in the supplementary file.

We encourage readers to test HCNN by themselves.

Model rectification It has been noticed that normal information

on 3D models from the ModeNet database are often incorrect or

missing. We fix the normal information by casting rays from 14

virtual cameras (at six faces and eight corners of the bounding

cube). Some 3D models use a degenerated 2D plane to represent

a thin shape. For instance, the back of a chair model may only

consist of two flat triangles. To restore the volumetric information

of such thin geometries, we displace the sample points on the

model towards its normal direction by 1/(2 · ūmax), where ūmax

denotes the voxel resolution at the finest hierarchy level. In other

words, the model’s surface is slightly dilated by a half-voxel size.

6.1 Network Architecture

A carefully fine-tuned network architecture could significantly im-

prove the CNN result and relieve the training efforts. Nevertheless,

this is neither the primary motivation nor the contribution of this

work. In order to report an apple-to-apple comparison with peers

and benchmark our method objectively, we employ a network

similar to the well-known LeNet [49].

In our framework, the convolution and pooling operations are

repeated from the finest level, and ReLU is used as the activation

function. A batch normalization (BN) is also applied [46]. Our

PSH hierarchy allows very dense voxelization at the resolution of

5123 (i.e. see Figure 5), where the hierarchy level l = 9. Each

coarser level reduces the resolution by half, and the coarsest

level has the resolution of 43, where l = 2. Such multi-level PSH

configuration exactly matches the OCNN hierarchy, which allows

us to better evaluate the performance between these two data

structures. At each level, we have the same operation sequence

as: Convolution→ BN→ ReLU → Pooling. The receptive field of

kernels is 3×3×3, and the number of channels at the l-th level is

set as max{2,29−l}.
Three classic shape analysis tasks namely shape classification,

retrieval, and segmentation are benchmarked. For the classifica-

tion, two fully connected (FC) layers, a softmax layer and two

dropout layers [50], [51] ordered as: Dropout → FC(128) →
Dropout → FC(Nc)→ So f tmax→ Out put are appended. Here,

FC(K) indicates K neurons are set at the FC layer. For the

shape retrieval, we use the output from the object classification

as the key to search for the most similar shapes to the query.

For the segmentation, we follow the DeconvNet [42] structure,

which adds a deconvolution network after a convolution net-

work for dense predictions. The deconvolution network simply

reverses the convolution procedure where the convolution and

pooling operators are replaced by the deconvolution and unpooling

operators. Specifically, at each level we apply Unpooling →
Deconvolution→ BN → ReLU and then move to the next finer

level.

32
3

64
3

128
3

256
3 512

3

Fig. 5. The benefit of dense voxelization is obvious. The discretized
model better captures the geometry of the original shape at higher
resolutions.

The reader may notice that our experiment setting transplants

the one used in [15] except that all the features are organized using

PSH rather than octrees. This is because we consider OCNN [15]

as our primary competitor and would like the report an objective

side-by-side comparison with it. Lastly, we would like to remind

the reader again that HCNN is not restricted to power-of-two

resolution changes. To the best of our knowledge, our HCNN is

compatible with all the existing CNN architectures and operations.

Training specifications The network is optimized using the

stochastic gradient descent method. We set momentum as 0.9
and weight decay as 0.0005. A mini-batch consists of 32 models.

The dropout ratio is 0.5. The initial learning rate is 0.1, which is

attenuated by a factor of 10 after 10 epochs.

6.2 PSH Construction

As the data pre-processing, we construct a multi-level PSH for

each 3D model corresponding to the actual architecture of the

CNN to be employed. The size of the hash table is set as the

smallest value satisfying m̄3 > |S|. Each hash table slot is an int

type, which stores the data array index of D. Therefore, the hash

table supports the high-resolution models up to |S| = 231, which

is sufficient in our experiments. Next, we seek to make the offset

table as compact as possible. The table size r̄ is initialized as the

smallest integer such that r̄3 ≥ σ |S| with the factor σ empirically

set as σ = 1/2d, as used in [16]. An offset table cell is of 24 bits

(d×8), and each offset value is a 8-bit unsigned char, which

allows an offset up to 255 at each dimension. We first iterate all

the non-empty voxels, and record the count of voxels falling into

each offset table slot. A greedy algorithm is used to assign an

offset value for each offset table slot, in a descending order of the

voxel count of the slot. In other words, we assign an offset value

to the offset table slot with the highest voxel count first. If the hash

construction fails (i.e. we are running out of valid offset values),

we increase r̄ by
3
√

2 (i.e. double the offset table capacity) until

construction succeeds. We refer readers to [16] for implementation

details.

6.3 Memory Analysis

An important advantage of using PSH is its excelling memory

performance over state-of-the-art methods. Our closest competitor

is OCNN [15], where the total number of the octants at the finest
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level does not depend on whether leaf octants intersect with the

input model. Instead, it is determined by the occupancy of its

parent: when the parent octant overlaps with the model’s boundary,

all of its eight children octants will be generated. While OCNN’s

memory consumption is quadratically proportional to the voxel

resolution in the asymptotic sense, it also wastes O(N2) memory

for leaf octants that are not on the model. On the other hand,

the memory overhead of our PSH-based data structure primarily

comes from the difference between the actual model size i.e. the

number of voxels on the model at the finest level and the hash table

size (the offset tables are typically much smaller than the main

hash table). Assume that the input model size is |S|=N2. The hash

table size is m̄ = ⌈N 2
3 ⌉, which is the smallest integer satisfying

m̄3 > N2. By splitting ⌈N 2
3 ⌉ as: ⌈N 2

3 ⌉ = N
2
3 +∆M, 0 ≤ ∆M ≤ 1,

the memory overhead of PSH can then be estimated via:

⌈N 2
3 ⌉3−N2 =

(
N

2
3 +∆M

)3−N2 ∝ ∆MN
4
3 , (9)

which is O(N
4
3 ). In other words, the memory overhead of our

HCNN is polynomially smaller than OCNN.
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Fig. 6. The sizes of PSH and octree data structures used to encode the
bunny model under resolutions of 643, 1283, 2563 and 5123. Under each
resolution, the total number of octants and the sizes of the hash table
(H) and offset table (Φ) are reported. Their quadratic growth trends are
also plotted.

Figure 6 compares the sizes of the primary data structure for

the bunny model (Figure 5) using OCNN and HCNN – the total

number of leaf octants and the size of the hash table (H) at the

finest level. The size of the offset table Φ is typically an order

smaller than H. Besides, the number of voxels on the model is

also reported. It can be clearly seen from the figure that the size of

the hash table is very close to the actual model size (i.e. the lower

bound of the data structure). The latter is highlighted as grey bars

in the figure. The asymptotic spatial complexity of both HCNN

and OCNN are O(N2), however the plotted growth trends show

that HCNN is much more memory efficient than OCNN.

In reality, the memory footprint follows the similar pattern.

Figure 7 compares the memory usage for OCNN and HCNN

during the mini-batch training. A mini-batch consists of 32 ran-

dom models, and memory usage is quite different for different

batches. Therefore, we report the batch which uses the largest

amount of memory during 1,000 forward and backward iterations.

It can be seen from the figure that when the resolution is 2563,

OCNN consumes 6,080 MB memory, and our method just needs

2,187 MB memory. This is over 170% less memory consumption.

When the resolution is further increased to 5123, OCNN is unable

4
0

6

5
7

6

9
9

9

2
,1

8
7

4
,5

1
0

4
1

8

6
2

4

1
,1

4
6

2
,7

1
7

6
,2

0
4

5
1

4

8
7

4

2
,1

7
0

6
,0

8
0

O
O

M

5
4
2

1
,0
6
3

3
,2
4
7

O
O
M

O
O
M

1

32 64 128 256 512

M
em

o
ry

 c
o
n

su
m

p
ti

o
n

 (
M

B
)

HCNN

HCNN with neighbor

OCNN

OCNN with neighbor

Out of memory

Quadratic growth trend for HCNN

Quadratic growth trend for OCNN

Fig. 7. The actual memory consumption using OCNN and HCNN over a
mini-batch of 32 models. The physical memory cap of the 1080 GTX card
is 8 GB. HCNN allows very dense voxelization up to 5123 even with pre-
stored neighbor information, while OCNN can only handle resolution of
1283 with recorded neighborhood.

to fit the entire batch into 8 GB memory of the 1080 GTX

video card, while our method is not even close to the cap, which

only uses 4,510 MB memory. If one chooses to use the entire

voxel grid, a mini-batch would need over 2 GB memory (with

nVidia cuDNN) under resolution of 643, which is roughly four

times of HCNN. During CNN training, one could accelerate the

convolution-like operations by saving the neighborhood informa-

tion for each non-empty voxel (or each leaf-octant with OCNN).

With this option enabled, OCNN is even not able to handle the

batch under 1283, while our method is sill able to deal with the

batch under 5123. The plotted growth trends also suggest that

the gap of the memory consumption between OCNN and HCNN

should be quickly widened with the increased voxel resolution.

It is also noteworthy that by slightly changing the implemen-

tation of OCNN, one can further improve OCNN’s memory effi-

ciency for the convolution operation. Because OCNN has marked

whether one octant is empty via the Label property of the octant,

we can exclude the empty voxels when constructing the matrix

D̃i (in Eq. (3)). Or we can assemble the matrix incrementally by

splitting the D̃i into several blocks. Nevertheless, the memory foot-

print of the underlying data structures still favors HCNN, making

it a more memory-friendly solution over OCNN. To verify this

argument, we did another experiment using the mini-batch of 32

models, without recording the neighbor information. We run 1,000

iterations with the resolution of 2563 for both data structures.

The highest memory consumptions are reported. During this test,

the memory buffer of the matrix multiplication is 2,754 MB for

OCNN (with empty octant included), and the OCNN data structure

itself uses 3,368 MB memory space. On the other hand, HCNN

needs 1,196 MB memory for the matrix multiplication, and its

data structure only requires 1,001 MB memory space. Clearly,

even after we reduce the memory consumption of OCNN for the

convolution operation to 1,196 MB (i.e. the same amount needed

for HCNN), which lowers OCNN’s overall memory benchmark to

4,564 MB, it is still much higher than HCNN’s 2,197 MB.

6.4 Shape Classification

The first shape analysis task is the shape classification, which

returns a label out of a pre-defined list that best describes the input

model. The dataset used is ModeNet40 [12] consisting of 9,843

training models and 2,468 test models. The upright direction for
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Network architecture Without voting With voting

HCNN(32) 89.3% 89.6%
OCNN(32) 89.3% 89.8%
FullVox(32) 89.3% 89.8%

HCNN(64) 89.3% 89.9%
OCNN(64) 89.3% 89.8%
FullVox(64) 89.0% 89.6%

HCNN(128) 89.4% 90.1%
OCNN(128) 89.2% 90.0%

HCNN(256) 89.2% 90.2%
OCNN(256) 89.2% 90.2%

HCNN(512) 89.1% 89.6%
OCNN(512) OOM OOM

VoxNet(32) 82.0% 83.0%
Geometry image 83.9% –
SubVolSup(32) 87.2% 89.2%
FPNN(64) 87.5% –
PointNet 89.2% –
PointNet++ 90.7% –
PointNet++ (with normal) 91.9% –
VRN(32) 89.0% 91.3%
Kd-Net (depth 10) – 90.6%
Kd-Net (depth 15) – 91.8%

TABLE 1
Benchmark of shape classification on ModelNet40 dataset. In the first

portion of the table, we report the classification results using HCNN
and OCNN. The classification accuracy using fully voxelized models
(FullVox) is also reported. The number followed by a network name

indicates the resolution of the discretization. In the second half of the
table, the benchmarks of other popular nets are listed for the

comparison. The best benchmark among a given group is highlighted
in blue color.

each model is known, and we rotate each model along the upright

direction uniformly generating 12 poses for the training. At the

test stage, the scores of these 12 poses can be pooled together to

increase the accuracy of the prediction. This strategy is known as

orientation voting [13]. The classification benchmarks of HCNN

under resolutions from 323 to 5123 with and without voting are

reported in Table 1.

In the first half of the table, we also list the prediction accuracy

using OCNN [15] and FullVox under the same resolution. The

notion of HCNN(32) in the table means the highest resolution of

the HCNN architecture is 323. The so-called FullVox refers to

treating a 3D model as a fully voxelized bounding box, where a

voxel either houses the corresponding normal vector, as HCNN

or OCNN does, if it intersects with the model’s surface, or a zero

vector. In theory, FullVox explicitly presents the original geometry

of the model without missing any information – even for empty

voxels. All the CNN operations like convolution and pooling

are applied to both empty and non-empty voxels. This naı̈ve

discretization is not scalable and becomes prohibitive when the

voxel resolution goes above 643. Even under moderate resolutions

like 323 and 643, FullVox does not yield noticeably better scores

than OCNN or HCNN, implying that incorporating empty voxels

during CNN operations barely improves the shape analysis results.

As the primary input difference between HCNN and OCNN lies in

the empty voxels OCNN possesses that are not included in HCNN,

it is not difficult to understand why HCNN has comparable

benchmark scores as OCNN while using much less memory.

The reported performance of OCNN is based on the published

executable at https://github.com/Microsoft/O-CNN. As mentioned

above, we shape our HCNN architecture to exactly match the

one used in OCNN to avoid any influences brought by different

networks. We can see from the benchmarks that under moderate

resolutions like 323 and 643, HCNN, OCNN and FullVox perform

equally well, and employing the voting strategy is able to improve

the accuracy by another five percentages on average. When the

voxel resolution is further increased, overfitting may occur as

pointed out in [15], since there are no sufficient training data to

allow us to fine-tune the network’s parameters. As a result, the

prediction accuracy slightly drops even with voting enabled.

The second half of Table 1 lists the classification accuracy

of some other well-known techniques including VoxNet [13],

Geometry image [24], SubVolSup [6], FPNN [52], PointNet [28],

PointNet++ [29], Kd-Net [31], and VRN [53]. Both PointNet++

and Kd-Net yield better benchmark scores. However, they are not

conventional CNNs and use different network architectures than

LeNet. They directly take as the input the raw point cloud. Instead

of convolution, they rely on dedicated operations (e.g. the set

learning layers used in PointNet++) to extract features out of a

subgroup of points. VRN also has a better benchmark score. This

accuracy comes from a collection of efforts including a very deep

architecture (i.e. 45 layers), which is based on ResNet and more

expensive network training (i.e. VRN requires 6 days of training).

In addition, VRN used 24 rotated poses for the orientation pooling

while we only used 12 poses. We also noticed that the performance

of OCNN in our experiment is slightly different from the one

reported in the original OCNN paper. We suspect that this is

because different parameters used during the model rectification

stage (i.e. the magnitude of the dilation). Note that the statistics in

Tab. 1 are reported using a single network. By further ensembling

the networks, better results can be achieved (e.g. VRN ensemble

achieves over 95% accuracy).

Network architecture 323 643 1283 2563 5123

HCNN 25.2 73.1 217.3 794.3 2594.2
OCNN 27.5 78.8 255.0 845.3 OOM

OCNN with neighbor 24.0 72.0 244.4 OOM OOM
HCNN with neighbor 22.9 67.9 205.4 772.7 2555.5

FullVox 39.7 269.0 OOM OOM OOM

TABLE 2
Average forward-backward iteration speed using HCNN, OCNN and
FullVox (in ms). For a fair comparison, we exclude the hard drive I/O

time.

Compact hashing also improves the time performance of the

networks. Table 2 reports the average forward-backward time in

ms over 1,000 iterations. We can see that HCNN is consistently

faster than OCNN regardless if the neighbor information is pre-

recorded, not to mention the FullVox scheme. The timing infor-

mation reported does not include the hard drive I/O latency for a

fair comparison. In our experiment, HCNN is typically 10% faster

than OCNN under the same resolution.

6.5 Shape Retrieval

The next shape analysis task is the shape retrieval. In this experi-

ment, we use the ShapeNet Core55 dataset, which consists of

51,190 models with 55 categories. Subcategory information asso-

ciated with models is ignored in this test. 70% of the data is used

for training; 10% is used for validation, and the rest 20% is for

testing. Data augmentation is performed in this test by rotating 12

poses along the upright direction for each model. The orientational

pool is also used [6], [7]. The neural network produces a vector

of the category probability scores for an input query model, and

the model is considered belonging to the category of the highest
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Fig. 8. The precision recall curves for HCNN, OCNN as well as other
five famous multi-view CNN methods from SHREC16. The difference
between HCNN and OCNN (under resolutions of 323 and 643) is quite
subtle even after zooming in.

score. The retrieval set corresponding to this input query shape

is a collection of models that have the same category label sorted

according to the L-2 distance between their feature vectors and the

query shape’s. Precision and recall are two widely-used metrics,

where precision refers to the percentage of retrieved shapes that

correctly match the category label of the query shape, and recall is

defined as the percentage of the shapes of the query category that

have been retrieved. For a given query shape, with more instances

being retrieved, the precision drops when a miss-labeled instance

is retrieved. On the other hand, recall quickly goes up since more

models out of the query category have been retrieved.

The comparative precision and recall curves are shown in

Figure 8. Together with our HCNN under resolutions of 323

and 643, we also plot the curves for OCNN(32) and OCNN(64)

as well as several widely-known methods including GIFT [5],

Multi-view CNN [7], Appearance-based feature extraction using

pre-trained CNN and Channel-wise CNN [54]. The performance

benchmarks of these latter methods are obtained using the pub-

lished evaluator at https://shapenet.cs.stanford.edu/shrec16/. From

the figure, we can see that 3D CNN methods like HCNN and

OCNN outperform multi-view based methods, since the geome-

try information of the original models is much better encoded.

The performances of HCNN and OCNN are very close to each

other. After enlarging curve segments associated with HCNN(32),

HCNN(64), OCNN(32) and OCNN(64) within the precision inter-

val of [0.75,0.85], one can see that OCNN(32) is slightly below

(worse) the other three.
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Another interesting finding

is that HCNN seems to be

quite inert towards the voxel

resolution. As shown on the

right, HCNN(32) already has

a very good result while fur-

ther increasing the resolution to

5123 does not significantly im-

prove the performance. Curves

for HCNN(32) to HCNN(512)

are hardly discernible. We feel like this actually is reasonable since

identifying a high-level semantic label of an input 3D model does

not require detailed local geometry information in general – even a

rough shape contour may suffice. Similar conclusion can be drawn

when evaluating the retrieval performance using other metrics as

reported in Table 3. Here in addition to precision and recall, we

also compare the retrieval performance in terms of mAP, F-score

and NDCG, where mAP is the mean average precision, and F-

score is the harmonics mean of the precision and recall. NDCG

reflects the ranking quality and the subcategory similarity. It can

be seen from the table that, HCNN has a comparable performance

as OCNN does. Both outperform multi-view based methods.

Method P@N R@N mAP F1@N NDCG

Tatsuma LCDR 0.427 0.689 0.728 0.472 0.875
Wang CCMLT 0.718 0.350 0.823 0.391 0.886
Li ViewAgg. 0.508 0.868 0.829 0.582 0.904
Bai GIFT 0.706 0.695 0.825 0.689 0.896
Su MVCNN 0.770 0.770 0.873 0.764 0.899

OCNN(32) 0.768 0.769 0.871 0.763 0.904
OCNN(64) 0.778 0.782 0.875 0.775 0.905

HCNN(32) 0.777 0.780 0.877 0.773 0.905
HCNN(64) 0.777 0.777 0.878 0.772 0.905
HCNN(128) 0.778 0.779 0.878 0.774 0.906
HCNN(256) 0.775 0.776 0.878 0.773 0.906
HCNN(512) 0.780 0.783 0.874 0.777 0.906

TABLE 3
Shape retrieval benchmarks.

6.6 Shape segmentation

Finally, we discuss the experimental results of the shape seg-

mentation, which assigns each point or triangle on the input

model a part category label. Our experiment is based on the

dataset in [55], which adds extra semantic part annotations over

a subset of models from ShapeNet. The original dataset includes

16 categories of shapes, and each category has two to six parts.

Clearly, segmentation is more challenging than classification or

retrieval since part segmentation often relies on local geometry

features, and we would like to fully test the advantage of the

high-resolution voxelization that is only possible with HCNN. On

the other hand, more hierarchy levels also induce more network

parameters to be tuned during the CNN training. Therefore, we

only test the segmentation performance when there are sufficient

training data. Again, we rotate 12 poses along the upright direction

for each model to augment the dataset. The training/test split is set

the same as in [15]. We consider the segmentation as a per-point

classification problem, and use intersection over union (IoU) to

quantitatively evaluate the segmentation quality as did in [28]. It is

noteworthy that the statistics reported in [15] were actually based

on IoU counts on the leaf octants. It is easy to understand that

under moderate voxel resolutions, the mean IoU (mIoU) defined

on the voxel grid trends to have a better benchmark than on the

original point cloud because a coarse discretization could alias

the true boundary between two segments on the original model.

To avoid such confusion, we report benchmarks of HCNN under

different resolutions on both voxel grids and the input point clouds

(i.e. the so-called HCNNP in the table) in Table 4. We can see

that discretizing models at higher resolutions effectively improves

the segmentation quality. While the mIoU improvement may read

incremental from the table, those improvements lead to a better

classification of points near the segmentation boundary. As shown

in Figure 10, the segmentation result improvement is visually

noticeable with higher voxel resolutions.

Discussion In summary, as clearly demonstrated in our experi-

ments, HCNN acts like a “superset” of OCNN, which we consider

as the most state-of-the-art 3D CNN method and our closest

competitor. The benchmarks in different shape analysis tasks of

using our HCNN are at least very comparable to the ones obtained
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Fig. 9. The top five retrieval result of input queries of four categories, namely car, faucet, guitar and gun. The leftmost column is the query input.
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Fig. 10. In shape segmentation, high voxel resolution better captures
local geometry features between adjacent object parts and yields better
results.

using OCNN, if not better. However, we would like to remind

the reader that the memory consumption of HCNN is significantly

less than OCNN and the time performance is also slightly better

(i.e. ∼ 10% as reported in Table 2). As a result, HCNN allows

3D CNNs to take high-resolution models during the training.

Method Plane Car Chair Guitar Lamp Table

Yi et al. 2016 81.0% 75.7% 87.6% 92.0% 82.5% 75.3%
PointNet 83.4% 74.9% 89.6% 91.5% 80.8% 80.6%
PointNet++ 82.4% 77.3% 90.8% 91.0% 83.7% 82.6%
SpecCNN 81.6% 75.2% 90.2% 93.0% 84.7% 82.1%
Kd-Net 80.1% 70.3% 88.6% 90.2% 81.0% 80.3%

OCNN(32) 84.2% 74.1% 90.8% 91.3% 82.5% 84.2%
OCNN(64) 85.5% 77.0% 91.1% 91.9% 83.3% 84.4%

HCNN(32) 85.4% 75.8% 91.3% 91.8% 83.3% 85.8%
HCNN(64) 85.5% 77.0% 91.3% 92.0% 83.7% 85.7%
HCNN(128) 85.6% 78.7% 91.3% 92.0% 83.6% 85.9%
HCNN(256) 85.8% 79.3% 91.4% 92.0% 84.0% 86.0%
HCNN(512) 86.8% 80.2% 91.3% 91.9% 84.0% 85.9%

HCNNP(32) 81.1% 77.2% 90.7% 90.8% 83.2% 85.3%
HCNNP(64) 85.0% 78.9% 91.5% 91.7% 83.8% 85.9%
HCNNP(128) 86.2% 79.9% 91.8% 91.9% 83.9% 86.2%
HCNNP(256) 86.3% 79.8% 91.8% 92.0% 84.1% 86.1%
HCNNP(512) 86.9% 80.1% 91.8% 91.9% 84.3% 86.2%

TABLE 4
Benchmarks for shape segmentation. HCNNP(·) refers to the

benchmarks based on IoU counts over the original input point clouds
under the corresponding voxel resolution.

For shape classification and retrieval, the primary task for the

neural network is to reduce a complex input 3D model to few

semantic labels i.e. from a very high-dimension vector to a low-

dimension one. It is not surprising to us that a dense voxelization

has limited contributions towards the final benchmark result. On

the other hand, a high-quality segmentation requires detailed

local geometry features which is somewhat commensurate to the

voxel resolution. Therefore, increasing the resolution improves

segmentation result in general. Undoubtedly, being able to input

high-resolution models to the CNN will broaden the 3D CNN

applications and potentially allow us to leverage CNNs to deal

with more challenging tasks for 3D graphics contents such as

shape synthesis [56], [57]. Besides what has been discussed in

the experiment, our HCNN is more versatile and is compatible

with all CNN configurations like arbitrarily-strided convolution

and pooling. While not yet particularly popular, research efforts
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have already been devoted to investigate the advantages of such

irregular CNNs [58]. Our HCNN would facilitate such possible

future research endeavors more friendly.

For real-time applications, our data structure can also be

conveniently modified to work with the real-time GPU hashing

algorithm [59]. Similar to HCNN with mini-batch (§ 4.2), we

can concatenate GPU hash tables as well as their buckets of all

the models in a mini-batch to create a super hybrid hash during

the CNN training, with necessary accumulated indices tables. The

PSH function code in hash2col (lines 21–22) and col2hash

(lines 22–23) should be replaced by the GPU hashing functions

accordingly. This hashing scheme consumes more memory than

PSH. According to comparison reported in [59], GPU hashing

uses 1.42|S| memory compared with 1.16|S| memory usage of

PSH, where |S| is the raw data size. However, as GPU hashing

does not generate O(N2) empty voxels as OCNN does, it is still

more memory-efficient than OCNN under high resolutions.

7 CONCLUSION

In this paper, we present a novel 3D CNN framework, named

HCNN, for high-resolution shape analysis. Our data structure

constructs a set of hierarchical perfect spatial hashing of an input

3D model at differen resolutions. HCNN is memory-efficient, and

its memory overhead is polynomially smaller than existing octree-

based methods like OCNN [15]. We test the proposed HCNN

for three classic shape analysis tasks: classification, retrieval and

segmentation. The experimental results show that HCNN yields

similar or better benchmarks compared with state-of-the-art, while

reducing the memory consumption up to three times.

HCNN also has some limitations. The construction of PSH

could be quite slow. A potential solution could be to use GPUs

to accelerate the hashing constriction as did in [59]. However,

doing so could compromise the compactness of the resulting

hashing map. Therefore, one may have to choose the best trade-

off balance between the spatial compactness and hash construction

performance for the target applications.

Thanks to its superior memory performance, HCNN allows

high-resolution shape analysis that is not possible with existing

methods, which paves the path of using CNNs to deal with

more challenging tasks such as high-resolution shape generation,

denoising and morphing. We tested HCNN’s performance with

the standard 3D shape databases for an objective comparison with

other peer techniques. Applying HCNN to 3D data sets other than

manmade objects such as indoor scene database [60] is also an

interesting future work for us.
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