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Abstract

A magnetohydrodynamic (MHD) fluid description is typically employed to study the magnetized plasma comprising
the solar atmosphere. This approach has had many successes in modeling and explaining solar phenomena. Most often,
the plasma is assumed to be fully ionized. While this approach is justified in the higher atmosphere, i.e., the solar
corona; the temperature in the lower solar atmosphere is such that a large proportion of the fluid may be electrically
neutral. This begs the question: to what degree are the results derived from a fully ionized MHD description valid? In
this article, we investigate the effect of partial ionization on buoyancy-driven MHD waves (the MHD analog of
internal gravity waves) by applying a simplified two-fluid description. We show that previously derived results may be
applied, when the fluid is weakly ionized, if the ion–neutral collision frequency is high. We derive dispersion relations
for buoyancy-driven MHD waves, which include correction factors and damping rates due to ion–neutral collisions.
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1. Introduction

Magnetohydrodynamic effects are observed in the lower
solar atmosphere. Sunspots, pores, bright points, etc., show that
magnetic fields do indeed influence the dynamics of the solar
plasma in the photosphere. When studying perturbations in
magnetic structures, it is often assumed that the particles are
fully ionized and so a magnetohydrodynamic (MHD) descrip-
tion of the fluid may be used. To include the effects of the
magnetic field on perturbations, the most simple MHD model,
a single fluid composed of fully ionized material, is frequently
employed. In reality, the solar plasma is not composed of fully
ionized hydrogen particles, rather the fluid also consists of
neutral hydrogen particles (and some heavier elements that may
display varying levels of ionization). To include the more
realistic effects of partial ionization, we may have to use a
modified description of MHD.

A three-fluid description of a plasma, where distinctions are
made between electrons, ions, and neutral hydrogen is
discussed, based on first principles, by, e.g., Braginskii
(1965). MHD waves in a two-fluid MHD model (where the
electrons and ions may be considered as a single fluid, valid for
timescales longer than the ion–electron collision time) were
studied by, e.g., Zaqarashvili et al. (2011b) and Soler et al.
(2013a, 2013b, 2013c). Note that these alternate MHD models
do not include the effects of elemental abundances, though these
effects are included in many widely used numerical codes.
Alfvén waves in plasma containing hydrogen and helium were
studied by Zaqarashvili et al. (2011a). The previous works did
not include the effects of buoyancy or gravitational stratification.

The effect of partial ionization on Alfvén waves have been
studied by, e.g., Haerendel (1992), de Pontieu & Haerendel
(1998), James & Erdélyi (2002), James et al. (2003), Erdélyi &
James (2004), Leake et al. (2005), and Vranjes et al. (2008) to
name but a few. Some of these works suggested the damping of

Alfvén waves as a mechanism for the formation of spicules. The
damping of MHD waves in partially ionized plasmas was studied
by, e.g., Khodachenko et al. (2004), Forteza et al. (2007, 2008),
Soler et al. (2009a, 2009b, 2010), and Carbonell et al. (2010).
These works did not consider a two-fluid model; rather, they
used a single-fluid description where the fluid consists of ions
and neutrals. This is valid on timescales much greater than the
ion–neutral collision time. For a discussion on the differences
between a two-fluid model and a single-fluid model, see
Zaqarashvili et al. (2011b). Instabilities in partially ionized
plasmas have been studied by, e.g., Soler et al. (2012), Díaz et al.
(2012, 2014), Ballai et al. (2015, 2017), Ruderman et al. (2018),
and Mather et al. (2018).
Internal gravity waves (IGWs), where buoyancy plays the

role of the dominant resorting force, have been observed to
propagate through the lower solar atmosphere by, e.g., Komm
et al. (1991), Stodilka (2008), and Straus et al. (2008). The
theory of linear buoyancy-driven MHD waves (that is, the
MHD analog of IGWs) has been developed by, e.g., Hasan &
Christensen-Dalsgaard (1992), Barnes et al. (1998), Roberts
(2006), and Hague & Erdélyi (2016). These previous works
focused on buoyancy-driven MHD waves in a single, fully
ionized fluid. A numerical study of IGWs applicable to the solar
atmosphere was recently undertaken by Vigeesh et al. (2017).
IGWs modified by magnetic fields in the lower solar

atmosphere (that is, slow magnetoacoustic gravity (MAG) waves
in the high-β plasma) are likely excited by turbulent motion close
to the solar surface. This mechanism was previously suggested
by Komm et al. (1991). Numerical simulations by Brun et al.
(2013) have shown that g-modes in the radiative interior can be
generated by turbulent convection. IGWs generated close to
the visible surface of the Sun may propagate higher into the
atmosphere. The degree of ionization of the solar plasma changes
through the solar atmosphere. The lower atmosphere is such that
only a small amount of matter is ionized. Hence, a realistic
treatment of atmospheric IGWs requires that we take into
account the effects of partial ionization.
In this article, we use a two-fluid MHD model to analytically

study the effects of partial ionization on buoyancy-driven MHD
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waves. Here, we would like to investigate the physical domain
where partial ionization and buoyancy both play roles in the
wave dynamics. The character of the resulting wave solutions
is highly dependent on the timescale of the motion, relative to
the ion–neutral collision timescale. We investigate the possible
wave solutions analytically and numerically. The inclusion of
neutral–ion collisions introduces a damping mechanism for the
wave motion.

We begin, in Section 2, by deriving the governing equations
for buoyancy-driven MHD waves in a simple two-fluid model.
We derive a local dispersion relation for propagating waves
using the Wentzel–Kramers–Brillouin (WKB) approximation
(see, e.g., Bender & Orszag 1978). The dispersion relation is
solved numerically and the solutions are discussed. Asymptotic
solutions to the dispersion relation are presented in Section 3.
The solutions represent generalizations of previously derived
results for buoyancy-driven MHD waves. The solutions also
allow us to investigate the conditions under which a fully
ionized fluid description may be used to approximate the
weakly ionized lower solar atmosphere. Damping rates, due to
collisions between ions and neutral particles, are derived in
various limits. We conclude in Section 4.

2. Derivation of the Dispersion Relation

To study the effects of partial ionization, we use a two-fluid
model. This approach treats the plasma as a mixture of an ion–
electron gas and a neutral hydrogen gas. The ion–electron gas
is taken to be quasi-neutral (ni≈ne ). We are interested in the
effect of partial ionization on buoyancy-driven MHD waves,
hence we apply a Boussinesq-type approximation to the ion–
electron and neutral gases. The approximation applied
essentially retains density perturbations only where a buoyancy
force is produced. This is sometimes referred to as the anelastic
approximation; see, e.g., Lighthill (1978) for a discussion on
the approximation (note that the term “Boussinesq approx-
imation” is used in this work). The Boussinesq-type approx-
imation is applicable to high-β plasmas, as discussed by Hague
& Erdélyi (2016).

We assume a time-independent, static background stratified
under gravity. Gravity is taken to be constant and in the
negative z-direction, g=(0, 0, −g), the background magnetic
field is assumed constant and parallel to gravity B0=(0, 0,
B0). The background pressures and densities are, therefore,
functions of z-only.

The system of governing equations used in this article are
those of Díaz et al. (2012) with the addition of the Boussinesq
approximation. For simplicity, we neglect electron inertia,
collisions between electrons and neutrals, the effect of gravity
on electrons, and nonisotropic components of the pressure
tensor as in Zaqarashvili et al. (2011b) and Díaz et al. (2012).
Magnetic diffusion is neglected in the induction equation,
hence the only terms present are ideal terms (a more complete
treatment of the induction equation for partially ionized,
stratified plasmas is given by Díaz et al. (2014); the additional
effects are not considered here).

The linearized equations for perturbations around this
background are
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where v, p, and ρ represent the fluid velocity, pressure, and

density, respectively. The subscript 0 refers to the background

quantity, while 1 refers to the perturbed quantity. N is the

Brunt–Väisälä frequency, defined by

N g
d

dz

g

c

1
, 6

s

2

0

0

2r
r

= - +
⎛

⎝
⎜

⎞

⎠
⎟ ( )

where cs is the sound speed given by c p ,s
2

0 0g r= and γ is the

ratio of specific heats.
The subscripts n and i in the governing equations refer to the

neutral and ionized fluids, respectively, and αin is the
equilibrium coefficient of friction between neutrals and ions.
We assume no y-dependence, so that we may separate Alfvén
and slow MAG waves (see Hague & Erdélyi 2016 for a
discussion on the equivalence of slow waves and magnetic
IGWs). The Alfvén waves, in the current geometry, are
represented by the y-component of the velocity field, which we
do not consider. First, we Fourier analyze in x and t; that is, we
assume that perturbed quantities are proportional to

i k x texp x w-( ( )), where kx and ω are the horizontal wave-
number and frequency, respectively. Some algebra leads to the
coupled governing equations for the vertical velocity compo-
nents,
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where ρ0=ρi0+ρn0 and v BA
2

0
2

0mr= ( ). The above equations

are the governing equations, which we will use to study

buoyancy-driven MHD waves in a simplified two-fluid model.

We study the wave solutions via the local dispersion relation,

which may be found using the WKB method (see, e.g., Bender

& Orszag 1978). To apply the WKB method, a slowly varying

spatial variable z z,= where ò=1, is introduced. It is
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assumed that the vertical velocity component takes the form

v w z
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Substituting Equation (9) into Equations (7) and (8) and

keeping leading-order terms (that is, terms order 0( )) leads,

after some manipulation to the local dispersion relation,
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where we have identified the vertical wavenumber k d dz ;z q= 
and νin=αin/ρ0 is the ion–neutral collision frequency,

k k k, ,i i n n x z0 0 0 0
2 2 2x r r x r r= = = + and N N N .i n

2 2 2= +
The fourth-order polynomial can be solved exactly; though,

the expressions themselves do not reveal the nature of the
solutions. We note that there are four solutions, hence there are
two branches of solutions. Zaqarashvili et al. (2011b) also
found four slow solutions. In the high-frequency domain
(compared to the collision frequency), the two gases do not
couple strongly, so each may support oscillatory wave modes.
In the low-frequency regime these modes have zero real part. In
this case, the solutions were termed vortex modes; these are
solutions to the fluid equations that damp due to collisions. The
solutions do not represent oscillatory waves as the ions and
neutrals are coupled strongly through collisions. Therefore, the
medium behaves as a single fluid, hence there are only two
slow solutions. We will investigate these solutions in more
detail.

Let us now consider the dispersion relation (10) by plotting
the solutions numerically. We assume that the temperature of
all three species are equal, that is Ti=Te=Tn; hence,
c c2 .si sn
2 2= The factor of 2 is due to the fact that, for hydrogen
plasma, the mean particle mass of the neutral fluid is twice that
of the ionized fluid. This result may also be derived from the
ideal gas equation. For simplicity, we consider the gases to be
isothermal so the square of the Brunt–Väisälä frequency is
given by N g c1 .i n s i n,

2 2
,

2g= -( )( ) ( ) These two assumptions

lead to N N N N1 3, 2 3.i n
2 2 2 2= = We use these values in

the following numerical solutions.
Let us begin by investigating the effect of varying the

collision frequency. Figures 1 and 2 show the real and
imaginary parts of the frequency when νin/N varies from 0 to
1.5. We plot the case of 70% neutral gas and 30% ionized gas.
These values are chosen primarily for illustrative purposes,
where the interesting physical regimes of the solutions can be
clearly seen. The values are representative of conditions that
may be found in the upper chromosphere, at the base of the
transition region (Carlsson & Stein 2002). It should be noted
that the assumptions used in this analysis may be used in this
region only for a sufficiently weak magnetic field (the
Boussinesq approximation may fail for a stronger magnetic
field in the chromosphere). The other parameters take the
values kz/kx=1, vAkz/N=1. It can be shown that the curves
plotted follow the same paths for a large range of νin/N. The
behavior plotted here is, therefore, representative of arbitrarily
large νin. The solid curves, in Figure 1, represent forward and
backward propagating slow MAG waves that remain oscilla-
tory for all values of νin. In the limit of small collision
frequency, the frequency of these waves may be determined via

asymptotic analysis (Equation (19); this expression is close to
the numerical solution for νin/N<0.2). Figure 1 clearly shows
two regimes for the solution. For increasing collision frequency
the wave frequency decreases. When νin/N≈0.55 the real part
of the solutions cease to depend on the collision frequency. The
frequency is given by Equation (24), valid for “high” collision
frequencies. Beyond this value, the plasma acts as a single
fluid, a higher collision frequency does not change this fact so
the real part of the propagating wave is unaffected by the
collision frequency.
There is another solution present that is represented by the

dotted line. This solution is a propagating mode in the low
collision frequency regime and a purely damped vortex mode
when the partially ionized plasma acts as a single fluid. The
value of the real part of the frequency when the wave is
propagating is given by the second term of Equation (19) for
νin/N<0.4. Beyond this value the real part of the frequency
tends to 0. When the partially ionized particles interact weakly,

Figure 1. Real part of the frequency for varying collision frequency,
normalized to N. The other parameters take the values ξn=0.7, ξi=0.3,
kz/kx=1, vAkz/N=1. The solid curves represent propagating slow MAG
waves in either the ionized fluid (in the two-fluid limit) or the coupled fluid (in
the single-fluid limit). The dotted curve represents IGWs in the neutral fluid,
which propagate when the two fluids do not couple strongly, that become
purely damped vortex modes in the single-fluid limit.

Figure 2. Imaginary part of the frequency (damping rate) for varying collision
frequency, normalized to N. The other parameters take the values ξn=0.7,
ξi=0.3, kz/kx=1, vAkz/N=1. The solid and dotted curves represent the
damping rate of wave modes described in Figure 1.
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the dotted curves correspond to IGWs in the neutral fluid, while
the solid curves are buoyancy-driven MHD waves in the
ionized fluid. When the plasma species interact strongly as a
single fluid, the solid curves represent buoyancy-driven MHD
waves in the whole fluid.

Figure 2 shows the imaginary part of the frequency. We see
that all curves take negative values, indicating that the solutions
are damped. We, again, see the two regimes where the fluid
may be treated as separate fluids or a single fluid. In the low νin
region, the MAG wave (solid curve) is damped more strongly
than the IGW (dotted curve). The damping rates for small νin
are given by Equation (20). As expected, the damping rates for
the forward and backward waves are equal by symmetry. In the
high νin region, the damping rate of the propagating modes
decrease with νin, tending asymptotically to 0. This is
expressed in solution (24), which contains no imaginary part.
The physical reason for this is that the wave acts on a greater
timescale than the ion–neutral collision timescale and so does
not feel the particle interactions in this limit. When the
propagating IGWs become imaginary vortex modes, the
damping rate bifurcates; there are two vortex solutions that
are strongly and weakly damped, respectively.

In the solar atmosphere, the Brunt–Väisälä frequency is
typically low compared to the collision frequency. Buoyancy,
therefore, plays a key role in the motion of low-frequency
waves. We see from the above that single-fluid effects are
dominant for low-frequency waves with an IGW character.
Two-fluid effects may become important for higher-frequency
waves, i.e., waves with a magnetic character.

Figures 3 and 4 show the effect of varying the magnetic field
strength. Again, the solid curves show the propagating
solutions and dotted curves show the vortex/propagating
modes. As above, we set the parameters to the values
ξn=0.7, ξi=0.3, kz/kx=1. The collision frequency is set
so that νin/N=0.5, close to the region where propagating
modes become vortex modes. It can be shown that the trends
seen in Figures 3 and 4 persist for larger Alfvén frequencies. A
key point depicted here is that the behavior of the solutions can

be split into magnetically or gravitationally dominated regions.
The propagating MAG waves undergo a change in the gradient
of the real part of the frequency around vAkz/N=1. The
gradient of the imaginary part also undergoes a similar change.
It is interesting to note that the parameters of magnetic field

strength and collision frequency produce contrasting effects.
That is, for a weak magnetic field, the vortex modes are purely
imaginary; increasing the magnetic field causes them to
become propagating modes. There is, again, a weakly and
strongly damped vortex mode.
Note that for large Alfvén frequency the solutions here do

not match up with the analytical results for large vertical
wavenumber. This is due to the fixing of the ratio kz/kx=1. It
can be shown that plotting the solutions for large Alfvén
frequency and large values of kz/kx does indeed agree with the
asymptotic results.

3. Limiting Cases of the Dispersion Relation

Here, we note some limiting forms of the dispersion relation.
In the nonmagnetic, collisionless (νin=0) limit, the dispersion
relation becomes

k k N k k N 0, 11x i x n
2 2 2 2 2 2 2 2w w- - =( )( ) ( )

which represent IGWs in each of the noninteracting fluids. In

the collisionless, homogeneous (Ni,n=0) limit the dispersion

relation becomes v k 0A z
2 2 2 2w w - =( ) , which represents the

familiar slow MHD wave. Let us now consider the more

interesting cases where the two fluids may interact. First, we

consider the plasma to be strongly ionized, ξn=1. In this

limit, the dispersion relation reduces to

v k
k

k
N . 12A z i

x
i

2 2 2
2

2

2w x= + ( )

This represents the buoyancy-driven slow mode with a

correction due to the presence of a small amount of neutral

fluid. The form of the dispersion equation is similar to the case

of the fully ionized plasma, studied previously in, e.g., Hague

& Erdélyi (2016). In this limit, the fourth-order equation has

reduced to a second-order one, hence some solutions have been

removed. These are the modes associated with the neutral gas.

Figure 3. Real part of the frequency for Alfvén frequency (or magnetic field
strength), normalized to N. The other parameters take the values ξn=0.7,
ξi=0.3, kz/kx=1, νin/N=0.5. As in Figure 1, the solid curves represent
slow MAG waves in the ionized fluid (two-fluid limit) or the coupled fluid
(single-fluid limit). The mode may take on a gravity or magnetic character
depending on the magnetic field strength. The dotted curve represents a purely
damped vortex mode (single-fluid limit) or an IGW in the neutral fluid (two-
fluid limit).

Figure 4. Imaginary part of the frequency (damping rate) for varying Alfvén
frequency (or magnetic field strength), normalized to N. The other parameters
take the values ξn=0.7, ξi=0.3, kz/kx=1, νin/N=0.5. The solid and
dotted curves represent the damping rate of the solutions described in Figure 3.
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Perhaps of more interest when considering the lower solar
atmosphere, is the limit of a weakly ionized plasma. As
discussed in Hague & Erdélyi (2016), we expect the
Boussinesq approximation to be more applicable in the lower
solar atmosphere, where a significant proportion of the fluid
may be neutral. At the base of the photosphere, the level of
ionization is placed at around 1% (Carlsson & Stein 2002). The
ionization fraction decreases significantly, and rapidly, with
height through the photosphere. At the temperature minimum,
approximately 500 km above the base of the photosphere,
the ionization fraction takes a value of 10−5

(i.e., 10−3% of the
fluid is ionized). The ionization fraction steadily rises through
the chromosphere, to a value of around 30% ionization. Let us
consider the case of ξi=1, where the dispersion relation takes
the form

i v k
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This is the dispersion relation with which we may study

photospheric plasma. Again, we have lost a solution associated

with the ionized gas. While this equation is less complex than

the full dispersion relation, the solutions are not in a simple

form. In the interest of simplicity, we will investigate the

solutions by making a further approximation, that of small/
large collision frequency relative to the wave frequency. These

limits represent the extent to which fluid species interact. For

processes that act on timescales shorter than the collision time,

the waves do not strongly feel the interaction between the two

fluids. On long timescales, the waves are highly influenced by

the interaction of the fluids. We begin by assuming that νin is

small (when nondimensionalized appropriately by, e.g., the

Alfvén or Brunt–Väisälä frequency). The dispersion relation is

singular with regards to νin, hence the second solution

associated with the ionized gas is removed. We use a

perturbation series ω=ω0+νinω1/(vAkz)+ .... The leading-

order solution may be found to be
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which represents IGWs. The leading-order effect of small

collision frequency is that magnetic effects are unimportant.

The next term may be found to be

i

v k
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k
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2
1 . 15
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x
n n A z1

2

2

2 2 2w
x
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⎠
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In the above analysis, we made the assumption that ξi=1,
which implies that ξn≈1. The first term in ω1 may then be

considered to be small, and so contributes to the third term in

the perturbation series. The frequency then takes the form

k

k
N

i

2
. 16

x
n

in

n

w
n
x

~  + ( )

We see that for the case of a small collision frequency, the

waves may be considered damped IGWs in the mostly neutral

plasma. The damping is due to ion–neutral collision and the

damping rate is given by the imaginary part of the frequency.

The above analysis is valid when the g-mode frequency is

larger than the collision frequency. This is not the case for the

solar atmosphere, although it may have application in other

stars, such as Red Giants, where the the Brunt–Väisälä

frequency may become higher. See below for results more

applicable to higher-frequency waves in the solar atmosphere.
In the solar atmosphere, the Brunt–Väisälä frequency is

relatively small, hence we should also consider the case of a
large collision frequency. Zaqarashvili et al. (2011b) estimate
the ion–neutral collision frequency in the chromosphere,
based on the FAL-3 model (Fontenla et al. 1990), to be 4 Hz.
Hence, the case of high collision frequency may be more
applicable to the lower solar atmosphere. This limit is of
interest for lower frequency, buoyancy-driven MHD waves.
That is, slow MAG waves (which may take on a buoyancy or
magnetic character) where the wave frequency is smaller than
the collision frequency. Let the frequency take the form
ω=ω0+vAkzω1/νin+.... The leading-order term is

v k
k

k
N . 17A z

x
n n0

2 2 2
2

2

2w x= + ( )

We see, when the collision frequency is large, the frequency is

of the form of a fully ionized plasma and magnetic effects may

be important even when the fluid is weakly ionized. There is

also a solution ω0=0, representing a damped vortex mode

(see below). The next term in the series is given by

i v k
k N

k
2 1 , 18n A z

x n
1

2 2

2
0
2

w x
w

= -
⎛

⎝
⎜

⎞

⎠
⎟ ( )

which is imaginary, and so the damping rate is given by

vAkzω1/νin. In the above analysis, we have shown that the

frequency, derived for the case of fully ionized fluid, may be

used in partially ionized plasmas when either the plasma is

strongly ionized or weakly ionized and the ion–neutral collision

frequency is high. We have calculated generalizations to these

results for either case.
The nature of the solutions may also be investigated by

applying the limit of small collision frequency to the full
fourth-order dispersion relation, Equation (10). In this limit, the
dispersion relation is not singular, hence we have all four
solutions. These results are valid for arbitrary proportion of
ionized and neutral material. As above, let us use a perturbation
series of the form ω=ω0+νinω1/(vAkz)+..., where νin=
vAkz. To lowest order, we find the leading-order solutions
to be

v k
k

k
N

k

k
N, . 19A z i

x
i

x
n0

2 2 2 1
2

2

2
2

2

2w x= +- ( )

These solutions represent buoyancy-driven waves in each of

the fluids. As the collision frequency is small, the coupling of

the fluids is weak. As previously noted, the limit of small

collision frequency is applicable to high-frequency waves

(relative to the collision frequency). In the solar atmosphere,

this limit is not appropriate for low-frequency, IGW-type

waves. Slow MAG waves take on a magnetic character in the

high-frequency domain. Hence, in the solar atmosphere, two-

fluid effects are dominant for higher-frequency waves, which

are given by the first solution in Equation (19). Regularity in

the perturbation series may be lost for the second solution,
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when the Brunt–Väisälä frequency is smaller than the collision

frequency.
We may observe the transformation of oscillatory wave

modes to vortex modes. In the limit k ,z  ¥ the first branch
represents slow MHD waves unaffected by gravity

v k .A z i0
2 2 2 1w x~ - The frequency of the second branch tends to

zero; hence, we can think of these as becoming vortex modes in
the low-frequency limit. For large vertical wavenumbers the
frequency decreases, a property of IGWs; this is in contrast to
the case of slow modes in a homogeneous medium where the
vortex modes become oscillatory in the large wavenumber
limit. As in the above, the damping rate is given by the next
term in the series, which may be shown to be

v k
i

k k N N v k

v k N k k4 2 2
. 20

in

A z

in
x i i n n A z

n i n A z n i x

1

2 2 2 2 2 2
0
2

0
2 2 2 2 2 2

n
w n

x x w
w x x x x x

=
+ + -

- -

( )( )
( )

In the large wavenumber limit, the solutions take the form
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Note that we should be careful taking the large vertical

wavenumber limit as we may lose regularity in the perturbation

series, and so this type of analysis is unable to study the vortex

modes. They may be studied, however, by taking the large

wavenumber limit in the dispersion relation. Neglecting small

terms leads to

i v k

i k v k N v 0. 22

i n in n A z

in z A x n n A

4 3 2 2 2

2 2 2 2 2

x x w n w x w

n w x

+ -

- + = ( )

If we consider only the dominant terms, we have the vortex

solution,

i
. 23

in

n

w
n
x

= - ( )

As the previous analysis suggests, in the large wavenumber

limit, there is a vortex mode with zero real frequency. We see

that the damping rate is actually twice as fast as previously

suggested. This discrepancy is attributed to the fact the

perturbation approach is, as discussed previously, not valid in

the large vertical wavenumber limit. When the wavenumber is

not large, the damping rate is lower. Note also that the solutions

lost correspond to the slow waves, the frequency of which is

proportional to vAkz; hence, these represent the singular

solutions. A perturbation series, for small collision frequency,

is possible to investigate the solutions of Equation (22),

resulting in the first two slow solutions in Equation (21).
Finally, analytical expressions are available for the fre-

quency in the limit of high collision frequency. The oscillatory
solutions are given, to leading order, by

k

k
N N v k . 24x
i i n n A z

2
2

2

2 2 2 2w x x~ + +( ) ( )

In this limit, the vortex modes are purely imaginary. The

propagating solutions are purely real in this limit, hence we see

that the damping tends to 0 in the limit of high collision

frequency. When the collision frequency is high, the plasma

acts as a single fluid; the solution here then represents a

buoyancy-driven MHD wave in the single fluid composed of

ions and neutrals.

4. Discussion and Conclusions

It has been established observationally that buoyancy-driven
IGWs, likely generated through turbulent motion, propagate
through the lower solar atmosphere. Magnetic fields play an
imported role in the dynamics of solar plasmas. The effect of
magnetic fields was studied theoretically by, e.g., Hague &
Erdélyi (2016).
Previous works considered, as a first step, that the plasma

could be described as a single fluid. This approach is usually
applied based on the assumption that the plasma is fully
ionized. This is not the case for the lower solar atmosphere. In
this article, we have taken the first steps toward providing the
theory of buoyancy-driven MHD waves in a partially ionized
plasma stratified under gravity. The case of a partially ionized
plasma was studied using a two-fluid model, following the
approach of Zaqarashvili et al. (2011b) who studied MHD
waves in a homogeneous plasma.
The governing equations for buoyancy-driven MHD waves

were found. The wave solutions were studied, numerically and
analytically, via the local (WKB) dispersion relation. We
calculated the corrections to the frequencies and the damping
rates in several important physical limits. A key result was that
the frequency, derived from the starting point of a fully ionized
fluid, is close to that of a weakly ionized fluid when the ion–
neutral collision frequency is large relative to the wave
frequency. The major difference to the fully ionized case is
that damping due to ion–neutral collisions is present. We
conclude that, magnetic effects may still be very important
even to a weakly ionized plasma. In the solar atmosphere, the
Brunt–Väisälä frequency is much smaller than the ion–neutral
collision frequency, hence this result is applicable to lower
frequency IGW-type waves.
When the collision frequency is low, relative to the wave

frequency, the two fluids interact weakly so oscillatory
solutions are present in each of the gases: buoyancy-driven
MHD waves in the ionized fluid and IGWs in the neutral fluid.
For large collision frequency, the two gases act as a single
fluid. The oscillatory IGWs become purely damped vortex
modes and we have MHD waves in the ion/neutral single fluid.
This limit is important in the solar atmosphere for higher-
frequency waves with a magnetic character. The low collision
frequency results may also have application to IGW-type
waves in stars such as Red Giants where the Brunt–Väisälä
frequency can become larger than typical solar values.
The results derived in this article are likely to be very useful

in interpreting and explaining forthcoming observations of
oscillations in the lower solar atmosphere. The effect of, for
example, a magnetic field on solar atmospheric IGWs has yet to
be established observationally. A detailed study is urged to
observe the properties of buoyancy-driven MHD waves. Such a
study is within the capabilities of current solar telescopes.
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thanks the School of Mathematics and Statistics, University of
Sheffield (UK) for funding this work, and for providing
support. R.E. is thankful to the Science and Technology
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