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ABSTRACT Interferometric synthetic aperture radar (InSAR) is a powerful technique for obtaining terrain

information based on the interferometric phase. Multibaseline (MB) InSAR is an extension of the conven-

tional InSAR and is used to improve the estimation accuracy and reliability of the unwrapped phase. Based

on a newly defined normalized phase probability density function (pdf), a novel wrapped-to-unwrapped

phase (W2UP) estimation method is proposed for MB-InSAR. First, the concept of the normalized pdf

is introduced to overcome the limitation of the fixed 2π period for different baseline cases. Then, a new

maximum likelihood estimation is established using the MB normalized pdfs, which has a much steeper

peak around the true phase value than the single baseline case and leads to higher estimation accuracy. The

proposed W2UP method estimates the unwrapped phase from multiple filtered interferograms, so it is less

influenced by the phase noise. Both the theoretical analysis and results using the simulated and real MB data

are provided to verify the effectiveness of the proposed method.

INDEX TERMS Maximum likelihood estimation, synthetic aperture radar, radar interferometry, phase

estimation.

I. INTRODUCTION

Interferometric synthetic aperture radar (InSAR) recon-

structs terrain information from the absolute phase differ-

ence between two SAR images with a slight look angle

difference [1]. Generally, the interferometric phase in an

InSAR interferogram is wrapped to the principal interval

(−π, π] since it is obtained through conjugate multiplication

of two complex SAR images. Unwrapped phase, containing

slant range difference information, is linked to the height

and deformation profile. A wide range of applications, such

as global digital elevation models (DEMs) reconstruction

[2], terrain change detection [3], atmosphere estimation [4],

glacier monitoring [5], and vegetation information estimation

[6], all rely on the unwrapped phase. Therefore, high pre-

cision unwrapped phase estimation is very important to the

successful application of InSAR.

Multibaseline (MB) InSAR, based on diverse interfero-

metric measurements, can extend the phase ambiguity period

to simplify the phase unwrapping and improve the phase

estimation accuracy [7]. Many methods have been proposed

for MB-InSAR data fusion, which may be divided into the

following categories. The first category is based upon the

combined optimization idea, e.g., the coarse-to-fine (C2F)

method [8], [9], the Chinese remainder theorem (CRT)

based method [10], [11], and the linear combination method

[12], [13]. These methods correct the ambiguity vectors and

improve the success rate of phase unwrapping. However,

they cannot improve the phase precision because their phase

principal value is only determined by the longest baseline.

Another category is based on the minimum norm idea, e.g.,

the least-square (LS) [14], the subspace projection-based

[15], [16], and the wavelet variation method [17]. These

methods improve phase estimation accuracy withMB-InSAR

data. They do not take phase statistics into account, and

therefore are not robust enough against phase noise. The

third category uses the statistical properties of interference
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phases, e.g., the maximum likelihood estimation (MLE),

the Kalman filtering [18], [19], and the maximum a posteriori

(MAP) method [20]. These methods use both the phase and

amplitude information of the SAR images so that their phase

estimation accuracy is higher. Several other methods, such as

the data-classification, the ant-colony-based, and the cluster-

analysis-based method [21], [22], need large amounts of data

for model training, which limits their practical applications.

Among MB-InSAR data fusion methods mentioned above,

MLE is asymptotically the closest estimator to the Cramer-

Rao lower bound (CRLB) [23]. Under the assumption of

Gaussian phase noise, it provides the optimum solution to the

phase estimation of MB-InSAR [24].

TheMLEmethod [25], estimating the phase values of each

pixel separately, can adapt to the view angle and the topo-

graphic slope, even at the lack of priori information about the

observed scene. Extensive research on theMLE technique has

been done in recent years. The Image-to-Height (I2H) MLE

method [20] utilizes the probability density function (pdf) of

SAR complex images to reconstruct urban surface models.

The image-to-phase (I2P) MLE method [26] estimates the

unwrapped result from the complex multiple SAR images

directly. Both I2H and I2P estimators are based on a joint pdf

of SAR complex images and extend the period of the wrapped

phase. However, the noise in image worsens the estimation

performance, and even leads to a biased estimate since their

input is a complex SAR image set. The phase-to-height (P2H)

MLE method [28] estimates the terrain height from multiple

interferometric phases. The period (i.e. ambiguity height)

diversity of height pdf is utilized to improve the estimation

of the terrain elevation. Unfortunately, the P2H method is not

suitable for those applications that require phase data, such

as deformation monitoring via differential interferometric

phase. Although the height data can be converted into phase

data after the P2H method, new errors will be introduced in

the result during the conversion process. In order to obtain

a more accurate unwrapped phase, a straightforward filtered

wrapped-to-unwrapped phase estimator is needed to reduce

the effects of phase noise as well as the error propagation.

In this work, a direct MB wrapped-to-unwrapped phase

(W2UP) MLE method is proposed to deal with MB

unwrapped phase estimation. Firstly, the original phase pdf is

normalized by the baseline ratio, which makes the fixed 2π

period to be compressed or extended. Then a new likelihood

function within a wider phase range is presented by combin-

ing MB normalized pdfs. And a W2UP MLE is proposed for

the two-dimensional (2-D) unwrapped phase of the reference

baseline. MB filtered interferometric phase set, as the input

of new MLE, improves the estimator’s accuracy. The W2UP

method can suppress error propagation of phase discontinuity

because there is no need to consider residues and phase gradi-

ent. The effectiveness of the proposed algorithm is supported

not only by theoretical analysis, but also by experimental

results using both simulated and real data.

The rest of the paper is organized as follows. In Sec. II,

MB-InSAR is briefly reviewed, the normalized phase pdf

FIGURE 1. InSAR spatial geometry with multibaseline, baseline obliquity
angle a, view angle θ , master satellite height H , and target height h.

is proposed, and the W2UP method based on the normal-

ized phase pdf is detailed. The steps of the 2-D unwrapped

phase estimation via W2UP is given in Sec. III, where its

performance is further discussed. In Sec. IV, results based

on both simulated and real MB-InSAR data are provided and

conclusions are drawn in Sec. V.

II. WRAPPED-TO-UNWRAPPED PHASE ESTIMATOR

FOR MB-INSAR

A. MB-INSAR OBSERVATION MODEL

The observation geometry of an MB-InSAR system is shown

in Fig. 1. Si (i = 0, 1, 2, . . . ,N ) represents the position of

the n th antenna phase center and Bn (n = 1, 2, . . . ,N ) is the

spatial baseline defined as the distance between position S0
and Sn.

The interferometric phase, obtained by conjugate multi-

plication of the common master image and each slave one,

is related to the profile h by [29]

φn = mod

(

2mπBn⊥
λr sin θ

h, 2π

)

(1)

where λ is the wavelength, Bn⊥ = Bn cos (θ − αn) denotes

the component perpendicular to the view direction. The mod

(·) operator retains the principal value and the actual phase

is wrapped within the period (−π, π]; moreover, m is the

transmit-receive factor, where m = 1 represents the bistatic

mode, and m = 2 is the monostatic mode.

B. INTERFEROMETRIC PHASE PROBABILITY DENSITY

FUNCTION

In theory, different interferograms are mutually independent.

For the single-baseline case, the pdf of the interferometric

phase is given by [30]

pdf (φ|φ0) = 1

2π

1 − |γ |2
1 − |γ |2 cos2 (φ − φ0)

·
[

1 + |γ | cos (φ − φ0) arccos (−|γ | cos (φ − φ0))
√

1 − |γ |2 cos2 (φ − φ0)

]

(2)
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FIGURE 2. Phase pdfs and their product for the dual-baseline case. Phase
values are φ0,1 = 9.6109 and φ0,2 = 22.8832 rad.

where |γ | represents the amplitude of the complex coherence

coefficient γ , φ is the measured phase, and φ0 the real phase.

The variance of phase distribution decreases gradually when

the coherence coefficient value increases. Once the phase

φ has been observed, the pdf can be seen as a likelihood

function for the unknown parameter φ0 estimation [30]

fSB (φ0) = pdf (φ|φ0) (3)

fSB (φ0) is periodic with peaks at φ0 +2π , k ∈ integer. The

steeper the slope around the peak of the likelihood function is,

the higher the estimation accuracy of the unwrapped phase.

In addition, a larger likelihood function period is beneficial

to phase unwrapping.

The conventional phase pdf always has a 2π period in

terms of the cosine function in (2). Because of different

peak positions and the same 2π period of different single

baseline pdfs, it is impossible to give a likelihood function

for MB-InSAR with the multiplication of these pdfs directly.

As an example, consider a dual-baseline InSAR: the baseline

set is {210m, 500m}, the coherence coefficient set is {0.7,

0.55}, and the target height is 50m. Both likelihood functions

fSB(φ0,1) = pdf (φ1|φ0,1) and fSB(φ0.2) = pdf (φ2|φ0,2) are

presented in Fig. 2. Curve c shows the product function,

i.e. pdf (φ1|φ0,1) · pdf (φ2|φ0,2), still has a 2π period and a

smoother curve. It is shown that the product function neither

extends the phasewrapping period nor improves the accuracy.

C. W2UP ESTIMATOR VIA NORMALIZED PHASE

PROBABILITY DENSITY FUNCTION

In any case, the period of the interferometric phase pdf is

2π , which prevents employing a direct product function for

unwrapped phase estimation. Thus, the key to removing the

ambiguity positions is to overcome this 2π limitation. Con-

sidering the periodicity of the cosine function, a processing

trick similar to the single-frequency signal modulation [27]

can provide a viable solution.

As shown in Fig. 3, the cosine signal cos (t − φ), as the

original signal (curve a), has a 2π period. Multiplying the

FIGURE 3. Effect of single-frequency cosine signal modulation.

angular frequency and the initial phase by ξ , the period of

cos (ξ t − ξφ) changes to 2π/ξ ( curve b). Here the signal still

reaches the maximum at the initial phase φ. Next, the original

signal is modulated by cos (ξ t − ξφ) ( curve c). In a larger

interval, the unique peak will appear at the initial phase φ.

Therefore, single-frequency signal modulation is applied

to the phase pdf in MB-InSAR. As discussed in our earlier

work on normalized phase pdf in [31], each phase pdf is

normalized by its own baseline ratio. Based on the transfer

relation between the height profile and the unwrapped phase,

the phase ratio ξn is calculated as

ξn = φn

φl
=

2mπBn⊥
λr sin θ

h

2mπBn⊥
λr sin θ

h
= Bn⊥

Bl⊥
(4)

where Bl serves as the reference baseline. The normalized

phase of Bn is expressed as φn,norm = φn/ξn. According to

(2) and (4), the normalized phase pdf of Bn is written as (5),

as shown at the bottom of the next page, where φ0 is the real

phase value of the reference baseline.

The period of the normalized pdf now changes to {2π
/

ξn}.
Based on the normalized phase processing, the proposed

likelihood function for MB-InSAR with a multiplication of

the normalized phase pdfs for N baselines is

fMB (8|φ0) =
N

∏

n=1

pdfnorm(φn,norm |φ0 ) (6)

where the matrix 8 represents the interferometric phase set.

A tractable MBW2UP estimator is then established based on

this likelihood function. The estimated unwrapped phase φ0

of the reference baseline is the phase corresponding to the

maximum of the curve of the likelihood function

φ̂lMB = argmax
φ0

fMB (8|φ0) (7)

Then, the period of the interferometric phase is extended

to

CpdfMB = LCMN
n=1 (2π/ξn) (8)
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FIGURE 4. Normalized phase pdfs and their product for the dual-baseline
case with the reference baseline B1 = 210m. The real phase of B1 is
obtained from system parameters. The corresponding normalized phase
values are φ1,norm = 9.7611 and φ2,norm = 9.5269 rad, and the estimated
phase is φnorm = 9.5896.

where LCMN
n=1 (·) is the function calculating the least com-

mon multiple of the N elements. The reference baseline is

arbitrarily chosen to increase the selectivity of unwrapped

results. By increasing the number of baselines, the MLE

becomes more robust.

Two baseline measured phases for a single pixel are uti-

lized to verify the effectiveness of the W2UP method. Sim-

ulation parameters are the same as those in Fig. 2, and the

result is shown in Fig. 4. B1 = 210m is chosen as the

reference baseline. The two normalized phase pdfs are shown

in Fig. 4(a) and (b), respectively. The likelihood function,

composed of two normalized pdfs, has a unique peak shown

in Fig. 4 (c), and its period is significantly larger than 2π .

By comparison with the phase pdf of the reference baseline,

the slope of the likelihood function is sharper around the

real phase φ0 = 9.6109, which means a smaller estimated

variance. Moreover, the much-reduced ambiguity peaks also

help to determine the true unwrapped result.

III. ESTIMATION OF TWO-DIMENSIONAL UNWRAPPED

PHASE AND PERFORMANCE ASSESSMENT

A. TWO-DIMENSIONAL UNWRAPPED PHASE ESTIMATION

VIA W2UP

The W2UP method is extended to the 2-D case. Taking one

of the baselines as a reference, all the MB phases are scaled

by the baseline ratio set {ξn}Nn=1, and then the coherence

coefficient set {γn}Nn=1 is introduced. The search interval is

determined with the priori DEM or the shortest baseline’s

unwrapped result. Clearly, pixel by pixel, the 2-D unwrapped

phase of the reference baseline will be obtained.

The estimation procedure for the 2-D W2UP method is

illustrated in Fig. 5 and the major processing blocks consist

of:

1) MB-InSAR image co-registration based on the correla-

tion function between the master and slave images, and

geometry co-registration among the baselines [15].

2) Interferometric phase filtering utilizing the improved

local fringe frequency estimation proposed in [32]. MB

wrapped phase set is filtered at this step.

3) Search interval estimation without a priori DEM.

Firstly, we downsample the filtered phase of the short-

est baseline to get a small interferogram. Subsequently,

the small interferogram is unwrapped and then inter-

polated to the original size. Finally, the coarse phase

that contains terrain information is normalized to the

reference baseline to achieve the search interval.

4) Unwrapped phase estimation, including the following

steps: baseline ratios are first calculated from (4); then

normalized phase pdfs are obtained by (5); the like-

lihood function is obtained from (6); calculating the

maximum of the likelihood function pixel by pixel

based on (7), the unwrapped phase of the reference

baseline is obtained.

B. PERFORMANCE ASSESSMENT OF W2UP METHOD

To compare the performance of the proposed W2UP method

and the I2P method in [26], the variance of the estimation

is calculated. For the single-look single-baseline case, both

W2UP and I2P have the same variance expression as [1]

σ 2

φ̂0(SB)
=

π
∫

−π

(φ − φ0)
2 pdf

(

φ |φ0

)

dφ

= π2

3
− π arcsin γ + arcsin2 γ − Li2(|γ |2)

2
(9)

where Li2(·) is a hypergeometric function, defined as

Li2(|γ |2) =
∞
∑

k=1

|γ |2k
k2

. For the MB case, a triple-antenna

system shown in Fig. 6 is established with the same baseline

pdfnorm(φn,norm|φ0) = 1

2π

1 − |γn|2

1 − |γn|2 cos2(ξnφn,norm − ξnφ0)

·



1 + |γn| cos(ξnφn,norm − ξnφ0) arccos(− |γn| cos(ξnφn,norm − ξnφ0))
√

1 − |γn|2 cos2(ξnφn,norm − ξnφ0)





= 1

2π

1 − |γn|2

1 − |γn|2 cos2(φn − ξnφ0)
·



1 + |γn| cos(φn − ξnφ0) arccos(− |γn| cos(φn − ξnφ0))
√

1 − |γn|2 cos2(φn − ξnφ0)



 (5)
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FIGURE 5. MB-InSAR unwrapped phase estimation via W2UP.

FIGURE 6. InSAR spatial geometry with a triple-antenna system.

obliquity. The available baseline set includes one overall

baseline B1 = B2 + B3 as the reference; the baseline ratio

is ξn = Bn/B1,n = 1, 2, 3.

For the I2P method, the interferometric phase φ̂0(I2P) is

derived from the model in [33] as

φ̂0(I2P) =

3
∑

n=1

ξnαnφn

3
∑

n=1

ξ2nαn

(10)

where φn is the measured phase of the n th baseline and α1 =
|γ1| − |γ2||γ3|, α2 = |γ2| − |γ1||γ3|, α3 = |γ3| − |γ1||γ2|.
Therefore, the estimation variance of I2P method is rewritten

in the following expression

σ 2

φ̂0(I2P)
=

3
∑

n=1











ξnαn
3
∑

m=1

ξ2mαm











2

σ 2

φ̂0(SBn)
(11)

where σ 2

φ̂0(SBn)
is the estimation variance of the n th single

baseline which is calculated by (9).

From (7), the phase of the reference baseline is estimated

with

∂fMB (φ0)

∂φ0
|
φ0=φ̂lMB

= 0 (12)

Substituting (6) into (12), we have

3
∑

n=1

∂pdfnorm(φn,norm |φ0 )

∂φ0
=

3
∑

n=1

ξn(φn − ξnφ0)βn = 0

(13)

where βn = |γn| · 3|γn|
√

1−|γn|2+
(

1+2|γn|2
)

arccos(−|γn|)
(1−|γn|2)

[√
1−|γn|2+|γn| arccos(−|γn|)

] .

Solving equation (13), then the phase estimation φ̂0(W2UP)

of the W2UP method is given by

φ̂0(W2UP) =

3
∑

n=1

ξnβnφn

3
∑

n=1

ξnβn

(14)

The phase estimation variance is deduced as

σ 2

φ̂0(W2UP)
=

3
∑

n=1











ξnβn
2
∑

m=1

ξmβm











2

σ 2

φ̂0(SBn)
(15)

Set the overall baseline B1=500m, the critical baseline

Bc = 2000m, and then the coherence coefficient varies with

the baseline length as

|γn| = |γ0||γBn| = |γ0|
(

1 − Bn

Bc

)

= |γ0|
(

1 − ξnB1

Bc

)

(16)

where |γBn| refers to the baseline decorrelation factor and

|γ0| represents the decorrelation from volume scatter, thermal

noise and misregistration decorrelation, etc. With |γ0| =
0.9, the standard deviation varying with the baseline ratio is

evaluated for these two methods and the results are shown

in Fig. 7. For the same baseline conditions, theW2UPmethod

is always better with a lower standard deviation than that

of I2P.

High precision estimation needs a strong correlation [34].

Although the interferometric phase filter increases the corre-

lation dramatically, it is not employed in the I2Pmethod since

it estimates the phase from complex SAR images directly.

Instead, the W2UP estimator uses the filtered phase and can

exploit the increased correlation in the processing, leading to

a more accurate estimation result.

IV. RESULTS AND ANALYSIS

A. SIMULATED DATA

In this section, simulation results are provided to demonstrate

the performance of the proposed method. The MB interfero-

grams are generated using the DEM data in Lanzhou, China.

VOLUME 7, 2019 4983
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FIGURE 7. Standard deviation of phase estimation of the W2UP and I2P
methods.

TABLE 1. Simulation parameters.

The observation area is 2048m× 2048m. The height profile,

shown in Fig. 8(a), is from 0 to 175m. The range of terrain

slope varies within (−42, 45) degrees. Some other simulation

parameters are listed in Table 1.

According to the parameters in Table 1, three SAR complex

images are simulated [35]. Setting the reference baseline as

1000 m, the baseline ratios are ξ1 = 1, ξ2 = 0.6, and ξ3 =
0.4. Fig. 8(b) is the SLC master image. The ideal phase of

reference baseline is obtained according to the relationship

of space geometry. The filtered wrapped phases are illustrated

in Fig. 8 (d) – (f).

For a comparison between the W2UP and the single-

baseline unwrapped results, the Quality-Map-Guided (QMG)

phase unwrapping method [36] is used in the contrast exper-

iment. The unwrapped phase and the estimation error of

QMGmethod are presented in Fig. 9(a). Furthermore, the I2P

method [26], as another comparison, combines these three

SLC images to retrieve the unwrapped phase directly. Since

the complex SAR images with noise are input into the I2P

estimator, the estimation result is heavily affected by noise.

To overcome the problem, the estimated phase is further

filtered by the Lee filter [7], and the final result is presented in

Fig. 9(b). Fig. 9(c) displays the result of the W2UP method.

There are obvious distinctions between the results of different

methods.

FIGURE 8. Simulated MB SAR image of the test area and corresponding
interferograms. (a) DEM of the test area. (b) Single look complex master
image. (c) The ideal phase of reference baseline. (d) – (f) Filtered phase of
three baselines and baseline lengths are {400, 600, 1000} m separately.

FIGURE 9. Unwrapped phase and phase error. (a) QMG for the single
reference baseline. (b) I2P method with Lee filter. (c) W2UP method.

The estimation results are evaluated with two indexes. One

is the phase-gradient-jump number [32], and the other is the

standard deviation (SD) of unwrapped phase error.

Phase-gradient-jump occurs when the phase gradient of

adjacent pixels changes beyond (−π, π]. It is a reflection of

4984 VOLUME 7, 2019
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TABLE 2. Evaluation results of simulated data.

the number of phase unwrapping errors. One target of phase

unwrapping is to minimize the phase-gradient-jump number,

which is calculated by

J =
M−1
∑

i=1

N
∑

j=1

[
∣

∣

∣

∣

φ(i, j) − φ(i+ 1, j)

2π

∣

∣

∣

∣

]

+
M

∑

i=1

N−1
∑

j=1

[∣

∣

∣

∣

φ(i, j) − φ(i, j+ 1)

2π

∣

∣

∣

∣

]

(17)

where the size of the unwrapped phase is M × N , φ (i, j)

represents the value of the unwrapped phase, | · | denotes the
absolute value and [·] stands for the rounding operation.

The SD of unwrapped phase error is calculated as [32]

εφ =

√

√

√

√

1

C − 1

C
∑

c=1

(

1φ (ic, jc) − 1φ̄
)2

(18)

where 1φ (i, j) = φ(i, j) − φideal(i, j) and φideal is the real

unwrapped phase, which is straightforwardly calculated by

the InSAR observation geometry and SAR system parame-

ters. φ is the estimated phase, C is the number of pixels and

1φ̄ is the mean value of phase error 1φ (i, j). Table 2 gives

the evaluation results of the three methods.

First, we compare the results of the conventional single-

baseline InSAR and the MB-InSAR. For the QMG result,

the total phase-gradient-jump number is 1349 in a 660 ×
660 pixels region, which is much more than the W2UP result

(161) and the I2P result (757). Calculating the SD of the

unwrapped phase error based on (18) for different methods,

the QMG result has the largest SDvalue. It indicates that the

fusing MB phase samples can correct the phase unwrapping

error.

In theW2UP process, the wrapped phase set is filtered with

an adaptive window by the improved local fringe frequency

estimation first [32]. It has the smallest phase jumps and SD,

which means that W2UP is the most robust and accurate

method for unwrapped phase estimation among the three

methods.

For further comparison, Fig. 10 displays a cross-section

through estimated phases and phase error maps in region A.

As clearly shown, the curve of QMG result changes beyond

2π at low coherent area, indicating that phase unwrapping

with the single baseline is prone to error propagation. Making

use of MB interferograms improves the consistency of the

unwrapped phase effectively. The major difficulty for the

I2P method is phase noise. Considerable fluctuations appear

in the curve, which affects the phase unwrapping perfor-

mance. Compared to the other methods, the curve of the

FIGURE 10. Profile comparison of unwrapping results and phase error for
simulated data.

W2UP method is most consistent with the ideal phase since

it suppresses the influence of phase noise by phase filtering

before phase estimation. Meanwhile, numerous ambiguity

errors of phase estimation can be corrected by the W2UP

method because of the extended phase ambiguity period.

Thus, correct and effective unwrapped results can be obtained

via the proposed W2UP method.

B. REAL DATA

In this experiment, we use the SLC data of a reservoir area

in Shanxi, China, recorded by the N-SAR (SAR of Nanjing

Research Institute of Electronic Technology) system. N-SAR

is a single-pass airborne platformwith twomodes: to transmit

with one antenna and receive with both, or to transmit and

receive separately. The main system parameters are shown

in Table 3.

The master image with the size of 16380 pixel

×10000 pixel is shown in Fig. 11(a). According to the

antennas structure, the baseline ratios are ξ1 = 1 and ξ2 =
ξ3 = 0.5, respectively. Fig. 11(b)-(f) are the wrapped phases

with different baselines and the estimation result with W2UP

method.
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TABLE 3. System parameters of N-SAR.

FIGURE 11. Unwrapped phase acquisition of real data via the W2UP
method for a reservoir area in Shanxi, China. (a) SAR SLC image.
(b), (c) Interferogram with ξ = 0.5 and ξ = 1. (d), (e) Filtered phase
of (b) and (c), respectively. (f) Estimated phase using W2UP.

The phase, existing in the reservoir area, appears in the

form of noise. So we remove the phase data of the water area

according to the coherence coefficient. In Fig. 11, an area

of 1000 pixel ×1000 pixel in the red rectangle is chosen to

evaluate the performance of different methods. The results of

the chosen area are presented in Fig. 12, where Fig. 12(a) is

the unwrapped phase with QMG from Fig. 11(e), Fig. 12(b)

is the filtered result of I2P from three complex SAR images,

and Fig. 12(c) is the estimation result with W2UP from

Fig. 11(f).

FIGURE 12. Unwrapped phase estimation results of different methods for
the evaluated area. (a) QMG. (b) I2P + Lee filter. (c) W2UP. (d) Profile
comparison of unwrapping results for real data.

TABLE 4. Evaluation results of real data.

Due to a lack of ideal phase value information, the quality

is evaluated with the phase-gradient-jump number only and

the result is shown in Table 4.

As can be seen, the estimated phase by W2UP has a

lower phase-gradient-jump number than both QMG and I2P.

Although the result of I2P after Lee filtering has a smaller

jump number, the estimated phase is more disturbed by noise

as presented in Fig. 12(b).

The profile of these unwrapped results is shown

in Fig. 12(d). Similar observations can be made as in sim-

ulated data. The discontinuity (an integer multiple difference

of 2π ) occurs in the QMG unwrapping result (blue line)

because a single baseline is sensitive to noise. The correct

ambiguity number is available after combining MB interfer-

ograms. However, fluctuations in the curve of the I2P (red

line) show that the algorithm cannot eliminate the effect of

noise effectively. The curve of W2UP (yellow line) is more

stable, which means the continuity of phase estimation result

is better. The assessments reconfirm the effectiveness of the

proposed W2UP method and its superior performance over

the other two methods.

V. CONCLUSION

A novel unwrapped phase estimation method called W2UP

forMB-InSAR is proposed. Based on single-frequency signal
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modulation, a normalized phase pdf is defined to overcome

the limitation of a fixed 2π period of the phase pdf. The

likelihood function constructed with MB normalized phase

pdfs is able to remove the phase ambiguity since the likeli-

hood function’s period is expanded by multiplying the nor-

malized phase pdfs. The resulting likelihood function also has

a sharper peak at the true phase point, which means a more

accurate estimation result.

The W2UP method based on the novel normalized pdf

is established to estimate the 2-D unwrapped phase. Both

simulated and real MB data are utilized to demonstrate the

effectiveness of the proposed method and its superior perfor-

mance over the other two methods, I2P and QMG.

Similar to the general phase unwrapping methods, such

as QMG, W2UP depends on the performance of filtered

wrapped phase and is influenced by the filtering algorithm.

Further research is needed for MB configuration to improve

the performance of the W2UP method, which is important to

both existing InSAR and future MB-InSAR systems.
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