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Abstract: Ocean surveillance via high-resolution Synthetic Aperture Radar (SAR) imageries has

been a hot issue because SAR is able to work in all-day and all-weather conditions. The launch

of Chinese Gaofen-3 (GF-3) satellite has provided a large number of SAR imageries, making it

possible to marine targets monitoring. However, it is difficult for traditional methods to extract

effective features to classify and detect different types of marine targets in SAR images. This paper

proposes a convolutional neutral network (CNN) model for marine target classification at patch

level and an overall scheme for marine target detection in large-scale SAR images. First, eight types

of marine targets in GF-3 SAR images are labelled based on feature analysis, building the datasets

for further experiments. As for the classification task at patch level, a novel CNN model with six

convolutional layers, three pooling layers, and two fully connected layers has been designed. With

respect to the detection part, a Single Shot Multi-box Detector with a multi-resolution input (MR-SSD)

is developed, which can extract more features at different resolution versions. In order to detect

different targets in large-scale SAR images, a whole workflow including sea-land segmentation,

cropping with overlapping, detection with MR-SSD model, coordinates mapping, and predicted

boxes consolidation is developed. Experiments based on the GF-3 dataset demonstrate the merits of

the proposed methods for marine target classification and detection.

Keywords: Synthetic aperture radar (SAR); marine target classification; marine target detection;

convolutional neutral network (CNN)

1. Introduction

With continuous development of Synthetic Aperture Radar (SAR) technology, an increasing

number of very high resolution (VHR) SAR images have been obtained, providing a new way to

strengthen marine monitoring. Different from optical sensors, SAR is capable of working in all-day and

all-weather conditions, and it is receiving more and more attention. However, it is very time-consuming

to interpret SAR images manually because of speckle noise, false targets, etc. With increasing demand

for ocean surveillance in shipping and military sectors, marine target classification and detection has

been an important research area in remote sensing with great application prospects. In this work,

we will focus on marine target classification on patch level and marine target detection in large-scale

SAR images.

Earlier studies on marine target classification were carried out on simulated SAR images due

to a lack of real image samples [1]. In recent years, with the deployment of several spaceborne SAR

satellites such as TerraSAR-X, RadarSat-2, and GF-3, a wide variety of SAR images with different
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resolutions and covering different regions in the world have been obtained. Up to now, researches on

marine target classification in SAR images are mainly focused on large ships with distinctive features

such as oil tankers, container ships, and cargo ships [2–6]. The scattering characteristics of the three

kinds of ships have been fully exploited by some initial works [2,6]. However, classification of other

marine targets such as platform, windmills, and iron towers were not considered. Some studies

went further to explore deeper features of different targets combined with classifiers such as sparse

representation [3,5] and support vector machine (SVM) [7]. The work in Reference [5] employed

histogram of oriented gradients (HOG) features and dictionary learning to performing classification

with an accuracy of 97.5% for the three kinds of ships. While these feature-based classifiers can achieve

high performance, the features have to be carefully designed especially when dealing with a wide

variety of targets. There are also some works focused on combining the complementary benefits of

traditional machine learning classifiers [4,8]. However, the classifier-combination strategy increases

the computational complexity as it applies the classifiers one by one.

Different from the carefully designed feature-based methods mentioned above, the CNN based

methods can extract the deep features of targets automatically, which have made great progress

in object classification and recognition in recent years. Some CNN models such as Alexnet [9],

GoogleNet [10] and ResNet [11] are capable of working on ImageNet dataset including 1000 classes of

images with high accuracy, showing great potential in object classification and recognition. Motivated

by previous works in target classification, CNN models have been used in SAR target classification in

some earlier studies [12–16], most of which used the Moving and Stationary Target Acquisition and

Recognition (MSTAR) dataset containing 10 classes of military ground targets. Chen et al proposed the

ConvNets which consist of five convolutional layers and three pooling layers, without fully connected

layers being used [13]. Its classification accuracy among the ten classes reached 99.13%, which was a

great contribution to target classification. Driven by the demand of ocean surveillance, an increasing

number of works employed CNN for marine target classification and recognition [17–20]. The work

in Reference [19] proposed a simple CNN model with two convolutional layers, two pooling layers

and two hidden layers and it was the initial work to perform object classification in oceanographic

SAR images. Bentes et al. [18] built a larger dataset consisting of not only ships, but also manmade

platforms and harbors, after which a CNN model with four convolutional layers, four pooling layers,

and a fully-connected layers was introduced. It adopts multi-looking images in different channels and

achieves 94% accuracy among the five types of marine targets, which is far superior in performance to

those of other CNN models and traditional machine learning methods. However, previous studies on

marine target classification using CNN algorithms only focus on four or five types of marine targets,

limiting their practical applications and the networks adopted over simple structures or inappropriate

layer arrangements, failing to fully realize the CNN’s potentials in classifying marine targets in SAR

images. To solve this problem, in this work we propose a novel CNN structure to classify eight types

of marine targets in SAR images with higher accuracy than the existing methods.

As for the detection task, many algorithms including Constant False Alarm Rate (CFAR) based

methods [21,22], feature based methods [23] and CNN based methods [24,25] have been developed

to detect marine targets in SAR images. Among them, the CFAR based methods are the most

widely used ones due to their simplicity. Traditional CFAR based methods determine the detection

threshold by estimating the statistical models of the sea clutters, including Rayleigh distribution [26],

Gamma distribution [27] and K-distribution [28], etc. Usually, the CFAR based methods are applied

after sea-land segmentation to rule out false alarms on land, such as buildings and roads. However,

the performance of CFAR based methods is not satisfactory under low-contrast conditions. In addition,

they fail to give the labels of different targets because of its lack of classification layers. For feature-based

methods, in Reference [23], an effective and efficient feature extraction strategy based on Haar-like

gradient information and a Radon transform is proposed, however, the features have to be designed

carefully to achieve a good performance.
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In recent years, the region-based CNN networks such as Faster-RCNN [29], YOLO [30],

and SSD [31], which can not only generate the coordinates, but also predict the labels of the targets,

have shown a great success on the PASCAL VOC dataset [32]. Faster-RCNN uses a deep convolutional

network to extract features and then proposes candidates with different sizes by the Region Proposal

Network (RPN) at the last feature map. The candidate regions are normalized through RoI Pooling

layer before they are fed into fully connected layers for classification and coordinates regression.

This algorithm can detect objects accurately but cannot realize real time detection. YOLO processes

images at a faster speed but with lower accuracy than Faster-RCNN. An end-to-end model called SSD

was proposed in Reference [31], which can detect the target at real time with high accuracy. It generates

region proposals on several feature maps of different scales while Faster-RCNN proposes region

candidates with different sizes on the last feature map provided by the deep convolutional network.

The CNN based methods have been used for target detection in SAR images, e.g.,

ship detection [24] and land target detection [33], and has shown a better performance than the

traditional methods. One method splits the images into small patches and then uses the pre-trained

CNN model to classify the patches, after which the classification results are mapped onto the original

images [34]. However, this method has a low target location precision because it does not take the

edges of target into consideration. Some other works apply the region-based CNN networks to detect

ships in SAR images. The study in Reference [25] adopts the structure of Faster-RCNN and fuses the

deep semantic and shallow high-resolution features in both RPN and Region of Interest (RoI) layers,

improving the detection performance for small-sized ships. Kang et al. used the Faster-RCNN to

carry out the detection task and employed the CFAR method to pick up small targets [35]. While the

modifications to Faster-RCNN could help detect small ships, they introduce false alarms to the

detection results. Furthermore, researchers in Reference [36] applied SSD algorithms to ship detection

in SAR images. Apart from comparing the performance of different SSD models, almost no changes

are introduced to the SSD structure to improve the performance in terms of marine target detection.

To sum up, the previous studies demonstrate that the CNN-based methods can detect the marine

targets more accurately than the CFAR methods and feature-based methods. However, among all

the detection methods introduced above, they only focus on ship detection in SAR images and

are unable to detect other marine targets with classifying the targets at the same time. Moreover,

the existing CNN-based methods generate some false alarms and miss the targets due to the complex

sea background. To solve the existing problems, a multi-resolution SSD model is proposed to detect

marine targets with classification in this work.

Overall, this paper builds a novel CNN structure to recognize eight types of marine targets at patch

level and propose an end-to-end algorithm using a modified SSD to realize marine target detection

with classification in large-scale SAR images. The main contributions of the work are as follows:

• The Marine Target Classification Dataset (MTCD) including eight types of marine targets and the

Marine Target Detection Dataset (MTDD) containing six kinds of targets are built on GF-3 SAR

images, which provide a benchmark for future study. The features of various targets are analyzed

based on their scattering characteristics to generate the ground truths.

• A novel CNN structure with six convolutional layers and three max pooling layers is developed

to classify different marine targets in SAR images, whose performance is superior to the

existing methods.

• A modified SSD with multi-resolution input is proposed to detect different targets. This is the

first study for detection of different types of marine targets instead of only detecting ships in

SAR images, to the best of our knowledge. Then, the framework for detecting marine objects in

large-scale SAR images is introduced.

The remainder of this paper is organized as follows: In Section 2, feature analysis for different

targets and the proposed methods are introduced. Experimental results for target classification and
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detection in comparison with different existing methods are provided in Section 3. Section 4 discusses

the results of the proposed methods. Finally, Section 5 concludes this paper.

2. Methods

2.1. Preprocessing of GF-3 Images

The original GF-3 images used in this paper are large-scale single look complex (SLC) images

containing many targets, which means it is impossible to use them directly. In this subsection,

the preprocessing method is proposed to extract the targets patches automatically and efficiently.

Firstly, the SLC images are transformed into amplitude images using the following formula:

O =|S| (1)

where S is the SLC image while O represents the amplitude image.

Then, a non-linear normalization is applied to the images using Equation (2)

X(i, j) =

{

1 O(i, j) > T
O(i,j)

T O(i, j) ≤ T
(2)

where T is a constant, O(i, j) is the value of the normalized image at (i, j). The constant T works as

a threshold and its value depends on the image. Usually we set T = 10O, where O represents the

average value of the image.

As it is time-consuming to select the target patches manually, an image segmentation method

is proposed here to extract the target patches in the large-scale SAR images. The Otsu method is

an effective algorithm to image segmentation, which searches for a threshold that minimizes the

intra-class variance [37].

The proposed method uses the Otsu method to binarize the SAR images, after which the target

candidates form the isolated points in the binary images because their pixel values are higher than the

Otsu threshold, while the pixel values of sea clutter is lower than the threshold. Then, the algorithm

searches for the isolated points and extract the coordinates. Finally, the fixed-size slices are collected

according to the coordinates.

2.2. Feature Analysis

In this paper, eight types of maritime targets: Boat, cargo ship, container ship, tanker ship, cage,

iron tower, platform, and windmill are selected and studied. Due to the lack of ground truths of the

targets in SAR images, the scattering characteristics of each kind of targets are analyzed to get the label

for each target. Figure 1 presents the eight types of targets in both optical and SAR images. This is the

first such explicit analysis on eight types of marine targets to the best of our knowledge.

Boat: Boats have the simplest and smallest structures among the eight targets. As for boats, the

hull edges and the engines at the tail generate strong backscattering, which leads to a closed ellipse in

SAR images.

Cargo: Due to the existence of several warehouses, there is a strong secondary reflection on the

walls of each warehouse, which is where the rectangular shapes come from in the SAR images.

Container ship: Container ships possess the largest hull. When the ships are fully loaded with

containers, the container exteriors would produce strong secondary reflections, resulting in the effect

of a washboard in the radar images. In addition, the strong reflections at the tail of the ship come from

the complex structure of the ship tower.

Oil tanker: In order to transport oil, an oil pipeline is installed in the middle of the tanker.

This causes a bright line in the middle of the tanker in the SAR images. Besides, the closed ellipse in

the SAR image comes from the hull edges of the ship.
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Cage: Cages used in marine aquaculture are concentrated in square grids in offshore areas.

The edges of cages can provide strong backscattering, which forms dotted rectangular distribution in

the radar image.

        

        

        

Boat Cargo Container Tanker Cage Iron Tower Platform Windmill 

Figure 1. Samples of different maritime targets in optical and SAR images.

Iron tower: When the incident angle is small, the complex structures lead to a strong scattering

point. However, when the incident angle is large, the tower target appears as a cone-shaped structure

in the radar image. In addition, the transmission lines on the tower produce relatively weak reflection,

like a gloomy strip in the image.

Platform: Many offshore countries have built drilling platforms to exploit oil and gas. Usually,

they contain support structures, pipelines, and additional combustion towers. The pipelines and

combustion towers of the platform result in bright lines, while the support structures produce massive

bright spots in SAR images.

Windmill: The strong scatterings of turbines in windmills result in a bright spot. In addition,

as the fans rotate, they also produce a bright line that gradually fades toward both ends.

2.3. Marine Target Classification Model Based on CNN

While earlier studies have proposed some CNN models with different structures to classify marine

targets, they are employed over simple structures or inappropriate layer arrangements when dealing

with small datasets, making it hard to extract distinctive features for marine targets.

In order to solve existing problems, we proposed a CNN structure with six convolutional layers

(Conv.1–Conv.6), three max-pooling layers (Pooling1–Pooling3) and two full connection layers, which is

shown in Figure 2. It can be seen that a pyramid structure is adopted, and as the CNN goes deeper,

the outputs of each layer are down-sampled by pooling layers and the channel of the feature maps

increases at the same time. This kind of structure can extract both low level and high level features.
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λ

Figure 2. The structure of the proposed classification model.

As the length and width of the marine targets in this study is smaller than 100 pixels, the size of the

input patches is set to 128 × 128 pixels to accommodate the objects. At the beginning, 32 convolutional

kernels of size 6 × 6 work on the input images to extract features, after which the outputs are down

sampled by max-pooling kernels with a size of 3 × 3. Then, the second convolutional layer filters the

outputs of the first pooling layer with 128 kernels of size 5 × 5. After that, the convolutional layers are

down sampled by the second pooling layer to shrink the feature maps. Then, the CNN network goes

deeper with four convolutional layers employing 128 convolutional kernels of size 3 × 3, to generate

high-level features, which are transmitted to the third max pooling layer. Finally, two fully-connected

layers (FC1 with 1024 output neurons and FC2 with 8 output neurons) take the outputs of the third

pooling layers as input and then output the vector to the softmax function to predict the labels of the

targets. The strides of all the convolutional layers and all the pooling layers are set to one and two,

respectively. Furthermore, the Rectified Linear Units (ReLU) are used for every convolutional layers

and full-connected layers to prevent vanishing gradient or exploding gradient.

The training objective is to minimize the cross entropy loss function by forward propagation

algorithm and error backpropagation algorithm, which can be written as follows:

L(w) = − 1

m

m

∑
i=1

log P(y(i)
∣

∣

∣
x(i); w) (3)

where m represents the total number to training examples and y(i) and x(i) refer to the true label and

predicted label of the ith example, respectively. w is the trainable parameter and a regularization term

λ‖w‖2 is added to the loss function to prevent overfitting, where λ is the regularization factor.

2.4. A Modified SSD Network for Marine Target Detection

Figure 3 shows the proposed Multi-Resolution Single-Shot Multibox Detector (MR-SSD),

which has three parts: The first part is multi-resolution image generation, the second part is a standard

CNN architecture used for image classification, and the last part is the auxiliary structure containing

multi-scale feature maps, convolutional predictors, and default boxes with different aspect ratios.

The MR-SSD is capable of extracting features from different resolution images at the same time,

which helps to increase the detection precision.
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Figure 3. Structure of the MR-SSD.

The input images of traditional SSD have three channels: R, G, and B channels, while the original

SAR images only have one channel. Previous practices usually put the same image into the three

channels, which causes redundancy in computation and ignore the effects of resolution versions. In this

part, a multi-resolution input procedure is designed by adopting images with different resolutions in

different channels to extract more features than the traditional SSD. The size of the input images of the

MR-SSD is set to 300 × 300. As for the multi-resolution generation part, the images are transformed to

the frequency domain using the 2-D Fourier Transformation, and then low-pass filter is used to lower

the ground resolution while keeping the image size fixed, described as follows:

H(u, v) =







1
∣

∣

∣
u − M

2

∣

∣

∣
≤ λBa and

∣

∣

∣
v − N

2

∣

∣

∣
≤ λBr

0 Otherwise
(4)

where Ba and Br represent the M × N image’s bandwidth in azimuth direction and range direction,

respectively. It can be seen that λ is the factor determining the cutoff bandwidth of the filtered images,

which is set to 0–1. After that the filtered images in the frequency domain are transformed to the time

domain via inverse Fourier Transformation. Finally, the image ground resolution is reduced because

of the linear relationship between ground resolution and SAR image bandwidth. For the proposed

MR-SSD, M and N are set to 500. Filters with λ = 0.5 and λ = 0.25 are used to reduce the image

resolution, and the images are transmitted to the G channel and B channel, respectively.

The second part of the MR-SSD is a standard CNN architecture, i.e., VGG-16 [38], including five

groups of convolutional layers combined with ReLU and pooling layers. Different from the VGG-16,

the last two fully connected layers are replaced with two convolutional layers to extract features.

The extra feature layers allow the detection at multiple-scales. In this part, we adopt the

corresponding parameters used in SSD [31], which proves to be effective in object detection challenges.

The extra features layers generate default boxes on each feature map cells with different aspect ratios

and then many convolutional filters are used to filter the default boxes to get the class score and offsets.

Suppose there are r feature maps in the MR-SSD, the scale of default boxes on different feature maps is

defined as follows:

sk = smin +
smax − smin

r − 1
(k − 1) k ∈ [1, r] (5)

where smin = 0.2, smax = 0.9, Sk is the scale of kth feature map. The aspect ratios for default boxes are

denoted as ar ∈ {1, 2, 3, 1/2, 1/3}. Then, the width (wa
k) and height (ha

k) can be calculated by:

wa
k = sk

√
ar ha

k = sk/
√

ar (6)

As for ar = 1, a default box with the scale of s′k =
√

sksk+1 is added. As a result, 6 default

boxes on each feature map cell are generated and the number of filters for a m × n feature map is

6 × m × n × (c + 4), in which c is the number of class categories and 4 corresponds to the four offsets.
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After that, the total number of the default boxes per class is 8732, and non-maximum suppression

(NMS) is used to improve the performance of MR-SSD.

When the MR-SSD is trained, it is necessary to determine whether the default box corresponds to

a ground truth box or not. For every ground truth box, the default boxes with overlapping rate higher

than a threshold (0.5) are selected to match the ground truth boxes. We minimize the loss function as

SSD, which is written in Equation (7),

L(x, c, l, g) = − 1

N
(Lcon f (x, c) + Lloc(x, l, g)) (7)

where N is the number of matched default boxes, Lcon f (x, c) and Lloc(x, l, g) are the confidence loss

and the localization loss, respectively. The confidence loss function employs softmax loss over multiple

classes confidences, which is:

Lcon f (x, c) = −∑
p

N

∑
i∈Pos

x
p
i,j log(ĉ

p
i )− ∑

i∈Neg

log(ĉ0
i ) ĉ

p
i =

exp(c
p
i )

∑
p

exp(c
p
i )

(8)

where x
p
i,j is an indicator for matching the ith default box to the jth ground truth box of category p.

If the two boxes are matched, the indictor will be set to 1, otherwise it will be set to 0. c
p
i represents the

confidence of the ith default box of category p. The localization loss uses the Smooth L1 loss between

the proposed box (l) and the ground truth box (g) parameters, defined as:

Lloc(x, l, g) = −
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
i,jsmoothL1(l

m
i − ĝm

j ) (9)

smoothL1(x) =

{

0.5x2 i f |x| < 1

|x| − 0.5 otherwise
(10)

The offsets for the center (cx;cy), width (w) and height (h) of the default box (d) are regressed by

the following formulas:

ĝcx
j = (gcx

j − dcx
i )/dw

i ĝ
cy
j = (g

cy
j − d

cy
i )/dh

i

ĝw
j = log

(

gw
j

dw
i

)

ĝh
j = log

(

gh
j

dh
i

)

(11)

2.5. The Whole Workflow for Marine Target Detection in Large-scale SAR Images

However, target detection in large-scale SAR images (larger than 10,000 × 10,000 pixels) is difficult

because some images cover buildings and islands, which would lead to false alarms. Moreover,

the CNN based methods can only detect targets at patch level due to the fixed input size. If the

large-scale images are resized to a patch size for target detection, it will lose many detail features,

making it hard to detect small targets. In order to solve the existing problems, this paper proposes a

whole workflow consisting of sea-land segmentation, cropping with overlapping, detection with

pre-trained MR-SSD, coordinates mapping and predicted boxes consolidation for marine target

detection in large-scale SAR images. It is able to rule out the false alarms on lands, reduce overlapping

predicted boxes, and generate accurate coordinates for each marine target. Figure 4 illustrates the

whole procedure in detail.

The whole workflow is divided into two processes: Training process and detection process. As for

training process, the patches including marine targets are extracted from SAR images to build the

training set and then train the MR-SSD model.

The other one is the detection process for large-scale SAR images. In order to reduce the false

alarms on lands, the level-set method [39] is used to remove land parts, which proves to be effective
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in image segmentation. Due to the high computation complexity of the level-set method, the images

are down-sampled and then the level–set method is employed to generate the land masks, which will

be resized to the original scale by interpolation later. After that, the land mask removes all the

land objectives.

Usually, the large-scale images cannot feed the MR-SSD model directly because it resizes the

large-scale images into 300 × 300, which means that a large number of small targets are hard to be

detected. In order to solve this problem, the large-scale images are cropped into overlapping small

patches and then the patches are sent to MR-SSD. The purpose of overlapping is to keep the target

intact in at least one patch. Given a large-scale SAR image of size Lw × Lh, the total number of patches

is m × n, which can be calculated as follows:

m =

⌈

Lw

Pw − Overlap

⌉

(12)

n =

⌈

Lh

Ph − Overlap

⌉

(13)

where Pw and Ph denotes the width and length of the patches, respectively. In addition, Overlap is the

overlap distance between the patches, which can be adjusted according to the image ground resolution.

 
 
 

 
 
 

 

Figure 4. The whole workflow of marine target detection in large-scale images.
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Then, the patches have to be resized to 300 × 300 to meet the input requirements of MR-SSD.

The pre-trained MR-SSD model extract deep features of the objectives to generate targets labels and

coordinates for each patch later.

With the preliminary detection results, the coordinates on small patches are projected onto the

large-scale images and the final detection results are obtained. For a patch whose index in width is ith

and index in height is jth, the coordinate of its kth target can be written as (x
(k)
i,j , y

(k)
i,j ). The mapping

relationship can be calculated as follows:

X(l) = (i − 1) ∗ (Lw − Overlap) + x
(k)
i,j

Y(l) = (j − 1) ∗ (Lh − Overlap) + y
(k)
i,j

(14)

where X(l) and Y(l) are the coordinates of the lth target in two directions in the large-scale SAR images.

However, cropping the SAR images would split the targets in two or more pieces, leading to

fragmentary predicted boxes and the overlapping operation could cause overlapped predicted boxes,

which can be seen in Figure 5a. In order to solve the problems, we consolidate the overlapping and

fragmentary predicted boxes by searching the box coordinates to find a coordinates group forming

the largest box. As a result, the consolidated box is considered as the final predicted box shown

in Figure 5b.

   

(a) (b) 

.

,

Figure 5. Procedure for consolidating the predicted boxes. (a) predicted boxes before consolidation;

and (b) predicted box after consolidation.

3. Experimental Results

3.1. Materials

In this paper, a total of 111 VHR spaceborne SAR images generated by the Chinese GF-3

satellite are used, which carries a Band C radar sensor working at 12 imaging modes with a wide

variety of ground resolutions. In order to perform target classification and detection, two datasets:

Marine Target Classification Dataset (MTCD) and Marine Target Detection Dataset (MTDD),which are

built, respectively, using the preprocessing method given in Section 2.1. In the following, we first

present the details of the 111 large-scale SAR SLC images and then describe the compositions of the

MTCD and MTDD.

3.1.1. GF-3 SLC Dataset

111 GF-3 SAR images covering the offshore areas of Eastern Asia, Western Asia, Western Europe,

and Northern Africa are selected. All of them are images of Band C, acquired from December 2016 to

May 2018. There are four polarization mode images (51% for HH mode, 27% for HV mode, 9% for VH
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mode, and 13% for VV mode), with ground resolution from 0.5 m to 5 m. Table 1 shows the details of

the SAR images used in this paper.

Table 1. Composition of the GF-3 SLC dataset.

HH HV VH VV Total

0.5 m 2 0 0 4 6
1.7 m 24 0 0 5 29
2.5 m 0 0 7 3 10
3.0 m 11 11 2 2 26
5.0 m 20 19 1 0 40
Total 57 30 10 14 111

3.1.2. Marine Target Classification Dataset (MTCD)

The MTCD is built on the patches captured from the GF-3 SAR SLC dataset and it consists of eight

types of maritime targets: Boat, cargo, container ship, tanker, tower, platform, cage, and windmill.

Each target chip includes only one type of target and the ground truth is acquired by feature analysis

introduced in Section 2.2. The MTCD contains 2522 training samples and 688 testing samples,

whose size is fixed to 128 × 128 pixels. Table 2 lists the numbers of patches per class available

for training and testing. In our experiments, the training patches are flipped up-to down to achieve

data augmentation, which means a total of 5044 patches are used as training sets.

Table 2. Composition of the marine target classification dataset.

Boat Cage Cargo Container Tower Platform Tanker Windmill Total

Training 390 295 400 200 290 280 312 355 2522
Testing 104 94 154 54 72 55 76 94 688

3.1.3. Marine Target Detection Dataset (MTDD)

The MTDD dataset is built following the PASCAL VOC format [32], containing the slices with

corresponding xml files providing the label as well as the location of the target. In this task, six types

of targets, i.e., cargo, container ship, tower, platform, tanker, and windmill, are studied because they

are more common and valuable than the other targets such as boat and cage. The slices consisting

of more than one targets are set to 500 × 500 and Table 3. presents the composition of the MTDD,

including 1727 patches in total.

Table 3. Composition of the marine target detection dataset.

Training Set Validation Set Testing Set Total

549 525 653 1727

3.2. Classification Results of MT-CNN

The experiments are performed on the Caffe [40] framework on Ubuntu 16.04 system,

using NVIDIA GeForce GTX 1060 with Max-Q Design acceleration graphics. The training and testing

batches are set to 48 and 24, respectively. The network is trained for 60,000 iterations using SGD random

gradient descending method with initial learning rate of 0.002 and momentum of 0.9. In addition,

the training process takes 1451.22 s, while the testing process takes 153.48 s.

Table 4 gives the confusion matrix of the classification result on the test dataset consisting of eight

marine classes. Each row in the table denotes the actual target class, while each column represents the

class predicted by MT-CNN. It can be seen that the overall accuracy (OA) achieves 95.20%. Due to

the distinctive features of cage and tower, their accuracies reach 100%. However, tanker possesses
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the lowest accuracy (88.16%) among the eight classes. As for the low resolution images, the bright

lines caused by the pipelines in tankers would be merged by the reflections of hulls, making it hard to

discriminate the tankers from other kinds of targets. Interestingly, two cargos are predicted as tankers,

while six tankers are predicted as cargos, implying that the two classes share the similar features.

Table 4. Confusion matrix of 8-class classification results of MT-CNN.

Boat Cargo Container Tanker Cage Tower Platform Windmill Total OA

Boat 98 3 0 1 1 1 0 0 104 94.23
Cargo 3 145 3 2 1 0 0 0 154 94.16

Container 0 3 51 1 0 0 0 0 54 94.44
Tanker 1 6 1 67 1 0 0 0 76 88.16
Cage 0 0 0 0 79 0 0 0 79 100

Tower 0 0 0 0 0 72 0 0 72 100
Platform 1 0 0 2 2 0 50 0 55 90.91
Windmill 1 0 0 0 0 0 0 93 94 98.94

Total 104 157 55 73 84 73 50 93 688 95.20

3.3. Effectiveness of MT-CNN

This subsection compares the proposed MT-CNN with previous methods including CNN based

methods and traditional machine learning methods such as SVM and KNN. As for the CNN based

methods, three typical CNN networks, i.e., CNN-CB [19], ConvNet [13], and CNN-ML [18], are selected.

The CNN-CB is simple constructed with two convolutional layers, two max-pooling layers as well as

fully connected layers, while the ConvNet is unique for its lack of fully connected layers. Furthermore,

the CNN- ML using a multi-looks input proves to be effective. In addition, We compute the Gist

feature of each slices following the procedure in Reference [41] and then train the SVM(RBF-kernel,

gamma = 0.5, C = 50) and KNN to classify them. In this subsection, the KNN algorithm employs KD

Trees and the number of neighbors and leaf size are set to five and 30, respectively.

Table 5 illustrates the classification accuracies of different methods among the eight categories.

It can be noticed that the proposed method outperforms other methods in every category except

platform, with the average accuracy achieving 95.20%. CNN-CB and ConvNet can only classify the

targets with the overall accuracy of 80.96% and 82.27%, respectively, due to their lack of enough

convolutional layers and insufficient convolutional kernels to extract high-level features. While the

CNN-ML is able to classify platform more accurately than the proposed MT-CNN does, its performance

on other categories is poorer than MT-CNN. As for the traditional machine learning methods such as

SVM and KNN, the accuracy of different classes varies a lot. They expert on classifying the targets

with distinct characteristics, i.e., boat and windmill, while their performance on other classes are

much poorer. Overall, the performance of the proposed method is superior to other methods and the

predicted results are more reliable than others.

Table 5. Classification accuracies (%) of different existing methods.

MT-CNN
CNN-CB

[19]
ConvNet

[13]
CNN-ML

[18]
SVM KNN

Boat 94.23 88.46 83.65 91.35 79.81 89.45
Cage 100.0 98.73 97.47 98.73 68.09 68.06
Cargo 94.16 77.92 69.48 92.21 70.13 54.26

Container 94.44 75.93 77.78 79.83 38.89 60.61
Tower 100.0 86.11 94.44 95.83 61.11 61.69

Platform 90.91 83.64 87.27 92.73 45.45 62.76
Tanker 88.16 63.16 65.79 73.68 75.00 65.37

Windmill 98.94 74.47 92.55 93.62 97.87 95.39
Average 95.20 80.96 82.27 90.41 71.80 70.58
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3.4. Effectiveness of MR-SSD

In this section, the detection experiments are carried out on the Caffe [40] framework via Ubuntu

16.04 systems. MR-SSD is trained on the MTDD training set including six types of marine targets,

i.e., cargo, container ship, tanker, tower, platform, and windmill. The MR-SSD network is trained

with learning rate of 0.0001 and a weight decay parameter of 0.005 for 160,000 iterations. After that,

the trained model is used to detect the marine targets in the testing set. In addition, the confidence

threshold is set to 0.5.

The detection results of MR-SSD on testing samples with different backgrounds are shown

in Figure 6. For Figure 6a–g, the objects surrounded by sea clutters are detected with accurate

coordinates. The proposed model recognizes all the three tanker against the distractions from the small

ships and ambiguities in Figure 6h. Moreover, the defocused container ship in Figure 6i is detected,

which demonstrates the robustness of the proposed method. In Figure 6i,j that cover the offshore areas,

the trained model is capable of extracting the targets coordinates and predicting the labels precisely.

(a) (b) (c) (d) (e) 

(f) (g)  (h) (i)  (j)  

g

f

Figure 6. Detection results of the proposed MR-SSD. (a) Cargo; (b) tower; (c) cargo; (d) tanker;

(e) container; (f) platform; (g) windmill; (h) tanker; (i) container; (j) cargo and container.

As PASCAL VOC challenges, this paper uses average precisions (AP), which is the average of the

maximum precisions at different recall values, to access the performance. Recall, precision, and F1

score are defined as follows:

Recall =
Td

Tg
(15)

Precision =
Td

Td + Tf
(16)

F1 =
2 × Recall × Precision

Recall + Precision
(17)

where Td denotes the number of the correctly detected targets, Tg represents the number of ground

truths, and Tf indicates the number of false alarms. F1 is the harmonic mean of precision and recall.

Besides, the mean Average Precisions (mAP) is used to access the model’s ability in detecting all types

of targets.

To prove the advantages of the proposed MR-SSD model, existing algorithms (i.e.,

Faster-RCNN [29] and SSD [31]) are selected for contrast experiments.

Table 6 compares the AP and mAP of different methods. It can be seen that the proposed method

achieves 87.38% mAP, which is 5.29% and 1.76% higher than Faster-RCNN and SSD, respectively.
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It is evident that MR-SSD has the best AP for every individual category on MTDD. The proposed

MR-SSD improves the accuracy for tower significantly, surpassing SSD by 5.52% mAP. While the

improvements for other classes are slight, there is less than 2% mAP. Though Faster-RCNN can detect

cargo, platform and tanker with more than 85% mAP, its performance in terms of container, tower,

and windmill are much worse than that of MR-SSD. The experiments demonstrate that the proposed

method can extract more features and detect targets more precisely than the traditional one and can

achieve higher performance.

Table 6. Average Precisions (AP) of different algorithms among different targets (%).

Method Cargo Container Tower Platform Tanker Windmill mAP

Faster-RCNN 89.47 79.78 68.79 89.61 86.70 78.19 82.09
SSD 89.37 87.08 74.55 89.96 86.46 86.34 85.62

MR-SSD 89.77 88.69 80.07 90.43 87.28 88.04 87.38

3.5. Detection Results of Large-Scale SAR Iimages—Case Study

A large-scale SAR image can hardly contain all kinds of marine targets because of the variance

of locations of targets, e.g., the windmills are mainly located in open sea while a large number of

cargos settle in offshore areas. In order to demonstrate the performance of the proposed method,

some types of targets: Windmills, platforms, and towers, are transplanted to the large-scale SAR

images (12,000 × 14,000 pixels) covering Weihai City, Shandong Province, China. The imaging mode

is Ultlra Fine Strip (UFS), polarization mode is HH and the ground resolution is 1.7 m. The image and

the numbers of the ground truths are depicted in Figure 7a and Table 7, respectively.

   

(a) (b) (c) 

Figure 7. Sea-land segmentation results of a large-scale GF-3 image. (a) The original image; (b) The

land mask; and (c) The image after land masking.

Table 7. Compositions of the large-scale SAR image.

Category Cargo Container Tower Platform Tanker Windmill Total

Number 37 8 19 10 23 31 128

3.5.1. Sea-Land Segmentation

In this subsection, the level-set method [39] is employed to sea-land segmentation.

The downsampling rate is set to 10 to accelerate computing and the segmentation contour is iterated for

10 times. It takes 43.21 s to generate the land mask and the segmentation results are shown in Figure 7.

It is evident that the land mask wipes out all the land areas precisely, while all of the marine targets

remain in the images, which contributes to reducing false alarms and increasing detection precision.
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3.5.2. Detection Results of the Whole Workflow

After removing the lands from the images, the image is cropped into 500 × 500 sub-images

with overlapping of 200 pixels. Then, the 500 × 500 sub-images are resized to 300 × 300 to match

with the input size of MR-SSD. After that, the coordinates in the sub-images are mapped onto the

large-scale images.

Figure 8 shows the detection results of the proposed methods. It can be seen that most of the six

types of targets can be detected with accurate coordinates. In the large-scale image, a windmill, a tanker,

and a platform are missed. The missing windmill and tanker have week intensity, while the missing

platform is overlapped by another platform, which diminishes the performance of MR-SSD. Besides,

two tankers are misrecognized as container ships because they share similar features: Large hulls and

multiple components leading strong reflections. In practice, as the land mask can hardly rule out small

reefs near the coastline, some small reefs are transmitted into the MR-SSD. As a result, five reefs are

recognized as cargos.

, 

 

Figure 8. Detection results of a large-scale SAR image. The red circles and pink circles denote the false

alarms and missed targets, respectively. Cargo, container ship, and tanker are labelled by yellow, green,

and blue rectangles, respectively. Yellow eclipses, green eclipses, and blue eclipses indicate windmills,

iron towers, and platforms.
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Also, Faster-RCNN [29] and SSD [31] models are employed in the overall scheme to demonstrate

the advance of the proposed method. The detection results are recorded in Table 8. The recall, precision,

and F1 score are calculated according to the Equations (15)–(17).

Table 8. Detection results of different CNN models on the large-scale SAR image.

Method Tg Td Tf Recall (%) Precision (%) F1 (%)

Faster-RCNN 128 119 8 92.97 93.70 93.33
SSD 128 121 22 94.53 84.62 89.30

MR-SSD 128 122 8 95.31 93.85 94.57

It can be seen that the MR-SSD gets the highest recall, precision and F1 score among the three

methods. Compared with SSD that generates 22 false alarms, the proposed method reduces the number

of false alarms, only 8 false alarms exist. Though Faster-RCNN produces the same number of false

alarms as t/6he proposed method, its number of the correctly detected targets is less than that of the

proposed method, which leads to a lower F1 score. In summary, the proposed method outperforms

other methods in detecting different marine targets in large-scale SAR images.

4. Discussion

By comparing and analyzing the results of experiments conducted in our work, the merits of

the proposed methods are demonstrated. In this section, we discuss impacts of some parameters on

performance of the proposed methods and analyze characteristics of false alarms and missing targets,

which helps to improve the performance in the near feature.

4.1. Performance of MT-CNN Trained with Different Data Augmentation Methods

In order to analyze the impacts of data augmentation on the MT-CNN’s performance, we use

four datasets: Training sets without flipping (TS1), training sets with up-to-down flipping (TS2),

training sets with left-to-right flipping (TS3), and training set with up-to-down and left to right flipping

(TS4). The experiments are carried out under the same conditions. Table 9 shows the classification

results of MT-CNN trained with different augmentation methods. It can be seen that flipping could

help to improve the models’ performance. However, more flips can hardly improve their performance

and this is because this operation cannot provide more information that the models need.

Table 9. Classification accuracies (%) of MT-CNN trained with different augmentation methods.

Boat Cage Cargo Container Tower Platform Tanker Windmill OA

TS1 89.42 98.73 87.66 87.04 97.22 90.91 81.58 97.87 91.13
TS2 94.23 100.0 94.16 94.44 100.0 90.91 88.16 98.94 95.20
TS3 93.27 98.73 92.86 88.89 100.0 98.18 84.21 97.87 94.19
TS4 91.35 98.73 91.56 92.59 100.0 96.36 88.16 97.87 94.19

4.2. Comparison of Performance of Different CNN Structures

In this subsection, we propose four CNN models with different layer arrangements and perform

classification experiments on MTCD to demonstrate the merits of MT-CNN. The structures of the

CNN models are shown in Table 10 and the parameters of the layers are the same with those of

corresponding layers in MT-CNN.
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Table 10. Structures of five different CNN models.

Layer MT-CNN CNN-A CNN-B CNN-C CNN-D

1 Conv1 Conv1 Conv1 Conv1 Conv1
2 Pooling1 Pooling1 Pooling1 Pooling1 Pooling1
3 Conv2 Conv2 Conv2 Conv2 Conv2
4 Pooling2 Pooling2 Pooling2 Conv3 Pooling2
5 Conv3 Conv3 Conv3 Conv4 Conv3
6 Conv4 Conv4 Conv4 Conv5 Conv4
7 Conv5 Conv5 Conv5 Pooling3 Conv5
8 Conv6 Pooling3 FC1 FC1 Conv6
9 Pooling3 FC1 FC2 FC2 Pooling3

10 FC1 FC2 - - FC2
11 FC2 - - - -

Table 11 shows the classification accuracies of different CNN models. While the accuracy of

platform of MT-CNN is lower to that of CNN-A, MT-CNN can obtain higher accuracies than the four

CNN models in other categories and its overall accuracy achieves 95.20%. In addition, the overall

accuracies of the fiver models are all over 90% and increasing or decreasing network layers would

have slight impacts on their performance.

Table 11. Classification accuracies (%) of different CNN models.

Boat Cage Cargo Container Tower Platform Tanker Windmill OA

MT-CNN 94.23 100.0 94.16 94.44 100.0 90.91 88.16 98.94 95.20
CNN-A 91.35 100.0 91.56 85.19 100.0 94.55 82.89 98.94 93.16
CNN-B 93.26 98.73 90.26 88.89 100.0 92.73 80.26 97.87 92.73
CNN-C 83.68 98.73 92.86 79.63 95.83 94.55 82.89 95.74 90.84
CNN-D 93.27 100.0 92.21 79.63 98.61 94.55 77.63 97.87 92.30

4.3. Class Imbalance Effect

Among MTCD, there are a few big classes (i.e., cargo and boat) and small classes (i.e., container

ship and platform). In order to discuss the class imbalance effect on the MT-CNN’s performance, we

use two balancing methods to build two balanced dataset: BAL1 and BAL2. As the smallest class

(container ship) in MTCD has 200 patches, we reduce the number of slices to 200 in other classes to

form BAL1. BAL2 augments small classes in MTCD by left to right flipping and each class contains

400 slices. In the experiment, all of the slices in the three datasets are flipped up-to down to realize

data augmentation.

Table 12 compares classification accuracies of MT-CNN trained in the three datasets. As for cargo,

which accounts for the largest proportion in MTCD, its accuracy drops when the dataset is balanced.

One possible reason is that the MT-CNN tends to extract specific features in other categories as cargo’s

proportion in the datasets declines. However, platform shows the opposite trend, with the accuracy

rising by 2% and 4% in BAL1 and BAL2, respectively. This is because its proportions in BAL1 and

BAL2 are higher than that in MTCD. Among other classes, there is not a significant imbalance effect

because MTCD is not a serious imbalanced dataset.

Table 12. Comparison of classification accuracies (%) of MT-CNN trained by MTCD, BAL1, and BAL2.

Boat Cage Cargo Container Tower Platform Tanker Windmill OA

MTCD 94.23 100.0 94.16 94.44 100.0 90.19 88.16 98.94 95.20
BAL1 85.58 100.0 85.06 90.74 100.0 92.73 81.57 100.0 91.13
BAL2 96.15 100.0 91.56 92.59 100.0 94.55 82.89 98.94 94.48
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4.4. Performance of MT-CNN against Ground Resolution Variance

To evaluate the performance brought by resolution variance in the proposed MT-CNN, extensive

experiments using different resolutions images are further conducted. Test dataset including eight

types of target slices at 1.7 m ground resolution is built. Then, lower pass filters are used to lower image

resolution to generate target slices with eight resolution versions. Table 13 shows the composition of the

test dataset. In the experiment, the proposed network is fed with target slices with different resolutions.

Table 13. Composition of the 1.7 m ground resolution target classification dataset.

Boat Cage Cargo Container Tower Platform Tanker Windmill Total

Number 28 35 50 30 48 34 30 45 291

Figure 9 illustrates the robustness of the proposed MT-CNN against ground resolutions. We can

see that there is a slight increase in average accuracy from 1.7 m to 3.4 m and then it decreases gradually

from 97% at 3.4 m to 85% at 13.6 m. Windmill and cargo keeps at 100% when images ground resolution

varies from 1.7 m to 13.6 m. Tanker, container ship, and cage are more sensitive to resolution variance

than other kinds of targets. Tanker declines dramatically from 95% at 1.7 m to 57% at 6.8 m and

then it remains stable from 6.8 m to 13.6 m. One possible reason is that the auxiliary structures such

as pipelines and cranes on tankers could be blurred in low resolution images, making tankers lose

distinctive features. Additionally, cages drop rapidly from 6.8 m to 11.9 m because they share some

rectangle-like shapes with platforms and many cages are misclassified into platforms.

 

λ

Figure 9. Classification accuracies of MT-CNN under different ground resolutions.

4.5. Comparison of Performance of MR-SSD with Different Low-Pass Filters

In this subsection, we adopt different values for λ in G channel and B channel to analyze its

influence on the performance of MR-SSD. All the MR-SSD models are trained on the CAFFE framework

and the experimental parameters are the same with those in Section 3.4. Table 14 shows the performance

of MR-SSD with different low-pass filters. It can be seen that as λ varies, the mAP of MR-SSD changes

slightly, and it achieves the highest mAP (87.38%) when λ is set to 0.5 and 0.25 for G channel and B

channel, respectively.
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Table 14. Comparison of precisions (%) of MR-SSD with different low-pass filters.

G B Cargo Container Tower Platform Tanker Windmill mAP

0.2 0.4 88.11 81.24 71.31 90.27 84.06 86.47 83.58
0.2 0.6 88.22 84.70 71.36 90.27 83.97 87.78 84.39
0.2 0.8 88.41 84.33 74.73 90.29 86.05 88.40 85.37
0.4 0.6 88.69 82.99 70.90 90.11 86.20 84.89 83.96
0.4 0.8 89.03 83.27 78.74 90.75 87.23 69.15 83.03
0.6 0.8 89.69 87.90 79.15 90.29 87.67 87.54 86.79
0.5 0.25 89.77 88.69 80.07 90.43 87.28 88.04 87.38

4.6. Influence of Different Patch Sizes in the Proposed Workflow

As for the proposed workflow, large-scale SAR images are cropped into different slices, which are

then sent to the pre-trained MR-SSD and the impacts of slice size are discussed in this subsection.

We carry out experiments using the large-scale SAR image provided in Section 3.5 and performance

of the proposed method in terms of patch size are compared in Table 15. It can be noticed that the

computational time drops dramatically when patch size increases, because the patch size determines

the total number of patches. Recall is relatively high when patch size is under 700 × 700 but it drops

dramatically from 89.84% at 700 × 700 to 64.06% at 900 × 900, because the resize operation removes

many image details, leading to many missing targets. In practice, the cropping size should be carefully

considered and keep a balance between computational time cost and F1 score.

Table 15. Results on the large-scale SAR image in terms of patch size.

Pw × Ph Tg Td Tf Recall (%) Precision (%) F1 (%) Time (s)

300 × 300 128 112 13 87.50 89.60 88.54 1268.67
500 × 500 128 122 8 95.31 93.85 94.57 636.56
700 × 700 128 115 8 89.84 93.50 91.12 259.94
900 × 900 128 82 2 64.06 97.62 77.36 145.20

4.7. False Alarms and Missing Targets in the Large-Scale Images

Some typical patches containing false alarms are displayed in the blue box, while missing targets

are shown in the red box in Figure 10. It can be seen small reefs are easy to be recognized as cargos

because they are brighter than the sea clutters and share similar visual features with cargos. For images

without geocoding, it is difficult to remove all the reefs precisely. Interestingly, some dams are classified

as cargo or container ship. One possible reason is that dams lead to the bright lines similar to that

produced by warehouses or containers. Additionally, a cargo is recognized as platform in Figure 10d

because it possesses a rectangular contour with high intensity, which looks like a platform visually.

As for the platform in Figure 10f, the blurring in image looks like burning towers on the platform,

which is the main reason for such misclassification. Besides, some coastlines are classified as cargos

because of their bright lines in SAR images.

When it comes to missing targets, some of them have small or weak intensity, which leads to

little response in the network, remaining to be undetected. The strong noise and motion blurring in

Figure 10k,m exert adverse effects on target detection.
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(a) reef (b) reef (c) dam (d) cargo 
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Figure 10. Samples of false alarms and missing targets. The ground truths of the patches:(a) Reef;

(b) reef; (c) dam; (d) cargo; (e) dam; (f) cargo; (g) coastline; (h) coastline; (i) tanker; (j) windmill;

(k) cargo; (m) cargo.

5. Conclusions

With the labeled SAR images provided by the GF-3 satellites, this paper proposes a convolutional

network (MT-CNN) to classify marine targets at patch level and an overall scheme to detect different

marine targets in large-scale SAR images. The proposed MT-CNN with six convolutional layers and

three pooling layers are capable of extracting features at different levels and achieve higher classification

accuracy than existing CNN models. As for the marine target detection task in large-scale SAR images,

the proposed MR-SSD with a three-resolution input is able to learn the features on different resolution

versions. The proposed framework containing sea-land segmentation, cropping with overlapping,

detection with MR-SSD model, and coordinates mapping shows its superiorities to other methods by

improving detection accuracy and reducing false alarms. Besides, this is the first such experiments that

carries out on such various types of marine targets in SAR images. This paper presents the preliminary

results of the proposed methods. Looking ahead, future works can be focused on eliminating false

alarms in SAR imageries by image processing methods.
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