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A Semi-Partitioned Model for Mixed Criticality
Systems

H. Xu, A. Burns

Department of Computer Science, University of York, UK

Abstract

Many Mixed Criticality algorithms have been developed with an assumption

that lower criticality-level tasks may be abandoned in order to guarantee the

schedulability of higher-criticality tasks when the criticality level of the system

changes. But it is valuable to explore means by which all of the tasks remain

schedulable through these criticality level changes. This paper introduces a

semi-partitioned model for a multi-core platform that allows all of the tasks to

remain schedulable if only a bounded number of cores increase their criticality

level. In such a model, some lower-criticality tasks are allowed to migrate instead

of being abandoned. Detailed response time analysis for this model is derived.

This paper also introduces possible approaches for establishing migration routes.

Together with related previous work, an appropriate semi-partitioned model for

mixed criticality systems hosted on multi-core platforms is recommended.

1. Introduction and Motivation

A system containing tasks with different criticality levels is called a Mixed

Criticality System (MCS). Vestal [14] was the first to introduce scheduling anal-

ysis for uni-core MCS. He introduced an algorithm that allowed all tasks, with

different criticality levels, to maximise their chances of remaining schedulable

regardless of changes to the system criticality mode. The system criticality

mode change refers to a switch of the defined operating mode of the system,

which is generally controlled by a mode change protocol [7]. In uni-core MCS,

a system mode change refers to a change of the criticality level of the core; for
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example, the core rises from a lower-criticality level to a higher-criticality level.

Based on this notion, a variety of algorithms, such as AMC [4] and EDF-VD [3],

have been developed to improve the scheduling efficiency of MCS. Most of these

algorithms were defined under the assumption that there are only two critical-

ity levels, LO-crit and HI-crit (HI-crit is of higher criticality than LO-crit). In

addition, LO-crit tasks may be terminated in order to ensure the execution of

HI-crit tasks when the criticality level of the system switches to HI-crit. Al-

though these LO-crit tasks will resume execution when the system level returns

to normality (i.e. LO-crit), it would be better if these tasks can remain exe-

cutable throughout the system mode change. But this is not possible on single

core platforms as the maximum computation capability of a core is fixed, and

it is often impossible (or too expensive) to increase the performance of the core.

Thus, many researchers [1] [12] [13] have started to study the problem of real-

ising MCS on multi-core platforms; as one of the key features of a multi-core

platform is that tasks may be able to migrate from one core to another, which

provides more flexibility for scheduling. Moreover, in a multi-core MCS, a mode

change on one core will not necessarily lead to mode changes on other cores.

Multi-core scheduling algorithms can generally be divided into three cate-

gories [9]: partitioned scheduling, global scheduling and semi-partitioned schedul-

ing. Partitioned scheduling, where tasks are statically mapped to processors/cores,

provides a stable and predictable implementation which is preferable for safety

critical (i.e. HI-crit) applications. Global scheduling allows tasks to migrate

from one core to another during execution, which potentially provides higher

overall utilisation. Semi-partitioned scheduling is a mixture of the previous two

algorithms in that hard real-time tasks may be statically mapped to cores but

a small number of other tasks are able to migrate to improve schedulability.

Referring to MCS, HI-crit tasks may be statically partitioned on cores in order

to guarantee their execution, while some LO-crit tasks may be migrated when

a system mode change is detected on their executing core.

This paper explores semi-partitioned scheduling of multi-core MCS in con-

sideration that all tasks remain schedulable if less than a certain number of the

cores enter the HI-crit mode. Following this introduction, Section 2 introduces

some related work, including a piece of previous work that established the basis
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of this research. Section 3 defines the essential problem of extending the semi-

partitioned model to multi-core platforms and introduces the semi-partitioned

model for multi-core platforms based on a probability calculation. Section 4

explores several possible task allocation models for the semi-partitioned model

on a four-core platform, and recommends the most appropriate allocation model

to use based on the results obtained from a comparative study. Section 5 ex-

tends the semi-partitioned model from a four-core system to a general multi-core

platform. Section 6 concludes the study and discusses possible future work.

2. Related Work

A mixed-criticality system can be defined as a finite set of components. Each

component has a level of criticality, L, and contains a finite set of sporadic tasks.

Each task, τi, has a period Ti, deadline Di, worst-case execution time Ci and

criticality level Li. There exist a number of different models to explain the

relationships between the temporal attributes of the tasks and the criticality

level of the tasks [8]. Vestal’s model [14] assumes that the higher the degree of

assurance required, the larger the task execution time needed to guarantee the

completion of the task. That is, if a task τi has a set of assurance levels (criti-

cality levels), L = 1, 2, 3, 4 with 4 being the highest, then there are four different

estimations of worst-case execution time (WCET) for τi, with the relationships

Ci(L1) ≤ Ci(L2) ≤ Ci(L3) ≤ Ci(L4).

Since tasks may have different WCET for their different criticality levels,

the notation for MCS is a bit different from the standard notation for real-time

systems. Table 1 shows the symbols used in this paper.

In addition, the word ‘job’ is used to represent one invocation/release of a

‘task’, and the word ‘taskset’ is used to represent a finite set of tasks. This paper

considers the constrained-deadline sporadic task model, where the deadline of

a task is smaller than or equal to its period/minimum release interval.

2.1. Response-Time Analysis

Vestal’s algorithm [14] allows the priorities of high and low criticality tasks

to be interleaved in order to provide flexibility in scheduling. It was later proved

that Audsley’s priority assignment is optimal for MCS [10].
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Notation Description
τi Task i

Di The deadline of task τi
D′

i The reduced deadline of task τi
Ti The period of task τi
Li The criticality level of task τi

Ci(Li) The WCET of task τi at criticality
level Li

Ui(Li) The utilisation of task τi at
criticality level Li

Ji The release jitter of task τi
cj Core j

Ri The response time of task τi

Table 1: MCS Notation

Adaptive Mixed Criticality (AMC) [4] is now the standard way to analyse

MCS that employ fixed priority scheduling on a uni-core, or fully partitioned

multi-core, platform. With AMC a run-time monitor is used to prevent any task

from executing for more than the WCET estimate it has for its own criticality

level (i.e. Ci(Li)), so LO-crit tasks cannot execute for more than C(LO) and

HI-crit tasks cannot execute for more than C(HI). This monitor is also used

to signal when a HI-crit task has executed for longer that its C(LO) estimate.

The key notion in AMC is that lower criticality-level tasks may be suspended

in order to guarantee that higher criticality-level tasks complete their executions.

Assume the task set has two criticality levels: HI-crit and LO-crit. Then the

schedulable test for AMC consists of three phases of analysis. The first phase

is to verify the schedulability of the LO-crit mode, when all of the tasks are

executing within their LO-crit budgets. The response time analysis for this

phase is shown in equation (1).

Ri(LO) = Ci(LO) +
∑

τj∈hp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO) (1)

where hp(i) stands for the task set that contains all the tasks which have

higher priority than task τi. This, and similar equations later in this paper,

are solved using the standard techniques of forming a recurrence relation [2]. If

the computed worst-case response time is no greater than the task’s deadline
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(Ri(LO) ≤ Di) then the task is proved to be schedulable.

The second phase is to verify the schedulability of the HI-crit mode, when

only HI-crit tasks are executing but they execute with their HI-crit budgets.

The response time analysis for this phase is shown in equation (2) where hpH(i)

stands for the set of HI-crit tasks with higher priority than that of task τi.

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) (2)

Note that Ri(HI) is only defined for HI-crit tasks.

The third phrase is to check the schedulability of the criticality change itself.

Since exact analysis of this phase is unlikely to be tractable [4], a sufficient

analysis can be done by assuming that HI-crit tasks execute with their HI-crit

budget while LO-crit tasks execute with their LO-crit budget before the system

changes to HI-crit mode. In this case, for a HI-crit task τi, interference from

other HI-crit tasks will not be affected by changing the time when the system

enters the HI-crit mode. But interferences from LO-crit tasks will increase if

that time increases. Hence Ri(LO), the time that τi finishes all its LO-crit

budget, is the latest time the criticality change may occur. The response time

for this phase (Ri(HI)∗) is thus computed using equation (3) – where hpL(i)

stands for the set of LO-crit tasks with higher priority than that of task τi, and

Ri(LO) is a pre-computed constant (obtained from equation (1)).

Ri(HI)∗ =Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI)∗

Tj

⌉

Cj(HI)

+
∑

τk∈hpL(i)

⌈

Ri(LO)

Tk

⌉

Ck(LO)

(3)

Note that Ri(HI)∗ ≥ Ri(HI) so that if the task is deemed schedulable with

Ri(HI)∗, it is deemed to be schedulable with Ri(HI).

Release jitter is a key issue in modelling task execution. It occurs when a

task has recurrent arrivals from a periodic source but its release event may oc-

casionally arrive earlier than that period. Audsley et al. [2] analyse the possible

interferences from tasks with the release jitter, and extend the original response

time analysis equation. For example, equation (1) would become:

5



Ri(LO) = Ci(LO) +
∑

τj∈hp(i)

⌈

Ri(LO) + Jj
Tj

⌉

Cj(LO) (4)

where Jj is the release jitter of task τj . We shall require a release jitter term in

the semi-partitioned model developed below.

2.2. Semi-partitioned Model on Dual-core Platform

Xu and Burns [16] explored the semi-partitioned MCS model on a dual-

core platform with two criticality levels; this study forms the basis of the work

developed in this paper. They proposed a model that when a core enters the

HI-crit mode, in order to keep all of the tasks schedulable, some LO-crit tasks

on the core can be migrated to the other core as long as that core is still in the

LO-crit mode. If both cores are in HI-crit mode, all HI-crit tasks are guaranteed

to be schedulable while some LO-crit tasks are abandoned.

For the migrating tasks, it is not defined whether they have finished or

partly-completed or even not yet started before the migration occurs, but all

of the migrating tasks still need to execute their remaining LO-crit budget on

the newly allocated core. The migrating tasks hence have reduced deadlines

(D∗) after migration. To compute the exact value of such deadlines is unlikely

to be tractable as all of the release patterns need to be considered; however,

a sufficient analysis can be obtained by applying the shortest possible reduced

deadline to each migrating task. The cited paper [16] proves that for task τi

(which must be LO-crit), the worst-case scenario after migration is that it needs

to execute all its budget in a reduced deadline of D∗
i = Di−(Ri(LO)−Ci(LO)),

where Ri(LO) is the worst-case response time for task τi when the core is in

LO-crit mode, and the release jitter is Ji = Ri(LO) − Ci(LO). Based on this

formulation, migrating tasks with relatively high priorities are likely to have

smaller release jitter and smaller impact from the reduced deadline.

Xu and Burns [16] also discuss task allocation. HI-crit tasks shall be allo-

cated first as non-migratable tasks. Considering the release jitter issue, LO-crit

tasks are assigned as non-migratable tasks to the cores one by one according

to a pre-sorted order (the order is discussed in the cited paper). If a task is

not schedulable as a non-migratable task, two approaches are proposed: the

first approach is to set this task as migratable, while the other approach is
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to try to set an already allocated LO-crit higher priority task as migratable.

Combined with the common bin-packing algorithms (First-Fit, Worst-Fit, and

Best-Fit), there are thus six possible approaches for the semi-partitioned model

on a dual-core platform (see Table 2). An experimental evaluation is reported

in the paper to analyse these different approaches, as well as the base-line non-

migration approach. According to the results, Semi2WF and Semi2FF have the

best performance in the majority of the cases. Combined usage of Semi2WF

and Semi2FF is proposed as the most appropriate method for scheduling a two

criticality level MCS on a dual-core platform.

Notation Description

Non-migration The non-migration approach

Semi-partitioned approach that migrates
Semi1FF the fetched task and uses First Fit

bin packing algorithm

Semi-partitioned approach that migrates
Semi1BF the fetched task and uses Best Fit

bin packing algorithm

Semi-partitioned approach that migrates
Semi1WF the fetched task and uses Worst Fit

bin packing algorithm

Semi-partitioned approach that migrates
Semi2FF the “highest” priority task and uses

First Fit bin packing algorithm

Semi-partitioned approach that migrates
Semi2BF the “highest” priority tasks and uses

Best Fit bin packing algorithm

Semi-partitioned approach that migrates
Semi2WF the “highest” priority tasks and uses

Worst Fit bin packing algorithm

Table 2: Real-time System Notation

3. The Semi-partitioned Model for Multi-core Platform

In our previous work [16], LO-crit migratable tasks shall migrate if only one

core enters the HI-crit mode while these tasks need to be abandoned if both

of the cores enter HI-crit mode. Hence there exists a boundary number nb for

the semi-partitioned approach: if less than or equal to nb cores enter the HI-

crit mode, LO-crit tasks may migrate and all tasks keep executing within their

corresponding criticality level budgets and meet their deadlines; otherwise, if

more than nb cores enter the HI-crit mode, only HI-crit tasks are guaranteed
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their execution. At one extreme, n−1 can be the required boundary number for

a n-core platform. However, a criticality change is expected to be a rare event

and n− 1 cores all in HI-crit mode is extremely unlikely. The determination of

this boundary number nb is an essential issue in the multi-core semi-partitioned

approach. If nb is quite small, then LO-crit tasks may need to be abandoned

in many cases which is against the initial purpose of the design. If nb is quite

large, then the schedulability of the model will be quite low as the scheduling

requirement becomes challenging.

We propose that the issue of setting nb can be addressed by using a prob-

ability calculation. Assume that the probability of one core entering HI-crit

mode in a sufficient long period of time is fixed (and represented by p), and the

criticality mode changes on each core are independent. Based on a probabilistic

argument, the probability of exactly m cores being in HI-crit mode in the same

time window (f(m,n)) can be calculated.

f(m,n) = Cm
n pm(1− p)n−m =

{

n!

m!(n−m)!

}

pm(1− p)n−m (5)

where Cm
n represents the binomial coefficient function of choosing m out of n.

Based on this model, the probability of more than X cores entering HI-crit

mode at the same time can be expressed as equation (6).

F (X,n) =
n
∑

i=X+1

f(i, n) (6)

According to equation (6), F (X,n) will represent the probability of the

case that the system needs to abandon LO-crit tasks. Hence if there exists a

tolerance standard, ptol, then the largest number X which meets the tolerance

standard (F (X,n) ≤ ptol) can be calculated. Assuming nb = 2 is a reasonable

requirement in a four-core system, ptol can be set as F (2, 4). If we further assume

that p = 10−4, an exploration is made to find out the appropriate boundary

number nb for certain sizes of platform (see Table 3).

Table 3 indicates that the boundary number nb is much slower to rise than

the number of cores. This indicates that the fault model introduced is likely to

be extendable to many core platforms. However, it is also observed from the

table that the exact boundary numbers nb are irregular and hard to predict

generally. We have tried to fit a curve and noted that there is a small difference
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n nb F (nb, n) ptol

4 2 4.00E-12 4.00E-12

8 3 7.00E-15 4.00E-12

16 3 1.82E-13 4.00E-12

32 3 3.59E-12 4.00E-12

64 4 7.59E-14 4.00E-12

128 4 2.62E-13 4.00E-12

256 5 3.61E-13 4.00E-12

512 6 1.68E-13 4.00E-12

1024 7 2.67E-13 4.00E-12

Table 3: Probability Table

between log2n and nb (see Table 4). We therefore propose to use log2n, or more

precisely ⌈log2(n)⌉, as an appropriate boundary number.

n nb log2n

4 2 2

8 3 3

16 3 4

32 3 5

64 4 6

128 4 7

256 5 8

512 6 9

1024 7 10

Table 4: log2n VS nb

It can be proved that ⌈log2(n)⌉ is a safe boundary number (i.e. ⌈log2(n)⌉ ≥ nb).

Lemma 1. For systems with {w|2n + 1 ≤ w ≤ 2n+1} cores, n + 1 is a safe
boundary number.

Proof. It can be prove by induction.

• The possibility of more than K cores enter HI-crit mode in an n-core

platform and an (n+1)-core platform can be represented as F (K,n) =
∑n

i=K+1 f(i, n) and F (K,n+ 1) =
∑n+1

i=K+1 f(i, n+ 1).

• The difference between the two functions can be viewed as:

F (K,n+ 1)− F (K,n) = (f(K + 1, n+ 1)− f(K + 1, n) + (f(K + 2, n+

1)− f(K + 2), n) + ...+ (f(n, n+ 1)− f(n, n)) + f(n+ 1, n+ 1)).

• For each pair f(S, n + 1) and f(S, n), they can be compared by using

division. f(S, n+ 1)/f(S, n) =

{

(n+1)!
S!(n+1−S)!

}

pS(1− p)n+1−S ∗
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{

S!(n−S)!
n!

}

1
pS

1
(1−p)n−S = n+1

n+1−S
∗ (1− p).

• Since p = 0.0001, (1 − p) ≈ 1 and n + 1 > n + 1 − s, f(S, n + 1)/f(S, n)

shall be larger than 1.

• In that case, f(S, n+ 1) is larger than f(S, n).

• According to that, F (K,n + 1) is larger than F (K,n), which indicates

that F (n+ 1, 2n+1) has the largest value in all these situations.

• Since it is shown that ptol is larger than F (n+1, 2n+1), all these situations

shall fulfill the requirement.

• Thus, n+ 1 would be an appropriate boundary number for systems with

{w|2n + 1 ≤ w ≤ 2n+1} cores.

• Since ⌈log2(2
n+1)⌉ = n+1 and ⌈log2(2

n+1)⌉ = n+1, n+1 can be replaced

by ⌈log2(NumberOfCores)⌉.

• In other words, ⌈log2(n)⌉ is an appropriate boundary number for systems

with n cores.

�

Summing up all of the findings above, we propose a semi-partitioned model

for an n-core system as following:

• If all tasks execute within their LO-crit budgets, then all deadlines are

met and no task migrates.

• No LO-crit task is allowed to exceed its LO-crit budget.

• If HI-crit tasks on no more than ⌈log2(n)⌉ cores exceed their LO-crit bud-

gets, then some LO-crit tasks will migrate, but all LO-crit tasks and

HI-crit tasks remain schedulable. These migrating tasks will be divided

and migrate to paired cores that are currently in LO-crit mode.

• If HI-crit tasks on more than ⌈log2(n)⌉ cores exceed their LO-crit budgets

(but are within their HI-crit bugdet (C(HI)), then some LO-crit tasks

will be abandoned, but all HI-crit tasks remain schedulable (without mi-

gration).
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Tasks that have migrated return to their host core for new job releases if this

core has returned to the LO-crit mode. Such a mode change will occur if there

is an idle tick (or indeed instance) on that core.

4. Semi-partitioned model on Four-core Platform

As the boundary number issue has been addressed and the model has been

redefined for the multi-core platform, the next step is to solve the migration

destination problem. In a dual-core platform [16], migratable tasks have only

one core to migrate to. But in a multi-core platform, tasks may literally mi-

grate to any possible other core, which may cause the whole system to become

unpredictable and hard to analyse. This section will explore this migration des-

tination issue on a four-core platform. It will first introduce three allocation

models and provide a brief exploration upon the working mechanisms of these

models, as well as a comparison of the models based on response-time analysis.

An evaluation of the models will be given at the end of this section.

4.1. Migration Models

For a four-core platform, if only one core enters HI-crit mode, the migrating

tasks have three possible cores to migrate towards. We propose three models

based on the distribution of these migrating tasks.

• Model 1 represents the model in which all migrating tasks migrate to one

core.

• Model 2 represents the model in which all migrating tasks migrate to two

cores.

• Model 3 represents the model in which all migrating tasks migrate to three

cores.

The following subsections will introduce the details of these models, includ-

ing the relationship among cores and how the migratable tasks are divided to

migrate to different cores. Note that for this 4-core system, mode changes on

less than or equal to two cores must be tolerated without loss of schedulability.
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4.1.1. Model 1

In Model 1, migratable tasks on one core may only migrate to one available

core through a fixed route. The model can be viewed in Figure 1, where the

rectangles stand for cores and arrows stand for migration routes.

Figure 1: Model 1

According to the figure, the migration routes form a circle which indicates

that it is always possible to find an available core (a core still in LO-crit mode)

following the routes. Figures 2 and Figure 3 indicate two example scenarios for

Model 1. A core in grey indicates that this core is currently in HI-crit mode;

the thinner arrows indicate a set of tasks migrating from one core to another;

the thick arrow indicates different steps of the scenarios (the left hand side of

the arrow is step 1 while the right hand side is step 2).

Based on these scenarios, the migrating load seems to be the main issue of

Model 1. In Step 2 of Scenario 1 and Scenario 2, an extremely heavy task load

is migrated to c4 while no task migrates to c3 which will undoubtedly affect the

schedulability of the model.

Figure 2: Model 1 Scenario 1

Model 1: Scenario 1 (Figure 2)

1. Core c1 enters HI-crit mode, all of the migratable tasks on c1 will migrate

to c2.

2. Core c2 enters HI-crit mode, all of the migratable tasks on c2, including

tasks migrated from c1, will migrate to c4.
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Figure 3: Model 1 Scenario 2

Model 1: Scenario 2 (Figure 3)

1. Core c2 enters HI-crit mode, all of the migratable tasks on c2 will migrate

to c4.

2. Core c1 enters HI-crit mode, all of the migratable tasks on c1 will migrate

to c2. But since c2 is already in HI-crit mode, these migrating tasks will

migrate to c4 directly.

4.1.2. Model 2

This model allows migratable tasks to migrate to two cores rather than one.

This leads to two issues: how to decide which two cores to migrate to and how

the migratable tasks shall be divided. With regard to the first issue, Model 2

pairs the cores into four groups: (c1, c2), (c1, c3), (c2, c4) and (c3, c4). Each

core has two partner cores and migrating tasks originally on the core will only

migrate to the partner cores if they are available. For example, c1 is paired with

c2 and c3. If c1 enters HI-crit mode, all of the migrating tasks on c1 will migrate

to c2 and c3. The model can be viewed in Figure 4.

Figure 4: Model 2

Model 2: Scenario 1 (Figure 5)

1. Core c1 enters HI-crit mode, migratable tasks on c1 will split into two

groups and migrate to c2 due to the pairing relationship (c1, c2) and c3

due to the pairing relationship (c1, c3).
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Figure 5: Model 2 Scenario 1

2. Core c2 now enters HI-crit mode, all of the migratable tasks originally on

c2 will migrate to c4 due to the pairing relationship (c2, c4), and all of the

tasks that migrate from c1 will attempt to migrate back to c1. But since

c1 is already in HI-crit mode, these tasks will migrate to c3. (In practice,

these tasks will directly migrate to c3.)

Figure 6: Model 2 Scenario 2

Model 2: Scenario 2 (Figure 6)

1. Core c1 enters HI-crit mode, all of the migratable tasks on c1 will split

into two groups and migrate to c2 and c3.

2. Core c4 now enters HI-crit mode, all of the migratable tasks on c4 will

split into two groups and migrate to c2 and c3.

The splitting of tasks into the two groups is undertaken using the WF bin-

packing algorithm as this provides more balanced task distribution than FF or

BF. The following model also uses WF.

4.1.3. Model 3

Model 3 is a quite different model from the previous ones. In this model,

tasks are allowed to migrate to all of the cores currently in the LO-crit mode.

Figure 7 depicts the migration paths that Model 3 allows for.

As Figure 7 shows, migratable tasks can migrate to all of the cores which

makes for maximum usage of the computational capacity of the system. Here

is a possible scenario for Model 3:
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Figure 7: Model 3

Figure 8: Model 3 Scenario 1

Model 3: Scenario 1 (Figure 8)

1. Core c1 enters HI-crit mode, all of the migratable tasks on c1 will be split

into three groups and migrate to all other cores in LO-crit mode (c2, c3

and c4).

2. Core c2 now enters HI-crit mode, all of the migratable tasks on c2 will be

split into two groups and migrate to the other cores in LO-crit mode (c3

and c4). The tasks that migrated from c1 to c2 are also migrated to c3

and c4.

4.2. Model Analysis

The previous section has introduced three possible allocation models. This

section will give a detailed exploration of the models proposed with their corre-

sponding response-time schedulability analysis.

4.2.1. Model 1

In this model, cores are chained in a circle. Assume the platform contains

four cores (c1, c2, c3 and c4), then cores shall be chained as c1 → c2 → c3 →

c4 → c1. If c1 enters its HI-crit mode, then some LO-crit tasks on c1 migrate to

core c2. If core c2 also enters HI-crit mode, then these migrated tasks from c1

shall also migrate to c3.

To define this model, assume that a taskset S contains tasks with two criti-

cality levels (HI-crit and LO-crit). If this taskset is to be scheduled on a four-core

15



platform by Model 1, then on each core there shall exist three types of tasks:

HI-crit tasks, statically allocated LO-crit tasks and migratable LO-crit tasks.

Let HIi represent the set of HI-crit tasks on ci, LOi represent the set of stati-

cally allocated LO-crit tasks and MIGi,j,k represent the LO-crit tasks that can

migrate from ci to cj , and then possibly to ck: i → j → k. The following

relationship can be obtained:

• S = (LO1 ∪ LO2 ∪ LO3 ∪ LO4) ∪ (HI1 ∪HI2 ∪HI3 ∪HI4)

∪ (MIG1,2,3 ∪MIG2,3,4 ∪MIG3,4,1 ∪MIG4,1,2)

In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state Xm to represent

this phase, then the relationships between tasks and cores can be viewed as:

• X1 = LO1 ∪HI1 ∪MIG1,2,3

• X2 = LO2 ∪HI2 ∪MIG2,1,4

• X3 = LO3 ∪HI3 ∪MIG3,1,4

• X4 = LO4 ∪HI4 ∪MIG4,2,3

• S = X1 ∪X2 ∪X3 ∪X4

In each state Xm, all tasks are executing within their LO-crit budgets. In

this case, the response time analysis of all tasks is given by equation (7):

∀τi ∈ Xm : Ri(LO) = Ci(LO) +
∑

τj∈chp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO) (7)

where chp(i) is the set of tasks with priority greater than τi that execute on the

same core as τi (i.e. cm).

If a criticality change occurs on one core (ci), then HI-crit tasks (HIi) will

in the worst-case execute with their HI-crit budgets. For LO-crit tasks, some of

them (LOi) still execute on the core with their LO-crit budgets while the others

(MIGi,j,k) need to migrate to another core as there is not enough scheduling

space for them on the core. Define state Y (i)m to represent the state of core cm

when core ci enters its HI-crit mode – here tasks in MIGi,j,k will be migrated

from ci to cj and the relationship between tasks and cores is given by:
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• Y (1)1 = LO1 ∪HI1

• Y (1)2 = X2 ∪MIG1,2,3

• Y (1)3 = X3

• Y (1)4 = X4

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4

With this state, the behaviour of the cores is quite similar to the semi-

partitioned model analysed for the dual-core platform. According to that, the

reduced deadlines and release jitter need to be applied to the migrating tasks,

and the worst case is given, for example, by equation (8):

∀τi ∈ MIG1,2,3 :

D′
i = Di − (Ri(LO)− Ci(LO))

Ji = Ri(LO)− Ci(LO)

(8)

Thus, the response time of tasks on core c1 and core c2 (Ri(MIX)) in this

state is given by equation (9):

∀τi ∈ Y (1)1 :

Ri(MIX) = Ci(Li) +
∑

τj∈chp(i)

⌈

Ri(MIX)

Tj

⌉

Cj(Lj)

+
∑

τk∈chpMIG(i)

⌈

Ri(LO)

Tk

⌉

Ck(LO)

∀τi ∈ Y (1)2 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈

Ri(LO)′ + Jj
Tj

⌉

Cj(LO)

(9)

where Li is the criticality of the task under consideration (τi), and chpMIG(i)

is the set of LO-crit tasks on the same core as τi which migrate away from that

core if there is a criticality mode change.

This equation will be used in subsequent analysis for different sets of tasks.

If a second core enters HI-crit mode, there exists two different scenarios.

The first scenario is that the core, which has not accepted any migrated tasks,
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enters HI-crit mode. For example, if core c3 enters HI-crit mode, then all of

the migratable tasks on core c3 shall migrate to core c4 due to the chained

relationship. The relationship between tasks and cores can be viewed as below,

where Y (a, b)c represents the state of cc when ca enters HI-crit mode first and

cb enters its HI-crit mode later:

• Y (1, 3)1 = Y (1)1

• Y (1, 3)2 = Y (1)2

• Y (1, 3)3 = LO3 ∪HI3

• Y (1, 3)4 = X4 ∪MIG3,4,1

• S = Y (1, 3)1 ∪ Y (1, 3)2 ∪ Y (1, 3)3 ∪ Y (1, 3)4

The response time analysis equation for c3 and c4 in this state is the same

as that of c1 and c2 in the previous state Y1.

The second scenario is that the core, which accepts migrated tasks, then

enters HI-crit mode. In this scenario, not only the migratable tasks on the core,

but also the accepted migrated tasks need to migrate to another core. If c2

enters HI-crit mode, then all of the migratable tasks on core c2 shall migrate to

core c3, and the relationship between tasks and cores can be viewed as:

• Y (1, 2)1 = Y (1)1

• Y (1, 2)2 = LO2 ∪HI2

• Y (1, 2)3 = X3 ∪MIG1,2,3 ∪MIG2,3,4

• Y (1, 2)4 = X4

• S = Y (1, 2)1 ∪ Y (1, 2)2 ∪ Y (1, 2)3 ∪ Y (1, 2)4

With this scenario, taskset MIG1,2,3 migrates a second time. Since the

migration progress will cause the reduced deadline and the release jitter effects,

a task migrating a second time may suffer a further reduction in deadline and

increase in release jitter. In other words, the release jitter and the reduced

deadline effects are compounded. It is observed that the worst case happens

when a task migrates to one core and further migrates to another core in one
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release. For instance, τi waits a maximum time (Ri,m −Ci)
1 before it starts to

execute on cm and then migrates to cn. Then it waits another maximum time

(Ri,n − Ci) before it starts to execute on cn and migrates to core co. Thus, for

these tasks, the worst case of release jitters and reduced deadlines is given by

equation (10):

∀τi ∈ MIG1,2,3 :

D′′
i = Di − (Ri,m − Ci)− (Ri,n − Ci)

J ′
i = (Ri,m − Ci) + (Ri,n − Ci)

(10)

However, despite the changes to deadlines and release jitter of the tasks

migrating a second time, the response time analysis for the other tasks remains

the same as that in the other scenario.

If further cores enter HI-crit mode, then all of LO-crit tasks on that core need

to be abandoned as the number of cores in HI-crit mode exceeds the boundary

number. For example, if core c3 enters HI-crit mode, then the relationship

between tasks and cores can be described as:

• Y (1, 2, 3)1 = Y (1)1

• Y (1, 2, 3)2 = Y (1, 2)2

• Y (1, 2, 3)3 = HI3

• Y (1, 2, 3)4 = X4

Based on this state view, only HI-crit tasks are executing on c3 while all of

the LO-crit tasks are abandoned. The response time analysis of c3 in this state

is given by equation (11):

∀τi ∈ Y (1, 2, 3)3 :

Ri(HI)′ = Ci(HI) +
∑

τj∈chph(i)

⌈

Ri(HI)′

Tj

⌉

Cj(HI)

+
∑

τk∈chpL(i)

⌈

Ri(LO)′ + J ′
k

Tk

⌉

Ck(LO)

(11)

1As τi is of low criticality it only has one worst-case execution time Ri(LO) and one
computation time Ci(LO), the designation ‘(LO)’ is therefore omitted from equation (10).
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4.2.2. Model 2

This model pairs the cores so that tasks may only migrate between paired

cores. The four pairs are: (c1, c2), (c3, c4), (c1, c3) and (c2, c4). If c1 enters

its HI-crit mode, then LO-crit tasks on core c1 may migrate to either c2 or c3

but not c4. Assume that all of the migratable tasks on c1 have migrated to

c2, if c2 also enters HI-crit mode then tasks, which previously migrated to c2,

will have to migrate to c3, while all of the migrating tasks originally on c2 will

migrate to c4. Based on this rule, the schedulability test of this model can be

simplified into several dual-core semi-partitioned models, which is simpler than

the previous model.

We use the same notation as Model 1 to give an initial partitioning of the

taskset:

• S = (LO1 ∪ LO2 ∪ LO3 ∪ LO4) ∪ (HI1 ∪HI2 ∪HI3 ∪HI4)

∪ (MIG1,2,3 ∪MIG1,3,2) ∪ (MIG2,1,4 ∪MIG2,4,1)

∪ (MIG3,1,4 ∪MIG3,4,1) ∪ (MIG4,2,3 ∪MIG4,3,2)

In the steady state mode, all these tasks are statically partitioned on each

core and executing within their LO-crit budgets. Define state Xm to represent

this phase, then the relationship between tasks and cores can be viewed as:

• X1 = LO1 ∪HI1 ∪MIG1,2,3 ∪MIG1,3,2

• X2 = LO2 ∪HI2 ∪MIG2,1,4 ∪MIG2,4,1

• X3 = LO3 ∪HI3 ∪MIG3,1,4 ∪MIG3,4,1

• X4 = LO4 ∪HI4 ∪MIG4,2,3 ∪MIG4,3,2

• S = X1 ∪X2 ∪X3 ∪X4

In state Xm, all tasks are executing with their LO-crit budgets. In this case,

the response time analysis of all tasks is given by the earlier equation (7).

If a criticality change occurs on one core (say c1), then HI-crit tasks (HI1)

will execute with their HI-crit budgets. For LO-crit tasks, some of them (LO1)

still execute on the core with their LO-crit budgets, while the others need to

migrate to other cores. Following the construction given earlier:

• Y (1)1 = LO1 ∪HI1
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• Y (1)2 = X2 ∪MIG1,2,3

• Y (1)3 = X3 ∪MIG1,3,2

• Y (1)4 = X4

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4

In state Y (1) where only core c1 enters HI-crit mode, HI-crit tasks on this

core will execute with their HI-crit budgets while LO-crit staying tasks will

execute with their LO-crit budgets. All of the tasks on other cores will still

execute with their LO-crit budgets. Reduced deadlines and release jitter will

be applied to migrating tasks, and the worst case is again given by equation (8)

for tasksets MIG1,2,3 and MIG1,3,2. The response time analysis of this state is

given by equation (9) for tasks in Y (1)1, Y (1)2 and Y (1)3.

If another core enters HI-crit mode, there are two possible scenarios: the

core which receives migrated tasks enters its HI-crit mode, and the core which

does not have any migrated tasks enters its HI-crit mode. In the first case,

assume core c4 enters HI-crit mode in state Y (1), then HI-crit tasks on c4 will

execute with their HI-crit budgets and migratable LO-crit tasks will migrate to

c2 and core c3. The relationship between tasks and cores can be viewed as:

• Y (1, 4)1 = Y (1)1

• Y (1, 4)2 = Y (1)2 ∪MIG4,2,3

• Y (1, 4)3 = Y (1)3 ∪MIG4,3,2

• Y (1, 4)4 = LO4 ∪HI4

• S = Y (1, 4)1 ∪ Y (1, 4)2 ∪ Y (1, 4)3 ∪ Y (1, 4)4

In this scenario, the response time analysis is similar to the previous state Y (1),

which will not be repeated.

In the second scenario, assume c2 enters HI-crit mode in state Y (1), then

HI-crit tasks on c2 will execute with their HI-crit budgets, migratable LO-crit

tasks that originally were allocated on c2 will all migrate to c4 as c1 is already

in HI-crit mode, and the migratable LO-crit tasks previously migrated from c1

will migrate to c3. The relationship between tasks and cores is as follows:
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• Y (1, 2)1 = Y (1)1

• Y (1, 2)2 = LO2 ∪HI2

• Y (1, 2)3 = X3 ∪MIG1,3,2 ∪MIG1,2,3

• Y (1, 2)4 = X4 ∪MIG(2, 1, 4) ∪MIG2,4,1

• S = Y (1, 2)1 ∪ Y (1, 2)2 ∪ Y (1, 2)3 ∪ Y (1, 2)4

In this situation all task subsets Y (i, j): cj , which has not accepted any

migrated tasks, enters HI-crit mode after ci has entered HI-crit mode. After

that, HI-crit tasks on this core will execute with their HI-crit budgets while LO-

crit staying tasks will execute with their LO-crit budgets. All of the tasks on

other cores will still be executing with their LO-crit budgets. Reduced deadlines

and release jitter will be applied to the migrating tasks, and in this case only

migrating tasks originally from core ci will suffer from further reduced deadlines

and release jitter. Equation (8) again shows the worst case for taskset MIG1,2,3.

The response time analysis of core c2, core c3 and core c4 in state Y (i, j) is

given by the equivalent of equation (9).

If further cores enter HI-crit mode, then both migratable and non-migratable

LO-crit tasks on the mode changing core need to be abandoned to guarantee the

execution of HI-crit tasks as the number of cores in HI-crit mode exceeds the

boundary number. Assume core c3 enters HI-crit mode in state Y (1, 2), then

the relationship between tasks and cores can be viewed as:

• Y (1, 2, 3)1 = Y (1)1

• Y (1, 2, 3)2 = LO2 ∪HI2

• Y (1, 2, 3)3 = HI3

• Y (1, 2, 3)4 = X4 ∪MIG(2, 1, 4) ∪MIG2,4,1

In this state, only HI-crit tasks on core c3 are executing with their HI-

crit budgets while all migratable and migrated LO-crit tasks on the core are

abandoned. The response time analysis of core c3 in this state is again given by

equation (11).

If all of the response times for all possible states are no greater that the

corresponding deadlines then the taskset is deemed to be schedulable.
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4.2.3. Model 3

In this model, tasks are allowed to migrate to any possible core for maximum

flexibility. When only one core enters HI-crit mode, then some LO-crit tasks

may stay on the core executing with their LO-crit executing budgets while some

other LO-crit tasks will migrate to other cores. In this model, these migrating

LO-crit tasks will be allocated “equally” to all cores. This “equally” here not

only represents the number of tasks but also needs to consider the sum of the

utilization of the migratable tasks on each core. If another core also enters HI-

crit mode, then some LO-crit tasks, which are originally executing on the core,

may stay on the core executing with their LO-crit executing budgets, while some

other LO-crit tasks and the LO-crit tasks migrated to the core will migrate to

other cores which are in LO-crit mode. These migrating tasks will also migrate

“equally”. If a further core enters HI-crit mode, then all of the LO-crit tasks on

the core will be abandoned in order to guarantee the execution of the HI-crit

tasks.

Again assume that a taskset S contains several tasks in two criticality levels

(HI-crit and LO-crit) and that this taskset is split into the three sets on each of

the four cores: HIi, LOi and MIGi,j,k. Then the following relationship can be

obtained:

• S = (LO1 ∪ LO2 ∪ LO3 ∪ LO4) ∪ (HI1 ∪HI2 ∪H3 ∪H4)

∪((MIG1,2,3∪MIG1,2,4)∪(MIG1,3,2∪MIG1,3,4)∪(MIG1,4,2∪MIG1,4,3))

∪((MIG2,1,3∪MIG2,1,4)∪(MIG2,3,1∪MIG2,3,4)∪(MIG2,4,1∪MIG2,4,3))

∪((MIG3,1,2∪MIG3,1,4)∪(MIG3,2,1∪MIG3,2,4)∪(MIG3,4,1∪MIG3,4,2))

∪((MIG4,1,2∪MIG4,1,3)∪(MIG4,2,1∪MIG4,2,3)∪(MIG4,3,1∪MIG4,3,2))

In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Using X and Y is the same way

in the others two models we obtain:

• X1 = LO1 ∪ HI1 ∪ (MIG1,2,3 ∪ MIG1,2,4) ∪ (MIG1,3,2 ∪ MIG1,3,4) ∪

(MIG1,4,2 ∪MIG1,4,3)

• X2 = LO2 ∪ HI2 ∪ (MIG2,1,3 ∪ MIG2,1,4) ∪ (MIG2,3,1 ∪ MIG2,3,4) ∪

(MIG2,4,1 ∪MIG2,4,3)
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• X3 = LO3 ∪ HI3 ∪ (MIG3,1,2 ∪ MIG3,1,4) ∪ (MIG3,2,1 ∪ MIG3,2,4) ∪

(MIG3,4,1 ∪MIG3,4,2)

• X4 = LO4 ∪ HI4 ∪ (MIG4,1,2 ∪ MIG4,1,3) ∪ (MIG4,2,1 ∪ MIG4,2,3) ∪

(MIG4,3,1 ∪MIG4,3,2)

• S = X1 ∪X2 ∪X3 ∪X4

Again response-time equation (7) can be used for this steady state mode.

• Y (1)1 = LO1 ∪HI1

• Y (1)2 = X2 ∪ (MIG1,2,3 ∪MIG1,2,4)

• Y (1)3 = X3 ∪ (MIG1,3,2 ∪MIG1,3,4)

• Y (1)4 = X4 ∪ (MIG1,4,2 ∪MIG1,4,3)

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4

Reduced deadlines and release jitter are applied to migrating tasks as in the

earlier models. Thus, the response time analysis for state Y (i) is given by the

equivalent of equation (9).

If a further criticality change occurs on core cj then all of the migratable

LO-crit tasks on this core need to migrate to other cores while all of the HI-crit

tasks execute with their HI-crit budgets. For example:

• Y (1, 2)1 = LO1 ∪HI1

• Y (1, 2)2 = LO2 ∪HI2

• Y (1, 2)3 = Y (1)3 ∪ (MIG2,3,1 ∪MIG2,3,4) ∪MIG2,1,3 ∪MIG1,2,3

• Y (1, 2)4 = Y (1)4 ∪ (MIG2,4,1 ∪MIG2,4,3) ∪MIG2,1,4 ∪MIG1,2,4

• S = Y (1, 2)1 ∪ Y (1, 2)2 ∪ Y (1, 2)3 ∪ Y (1, 2)4

Within this state tasksets MIG1,2,3 and MIG1,2,4 will migrate a second

time. As discussed in Model 1, further reduced deadlines and release jitter will

be applied to these migrating tasks. The response time analysis for cores c2, c3

and c4 in this state is again given by equation (9).
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If more cores enter HI-crit mode, then only HI-crit tasks on these cores

will remain executing while all migratable and migrated LO-crit tasks on these

cores need to be abandoned. Assume core c3 enters HI-crit mode, then the

relationship between tasks and cores can be viewed as:

• Y (1, 2, 3)1 = LO1 ∪HI1

• Y (1, 2, 3)2 = LO2 ∪HI2

• Y (1, 2, 3)3 = HI3

• Y (1, 2, 3)4 = Y (1)4 ∪ (MIG2,4,1 ∪MIG2,4,3) ∪MIG2,1,4 ∪MIG1,2,4

Based on the state, all migrating LO-crit tasks on core c3 are abandoned

while HI-crit tasks are executing within their HI-crit budgets. The response

time analysis for the core in this state is again given by equation (11).

If all of the response times for all possible states are no greater that the

corresponding deadlines then the taskset is deemed to be schedulable.

4.3. Evaluation of the Models

The previous section has derived sufficient response-time analysis for all of

the allocation models introduced. In this section, we will undertake an evalua-

tion to compare the scheduling efficiency of the allocation models. At the end

of this section a recommended approach is proposed.

4.3.1. Experiment Configuration

In order to explore the effectiveness of the three models, a comparative eval-

uation was undertaken. Software was produced to compare the performances of

Model 1, Model 2 and Model 3. The software consists of three parts. The first

part of the software generates tasksets. Tasks are randomly set to be HI-crit

tasks or LO-crit tasks but the percentage of HI-crit tasks is controlled to be a

fixed number (named “Percent” and symbolised as “P” in this section of the

paper). In addition, for all HI-crit tasks, their HI-crit WCETs are calculated

by using a parameter (named “Factor” and symbolised as “f”); this is used

to describe the multiple rate between HI-crit WCET and LO-crit WCET. The

values of “Percent”, “Factor” and the number of tasks in each taskset will be

changed in the experiment to explore the performance of the three models over

a wide range of task parameters.
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In order to gain uniform distributed parameters, UUnifast-discard algo-

rithm [6] is used to generate ‘nominal’ utilization (a ‘nominal’ utilization rep-

resents the LO-crit utilization for a LO-crit task or the HI-crit utilization for

a HI-crit task), and Log-uniform algorithm [11] is used to generate periods.

Other parameters of each task can be calculated based on these two values

(D = T,C(Li) = Ui(Li) ∗ T – for C(Li) equal to C(LO) and C(HI).

The second part of the software is to pre-sort each taskset before allocation

and scheduling. As stated in the task allocation section, all tasks will be sorted

in descending criticality-aware utilization order. In such an order, all HI-crit

tasks will be placed in front of all LO-crit tasks.

The last part of the software contains the response time analysis introduced

in Section 4.2 and explores the scheduling success rate of the three models.

4.3.2. Results and Comparison

We investigate the performance of Model 1, Model 2 and Model 3 on a

four core platform and compare them with the non-migration algorithm. The

non-migration algorithm is chosen as a lower bound on performance. Figure 9

shows the percentage of the tasksets that are schedulable for a system of 24

tasks (where half of the tasks are HI-crit, the criticality factor is 2, P = 0.5 and

f = 2). The Y-axis shows the percentage of the successfully scheduled tasksets

while the X-axis shows the sum of nominal utilizations of the tested taskset.

The sum of utilizations ranges from 3.2 to 4.6 in steps of 0.028 – this range

covers the significant behaviours of the models.

From Figure 9, it can be observed that all of the models outperform the non-

migration one by a considerable margin. For example, as shown by the black

lines, Model 3 can schedule around 75% of the tasksets when the taskset uti-

lization is around 3.7, while the non-migration model can only schedule around

57% of the tasksets. The improvement in schedulability of Model 3 over non-

migration is about 75−57
57 ∗ 100% = 31.58%, which is significant. Comparing all

of the semi-partitioned methods, Model 3 has the best performance, but the

difference between Model 3 and Model 2 is not large.

In order to explore the performance of the algorithms relating to criticality

factor (C(HI)/C(LO)) and the percentage of HI-crit tasks, weighted schedula-

bility measurement is used [5]. Weighted schedulability measure Wy(p) is used
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Figure 9: Percentage of Schedulable Tasksets on a 4-core Platform

for schedulability test y as a function of parameter p to reduce a 3-dimensional

plot to 2 dimensions:

Wy(p) = (
∑

∀Γ

u(Γ) ∗ Sy(Γ, p))/
∑

∀Γ

u(Γ) (12)

In this situation equation (12), for each value of p, it combines results for

all of the tasksets Γ generated for all of a set of equally spaced utilization levels

(same as that in previous figure, 3.2 to 4.6 in steps of 0.028). Sy(Γ, p) is the

binary result (1 or 0) of schedulability test y for a taskset Γ with parameter

value p while u(Γ) represents the utilization of taskset Γ.

We show how the results are changed by varying one key parameter at a time.

Figure 10 varies the criticality factor, Figure 11 varies the percentage of HI-crit

tasks and Figure 12 varies the size of the taskset. The X-axis stands for the

parameter examined and the Y-axis represents the weighted value. According

to Figure 10, Model 3 has the best performance, while Model 2 provides slightly

less schedulability. In addition, both models have increased performance as the

criticality factor increases. This is to be expected as the increase of WCET

difference between different criticality levels allows more scheduling potential

for the migrating tasks.

With regard to Figure 11, the performance of the semi-partitioned algorithms
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Figure 10: Varying the Criticality Factor

Figure 11: Varying the Criticality Percent

has formed an inverted U-shape curve since each end of the interval represents

a one-criticality taskset. The individual performance of Model 3 has the best

performance while Model 2 provides slightly less schedulability. In addition, it

is observed that the difference between Model 3 and Model 2 decreases when

the percentage of the criticality tasks is approaching 0.6.

Figure 12, also contains an inverted U-shape curve. This is expected as tasks

are relatively large in smaller sized tasksets which adds difficulty in finding mi-

gratable tasks, while in larger sized tasksets, the interference from high priority
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Figure 12: Varying the Taskset Size

tasks increases, as well as the effects from release jitter, which adds difficulty

to the schedulability of migrated tasks with reduced deadlines. In terms of

the individual performance, Model 3 still has the best performance while the

performance of Model 2 is slightly poorer.

4.4. Recommend Approach

Overall, it is observed that Model 3 provides the best schedulability in all

cases. However, the schedulability difference between Model 3 and Model 2 is

not significant. As it has been argued that Model 3 has much more complex

scheduling analysis, Model 2 is suggested to be the most appropriate model for

a 4-core MCS with two criticality levels. It is also the one recommended for

general n-core platforms.

5. Extending to n-core Platforms

The previous section has indicated that Model 2, which pairs the cores into

groups, is the most suitable and scalable migration model for multi-core plat-

forms. This section will discuss how to extend Model 2 to an n-core platform.

It will first show two detailed examples of extending the migration model to

an 8-core platform (which represents the approach when n is even) and a 7-

core platform (which represents the case when n is odd). Finally, a general

extendable scheme is defined.
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5.1. An 8-core Platform Example

In a 4-core platform, the boundary number is 2 and each core has two paired

cores. In addition, migratable tasks are split into two sets when migrating.

Based on this information, it is reasonable to assume that for a 8-core platform,

since the boundary number is 3, each core shall have three paired cores and mi-

gratable tasks shall be split into three sets when migrating2. Thus, the problem

becomes: how are the cores to be paired to fulfil the above requirements. We

propose a clone algorithm to solve the problem.

• Assume that there exists a 4-core platform (c1, c2, c3, c4) and cores are

paired into four pairs (c1, c2), (c1, c3), (c2, c4), (c3, c4) as previously in Model

2.

• Create a second clone 4-core platform (c′1, c
′
2, c

′
3, c

′
4) and pair the cores in

the same way (c′1, c
′
2), (c

′
1, c

′
3), (c

′
2, c

′
4), (c

′
3, c

′
4).

• Pair the original cores with the clone cores: (c1, c
′
1), (c2, c

′
2), (c3, c

′
3), (c4, c

′
4).

• Replace c′1 by c5, c
′
2 by c6, c

′
3 by c7 and c′4 by c8 in all of the pairs generated.

According to the algorithm, we can obtain the pairing relationship for a

8-core platform as following: (c1, c2), (c1, c3), (c2, c4), (c3, c4), (c5, c6), (c5, c7),

(c6, c8), (c7, c8), (c1, c5), (c2, c6), (c3, c7), (c4, c8), which fulfills the requirement

that each core is paired with three different cores. In addition, by using the

same algorithm iteratively, we can extend the pairing relationship to 16-core

platforms, 32-core platforms, ..., and thus any 2n-core platform.

5.2. A 7-core Platform Example

A 7-core platform is a special case. According to the semi-partitioned model

definition, the boundary number for this platform is still 3 but it is not possible

to pair the cores so that each core has three different paired partners. This can

be proved by contradiction as follows:

1. Assume there exists a pairing method to pair 7 cores so that each core is

paired to three different cores.

2Three pairs ensures that there is at least one partner that is not in the HI-crit mode – as
the core in question is moving to HI-crit mode, and the boundary number is three, there can
be at most two others cores already in that mode.
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2. There exist 3× 7 = 21 relationships between the cores.

3. Pair one core to another always results in 2 relationships.

4. There does not exist a possibility to create an odd number of pairing

relationships. Contradiction found.

5. Therefore, 7 cores cannot be paired into groups so that each core has three

different paired cores.

As the boundary number calculated by ⌈log2(n)⌉ is, in general, slightly larger

than the exact boundary number, it is acceptable to make one core have a

smaller boundary number (2 in this scenario) and only pair it with two cores.

Thus, a modified clone algorithm can be used to solve the pairing problem for

a 7-core platform.

• Assume that there exists a 4-core platform (c1, c2, c3, c4) and cores are

paired into four pairs (c1, c2), (c1, c3), (c2, c4), (c3, c4) as previously in Model

2.

• Create a cloned 4-core platform (c′1, c
′
2, c

′
3, c

′
4) and pair the cores in the

same way (c′1, c
′
2), (c

′
1, c

′
3), (c

′
2, c

′
4), (c

′
3, c

′
4).

• Pair the original cores with the clone cores: (c1, c
′
1), (c2, c

′
2), (c3, c

′
3), (c4, c

′
4).

• Replace c′1 by c5, c
′
2 by c6, c

′
3 by c7 and c′4 by c8 in all of the pairs generated.

• Delete all of the pairing relationships with core c8: (c6, c8), (c7, c8), (c4, c8).

• For each two deleted pairing relationship, create a new pairing relationship

between two different cores excluding core c8: (c6, c7).

According to this algorithm, we can get the pairing relationship for a 7-core

platform as following: (c1, c2), (c1, c3), (c2, c4), (c3, c4),(c5, c6), (c5, c7), (c1, c5),

(c2, c6), (c3, c7), (c6, c7). With this pairing relationship, for core c1, c2, c3, c5,

c6, c7, each has three paired partners, while core c4 has only two.

5.3. General Algorithm

Assuming an n-core platform, with the boundary number of ⌈log2(n)⌉, there

exist two different situations: n is an even number or n is an odd number.

If n is an even number, then there exists an integer k such that n = 2 × k.
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In order to apply Model 2, the cores in the system require to be paired so

that each core has ⌈log2(n)⌉ paired partners. By applying the clone algorithm,

the pairing relationship of the n-core platform can be generated by finding

the pairing relationship of a k-core platform where the boundary number is

⌈log2(n)⌉ − 1 = ⌈log2(2 × k)⌉ − 1 = log2(2) + ⌈log2(k)⌉ − 1 = ⌈log2(k)⌉. Thus,

finding the pairing relationship of a k-core platform will solve the pairing prob-

lem for this n-core platform.

If n is an odd number, then there exists an integer k′ such that n = 2×k′−1.

Similar to the previous scenario, in order to apply Model 2, the cores in the

system require to be paired so that most cores have ⌈log2(n)⌉ paired partners.

By applying the modified clone algorithm, the pairing relationship of the n-

core platform can be generated by finding the pairing relationship of a k′-core

platform where the boundary number is ⌈log2(n)⌉−1 = ⌈log2(2×k′−1)⌉−1 =

log2(2) + ⌈log2(k
′)⌉ − 1 = ⌈log2(k

′)⌉. Thus, finding the pairing relationship

of a k′-core platform will solve the pairing problem for this n-core platform.

In all, the pairing relationship of an n-core platform can be generated by the

recursive usage of the clone algorithm and the modified clone algorithm. When

the pairing relationship between cores is derived, migratable tasks may be split

into the boundary number of groups and migrate to the paired cores when

required by the system’s run-time behaviour.

6. Conclusion

This paper has explored the semi-partitioned MCS model on a multi-core

platform. It first addresses the boundary number determination problem by the

use of a probability calculation. In consideration of easier usage, it is proposes

that ⌈log2(n)⌉ shall be used as the boundary number for an n-core system. That

is, for an n-core system, all tasks shall remain schedulable as long as no more

than ⌈log2(n)⌉ cores enter the HI-crit mode. This paper then explores the task

allocation problem on a four-core platform. Three task allocation models are

proposed and analysed by response time analysis and evaluated via a set of

experiments.

According to the results observed and the consideration of calculation com-

plexity, it is suggested that Model 2, which splits the migratable task load within

32



paired cores, will be the most appropriate task allocation model for a four-core

system. In addition, this paper has provided an iterative algorithm to obtain a

possible pairing relationship for an n-core platform following Model 2.

In our previous work [16], we illustrate that the combined usage of Semi2WF

and Semi2FF (which we termed just Semi2) provides the best scheduling per-

formance for a dual-core platform. In other words, when the migration source

core and the migration destination core are fixed, the Semi2 algorithm is an

appropriate approach to determine which tasks are candidates for migration.

Based on that, we propose an appropriate semi-partitioned model for an n-core

system as:

• Each core is paired with ⌈log2(n)⌉ other cores.

• The Semi2 approach is used to determine which LO-crit tasks shall be

designated migratable.

• If ci enters HI-crit mode and the total number of the cores in HI-crit mode

is no more than ⌈log2(n)⌉, migratable tasks on ci migrate ‘equally’ (by the

offline use of the WF bin-packing algorithm) to the paired cores which are

still in LO-crit mode. All tasks are guarantee to meet their deadlines.

• If ci enters HI-crit mode and the total number of the cores in HI-crit

mode would be more than ⌈log2(n)⌉, all LO-crit tasks on ci will be aban-

doned/suspended. Only HI-crit tasks are guaranteed to meet their dead-

lines.

Future work on this approach will incorporate the overheads of migration

into the analysis. An initial study on this topic demonstrates that the semi-

partitioned MCS model remains viable even when realistic overheads are in-

cluded [15].
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