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Climate change is one of many ongoing human-induced environmental changes, but

few studies consider interactive effects between multiple anthropogenic disturbances.

In coastal sub-arctic heathland, we quantified the impact of a factorial design simulating

extreme winter warming (WW) events (7 days at 6–7◦C) combined with episodic

summer nitrogen (+N) depositions (5 kg N ha−1) on plant winter physiology, plant

community composition and ecosystem CO2 fluxes of an Empetrum nigrum dominated

heathland during 3 consecutive years in northern Norway. We expected that the

+N would exacerbate any stress effects caused by the WW treatment. During WW

events, ecosystem respiration doubled, leaf respiration declined (−58%), efficiency of

Photosystem II (Fv/Fm) increased (between 26 and 88%), while cell membrane fatty

acids showed strong compositional changes as a result of the warming and freezing. In

particular, longer fatty acid chains increased as a result of WW events, and eicosadienoic

acid (C20:2) was lower when plants were exposed to the combination of WW and +N.

A larval outbreak of geometrid moths (Epirrita autumnata and Operophtera brumata)

following the first WW led to a near-complete leaf defoliation of the dominant dwarf

shrubs E. nigrum (−87%) and Vaccinium myrtillus (−81%) across all experimental plots.

Leaf emergence timing, plant biomass or composition, NDVI and growing season

ecosystem CO2 fluxes were unresponsive to the WW and +N treatments. The limited

plant community response reflected the relative mild winter freezing temperatures

(−6.6◦C to −11.8◦C) recorded after the WW events, and that the grazing pressure

probably overshadowed any potential treatment effects. The grazing pressure and WW

both induce damage to the evergreen shrubs and their combination should therefore
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be even stronger. In addition, +N could have exacerbated the impact of both extreme

events, but the ecosystem responses did not support this. Therefore, our results indicate

that these sub-arctic Empetrum-dominated ecosystems are highly resilient and that their

responses may be limited to the event with the strongest impact.

Keywords: cryptogam, CO2 fluxes, fatty acids, frost, geometrid moth, herbivory, multiple stress, snow

INTRODUCTION

The Arctic is experiencing extreme weather events more
frequently due to climate change, causing high mortality rates
among species when events surpass survival thresholds (Liston
and Hiemstra, 2011; Kivinen et al., 2017). Especially during
the winter period more winter extreme events are expected,
such as rain on snow, unseasonal warm periods, ground ice
formation and loss of snow cover (Vikhamar-Schuler et al.,
2016). Abrupt changes in winter snow cover and depth following
mid-winter thaw events (e.g., due to temperature rise from
−20◦C to +5◦C in just 24 h) negatively affect plant survival,
detectable across landscapes through remote sensing, because
of reduced snow insulation against low temperature extremes
(Bokhorst et al., 2009, 2018). In addition, loss of snow
cover during a midwinter melt can induce plant physiological
activity (i.e., respiration and fluorescence), disrupting winter
dormancy of plants, and often resulting in high mortality
due to drought and frost stress (Ögren, 1996; Schaberg et al.,
1996; Bokhorst et al., 2009, 2010). These extreme winter
warming events (WW) occur against a background of gradually
increasing temperature and extreme events such as intense
herbivory by seasonal population explosions of defoliating
insects (Jepsen et al., 2008) and nitrogen (N) deposition
events originating from the industrialized regions further south
(Karlsson et al., 2013). A combination of stressors may enhance
the individual effects (Crain et al., 2008; Phoenix et al., 2012;
Liess et al., 2016) and therefore have large impacts on plant
development, such as phenology (Bokhorst et al., 2008), but
also the plant community composition and its role in the
sub-arctic terrestrial carbon budget. As such, a combination
of these stressors may, through changing the dominance of
plant functional types, affect the carbon balance of these sub-
arctic ecosystems with potential feedbacks to greenhouse gas
induced climate warming (De Deyn et al., 2008). Moreover,
these community responses may differ greatly from summer
warming responses and we therefore, need to understand the
species and community responses for future sub-arctic vegetation
predictions.

Recent experimental field studies of WW events in the sub-
arctic have shown great vulnerability of evergreen dwarf shrubs
to such events while deciduous plants and cryptogams are
less affected (Bjerke et al., 2011, 2017a; Bokhorst et al., 2015),
whichmay govern future sub-arctic vegetation changes (Bokhorst
et al., 2015). Differences in vulnerability between plant types are
partly determined by differences in exposure of overwintering
tissue to freezing, and in part by physiological adaptations,
such as winter dormancy and changes in the membrane fatty
acid composition (Bokhorst et al., 2018). Higher N availability

can also affect the plants’ cell and physiological characteristics
associated with drought and frost susceptibility (Carroll et al.,
1999; Schaberg et al., 2002). Nitrogen input from agricultural
practices, fossil fuel burning, and biomass burning can reach
high latitudes (Forsius et al., 2010; Karlsson et al., 2013) and
make sub-arctic plants more vulnerable to the temperature
variability of WW events (Power et al., 1998; Phoenix et al.,
2012). However, it is unclear which plant types will be most
vulnerable to the combination of high N availability and WW
events and whether this will result in a vegetation regime
shift.

To address the impact of the combined stressors of N input
and WW events on the community composition of sub-arctic
vegetation we initiated an experiment that combined these factors
in sub-arctic Norway. The simulation of WW events was done
during three consecutive winters in February (2014–2016), while
N additions were applied during the summer months. However,
during the growing season directly following the first WW
simulation (2014), the field sites were subject to intense grazing
by caterpillars of the geometrid moths Epirrita autumnata and
Operophtera brumata (Bjerke et al., 2017b, 2018; Pepi et al.,
2017). Such grazing pressure greatly affect the growth response
of dwarf shrubs, as these are targeted by the caterpillars that drop
onto the ground cover once the birch trees have been defoliated
(Lehtonen and Heikkinen, 1995; Malmström and Raffa, 2000;
Jepsen et al., 2013; Karlsen et al., 2013). Grazing pressure can
result in sub-arctic vegetation regime shifts where dominant
dwarf shrubs are suppressed and herbs and grasses emerge
(Tømmervik et al., 2004; Olofsson et al., 2013). This therefore
resulted in a factorial field experiment where the impacts on
sub-arctic heath vegetation of +N and WW simulations were
compared but also included intense grazing by caterpillars
across all treatments. We hypothesized that (1) summer N
additions will negatively impact the winter plant physiological
adaptations to frost and drought. Because N additions are known
to exacerbate other stressors (Power et al., 1998; Phoenix et al.,
2012) we expect N additions to result in an increase of the
damage caused by WW events and grazing impact. The grazing
and WW effects will be strongest on evergreen dwarf shrubs
because this plant type appears most vulnerable to WW events
(Bokhorst et al., 2015, 2018) while also being heavily grazed
when caterpillars fall to the ground (Jepsen et al., 2013; Karlsen
et al., 2013). Therefore, we hypothesize that in response to
these extreme events (2) the plant community may start to
shift from an evergreen dwarf shrub dominated community
to one with higher dominance of cryptogams, grasses, herbs
and deciduous plants with potential greater turnover of carbon
flux rates and limiting carbon sequestration of these sub-arctic
ecosystems.

Frontiers in Plant Science | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1787



Bokhorst et al. Non-additivy of Multiple Extreme Events

MATERIALS AND METHODS

The study site was located on the small island Håkøya, situated
in the fiord Balsfjorden between the larger island Kvaløya and
the mainland (Tromsø, Norway, 69.66◦ N 18.78◦ E, 30 m a.s.l.).
The western part of Håkøya, where this study was located, has
a mosaic of open deciduous woodland dominated by Betula
pubescens Ehrh. and treeless heathland dominated by the dwarf
shrub E. nigrum L. The climate is relatively mild for these
latitudes due to the warm Norwegian current (which is a branch
of the North Atlantic current), resulting in mean summer and
winter temperatures of 12◦C and −4◦C, respectively (Førland
et al., 2009). Annual precipitation is ca. 1000 mm and the winter
snowpack typically reach 60–80 cm depth. The experimental site
was situated in an area with sparse distribution of birch trees
(B. pubescens) and dominated by E. nigrum with a dense cover
of the moss Pleurozium schreberi (Willd. ex Brid.) Mitt. Sub-
dominant plant species included Vaccinium vitis-idaea L., V.
uliginosum L., V. myrtillus L, Cornus suecica L., Avenella flexuosa
(L.) Drejer, the moss Polytrichum commune Hedw. and Cladonia
lichens.

The experiment consisted of 24 plots (1 m × 2 m) with
four treatments replicated six times: control (C), N addition
(+N), extreme winter warming events (WW), and WW with N
addition (WW+N). Ammonium nitrate solutions (5 kg N ha−1)
were applied by watering can (2 L volume) across each +N
treatment plot three times during the growing season at monthly
intervals. The N additions were at the lower limit of effect
doses for most plants (Phoenix et al., 2012) and chosen to
reflect realistic scenarios of N input resulting from airborne
transport for these sub-arctic regions (Karlsson et al., 2013).
The WW simulations were implemented by using four infrared
heaters (800 W emitting at 3 µm; HS 2408, Kalglo Electronics
Co., Bethlehem, PA, United States) that were suspended in
parallel (65 cm apart) from wooden frames. This produced a
thermal radiation flux of 270 W m−2 to the plots (at zero wind
speed). Lamps were on between 9 and 16 February 2014, 13–20
February 2015, and 11–18 February 2016. The snow pack (60–
80 cm deep) gradually melted out during 3 days after which the
lamps remained on for another 4 days. Lamps were adjusted
in height above the surface to achieve leaf temperatures of
ca. 5◦C. Leaf temperatures were monitored at least twice per
day by obtaining a reading of a thermocouple attached to the
underside of a plant leaf in each plot. Lamps were turned off
after 7 days and removed from the frames. The experimental
plots were left exposed to ambient conditions and build-up of
a new snowpack for the remainder of the winter. We marked
out an additional 12 quadrats (1 m × 1 m) which were treated
as control (n = 6) and nitrogen additions (n = 6) from which
we could sample winter plant tissues and measure ecosystem gas
fluxes without disturbing the main C and+N experimental plots.
Temperature at canopy height was monitored throughout the
year by temperature loggers (Hobo UA-001-08, Onset Computer
Corporation, MA, United States) recording at hourly intervals
in four control plots and four plots exposed to extreme WW
events. Loggers were shielded from direct sunlight by a white
dome cover.

Leaf Phenology and Vegetation
Composition
Vegetative bud development was monitored during the
subsequent growing season (early June onward). For this,
10 randomly selected shoots of the dwarf shrubs E. nigrum,
V. vitis-idaea, and V. myrtillus were tagged in each plot and
surveyed every week or more frequently depending on the speed
of development. Due to the presence of large caterpillar numbers
of geometrid moths, a large proportion (see results) of tagged
shoots were grazed and new unaffected shoots were selected in
spring 2014. Vegetative bud development was recorded by noting
when the bud had burst and the first leaf had fully expanded
(Bokhorst et al., 2008). During the 2015WW event we quantified
bud elongation of V. myrtillus, as it represents a first step in
bud development (Bokhorst et al., 2010). The abundance and
cover of plant species was quantified using the point intercept
method in a quadrant (30 cm × 30 cm) in the middle of each plot
during peak plant biomass (August). A total of 121 point counts
at 2.5 cm intervals were made of the vegetation in each square
by counting the number of times a vertical pin touched plant
parts (Jonasson, 1988). Cryptogams were counted as present
or absent, while vascular plants could be hit more than once
by each vertical pin. For E. nigrum only shoots were counted
rather than every leaf hit to avoid overrepresentation due to the
high number of tightly packed, small needle-like leaves. Point
intercept counts of vascular plants were converted to biomass
using regression formulas (Supplementary Table S1) (Jonasson,
1988; Bokhorst et al., 2011). Species cover was quantified from
point count survey based on presence or absence at each point.
Changes in plant biomass and cover were compared from 1 year
to the next starting at August 2013.

Normalized Difference Vegetation Index
(NDVI)
As a measure of vegetation activity (“health”) across the
experimental plots we quantified NDVI by using two different
handheld proximate sensor.We used aMaxmax-modified Canon
camera (LDP LLC, Carlstadt, NJ, United States) where an infrared
sensor replaced the normal sensor (the blue channel records
the visible light and the red channel the near infrared). In
addition, we used a GreenSeeker (Trimble Navigation Ltd.,
Sunnyvale, CA, United States) which generates its own radiation
for NDVI measurements, while the MaxMax camera is a passive
instrument, using reflected and incident radiation (Sakamoto
et al., 2012). Plot pictures were taken during peak vegetation
biomass, the second week of August, each year (2013–2016).
During 2015 and 2016, the two types of NDVI measurements
were also done at weekly intervals to monitor changes in plot-
level greenness during the growing season (May–August).

CO2 Fluxes
Respiration rates of V. vitis-idaea (individual leaves) and shoots
(2 cm) of E. nigrum (2014 and 2015) and the moss P. schreberi
(2015 only) were quantified on an Infrared Gas Analyser (IRGA)
(GFS-3000, Walz GmbH, Effeltrich, Germany). Measurements
were done in closed cuvettes in complete darkness, at 7000 ppm
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H2O, with 380-ppm base level of CO2 and temperature of the
measuring head kept at 5◦C. We used the mean respiration rates
of nine measurements taken at 15 s intervals for each sample.
Samples were collected during the last day of warming, after the
maximum exposure period, and 3 days after the lamps had been
turned off.

Ecosystem CO2 fluxes were measured during the WW events
and in the following growing seasons (2014–2016) from May till
August. Measurements were made by placing a clear chamber
(20 cm × 20 cm × 20 cm) made from poly-methyl methacrylate
over the vegetation and monitoring the rate of change in
headspace CO2 concentration, across nine measurements at 10 s
intervals, using an IRGA (EGM-4 PP Systems, Amesbury, MA,
United States). To minimize internal chamber air exchange
with the external environment, plastic skirts (20 cm wide) were
attached to a square frame – onto which the chamber could be
attached – and weighed down with chains (and snow in winter).
The square frame was slotted onto four metal pins that were
fixed in the plots to ensure that CO2 fluxes were measured at
the same spot in each plot. Snow was removed 2 h before CO2

measurements from the additional C and +N plots, to allow
any build-up of CO2 underneath the snow layer to diffuse out
(Grogan and Jonasson, 2006).

Plant Physiological Measurements
As a measure of winter plant physiological activity we quantified
potential activity of PSII using a mini-PAM (Walz, Effeltrich,
Germany) for E. nigrum and V. vitis-idaea using leaf clips, in
the experimental warmed plots and from underneath the snow
as controls during early morning (06:00–06:30) when the sun
was below the horizon and PAR levels were zero. Measurements
were done during the last 2 days of warming when plants had
the longest exposure to the warming, to quantify potential release
from winter dormancy, and in addition 4 days after the lamps
had been turned off to quantify the response of PSII following
freezing. One leaf (V. vitis-idaea) or shoot (E. nigrum) was
measured in each experimental plot during each measuring day.

To quantify changes in the fatty acid composition of the
cell membranes as a result of the warming and freezing, we
collected leaf samples (n = 5), while plants had been exposed to
WW for 4 days and 4 days after the WW treatment had been
turned off. Samples from control plots were retrieved during
either of these sampling events. All samples were brought back
to the laboratory (within 1–2 h) and frozen at –20◦C, freeze-
dried, ground, and analyzed for fatty acids following the direct
methylation procedure (Browse et al., 1986). Samples of 5–20 mg
were dissolved in 1 mL methanolic hydrochloric acid (HCl)
(1M) and an internal standard (heptadecanoic acid, C17:0) was
added to a glass tube. The solution was heated to 80–100◦C
for 1 h, and after cooling, 0.4 mL hexane and 1 mL of 0.9%
sodium chloride (NaCl) were added to each sample. The fatty
acid methyl esters (FAMES) were extracted into the hexane phase
by vigorous shaking. The tubes were centrifuged for 10 min to
separate the phases completely, and a sample was then taken
directly from the hexane phase. Samples were stored at –20◦C
until gas chromatography (GC) analyses, according to Mæhre
et al. (2013). The instrument used was anAgilent 6890N equipped

with a flame ionization detector (FID) (Agilent Technologies
Inc., Santa Clara, CA, United States) and a CP7419 capillary
column (50 m × 250 µm × 0.25 µm nominal, Varian Inc.,
Middelburg, Netherlands). The fatty acids were identified by
comparing against the commercial fatty acid standards PUFA
1, 2, and 3 (Sigma-Aldrich Chemicals Co., St. Louis, MO,
United States) and the GLC standards 80, 411, and 412 (NuChec
Prep. Inc., Elysian, MN, United States). The amount of each
fatty acid was calculated by comparing peak area with the known
amount of an internal standard (C17:0). The proportions of the
single fatty acids were used in further analysis. We calculated
the unsaturation to saturation ratio (U/S ratio) as the ratio
between the total proportion of all unsaturated fatty acids and
the total proportion for all saturated fatty acids (van Dooremalen
et al., 2011). The detected fatty acid composition differed greatly
between plant species, which limited direct comparisons of
specific fatty acids between study species. However, changes in
fatty acid composition could be quantified in response to the
treatments.

Calculations and Statistical Analyses
We used repeated measures ANOVA to detect differences in
leaf phenology, NDVI, and CO2 fluxes between treatments
(WW and +N) during the growing seasons of 2014–2016.
To identify changes in plant biomass and cryptogam cover
across the measurement years (2013–2016) we used a linear
mixed effects model with treatments (WW vs. C and –N vs.
+N) and years as fixed factors and block as a random factor.
P-values were obtained by likelihood ratio tests of the full
model with the effect in question against the model without
the effect in question. A Principal Component Analyses (PCA)
was used to summarize changes in vegetation composition
of vascular plant and cryptogam cover between treatments,
and the first two PCs were analyzed in the same way as the
plant biomass. Treatment effects on fatty acid concentrations
and U/S ratio were tested using a factorial ANOVA with
Treatment and +N as fixed factors. We used Tukey HSD tests
at P = 0.05 to identify differences in means between WW and
C (with and without +N) whenever the interaction effect was
significant. A visual inspection did not show any patterns in the
residuals. All statistical analyses were carried out using R 3.3.0
(R Core Team, 2015).

RESULTS

Temperature Effects of Winter Warming
Treatment
Canopy temperature increased to 6.3–7.2◦C in the WW plots
while canopy temperatures underneath the snow were around
freezing (−0.1–0.1◦C) in the control plots (Figure 1). Minimum
temperatures were somewhat lower in WW compared to C
during 2014 (−11.8◦C vs.−9.7◦C) and 2016 (−6.6◦C vs.−1.0◦C)
but did not differ during 2015 (−9.1◦C). The number of freeze
thaw cycles increased following WW by 67% and 57% during
2014 and 2015, respectively, and from 1 in C to 29 in WW
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FIGURE 1 | (A,B) Show canopy temperatures measured during 2014 and 2015 respectively in control plots (C) and those exposed to extreme winter warming

(WW). (C,D) Show the monthly number of freeze-thaw cycles during 2014 and 2015 respectively. Mean daily canopy temperatures and monthly number of freeze

thaw cycles during the winters of 2014 and 2015. Data points and bars are means of n = 4 with SE as error bars. ∗ indicate significant (P < 0.05) differences

between treatments. Canopy temperatures were measured following the extreme winter warming event of 2016 but not during the winter period before therefore,

these are not shown.

during 2016 (Figures 1C,D). Leaf and moss temperatures were
on average 5 and 10◦C, respectively, during the WW treatments.

Winter Physiology and Ecosystem
Responses
Efficiency of Photosystem II (Fv/Fm) of E. nigrum increased
(P < 0.001) by 77 and 80% in the WW (0.59) and WW+N
(0.59) treatments, respectively, as compared to C (0.33) during
2014, indicating a release from winter dormancy. Fv/Fm
of V. vitis-idaea increased (P < 0.01) by 26 and 33% in
the WW (0.61) and WW+N (0.64) treatment, respectively,
compared to C (0.48) during 2014. Fv/Fm no longer differed
between the treatments after the warming lamps was turned
off. Fv/Fm was unaffected by WW during 2015, and values
across treatments were 0.68, 0.65, and 0.69 for E. nigrum,
V. vitis-idaea, and P. schreberi, respectively. Winter leaf

respiration decreased by 58% for E. nigrum (F3,19 = 3.8,
P = 0.027) and with 43% for P. schreberi (F3,19 = 6.4,
P = 0.005) in WW compared to C during 2015 but did
not differ after lamps were turned off, and there were no
differences between WW and WW+N. Vaccinium vitis-idaea
leaf respiration was unaffected by the treatments (F3,19 = 2.0,
P = 0.155).

Bud length of V. myrtillus increased by 12% during the 2015
warming event, representing an increase of 0.14mmand 0.17mm
in WW andWW+N, respectively.

Winter ecosystem respiration was twice as high in WW (WW:
14.0± 1.9 mg Cm−2h−1 andWW+N:16.9± 4.1 mg Cm−2h−1)
compared to C (6.4 ± 2.6 mg C m−2 h−1) during the last day
of warming in 2014 (F2,9 = 9.8, P = 0.005), but no respiration
differences were found during the 2015 WW event (F3,2 = 7.0,
P = 0.074). There was no effect of +N on winter ecosystem CO2

fluxes. Snow fungi were observed in the plots during 2014 (but
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not quantified), while during 2015, snow fungi covered 26% (SE:
4.3) and 47% (9.1) of the surface of WW andWW+N (F1,9 = 3.7,
P = 0.088).

Membrane Fatty Acids
The ratio of unsaturated to saturated fatty acids was not affected
by the treatments for any of the study species during 2014 or
2015 (data not shown). The concentration of various membrane

fatty acids declined for E. nigrum, V. vitis-idaea, and P. schreberi
in response to WW during 2014 (Supplementary Table S2 and
Figure 2). However, during the second WW event (2015), the
response varied between treatments and species and not all fatty
acids were found during both years. Five affected fatty acids
were consistently lower (from 3 to 100%) during the WW of
2014 in E. nigrum compared to control plots and following
the WW (Figure 2A). However, C13:0 was increased (263%)

FIGURE 2 | Composition of cell membrane fatty acids of Empetrum nigrum (A–C), Vaccinium vitis-idaea (D–F), and Pleurozium schreberi (G–I) measured during

(dWW) and after (aWW) extreme winter warming events in 2014 and 2015. Note that for clarity the 2015 fatty acids are separated by concentration. Data points are

means of five replicate samples with SE as error bars. Asterix indicate significant (P < 0.05) difference in fatty acid concentrations between extreme winter warming

and control plots.
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during WW compared to control plots. The fatty acids C16:1n-
7, C18:1n-7, and C18:3n-3 were all lower following the 2015
WW compared to control plots, while C8:0, C10:0, and C12:0
were not found in detectable concentrations. C13:1 had highest
concentrations (45% higher) followingWW compared to control
samples (Figures 2B,C). Nitrogen increased C18:1 n-12 by more

than three times during 2014 while C12:0 was reduced by 69%
during 2015. C18:0 and C20:2 (eicosadienoic acid) responded
to WW in combination with +N; for C18:0 there were no
Tukey post hoc differences, while C20:2 concentrations were
consistently higher duringWWwithout N compared to the other
treatments.

TABLE 1 | Repeated measures ANOVA results (F-values) of leaf phenology, plot NDVI values and CO2 gas fluxes in response to extreme winter warming events (WW),

nitrogen additions (N) and their combination during three growing seasons.∗<0.05, ∗∗<0.01, ∗∗∗<0.001.

N WW Date N:WW N:Date WW:Date N:WW:Date

E. nigrum 2014 0.0 4.2 77.6∗∗∗ 0.5 0.0 3.6∗ 0.7

2015 0.4 0.2 14.7∗∗∗ 0.7 0.6 0.4 0.4

2016 0.1 0.9 50.8∗∗∗ 0.1 1.8 2.3 0.1

V. myrtillus 2014 0.5 0.3 30.7∗∗∗ 0.1 0.5 1.2 0.4

2015 1.3 1.2 18.4∗∗∗ 0.4 1.1 1.4 0.4

2016 1.3 0.2 44.1∗∗∗ 0.5 2.1 0.4 0.4

V. vitis-idaea 2014 5.7∗ 0.1 1.1 1.0 0.5 1.1 0.1

2015 0.0 0.0 150.3∗∗∗ 0.3 2.4 0.5 1.2

2016 1.6 1.0 53.0∗∗∗ 3.1 2.8∗ 1.5 0.6

NDVI 2013 0.8 3.4 0.1

2014 0.8 0.2 0.7

2015 1.2 0.9 4.5∗∗ 0.0 1.4 0.9 1.1

2016 0.3 0.0 935.1∗∗∗ 0.8 0.7 3.0∗∗∗ 0.5

Greenseeker 2015 1.9 0.3 58.8∗∗∗ 0.0 0.4 0.0 0.5

2016 3.7 0.6 255.6∗∗∗ 1.8 0.5 1.2 0.8

ER 2014 1.3 3.1 96.7∗∗∗ 0.0 1.6 0.9 0.5

2015 0.0 0.4 10.3∗∗∗ 0.0 0.2 0.6 0.3

2016 0.0 0.4 10.3∗∗∗ 0.0 0.2 0.6 0.3

NPP 2014 1.9 2.0 12.8∗∗∗ 0.9 2.7∗∗ 1.1 1.4

2015 1.0 1.2 0.9 0.3 0.7 0.2 1.5

2016 0.7 3.6 31.0∗∗∗ 0.3 0.5 1.2 0.2

GPP 2014 0.0 3.9 48.1∗∗∗ 0.3 2.6∗∗ 1.0 1.0

2015 0.4 1.1 7.2∗∗∗ 0.1 0.1 0.4 0.1

2016 0.0 3.2 23.6∗∗∗ 0.2 0.3 0.4 0.3

TABLE 2 | Mixed-effect model output of changes in plant biomass (number of point intercept hits) and cryptogam cover between years in response to extreme winter

warming events (WW) and nitrogen additions.

WW Nitrogen WW × N Year

χ
2 P χ

2 P χ
2 P χ

2 P

Vascular plants (Biomass change %)

Cornus suecica 3.8 0.148 2.9 0.233 2.8 0.093 30.7 <0.001

Avenella flexuosa 4.1 0.130 3.3 0.194 1.2 0.268 3.9 0.144

Empetrum nigrum 2.5 0.285 2.4 0.305 2.4 0.124 50.1 <0.001

Vaccinium myrtillus 5.1 0.080 0.4 0.803 0.2 0.632 24.7 <0.001

Vaccinium uliginosum 0.1 0.933 0.8 0.656 0.1 0.886 7.5 0.024

Vaccinium vitis-idaea 1.0 0.611 2.3 0.320 1.0 0.322 3.4 0.182

Cryptogams (cover change)

Cladonia uncialis 0.1 0.999 0.2 0.927 0.0 0.969 4.3 0.119

Pleurozium schreberi 0.2 0.855 2.2 0.339 0.2 0.676 30.1 <0.001

Polytrichum commune 0.0 0.996 0.1 0.968 0.0 1.000 7.7 0.021

Ptilidium ciliare 0.1 0.979 0.1 0.945 0.1 0.898 1.3 0.526

PC1 2.9 0.238 3.8 0.152 2.7 0.103 0.2 0.641

PC2 1.0 0.603 1.0 0.596 1.0 0.318 0.2 0.659
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FIGURE 3 | Species-specific plant biomass following extreme winter warming (WW) and nitrogen (N) additions in sub-arctic Norway. Data points are mean of n = 6

plots with SE as error bars.
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FIGURE 4 | Species-specific cryptogam cover following extreme WW and nitrogen (N) additions in sub-arctic Norway. Data points are mean of n = 6 plots with SE

as error bars.

Affected fatty acids (n = 5) were consistently lower
(from 67 to 100%) during the WW of 2014 in V. vitis-
idaea compared to frozen samples from control plots and
following the WW (Figure 2D). During 2015, C18:2 n-
6 declined by 38% following the WW event compared to
control samples, while C21:0 and C20:2 increased by 219 and
118%, respectively, following the WW event (Figures 2E,F).
The remaining near-significant differences (P > 0.05) in fatty
acid concentrations were found during and after the WW
event. Nitrogen did not affect fatty acid concentrations during
2014. During 2015, C21:0 and C20:2 were both reduced (58
and 54%, respectively) when +N was applied. C14:0 had a
significant WW × N interaction, but Tukey post hoc testing did

not indicate significant treatment differences (Supplementary

Table S2).
There were three affected fatty acids (C15:0, C18:1 n-12, and

C18:3 n-6) responding to the interaction between WW and +N
during 2014 in P. schreberi but all in a different way (Figure 2G).
Concentrations of C15:0 were approximately 10 times higher in
C +N compared to C without N but not compared to any of
the other treatments. Concentrations of C18:1 n-12 were highest
in C (without +N) compared to all other treatments, while
concentrations of C18:3 n-6 were highest for WW+N compared
to all other treatments. During the winter of 2015, the majority of
the affected fatty acids (n = 16) were consistently higher (9–65%)
in control plots, while only C18:1 n-12 was higher during and
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after the WW event (54 and 81%, respectively) (Figures 2H,I).
Nitrogen increased the concentration of C20:3 n-6 and C20:5 n-3
by 31% during 2015, while the fatty acids C16:0, C18:2 n-6, C18:3
n-3, and C20:3 n-6 had the highest concentrations in the control
plots that also received +N.

Ecosystem Responses in the Growing
Season
Leaf emergence timing was not affected by the treatments during
any of the years, although there were differences in the percentage
of emerged leaves between treatments across the measuring
periods (Supplementary Figure S1 and Table 1). Empetrum
nigrum had higher total percentage of emerged leaves in WW
(65%) compared to control (33%) at the final measuring date
in 2014. There were no treatment effects on V. myrtillus leaf
emergence during any of the years. While V. vitis-idaea had
highest percentage (40%) of total fully developed leaves in the+N
treatment at the final measuring dates in 2016.

Plant biomass and cryptogam cover were not affected by
WW, +N or their interaction (Table 2). Instead, biomass of
most vascular plant species declined following the second WW
events in all plots (including C) due to the caterpillar outbreak.
Especially the dwarf shrubs were targeted by the caterpillars
resulting in a large proportion of grazed shoots of E. nigrum
(81%), V. myrtillus (87%), and V. vitis-idaea (17%) during 2014.
There were no significant differences in the number of grazed
shoots between treatments. Avenella flexuosa and C. suecica
biomass were unaffected by the treatments and did not appear
to be affected by caterpillar grazing. Plant biomass increased
again during the last (2016) growing season (Figure 3). Moss
cover (P. schreberi and P. commune) reached its peak following
the second WW event (summer 2015) but declined again in
2016 (Figure 4). The lichen Cladonia uncialis and the liverwort
Ptilidium ciliare had a stable cover between years and were
unaffected by the treatments (Table 2 and Figure 4). The PCA
analysis indicated that the vegetation community did not change
between treatments or years (Table 2).

Plot NDVI was not consistently affected by WW, +N or
their interaction. During 2016 WW plots were 5% lower NDVI
values compared to C in spring while later on in the season
there was no difference (Table 1 and Supplementary Figure S2).
NDVI plot values were on average 38% lower during August
2015 compared to starting values (Table 1). CO2 fluxes increased
with time during the growing seasons (Table 1), but there
were no differences in ecosystem ER, NPP, and GPP between
the treatments during the growing seasons (Supplementary

Figure S3), with the exception of some lower NPP values under
+N treatment in 2016.

DISCUSSION

We anticipated a vegetation regime shift from evergreen dwarf
shrubs (heath) to one of cryptogams, grasses, and deciduous
plants (meadow) as a result of WW with this being exacerbated
by the N treatment. Although evergreen dwarf shrubs were
reduced in biomass following the grazing and WW events, the

communities did not significantly differ in species composition
between treatments and years, indicating a strong resistance to
change in these E. nigrum dominated ecosystems. Furthermore,
there was no strong evidence for any interaction between the
multiple extreme events, indicating that multiple stresses do not
necessarily lead to accumulation of biological stress responses
(Thompson et al., 2008; Jackson et al., 2016).

We expected that +N would exacerbate the effects of WW
and grazing pressure but no such responses were observed. We
expected that N additions would promote plant growth, but
simultaneously increase vulnerability to freezing stress due to
changes in cell and physiological characteristics associated with
drought and frost susceptibility (MacGillivray et al., 1995; Carroll
et al., 1999; Schaberg et al., 2002). However, the added N-levels
(5 kg ha−1) did not lead to measurable responses in the control
plots suggesting that these coastal E. nigrum vegetation types
should be able to withstand N depositions events (Forsius et al.,
2010; Karlsson et al., 2013). In addition, mid-winter bud swelling,
Fv/Fm and leaf respiration, indicators of a potential release from
winter dormancy responded similarly to WW with or without
+N. The moss P. schreberi did show changes in membrane fatty
acids to +N, but not consistently in combination with WW.
The fatty acid C20:2 increased in WW–N compared to WW+N
for both E. nigrum and V. vitis-idaea, indicating that soil N
availability may affect cell membrane adaptations to freezing
stress. However, as we did not find consistent phenology and
plant biomass responses to WW+N in the following growing
seasons, it appears that the role of N on the plants’ winter
physiology appears limited in this study. Nitrogen additions
have been shown to increase insect damage to Calluna vulgaris
communities (Power et al., 1998) but this was not observed in
our study. Overall, the combination of stress events and low dose
N deposition does not appear to seriously affect these coastal
sub-arctic E. nigrum communities.

In support of our second hypothesis, the evergreen dwarf
shrub E. nigrum declined in response to the grazing by geometrid
caterpillars while the herb C. suecica, not often grazed upon,
increased over the study period. Empetrum nigrum is frequently
targeted by caterpillars when their main food plant birch
trees have been defoliated (Jepsen et al., 2013), which explains
the decline of this dwarf shrub over time. The increase of
C. suecica was also found elsewhere in northern Fennoscandia as
a combined effect of grazing pressure, increased precipitation and
deposition of nitrogen through precipitation and caterpillar fecal
matter (Tømmervik et al., 2004; Karlsen et al., 2013). However,
we did not find any such response from N additions in our
study, which indicates that the applied levels were insufficient
to elicit a measurable plant growth response or that caterpillar
fecal N input was much higher. In addition, moss cover was
highest during 2015, reflecting the opening of the vascular
plant cover canopy, as also observed following similar extreme
events in physiognomically comparable open birch woodland
in a more continental upland region of northern Scandinavia
(Bokhorst et al., 2015). However, the evergreen species, such as
E. nigrum and V. vitis-idaea, quickly recovered their biomass to
starting levels in this study, indicating that this coastal E. nigrum
dominated vegetation were fairly resistant to the combination
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of WW events, N additions and invertebrate grazing. The
ecosystem CO2 fluxes measured during the growing season also
did not show differences between treatment plots indicating
that the plant community shifts were too limited to impact this
ecosystems carbon balance (Luyssaert et al., 2007; De Deyn et al.,
2008), although the 2016 values were notably higher than during
the 2 previous years (Supplementary Figure S3).

The muted response from the plant community, and NDVI
values to the extreme WW events, may result from the intensive
grazing impact overall, including the control plots, which could
have diluted the effect of the imposed winter stress. The relative
importance of such events, and their interaction, in shaping sub-
arctic plant communities remains a complex interplay depending
in large part on intensity, timing and duration (Olofsson et al.,
2013). Furthermore, sub-dominant species cover was not affected
enough to affect plot communities dominated by E. nigrum
and P. schreberi, while high shoot defoliation of dwarf shrubs
recorded during 2014 could have been partly compensated later
on in the season (Bokhorst et al., 2011). In addition, studies on
C. vulgaris-dominated ecosystems show that plant community
responses to multiple environmental drivers can be affected by
successional stage and disturbance regimes across Europe (Kröel-
Dulay et al., 2015). As such, the high dominance of E. nigrum in
our field site may reflect a successional stage that is more resistant
than stages where other species comprise a larger proportion of
the community or these coastal habitats have plants with greater
physiological adaptability to cope with multiple stressors than
habitats with more stable climates. With respect to the WW
events, more pronounced plant responses have been reported
when temperatures were lower (Bokhorst et al., 2009; Bjerke
et al., 2017b), which is an important factor for frost drought-
induced plant mortality (Kreyling et al., 2008; Bokhorst et al.,
2010, 2018). The relative mild freezing temperatures may have
allowed for winter physiological adaptations by E. nigrum and
V. vitis-idaea, such as the greater proportion of longer chain fatty
acids (Dalmannsdóttir et al., 2001; Schaberg et al., 2002). The N
addition levels were chosen at the lowest concentration effect-
response by most plant communities (Phoenix et al., 2012) as
a realistic scenario, while higher N levels for a longer duration
(>3 years) may result in additive biological responses (Power
et al., 1998; Phoenix et al., 2012). Similarly, grazing intensity on
plants is not consistent during each herbivore outbreak (Olofsson
et al., 2013) indicating that sub-arctic plant community responses
to multiple extreme events may depend predominantly on the
event with the strongest intensity.

CONCLUSION

The findings indicate that coastal sub-arctic dwarf shrub plant
communities and growing season CO2 fluxes appear largely

unaffected to a combination of extreme WW events, grazing and
nitrogen additions in summer. This response may in part be the
result of inherent physiological adaptations, such as changing
the membrane fatty acids (Dalmannsdóttir et al., 2001), during
winter and themild winter freezing temperatures (Bokhorst et al.,
2018). The grazing impact appears to have overshadowed all
plant responses to the WW and +N treatments indicating that
multiple extreme events, that in theory can enhance each other’s
effects (Power et al., 1998; Phoenix et al., 2012), do not necessarily
increase biological stress responses.
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