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Microscopic theory of spin relaxation anisotropy in graphene with proximity-induced

spin-orbit coupling

Manuel Offidani and Aires Ferreira
Department of Physics, University of York, York YO10 5DD, United Kingdom

(Received 23 July 2018; revised manuscript received 9 October 2018; published 10 December 2018)

We present a microscopic theory of spin dynamics in weakly disordered graphene with uniform proximity-
induced spin-orbit coupling (SOC). A time-dependent perturbative treatment is employed to derive the spin
Bloch equations governing the spin dynamics at high electronic density for arbitrary ratio λSOC/η, where η is
the disorder-induced quasiparticle broadening and λSOC is the largest spin-orbit energy scale. Rich scenarios
are predicted, depending on a delicate competition between interface-induced Bychkov-Rashba and spin-valley
interaction. In the motional narrowing regime of weak SOC (λSOC ≪ η), the anisotropy ratio of out-of-plane
to in-plane spin lifetimes ζ = τ⊥

s /τ ‖
s agrees qualitatively with a toy model of spins in a fluctuating SOC field

proposed recently by Cummings and co-workers Phys. Rev. Lett. 119, 206601 (2017). For well-resolved SOC
(λSOC � η), the spin dynamics is characterized by fast damped oscillations with spins relaxing on the timescale
of a single scattering event. In this regime, qualitatively different formulas for ζ are obtained, which can be
useful to model spin transport in ultraclean van der Waals heterostructures.

DOI: 10.1103/PhysRevB.98.245408

I. INTRODUCTION

The tailored control of electronic properties in van der
Waals heterostructures built from the assembly of two-
dimensional (2D) crystals has provided a unique route to
explore interface-induced phenomena [1–4]. Heterostructures
combining graphene and semiconducting group-VI dichalco-
genides [MX2 (e.g., M = Mo, W; X = S, Se)] could enable
low-power spin-logic devices harnessing the rich interplay
between quantum (spin and valley) degrees of freedom in
honeycomb-layered materials with strong spin-orbit coupling
SOC [5]. This thrust has been fueled by the prospect of
enhancing spin-orbital effects in graphene, while preserving
the quintessential Dirac character of its 2D quasiparticles
[6–8]. The much sought after interface-induced SOC has been
recently demonstrated in graphene/transition metal dichalco-
genide (TMD) bilayers [9–17], where sharp weak antilocal-
ization features in the magnetoconductance data [11–15] and
dramatic reduction of spin lifetime [16,17] hint at a massive
enhancement of spin-orbit interactions in the 2D carbon layer
(up to 10 meV), consistent with the predictions of model
calculations and first-principles studies [10,18,19].

The modification of electronic states in graphene-based
van der Waals heterostructures can be understood within
a weak interlayer coupling picture, where the original
Dirac (graphene) states located in the band gap of a 2D
semiconductor are perturbed in two fundamental ways.
First, the interfacial breaking of mirror inversion symmetry
leads to the familiar Bychkov-Rashba (BR) effect [20]. The
spin rotational invariance is lifted (point-group symmetry
reduction D6h → C6v), which causes the spin splitting of
the Dirac states. Second, the proximity to metal atoms
located beneath the graphene flake (C6v → C3v) effectively
“transfers” the sublattice-resolved SOC of the TMD substrate
onto graphene (and hence spin-valley interactions). The

type and strength of the effective spin-orbit interactions will
ultimately depend on the number of layers and specific TMD,
degree of vertical strain, and possible presence of resonant
scatterers [18,21–24].

Proximity-induced SOC couples all internal degrees
of freedom of 2D materials (i.e., spin, sublattice, and
valley), thus enabling interesting nonequilibrium phenomena,
such as anisotropic spin dynamics [25] and charge-to-spin
interconversion via spin-Galvanic and spin-Hall effects [26–
28]. In this work, we report a microscopic theory of spin
dynamics in graphene with enhanced proximity spin-orbital
effects. Our aim is to obtain a general microscopic description
of spin relaxation processes beyond the motional narrowing
regime of weak SOC [25]. We note that the effect of random
SOC λ(x) (e.g., with origin in ripples and impurities) has
been extensively studied in previous works [24,29–33]. Here,
instead, the focus is on systems with well-developed SOC in
the band structure [|λ(x)| ≪ λSOC], which in principle can be
realized in van der Waals heterotructures with an ultraclean
interface [9–17]. The interface-induced spin-orbit interaction
enters the long-wavelength continuum Hamiltonian as an
additional uniform term VSO, that is (we choose natural units
with h̄ = 1 = e)

H =
∫

dx �
†(x)[τz v σ · p + VSO + U (x) ]�(x), (1)

where v is the Fermi velocity of massless Dirac fermions,
p = −ı∇ is the momentum operator around a valley, VSO

is the uniform spin-orbit interaction, and U (x) is a disorder
potential describing elastic scattering from nonmagnetic im-
purities. Here, τς , σς , and sς are Pauli matrices (ς = x, y, z)
and identity (ς = 0) defined on valley, sublattice, and spin
space, respectively [34]. While the strength of proximity-
induced interactions for a given heterostructure is a priori
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unknown, first-principles calculations and transport data pro-
vide a mean to estimate the various spin-orbit terms allowed
by symmetry [35–39]. It can be easily shown that there are
three such terms compatible with the C3v point group, VSO =
HKM + HBR + Hsv, respectively, intrinsiclike SOC [40], BR
interaction [20], and spin-valley coupling [37]. We note in
passing that, beyond SOC, the proximity effect can mediate an
orbital sublattice-staggered potential H� = � τzσz [18]. This
effect is believed to play a minor role in graphene/TMD bilay-
ers (as opposed to graphene/h-BN [41]) and will be neglected
in the following discussion [42]. The intrinsic-type SOC

HKM = λ0 τ0 σz sz (2)

is invariant under the symmetry operations of the D6h point
group, and thus it is already present in pristine graphene
(albeit extremely weak, λ0 ≈ 20 μeV [43,44]). As shown
by Kane and Mele (KM) [45], a sufficiently large λ0 would
drive graphene into a nontrivial topological insulating phase.
However, this special type of SOC, which shares the same
sublattice structure of the orbital interaction H�, plays a
secondary role for the spin dynamics in the high electronic
density regime [42]. As anticipated above, in 2D heterostruc-
tures, the interfacial breaking of mirror inversion symmetry
favors the appearance of BR-type SOC. This term (which is
compatible with the C6v point group) couples the electron’s
spin and velocity, acting as a non-Abelian gauge field [27]

HBR = λ τz (σ × s)z. (3)

Finally, 2D crystals with sublattices occupied by different
chemical species exhibit sublattice-resolved SOC (C3v point
group) [37,46,47]. This leads to a spin-valley coupling in the
continuum limit

Hsv = λsv τz σ0 sz, (4)

which is formally equivalent to a (valley-dependent) Zeeman
interaction and, as such, it tends to “stabilize” out-of-plane
spins. For this reason, the spin dynamics associated to
in-plane (‖) and out-of-the-plane (⊥) channels in samples
with sizable λsv is set by distinct timescales with τ⊥

s ≫ τ
‖
s .

The anisotropy in the spin dynamics can be quantified by the
spin relaxation time anisotropy (SRTA) ratio ζ = τ⊥

s /τ
‖
s [48].

The SRTA in graphene on TMD monolayer has been found
to attain giant values on the order of ζ ∼ 10–100 [16,17],
testifying to the important role played by Hsv. A simple SRTA
model has been proposed in Ref. [49], which assumes that the
electronic motion of bare quasiparticles is affected by a weak
spin-orbit field with a precession axis randomly changing due
to scattering events. This framework provides the dependence
of ζ on two important dimensionless parameters, λsv/λ and
τ0/τ*, where τ0 and τ* are the sample-specific intravalley and
intervalley correlation times, respectively [25]. However, the
formalism presented there is limited to the weak SOC regime
λSOCτ0 ≪ 1 with λSOC = max{|λ|, |λsv|}, whereas ultraclean
samples can display strong SOC on the order of (or larger
than) the disorder broadening [11,13,14]. Meanwhile, the
development of a microscopic approach capable to provide
an intuitive, unified description of spin relaxation processes
for arbitrary values of λSOCτ0 and λSOCτ* would be highly
desirable. Here, we address this problem by means of the

FIG. 1. Spin relaxation in the C3v model. (a) The BR pseudomag-
netic field BBR

eff is always orthogonal to the direction of motion k̂ and
lies in the plane. On the other hand, the spin-valley pseudomagnetic
field Bsv

eff (independent of k) has opposite signs in inequivalent val-
leys: Bsv

eff(κ ) = −Bsv
eff(κ̄ ), where κ = −κ̄ = (K,K ′). Spin relaxation

regimes: (b) in the pure BR model (λsv = 0) spin lifetimes satisfy
τ⊥
s = τ ‖

s /2 for λτ ≪ 1; (c) the relation is reversed in the strong
SOC limit λτ ≫ 1 where τ⊥

s = 2τ ‖
s . This picture is affected by the

spin-valley coupling and intervalley scattering, as discussed in the
main text [cf. Eqs. (54)–(59)].

single-particle density matrix formalism. We obtain a set of
coupled spin Bloch equations governing the spin dynamics
in the effective C3v Hamiltonian in the presence of common
sources of disorder [Eq. (1)]. The treatment employed
here is strictly valid in the semiclassical transport regime
of experimental relevance |ǫ| ≫ λSOC, where ǫ is the Fermi
energy. However, the qualitative features of the spin relaxation
regimes predicted in this work are also expected to manifest at
low electronic densities. Rich scenarios are shown to emerge,
from simple exponentially decaying spin polarization density
to fast damped modes, depending on the relative magnitude of
the main energy scales of the problem: λ, λsv, 1/τ0, and 1/τ*.
Finally, we derive analytic expressions for the SRTA ratio ζ

in both weak SOC regime (compatible with Ref. [25]) and the
strong SOC regime of ultraclean samples (λSOCτ0 � 1

2 ).
The paper is organized as follows. In Sec. II, we derive

the spin Bloch equations governing the spin dynamics in
graphene with uniform proximity-induced SOC. In Sec. III,
we obtain analytic expressions for the time dependence of
the spin polarization in the limiting cases of weak and strong
SOC. Section IV discusses the SRTA, putting it in relation
with recent theoretical and experimental findings and Sec. V
presents our conclusions.

II. FORMALISM: SPIN BLOCH EQUATIONS

The starting point of our approach is the quantum Liou-
ville equation for the single-particle density matrix operator
[50–53]

∂ρ

∂t
+ ı[ H0 + VSO + U, ρ ] = 0. (5)

245408-2
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The interaction U describes uncorrelated disorder

U (x) = Uintra(x) + Uinter(x) (6)

=
∑

α=0,z

∑

β=0,x,y,z

[τασβuαβ (x)]s0 (7)

+
∑

α=x,y

∑

β=0,x,y,z

[τασβuαβ (x)]s0, (8)

with Gaussian (white-noise) statistics

〈uαβ (x)uα′β ′ (x′)〉dis = u2
αβ δαα′ δββ ′ δ(x − x′). (9)

All types of nonmagnetic disorder are included in U (x).
Interactions ∝σ0,z describe onsite potentials and terms ∝
σx,y encode fluctuations in the hopping between neighboring
sites (e.g., due to adatoms and ripples) [54]. The terms in
the second line [Eq. (8)] mix states on inequivalent valleys,
leading to a finite intervalley scattering time. We note that
disorders with αβ = {zx, zy, z0, 0z, xz, yx} are not realized
in standard conditions (in the absence of external fields) since
they break time-reversal symmetry.

In order to derive the general spin Bloch equations govern-
ing the spin dynamics for high electronic density, we follow
closely the treatment by Culcer and Winkler [51]. The first
step is to project Eq. (5) onto plane-wave eigenstates of the
unperturbed graphene Hamiltonian, namely,

〈x|kσκs〉 =
1

√
2

eik·x|κ〉 ⊗
(

κ σ e−ıφk/2

eıφk/2

)

⊗ |s〉, (10)

where k is the wave vector (measured from a Dirac point),
φk is the wave-vector angle, and κ, σ, s = ±1 are indices for
valley, sublattice, and spin degrees of freedom, respectively.
The free graphene eigenvalues read as ǫσκs

k = σvk, where
k = |k|. ρ is then a matrix of dimension 23 = 8, whose matrix
elements are written as ραα′

kk′ = 〈k′α′|ρ|kα〉 and α = {σ, κ, s}
is shorthand for the set of quantum indices (we use a similar
notation for U ). VSO has nonzero matrix elements between
conduction and valence states leading to interband transitions.
However, we focus here on the large Fermi energy regime
ǫ/λSOC ≫ 1, where interband coherence effects are strongly
suppressed [55]. In what follows, we take 〈k′σ ′|ρ|kσ 〉 =
δσσ ′ρkk′ and fix the Fermi level in the conduction band,
dropping the sublattice index (σ = 1) from the expressions.

Following Ref. [51], we write ρkk′ = fkkδkk′ + gkk′ , where
for gkk′ it is assumed k �= k′. We neglect valley coher-
ence 〈κ ′|ρ|κ〉 = δκκ ′ since typical valley-coherence times are
much shorter than the relevant spin-precession and relaxation
timescales [56,57]. We have

∂fk

∂t
+ ı[H0 + VSO, f ]kk = −ı[U, g]kk, (11)

∂gkk′

∂t
+ ı[H0 + VSO, g]kk′ = −ı[U, g]kk′ . (12)

We are ultimately interested in the diagonal part fkk, as the
spin observables are defined as

S =
1

2
Tr[ρ · s] =

1

2

∑

k,κ

tr
[

f κ
kk · s

]

=
1

2

∑

k,κ

Sκ
k. (13)

We hence solve Eq. (12) and substitute the solution into the
right-hand side of Eq. (11), which gives the collision integral.
After a somewhat lengthy but straightforward calculation,
where Eqs. (11) and (12) are expressed in the interaction
picture and the evolution operator is expanded to second
order in U , one arrives at the following equation for the spin
components

∂tS
κ
k + Lκ

kSκ
k = −π

∑

k′κ ′

δ(ǫk − ǫk′ )
〈

Sκ
k U κκ ′

kk′ U κ ′κ
k′k

+U κκ ′

kk′ U κ ′κ
k′k Sκ

k − 2 U κκ ′

kk′ Sκ ′

k′ U
κ ′κ
k′k

〉

dis
, (14)

with a Larmor precession term

Lκ
k = 2

⎛

⎝

0 −κλsv λ cos φk

κλsv 0 λ sin φk

−λ cos φk −λ sin φk 0

⎞

⎠. (15)

A comment is in order. Central to our derivation of the quan-
tum kinetic equation is the assumption of Gaussian disorder.
Strictly speaking, the latter is equivalent to the first Born
approximation [58] and thus it neglects (i) skew scattering
(allowed in the C3v model [27], albeit suppressed in the limit
ǫ/λSOC ≫ 1 [59]) and (ii) modifications to the energy depen-
dence of the collision integral for realistic (non-Gaussian) dis-
order with typical momentum scattering time τ (ǫ) ∝ ǫ [as op-
posed to τ (ǫ) ∝ ǫ−1 for Gaussian disorder] [22]. Importantly,
the collision integral [right-hand side of Eq. (14)] retains its
form at all orders in the Born series, with U formally replaced
by the single-impurity T matrix [24]. For this reason, our final
expressions for the spin lifetimes (written in terms of transport
scattering times; see below) remain accurate for general types
of nonmagnetic static disorder.

Next, we use the quantum kinetic equation (14) to obtain
the Bloch equations governing the spin dynamics. First, we
separate the collision integral I [Sκ

k] into intravalley and inter-
valley parts, κ ′ = {κ, κ̄} = {κ,−κ}. For uncorrelated matrix
disorder [Eq. (9)], we find

〈∣

∣U κκ
kk′

∣

∣

2〉

dis
=
∑

p=±

[

ũ2
p +

(

u2
p − ũ2

p

)

F
p

kk′

]

, (16)

〈∣

∣U κκ̄
kk′

∣

∣

2〉

dis
=
∑

p=±

[

w̃2
p +

(

w2
p − w̃2

p

)

F
p

kk′

]

, (17)

where F±
kk′ = cos2[(φk ± φk′ )/2] and

u2
+ = u2

0x + u2
zx, u2

− = u2
00 + u2

z0, (18)

ũ2
+ = u2

0y + u2
zy, ũ2

− = u2
0z + u2

zz, (19)

w2
+ = u2

xx + u2
yx, w2

− = u2
x0 + u2

y0, (20)

w̃2
+ = u2

xy + u2
yy, w̃2

− = u2
xz + u2

yz. (21)

Since Gaussian disorder preserves parity F±
kk′ = F±

k′k, the
dynamics of spin polarization density is governed by only
three microscopic relaxation rates, which are simple functions
of the disorder couplings (see Appendix B). To illustrate the
various spin relaxation regimes, it suffices to consider a pair
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of couplings leading to a finite intervalley scattering time.
Without loss of generality, we choose

u ≡ u− =
√

u2
00 + u2

z0, (22)

w ≡ w− =
√

u2
x0 + u2

y0. (23)

Within the subset of disorder couplings, we can recast the
collision integral into the form

I intra
[

Sκ
k

]

= −2π u2
∑

k′

Fkk′
(

Sκ
k − Sκ

k′

)

�kk′, (24)

I inter
[

Sκ
k

]

= −2π w2
∑

k′

(1 − Fkk′ )
(

Sκ
k − Sκ̄

k′

)

�kk′ , (25)

where �kk′ ≡ δ(ǫk − ǫk′ ). To solve the coupled system of 6
equations (3 polarizations × 2 valleys) [Eq. (14)], we expand
Sκ

k in cylindric harmonics

Sκ
k =

∞
∑

m=−∞
S

κ,m
k eı mφk . (26)

Substituting Eq. (26) into Eq. (14), and retaining only the
lowest-order harmonics m = 0,±1, we finally obtain (see
Appendix A for details)

∂tS
0
x = −

2r2

τ

(

S0
x − S̄0

x

)

− 2λsvS
0
y + λ

∑

m=±1

Sm
z , (27)

∂tS
0
y = −

2r2

τ

(

S0
y − S̄0

y

)

+ 2λsvS
0
x + ıλ

∑

m=±1

mSm
z , (28)

∂tS
0
z = −

2r2

τ

(

S0
z − S̄0

z

)

− λ
∑

m=±1

(

Sm
x + ımSm

y

)

, (29)

and

∂tS
±1
x = λS0

z − 2λsvS
±1
y − h

(

S±1
x , S̄±1

x

)

, (30)

∂tS
±1
y = ∓ıλS0

z + 2λsvS
±1
x − h

(

S±1
y , S̄±1

y

)

, (31)

∂tS
±1
z = −λ

(

S0
x ∓ ıS0

y

)

− h
(

S±1
z , S̄±1

z

)

, (32)

where

h
(

S±1
i , S̄±1

i

)

=
1

τ

[

(1 + 2r2)S±1
i + r2S̄±1

i

]

, (33)

with (Sκ=±1,m
k )i ≡ (Sm

i , S̄m
i ). We have introduced the ratio of

intervalley to intravalley disorder couplings

r = w/u (34)

and

τ = (u2ǫ/4v2)−1, (35)

τiv = τ/3r2, (36)

the intravalley and intervalley transport scattering times, re-
spectively. The spin Bloch equations [Eqs. (27)–(32)] and the
corresponding expressions for the barred component at κ =
−1, obtained by the formal replacement S → S̄ and λsv →
−λsv, are the central result of this section. These equations
highlight the crucial role played by intervalley scattering

(r > 0); first term on the right-hand side of Eqs. (27)–(29)
for m = 0 and last two terms inside brackets in Eq. (33) for
m = ±1.

The spin Bloch equations for the full disorder model have
the same structure as Eqs. (27)–(32) with an additional inter-
valley relaxation rate. The remaining couplings (u+, w+, ũ±,
and w̃±) are found to (i) renormalize the total τ and τiv and
(ii) open an additional intervalley channel; see Appendix B
for details. For brevity, in what follows we assume λ, λsv > 0.

III. RESULTS

We are primarily interested in the zeroth harmonics of the
various spin components, which according to Eq. (13) com-
pletely determine the spin density observables [60]. Below,
we derive closed formulas for the time dependence of the
spin polarization density in two limiting cases λ ≫ λsv and
λ ≪ λsv.

A. Intravalley scattering only: w = 0

The calculations are carried out explicitly for the out-of-
plane component Sz ≡ S0

z + S̄0
z . The spin Bloch equations are

recast in the following form:
⎛

⎝

∂t λ 0
−4λ ∂t + 1

τ
2λsv

0 −2λsv ∂t + 1
τ

⎞

⎠

⎛

⎝

Sz

y

z

⎞

⎠ =

⎛

⎝

0
0
0

⎞

⎠, (37)

where we introduced the following admixtures of in-plane
spin harmonics:

y =
∑

m=±1

(

Sm
x + S̄m

x

)

+ ı m
(

Sm
y + S̄m

y

)

, (38)

z =
∑

m=±1

(

Sm
y + S̄m

y

)

− ı m
(

Sm
x + S̄m

x

)

. (39)

The eigenfunctions can be written as
⎛

⎝

Sz(t )
y(t )
z(t )

⎞

⎠ =
3
∑

i=1

civie
ωi t , (40)

where
ωi are the the solution of the algebraic equation

ω3 +
2

τ
ω2 +

[

4
(

λ2 + λ2
sv

)

+
1

τ 2

]

ω +
4λ2

τ
= 0, (41)

and vi are the corresponding eigenvectors. The coefficients ci

are determined by imposing the Cauchy boundary conditions
S0

z (t = 0) = 1
2 , y(t = 0) = z(t = 0) = 0. The analytical so-

lution to Eq. (41) is rather cumbersome. It is more transparent
instead to find a solution perturbatively by expanding

ω = ω(0) + β ω(1) + β2ω(2) + O(β3), (42)

where β = λsv/λ (β = λ/λsv) representing the case of domi-
nant BR (spin-valley) interaction. We find

Sz(t ) =
1

4

∑

s=±1

(

1 −
s

√

1 − c2
z

)

e−ωs t for λ ≫ λsv, (43)
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where cz = 4λτ and

ωs =
(

1 + s
√

1 − c2
z

)

2τ

(

1 −
λ2

sv

2λ2

c2
z

c2
z − 1 + s

√

1 − c2
z

)

.

(44)

In the particular case λsv = 0, we obtain ωs = 1/τ⊥
s with

τ⊥
s = (4λ2τ )−1, (45)

which is the familiar Dyakonov-Perel relation [58]. In this
regime, the spin relaxation is governed by motional narrow-
ing, yielding its characteristic dependence τs ∝ τ−1 [49,53].
On the other hand, for well-resolved SOC, the electron’s spin
completes full Larmor precession cycles in-between scatter-
ing events, which induces spin-memory loss with a character-
istic law τs ≈ 2τ (see Fig. 1 and discussion below) [61–63].

Combining the two limiting cases, we have

Sz(t )|λ≫λsv
=

1

2

{

exp
[

− 4 λ 2τ t
(

1 − 4λ2
svτ

2
)]

, λτ ≪ 1

e−t/2τ cos
[

2 λ t
(

1 + λ2
sv/λ

2
)]

, λτ ≫ 1.

(46)

The damped oscillatory mode appears when λ � 1/2τ sim-
ilarly to nonchiral 2D electron gases subject to strong BR
effect [61–63]. For the in-plane component, we find

Sx (t )|λ≫λsv
=

1

2

⎧

⎨

⎩

cos (2λsvt )
× exp

[

− 2 λ 2τ t
(

1 − 4λ2
svτ

2
)]

, λτ ≪ 1
cos (λt )2e− t

τ , λτ ≫ 1

(47)

where the solution in the strong SOC limit includes the higher-
order harmonics m = ±2 [see Eq. (26)]. In samples with
dominant spin-valley SOC (λsv ≫ λ), we find instead

Sz(t )|λsv≫λ =
1

2
exp

[

−
4λ2τ t

1 + 4λ2
svτ

2

]

, (48)

which provides the asymptotic behavior

Sz(t )|λsv≫λ =
1

2

⎧

⎨

⎩

exp
[

− 4 λ 2τ t
(

1 − 4λ2
svτ

2
)]

, λsvτ ≪ 1

e
− t

τ
λ2

λ2
sv , λsvτ ≫ 1.

(49)

For the in-plane component, we have

Sx (t )|λsv≫λ

=
1

2

⎧

⎪

⎨

⎪

⎩

cos (2λsvt )
× exp

[

− 2 λ 2τ t
(

1 − 4λ2
svτ

2
)]

, λsvτ ≪ 1

cos
[

2λsvt
(

1 + λ2

λ2
sv

)]

e
− t

2τ
λ2

λ2
sv , λsvτ ≫ 1

(50)

with the transition between overdamped and damped oscilla-
tory modes occurring for λsv � 1/τ .

These results deserve some comments. For strong BR
interaction (λsv ≪ 1/τ ≪ λ), the second line of Eqs. (46)
and (47), the spin polarization density includes an oscillatory
component. Note, however, that only in-plane spins experi-
ence spin-valley-modulated precession, with small frequency
ω = 2λsv ≪ λ in this particular regime; see Eq. (47), first line.
The lack of spin-valley-driven precession for out-of-plane

.

FIG. 2. Spin dynamics for strong proximity-induced SOC
(λSOCτ ≫ 1) in the presence of intervalley scattering. For dominant
BR-type SOC (a), the spin dynamics displays characteristic fast
oscillations with lifetime set by the momentum scattering timescale,
as discussed in the main text and illustrated in Fig. 1. For dominant
spin-valley-type SOC (b) the out-of-plane component is weakly
sensitive to the value of τiv. This is expected to hold in the highly
doped regime ǫ ≫ λsv, as discussed in the main text. In (a) the traces
Sx are calculated including higher-order harmonics up to m = ±2.

spins can be understood from simple commutator algebra
∂tSz ∝ ı[Hsv, Sz] = 0. In the limiting case of strong spin-
valley interaction (λ ≪ 1/τ ≪ λsv), this reflects in a purely
decaying (overdamped) mode for Sz [second line of Eq. (49)]
and underdamped behavior for Sx with a large frequency
ω = 2λsv ≫ λ; see second line of (50). As we show in the
following section, the spin dynamics in clean samples with
long τiv display similar behavior (viz. Fig. 2).
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In systems with λ ≫ λsv, 1/τ , the spin lifetimes are given
by τ

‖
s = τ and τ⊥

s = 2τ . Here, a single scattering event suf-
fices to randomize the electron’s spin. The faster decay rate of
in-plane spin polarization component indicates the dominant
role of |m| = 2 contributions in the harmonic expansion (26),
yielding a SRTA ratio ζ = 2. For dominant spin-valley inter-
action (λsv ≫ λ), the spin lifetime is extremely long and, as
such, in-plane spins can precess coherently. As pointed out
in Ref. [25], this behavior is dramatically changed when in-
tervalley scattering is included in the picture (see below). For
weak SOC, namely, λ ≪ λsv ≪ 1/τ and λsv ≪ λ ≪ 1/τ , the
spin dynamics is of the Dyakonov-Perel type, i.e., τs ∝ τ−1,
as reported in the first lines of Eqs. (46), (47) and (49), (50).
In the former case, the spin-valley interaction leads to a
correction of order ∝λ2

sv/λ
2 to the well-known Dyakonov-

Perel spin relaxation law of BR models [30,49,58]. In the
weak SOC regime (for finite λ), the spin lifetimes satisfy the
standard ratio ζ ≃ 1/2. On the other hand, the limiting case
of vanishingly small BR interaction λ ≪ λsv ≪ 1/τ is very
different in this respect. The valley-Zeeman-like interaction
does not couple to electrons’ velocity and, at a given valley, its
direction is fixed (±ẑ). Thus, in this case, no randomization
of the precession axis can occur and the spin relaxation is
efficiently suppressed as λ → 0. Yet, a small BR interaction
is sufficient to relax the spins via motional narrowing, as
reported in our equations.

From these results, the SRTA ratio for intravalley disorder

is readily obtained

ζ |τiv→∞ =
{

2, λτ ≫ {1, λsvτ }
1/2, all other cases.

(51)

In samples with strong BR interaction λ ≫ λsv, 1/τ , the quan-
tum kinetic theory predicts a SRTA ratio ζ = 2. This differ-
ence with respect to the standard Dyakonov-Perel regime, ζ =
1
2 , stems from the distinct role of the SU(2) gauge field in the
two cases λτ ≪ 1 and λτ ≫ 1. It can be readily verified by
inspecting Eq. (15) that the precession period for in-plane and
out-of-plane spins must satisfy T⊥ = T‖/2 across all regimes.
In the spin motional-narrowing limit (random dynamics) men-
tioned above, with λτ ≪ 1, the faster precession of out-of-
plane spins reflects in a different step of the random walk
δϕ⊥ = 2δϕ‖, hence, τ⊥

s = τ
‖
s /2 [Fig. 1(b)]. On the other hand,

for λτ ≫ 1, spins relax on the timescale of a single-impurity
scattering event. Here, the in-plane spin dynamics is driven
by the higher-order harmonics Sκ,±2

x and the inverse relation

is found τ⊥
s = 2τ

‖
s .

B. Intervalley scattering case: w �= 0

Atomically sharp defects lead to finite intervalley scatter-
ing time even in the cleanest samples [11]. Thus, the inclusion
of intervalley processes in the collision integral [Eq. (14)] is
crucial to understand the spin dynamics in realistic conditions.
A similar procedure as outlined in Sec. III A yields the spin
Bloch equations

⎛

⎝

∂t λ 0
−4λ ∂t + 1

τ+
2λsv

0 −2λsv ∂t + 1
τ−

⎞

⎠

⎛

⎝

Sz

y

z

⎞

⎠ =

⎛

⎝

0
0
0

⎞

⎠, (52)

.

FIG. 3. Spin dynamics for weak proximity-induced SOC
(λSOCτ ≪ 1) in the presence of intervalley scattering, for λsv ≪ λ

(λ ≪ λsv) [panels (a) and (b), respectively]. In (b), the in-plane spin
polarization is more sensitive to the value of τiv, whereas out-of-plane
spins are virtually unaffected by a finite τiv. This is consistent with
the findings in Ref. [25].

with

1

τ±
=

1

τ
+

1

3
×

2 ± 1

τiv
. (53)

We obtain the following asymptotic solutions for the out-of-
plane spin polarization density:

Sz(t )|λ≫λsv
=

1

2

⎧

⎨

⎩

exp
[

− 4 λ2 τ+ t
(

1 − 4λ2
svτ+τ−

)]

, λτ ≪ 1

cos
[

2λ
(

1 + λ2
sv

λ2

)

t
]

e−t/2τ+ , λτ ≫ 1

(54)

and

Sz(t )|λ≪λsv

=
1

2

⎧

⎨

⎩

exp
[

− 4 λ2 τ+ t
(

1 − 4λ2
svτ+τ−

)]

, λsvτ ≪ 1

e
− t

τ−
λ2

λ2
sv , λsvτ ≫ 1.

(55)

Note that as we are interested in the SRTA, in the small SOC
cases λSOCτ ≪ 1 we also took the limit λSOCτiv ≪ 1, where
one can ignore the oscillating factors cos(2λsvt ) reported in
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the previous section [Eqs. (47) and (50)]. Considering the
in-plane components, we reduce the set of coupled equations
[Eqs. (27)–(32)] to only two independent equations coupling
Sx = S0

x + S̄0
x and S̃y = S0

y − S̄0
y ,

(

∂2
t + 2λ2 + ∂t

τ+
2λsv

(

∂t + 1
τ+

)

−2λsv

(

∂t + 1
τ−

)

∂2
t + 2λ̃2 + ∂t

τ
+ 5

3
∂t

τiv

)

(

Sx

S̃y

)

=
(

0
0

)

,

(56)

where we have defined

2λ̃2 = 2λ2 +
4

3

1

τiv

1

τ−
. (57)

Solving Eq. (56) with the usual boundary conditions, i.e.,
Sx (t = 0) = 1

2 and all the other functions being zero at the
initial time, we find

Sx (t )|λ≫λsv
=

1

2

⎧

⎪

⎨

⎪

⎩

exp
[

−
(

2λ2τ+ + 3λ2
svτiv

)

t
]

, λτ ≪ 1

exp
[

−
(

1/2τ+ + 3λ2
svτiv

)

t
]

× cos(λt )2 , λτ ≫ 1

(58)

and

Sx (t )|λ≪λsv
=

1

2

⎧

⎨

⎩

exp
[

−
(

2λ2τ+ + 3λ2
svτiv

)

t
]

, λsvτ ≪ 1

cos (2λsvt )e
−( λ2

2λ2
sv

1
τ
+ 2

3
1

τiv
)t
, λsvτ ≫ 1.

(59)

In Figs. 2 and 3, we show representative examples of the spin
polarization dynamics in the strong and weak SOC limits,
respectively, according to our results.

IV. SPIN RELAXATION TIME ANISOTROPY

The spin Bloch equations (27)–(32), showing a crossover
between overdamped (weak SOC) and oscillating damped
modes (strong SOC), are the most important result of this
paper. We now discuss in more detail how the SRTA evolves
from weak interface-induced SOC (λSOCτ ≪ 1) to well-
resolved SOC (λSOCτ � 1). We focus on the asymptotic
regimes

ζ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2 + 3

4
λ2

sv

λ2

(

1 + τiv

τ

)

, λτ, λsvτ ≪ 1

2 + O
(

λ2
sv/λ

2
)

, λτ ≫ 1 ≫ λsvτ

1
1+3

τiv
τ

[

2λ2
sv

λ2 + 3
2

τiv

τ

]

, λsvτ ≫ 1 ≫ λτ.

(60)

For the sake of clarity, we note that the first line in the
expression for ζ is obtained by considering the first line of
Eq. (59) [or equivalently Eq. (58)] together with the first line
of Eq. (54) [or Eq. (55)]. The second line of Eq. (60) is
obtained using the second lines of Eqs. (58) and (54). Finally,
the third line of Eq. (60) is a result of the second lines of
Eqs. (59) and (55).

The first important observation concerns the strong BR
case with λτ ≫ 1 ≫ λsvτ , which can in principle be achieved
in clean graphene-based heterostructures, where also the
lattice mismatch is sizable enough to produce λsv ≈ 0.
Contrary to the other two presented cases [first and third lines
of Eq. (60)], in this limit a direct estimation of τiv/τ or λsv/λ

FIG. 4. Traces of fixed SRTA for weak (a) and strong (b)
proximity-induced SOC [Eq. (60)]. (a) The inset shows a comparison
with the spin white-noise model in Ref. [25] for ζ = 10. (b) Traces of
fixed SRTA in the strong SOC regime, Eq. (60), third line. The typical
ratio τiv/τ ∼ 25 [64] is compatible with a broad range of SOCs in the
interval λsv/λ = 14–80 depending on the measured SRTA ratio.

from spin precession measurements alone is not possible.
Hence, whenever ζ ≈ 2 is measured, the extraction of other
parameters from spin precession data should be considered
unfeasible.

We focus in the following on the two more interesting cases
λτ, λsvτ ≪ 1 and λsvτ ≫ 1 ≫ λτ. For the weak SOC case
[first line of Eq. (60)] we report a visualization of the obtained
result in terms of contour lines for fixed ζ [see Fig. 4(a)]. Our
results in this limit are in good qualitative agreement with the
toy model of fluctuating spins put forward in Ref. [25], i.e.,

ζ =
1

2
+

λ2
sv

λ2

τiv

τ
(Ref. [26]), (61)

ζ =
1

2
+

1

4

λ2
sv

λ2

(

3 +
τiv

τ

)

(this work), (62)

where, for simplicity, we identified the ratio of intervalley
to intravalley correlation time in Ref. [25] with the ratio
τiv/τ . The inset of Fig. 4(a) shows a detailed comparison
for the case ζ = 10. Following the experiment in Ref. [17]
(ζ = 11), assuming λsv/λ ∼ 0.67 for graphene/MoSe2 [18],
a τiv/τ = 30 is obtained, which for τ = 0.076 ps gives τiv =
2.2 ps (against τiv = 1.7 ps following Ref. [25]). These es-
timates (obtained from modeling of spin precession data)

245408-7



MANUEL OFFIDANI AND AIRES FERREIRA PHYSICAL REVIEW B 98, 245408 (2018)

agree qualitatively well with typical relaxation times ex-
tracted from magnetotransport measurements [11,64]. We
would like to point out that our Eq. (62) [and similarly
Eq. (61)] gives a divergent SRTA in the limit of absence
of intervalley scattering τiv → ∞, at first glance contra-
dicting Eq. (51). The dilemma is solved by noticing that
Eq. (62) is strictly valid for λsvτ ∼ λsvτiv ≪ 1. This particular
case corresponds to the physical situation where the out-
of-plane component of the “SOC field” is randomized on a
timescale τiv (recall that H κ

sv = −H κ̄
sv). This activates a dom-

inant motional-narrowing channel for the in-plane spin com-
ponent, which strongly impacts the spin dynamics as shown in
Fig. 3.

A careful analysis of the crossover to the strong λsv regime
allows to conclude that the transition between the motional-
narrowing (Dyakonov-Perel) regime λsvτiv ≪ 1 and the fast
(oscillating) relaxation regime with λsvτiv ≫ 1 is achieved
for λsvτiv ≃ 1

3 , assuming λ ≪ λsv. We briefly discuss the
experimental conditions for which the strong spin-valley case
of Eq. (60) (third line) may be relevant. For instance, in
Ref. [12], the authors estimate λsv = 0.96 meV ∼ 32 λ, with
τ ∼ 12 ps for a graphene/WS2 heterostructure. Assuming a
SRTA ratio ζ = 11 (see above) and using Eq. (61) from
Ref. [25] [or, equivalently, first line in Eq. (60)] one would
obtain an unphysical result τiv/τ ≃ 0.01 < 1. The usage of
Eq. (60) in the limit of strong spin-valley coupling then is
required. Using this relation, we estimate τiv/τ ≈ 70, which
would suggest a dominant role of intravalley processes in the
experiment of Ref. [12].

V. CONCLUSIONS

In this work, we investigated theoretically the spin dynam-
ics in graphene with strong proximity-induced SOC. Starting
from the quantum Liouville equation, we derived the effec-
tive spin Bloch equations governing the spin dynamics of
2D Dirac fermions subject to “in-plane” (Bychkov-Rashba)
and “out-of-plane” (spin-valley) interactions. We discussed
in detail the irreversible loss of spin information with origin
in intravalley and intervalley scattering processes induced by
generic nonmagnetic disorder, obtaining the time dependence
of the spin polarization density and associated spin relaxation
times. We finally discussed the interesting results for the spin
relaxation time anisotropy τ⊥

s /τ
‖
s , which is an experimentally

accessible figure of merit [48]. The theoretical results reported
in Ref. [25] for weak SOC are qualitatively reproduced by our
microscopic theory. On the other hand, in ultraclean samples
with strong SOC on the order of (or larger than) the disorder-
induced quasiparticle broadening, our microscopic theory
uncovers a qualitatively different spin relaxation picture.
Here, the spin polarization density undergoes fast damped
oscillations with spin lifetime set by the timescale of mo-
mentum scattering. If Bychkov-Rashba interaction dominates
(λ ≫ λsv, 1/τ ), our theory predicts τ⊥

s /τ
‖
s = 2. For samples

with dominant spin-valley interaction (λsv ≫ λ, 1/τ ), the spin
relaxation anisotropy acquires a strong dependence on the
relevant intravalley and intervalley scattering times.

We remark that the formalism adopted here is only valid
in the highly doped regime of large Fermi energy, where
the only role of the “SOC field” is to induce Larmor pre-
cession. This picture might break down at low electronic
density for graphene with large interface-induced SOC of
order 1–10 meV. When the spin texture of the energy bands
is well established, momentum is then strongly correlated
with the direction of the SOC field, which can favor or
inhibit certain matrix elements of the scattering potential
U [25]. A possibility to incorporate the SOC at low elec-
tronic densities is by adopting the self-consistent quantum
diagrammatic formalism for 2D Dirac fermions recently de-
veloped in Ref. [58]. We will address this problem in a future
publication.

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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APPENDIX A: DETAILS ON THE DERIVATION

OF THE SPIN BLOCH EQUATIONS

The collision integral [Eq. (A1)] is diagonal in valley space
〈kκ|I |k′κ̄〉 = 0, which was justified in the main text:

∂tS
κ
k

∣

∣

scatt
= 〈kκ|I |kκ〉 ≡ I

[

Sκ
k

]

(A1)

= −π
∑

k′κ ′

δ(ǫk − ǫk′ )
〈

Sκ
k U κκ ′

kk′ U κ ′κ
k′k + U κκ ′

kk′ U κ ′κ
k′k Sκ

k

− 2 U κκ ′

kk′ Sκ ′

k′ U
κ ′κ
k′k

〉

dis
. (A2)

Intervalley processes are still taken into account internally to
the collision integral, i.e., by considering transitions of the
type K → K ′ → K where electrons initially at K (K ′) are
scattered at K ′(K ) and then scattered back to K (K ′). Inserting
the disorder correlator

〈∣

∣U κκ ′

kk′

∣

∣

2〉

dis
= u2 δκκ ′ cos2 θ + w2δκκ̄′ sin2 θ, (A3)

θ ≡
φk′ − φk

2
(A4)

into Eq. (A1) gives Eqs. (24) and (25) in the main text. Using
the notation in the main text and the relation

2π u2

∫ ∞

0

dk′

2π
k′δ(ǫk − ǫk′ ) =

u2ǫ

v2
≡

4

τ
, (A5)
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where the intravalley transport time τ has been defined, yields,
after simple algebra

I intra = −
4

τ

∑

m

eı mφk

∫ 2π

0

dφk′

2π
cos2

(

φk − φk′

2

)

×
[

1 − e−ı 2m (
φk−φ

k′
2 )

]

Sm
i (A6)

= −
4

τ

∑

m

eı mφkSm
i

∫ 2π

0

dθ

2π
cos2 θ (1 − cos 2 m θ )

(A7)

≡ −
∑

m�=0

eı mφk
Sm

i

τA
m

, (A8)

with

1

τA
m

=
4

τ

∫ 2π

0

dθ

2π
cos2 θ [1 − cos(2 m θ )]. (A9)

The intervalley part reads as

I inter = −
4

τ
r2

{

∑

m

eı mφk

∫ 2π

0

dφk′

2π
sin2

(

φk − φk′

2

)

×
[

Sm
i − S̄m

i e−ı 2m (
φk−φk′

2 )
]

}

(A10)

= −
4

τ
r2

(

∑

m

eı mφk
Sm

i

2
− S̄m

i

∫ 2π

0

dθ

2π
sin2 θ cos 2 m θ

)

(A11)

= −r2
∑

m

eı m φk

(

2Sm
i

τ
−

S̄m
i

τB
m

)

, (A12)

with

1

τB
m

=
4

τ

∫ 2π

0

dθ

2π
sin2 θ cos(2 m θ ). (A13)

It is instructive to consider the system without SOC, for which
the various harmonics are decoupled

∂tS
m
i = −

(

1

τA
m

+
2r2

τ

)

Sm
i +

r2

τB
m

S̄m
i , (A14)

∂t S̄
m
i = −

(

1

τA
m

+
2r2

τ

)

S̄m
i +

r2

τB
m

Sm
i , (A15)

and the corresponding expression at K ′, obtainable by S → S̄.
Solving these equations, we obtain

(

Sm
i (t )

S̄m
i (t )

)

= e
−( 1

τA
m

+2r2 t
τ

)

⎛

⎜

⎝

cosh
(

t r2

τB
m

)

sinh
(

t r2

τB
m

)

sinh
(

t r2

τB
m

)

cosh
(

t r2

τB
m

)

⎞

⎟

⎠

×

(

Sm
i (0)

S̄m
i (0)

)

. (A16)

For m = 0, we have τA
0 → ∞ and τB

0 → τ/2, so that the
solution for the total spin polarization is found as Si (t ) =
S0

i (t ) + S̄0
i (t ) = Si (t = 0), which is simply a statement of

spin conservation. Note that the uniform oscillation (zeroth

harmonic) of the Fermi surface is associated with the charge
density. Restoring SOC, and defining τA

±1 = τ = −τB
±1 we

find Eqs. (27)–(32) of the main text for the harmonics m =
0,±1.

APPENDIX B: GENERAL NONMAGNETIC DISORDER

The correlator for generic nonmagnetic disorder reads as
〈∣

∣U κκ ′

kk′

∣

∣

2〉

dis
=
∑

p=±

[(

u2
p δκκ ′ + w̃2

pδκκ̄ ′
)

cos2 θp

+
(

w2
pδκκ̄′ + ũ2

p δκκ ′
)

sin2 θp

]

, (B1)

θ± ≡
φk′ ± φk

2
. (B2)

It is convenient to define the relaxation rates [see main text,
Eqs. (18)–(21)]

1

τ
p
u

=
u2

pǫ

4v2
,

1

τ
p
ũ

=
ũ2

pǫ

4v2
,

1

τ
p
w

=
w2

pǫ

4v2
,

1

τ
p
w̃

=
w̃2

pǫ

4v2
.

(B3)

Following the same steps as in Appendix A, we find

I intra = −4
∑

m

eı mφk

∫ 2π

0

dφk′

2π

(

1

τ−
u

cos2 θ− +
1

τ+
u

cos2 θ+

+
1

τ−
ũ

sin2θ− +
1

τ−
ũ

sin2θ+

)

(1 − e−ı 2m θ− )Sm
i (B4)

= −
∑

m�=0

eı mφk
Sm

i

τKK

+
(

1

τ+
u

−
1

τ+
ũ

)

×
(

e5ıφkS1
i + e−5ıφkS−1

i

)

, (B5)

where
1

τKK

=
1

τ−
u

+
3

τ−
ũ

+
2

τ+
u

+
2

τ+
ũ

. (B6)

The intervalley part of the collision integral reads as

I inter = −4
∑

m

eı mφk

∫ 2π

0

dφk′

2π

(

1

τ−
w̃

cos2 θ− +
1

τ+
w̃

cos2 θ+

+
1

τ−
w

sin2θ− +
1

τ+
w

sin2θ+

)

(

Sm
i − S̄m

i e−ı 2m θ−
)

(B7)

= −
∑

m

eı m φk

(

Sm
i

τKK ′
+

S̄m
i

τ iv
m

)

−
(

1

τ+
w

−
1

τ+
w̃

)

×
(

e−3ıφkS1
i + e3ıφkS−1

i

)

, (B8)

where
1

τKK ′
= 2

(

1

τ−
w

+
1

τ−
w̃

+
1

τ+
w

+
1

τ+
w̃

)

,
1

τ iv
0

=
1

τKK ′
,

1

τ iv
±1

=
1

τ−
w

−
1

τ−
w̃

. (B9)

The general Bloch equations are thus obtained from
Eqs. (27)–(32) in the main text via the following mapping:

2r2

τ
→

1

τKK ′
, h(S±

i , S̄±
i ) →

(

1

τKK

+
1

τKK ′

)

S±1
i

+
(

1

τ−
w

−
1

τ−
w̃

)

S̄±1
i . (B10)
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