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ABSTRACT: Biodiesel is a biofuel that offers a number of advantages, but is also prone to water contam-
ination. Free water in the fuel can, both decrease engine performance and cause damage. Small droplets are
especially hard to separate once they form emulsion in the fuel. In this paper the sparation processes are simu-
lated via lattice Boltzmann modelling. These types of models have a variety of advantages, but, as most complex
codes, suffer from high computational cost. This causes problems when various statistical analyses are needed,
since these procedures often require many runs. In order to ameliorate this problem, a Gaussian process emula-
tor is used with the time consuming code. To estimate the probability of failure, caused by abnormal operation
conditions, Subset Simulation is used. A single fibre lattice Boltzmann model was created and run with three
input variables - droplet and fibre diameter, and fibre surface energy. The emulator was successfully used to
create an inexpensive approximation of the code which was then sampled via subset simulation to efficiently
calculate the probability of filter failure due to excessive water volume escaping the filter. The results of this
work will benefit the improved performance of engines using biodiesel, through the numerical modelling of
an optimum coalescer filter structure and by estimating and minimising filter failure mode arising due to an
anomaly in the multiple variables affecting the water separability.

1 INTRODUCTION

Studies indicate that at the present usage rates, some
of the main fossil fuel resources will have run out
by 2042 (Shafiee and Topal (2009)). Biodiesel has a
number of advantages, the chief of which are its re-
newability and carbon neutrality. The former means
that, unlike fossil fuels, the raw materials needed
for the production of biodiesel can be cultivated and
grown to respond to demands. This reduces the cases
where arable land, forests or the sea bottom are de-
stroyed by oil drilling and coal quarrying. Carbon
neutrality means that all the carbon that is produced
by burning the fuel to generate power, has already
been consumed in the process of photosynthesis while
the raw materials have been grown. Biodiesel can also
be used in both, its pure form or as a part of a blend
with normal petroleum diesel. However, because of
its chemical composition, biodiesel is very prone to
water contamination, which forms a stable emulsion
in the fuel medium. Free water in the fuel promotes
biological growth in the fuel tanks, which results in

corrosion and the forming of slime which could block
and damage the fuel injection system (Fregolente
et al. (2014)). The majority of the contaminant can
be separated with the help of mechanical (centrifuges)
or static devices (coalescers). However separating wa-
ter droplets on the microscopic scale (5 - 10 µm) is
a challenging endeavour (Schweitzer (1997)). This is
due to the relatively low interfacial tension between
biodiesel and water (Yang et al. (2007)). Special ad-
ditives (surfactants) are mixed in the fuel to improve
the performance of the engine at low temperatures
(Dwivedi et al. (2011)). These chemicals deteriorate
the separability of water even further. The process
of efficiently separating the two liquids with porous
fibrous filters involves the investigation of the role
of many different variables. These could be chemi-
cal properties (interfacial and surface tension, density,
viscosity) of both water and fuel, contaminant proper-
ties (droplet size distribution), filter medium charac-
teristics (fibre diameter distribution, surface energy,
orientation) and ambient properties (pressure, tem-
perature, velocity) to name but a few. The research
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focuses on identifying optimal filter media structures
that will improve water separation efficiency and rec-
ognizing critical variables that can adversely affect
the filtration performance under a given set of con-
ditions.

In order to study the relationship between all vari-
ables and filtration efficiency, a numerical model is
built in place of physical experiments. The lattice
Boltzmann model (LBM) (also referred to as the sim-
ulator) places the simulation domain on grid (or a lat-
tice) and associates local particle velocities and den-
sities with each node of the grid. The process then
simulates the interaction between the particles in two
separate steps - collision and streaming (Sukop and
Thorne (2006)). It can be shown that under some gen-
eral assumptions the Navier-Stokes equations can be
fully recovered from the model, making it a valid
tool for simulating processes involving fluids (Wolf-
Gladrow (2000)).

Given the complex nature of the process being sim-
ulated, it is expected that the simulator will be com-
putationally expensive. This is a problem, since var-
ious tests and validation processes, among which re-
liability analysis, require thousands of evaluations of
the code under different input combinations. There-
fore, surrogate modelling is used extensively in this
project. Surrogate modelling and in particular Gaus-
sian process emulation (GPE) is a powerful technique
for approximating the output of expensive computer
codes. Once constructed and validated, the surrogate
can be used independently of the simulator, thus sav-
ing an appreciable amount of time and allowing dif-
ferent analyses of the code to be performed (O’Hagan
(2006)).

There are many possible regimes under which a
filter could fail. For a typical well engineered sys-
tem, however the probability of failure is small, which
means that a lot of testing (under the form of simula-
tions) needs to be done in order for it to be reliably es-
timated. In addition, the regions of the input space re-
sulting in failure could be disjoint. Subset simulation
(SuS)(Au and Beck (2001)) can be used to tackle both
of these problems. The algorithm relies on the gener-
ation of a series of nested, less-rare events of fixed
probability, which could be easily populated. Instead
of trying to sample the whole input space, once the
current less-rare region is populated, the correspond-
ing samples are used to seed a Markov Chain Monte
Carlo (MCMC) algorithm which populates the next
conditional level. This operation is repeated until a
predefined number of samples from the true failure
region is obtained.

The present paper has two main goals. Firstly, to
investigate the use of emulation techniques with lat-
tice Boltzmann models and secondly to test the ability
to combine the emulator results with reliability tools
(SuS). Combining the emulator with subset simula-
tion will provide an affordable reliability estimate and
hence means to minimise filter failure mode in the

event of an anomaly amongst different variables or
any combinations thereof. In this work the failure of
the separator due to its saturation with water is dis-
cussed. The remainder of the paper is organized as
follows: Section 2 offers a theoretical overview of lat-
tice Boltzmann modelling. Section 4 briefly discusses
the details behind Gaussian process emulation. Sec-
tion 3 summarizes the idea of subset simulation. Se-
lected results are presented in Section 5. Finally, Sec-
tion 6, provides a discussion and some conclusions.

2 LATTICE BOLTZMANN MODELS

LBM is an approach which stems from methods ini-
tially developed for research on dilute gases (Sukop
and Thorne (2006)). Consider a gas which consists
of hard spherical particles. These particles can only
interact with each other via elastic collisions. If one
is able to determine the position and momentum
of each individual particle at a particular instant in
time, one can fully characterize the behaviour of the
gas under observation. That is, a gas with N num-
ber of particles can be characterized by construct-
ing the particle distribution function fN(xN ,pN , t),
such that fN(xN ,pN , t)δxδp represents the probable
number of particles in a infinitesimal volume, centred
around x,p in the phase space. However, dealing with
real fluids means that at atmospheric temperature and
pressure, a mole (∼ 1023)of particles is contained in
just several litres of gas. It becomes clear that tracking
individual particles is not feasible. In such situation,
the tools and principles of statistical mechanics can be
used, that is the macroscopic properties which are im-
portant for the fluid analysis can be obtained from the
average behaviour of a large number of copies of sin-
gle particle. Thus, the fluid is represented by the sin-
gle particle distribution function - f (1)(x,p, t), which
gives the probability of finding a certain particle at a
given position with a given momentum. Using the sin-
gle particle distribution function, the interaction be-
tween particles could be modelled. This model is the
Boltzmann Transport Equation (BTE):

v · ∇xf
(1) + F · ∇pf

(1) +
∂f (1)

∂t
= Ω (1)

In (1) v is the fluid velocity; ·∇xf
(1) is the spatial gra-

dient of the single particle distribution function;F is
the forcefield acting on the fluid particles ·∇pf

(1) is
the momentum gradient of the single particle distri-
bution function; ∂f (1)/∂t is the time change in f (1)

and Ω is the collision integral. The BTE is well doc-
umented and studied equation and will not be dis-
cussed here. A special discretization of the BTE is
the Bhatnagar-Gross-Krook lattice Boltzmann Equa-



tion (BGK LBE)(Wolf-Gladrow (2000)):
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where f
(eq)
i is the equilibrium distribution function

(given by (3)); τ is the single relaxation time to equi-
librium; ci are the discrete velocities associated with
the lattice and wi are appropriate lattice weights. Ad-
ditionally, in (3), ρ and u are the macroscopic den-
sity (4) and velocity (5). In order to simulate im-
miscible liquids the single component multiphase or
the multi component multiphase (SCMP; MCMP) LB
models could be used. The SCMP (Shan and Chen
(1993)) which models the two liquids as the two
phases (liquid and vapour) of the same chemical com-
ponent is used in this work. The idea behind SCMP is
that some interaction potential among particles is in-
troduced (6), which governs the separation between
vapour (light phase) and liquid (heavy phase).

F(x, t) = −Gψ(x, t)
∑

i

wiψ(x + ci, t)ci (6)

where:

ψ(ρ) = ρ0

[

1− exp

(

−ρ

ρ0

)]

furthermore ρ0 is the initial density - commonly taken
as 1 and G is the interaction strength parameter (neg-
ative for attraction). The LB models readily allow for
a full specification of complex geometries in the flow
field, which is why they are particularly suitable for
simulating flow through filters. The mesh structures
can be artificially created or microscope imaging can
be used.

3 SUBSET SIMULATION

One very important problem in engineering is the es-
timation of the probability of failure, pF of a system.
In the context of numerical simulations failure can
be defined as the scenario where a response variable
(output) of the model, exceeds some threshold of ac-
ceptable system behaviour. The output, y is related to

the input variables, x ∈ X ⊂ R
d, via some mapping

provided by the model,

y = η(x) (7)

thus the failure domain is defined as the values of x
which cause the system response, y to exceed some
critical value y∗

F = {x : η(x) > y∗} (8)

Estimating pF is associated with sampling from F .
Additionally the complementary CDF (CCDF) (Au
and Wang (2014)) of the output distribution of the
model can also be constructed, to present a fuller pic-
ture of the failure regime. Usually, for a well designed
system the true value of pF is very small, that is, it
is a rare event. Also, a typical model has a high di-
mensional input space and often the failure domain
of that space is disjoint and sampling from it poses a
significant challenge. Subset simulation (Au and Beck
(2001)) aims to divide the rare event into a series of
nested less-rare events, (9).

F ⊂ Fm ⊂ Fm−1 ⊂ . . . ⊂ F1 (9)

In (9) F1 is a relatively frequent event. Given that se-
quence, it can be shown that the probability of the
rare event F could be expressed as a product of larger
probabilities:

P(F ) = P(F1) · P(F1|F2) · . . . · P(F |Fm) = pF (10)

In (10) P(·|·) denotes the conditional probability. Be-
ginning from the unconditional level F1, the algo-
rithm “probes” the input space X via direct Monte
Carlo sampling. Then, based on the values of y in
(7) it constructs the first intermediate failure thresh-
old, y∗1 < y∗, defining a “relaxed failure domain”,
F1. SuS then populates F1 using a MCMC algo-
rithm (Metropolis, Modified Metropolis, Metropolis-
Hastings). The generation of intermediate levels con-
tinues until a predefined number of samples lie in the
true failure domain F . At the end of the algorithm
an estimate of the CCDF of the response function
(simulator) is generated. The summarised procedure
for subset simulation as presented by (Zuev (2015))
is given in Algorithm 1. The modified Metropolis
algorithm which generates a new sample x̃ from a
proposal distribution q(·|x), where x ∼ π(·|Fl) and
π(·|Fl) is the input PDF at the current level Fl, is
given in Algorithm 2. In Algorithm 1 p ∈ (0,1) is
the conditional probability of each level; N is the to-
tal number of samples; Nc = p1N is the number of
Markov chains in each level; Ns = p−1

1 is the number
of samples per chain. There, the values of p andN are
appropriately chosen by the user. In Algorithm 2 φ is
the normal distribution PDF and d is the number of
dimensions of X .



Algorithm 1 Subset simulation

1: Generate samples {X
(1)
k : k = 1, . . . ,N} from the

input PDF, π

2: for k in {X
(1)
k } do

3: y
(1)
k =η(X

(1)
k )

4: end for
5: Set nF (1) =

∑N

k=1 IF (y
(1)
k > y∗)

6: while n
(l)
F < Nc do

7: Sort y in descending order
8: Select the first Nc samples as ”seeds“ for

populating Fl+1

9: Set y∗l =
y
(l)
Nc

+y
(l)
Nc+1

2
10: Populate Fl+1 using Algorithm 2

11: Calculate n
(l)
F

12: Set l = l+ 1
13: end while

14: Calculate p̂SuSF = pl
n
(l)
F

N

Algorithm 2 Modified Metropolis algorithm

1: for i in 1 . . . d do
2: Sample x′i ∼ qi(·|xi)

3: Take ξk = x′i with probability min{1,
φ(x′

i
)

φ(xi)
}

4: end for
5: if ξ ∈ F1 then
6: x̃ = ξ
7: else
8: x̃ = x
9: end if

4 GAUSSIAN PROCESS EMULATION

Simulators used to model complex scientific phenom-
ena are usually very computationally expensive. This
is to say that a single evaluation of the code’s output at
a given set of input values takes sufficiently long time,
as to prohibit any type of analysis which requires a
large number of model runs. The LBM code is no ex-
ception. Depending on the resolution of the flow field
a single run of the SCMP LBM used for this work
takes between 60 seconds and just short of 8 minutes.
The code was executed on a dedicated server com-
puter with 20 Intel R© Xeon R© E5-2670 CPUs. Even
though SuS requires fewer samples than DMC to es-
timate the failure probability, it still relies on such
amounts of simulation runs which result in very large
computational times. Clearly, the analysis cannot be
carried out using the code directly. In such cases it is
common to use a less expensive approximation of the
code output. These approximations are widely known
as metamodels or emulators. There is a number of ex-
isting metamodelling techniques, but for the purposes
of this study, GPE is used. Formally, the model struc-
ture is expressed as:

η(x) = h(x)Tβ +Z(x) (11)

where η(x) is the simulator output as a function of
its inputs, h(x)T is a known function of the inputs,
β is a vector of unknown coefficients and Z(x) is a
Gaussian process with zero mean and covariance -
σ2c(x,x′;ψ). The function h(x) should express any
expert opinion about the form of the simulator output
and together with the parameter β reflects its overall
trend. In practice, however, the trend is often taken to
be constant as h(x) = 1, charging the Gaussian pro-
cess in (11) with the responsibility of capturing the
behaviour of the underlying function. In the formula-
tion above, σ2 is a scale parameter and ψ is a param-
eter specifying the behaviour of the correlation func-
tion.

Using Gaussian process emulation, a posterior
probability distribution for the mean of the computer
code’s output can be constructed, conditional on a rel-
atively small number of simulator runs, y and the pa-
rameters, θ = {β,σ2, ψ}. It can be shown that this dis-
tribution has the form:

η(x∗)|y, θ̂,∼ N (m(·),C(·, ·)) (12)

with posterior predictive mean (also called
asurrogate):

m(x∗) = β̂ + t(x∗)TC−1(y − 1β̂) (13)

and posterior predictive variance:

C(x∗,x′∗) = σ̂2(c(x∗,x∗)− t(x∗)TC−1t(x′∗)) (14)

In (13) and (14), C ∈ R
n×n is such that

Cij = c(xi,xj); t(x∗) ∈ R
n such that t(x∗) =

(c(x∗,x1), . . . , c(x
∗,xn))

T ; c(xi,xj) is called
the correlation function; and 1 ∈ R

n such that
1 = (1, . . . ,1)T .The process of estimating θ from
observed data is referred to as training and is well
described in (Forrester et al. (2008)) from a classical
prospective or in Oakley (1999); Becker (2011) from
Bayesian standpoint. Once the emulator is trained,
its posterior distribution can be sampled many times
at an affordable cost to provide data for various
analyses.

5 NUMERICAL EXPERIMENTS

In order to better understand the complex nature of
the filter environment, a simplified version of the real
mesh was simulated and tested initially. As seen in
the panels of Figure 5, the simulation represents a sin-
gle water droplet impacting onto a fibre placed in the
diesel medium. This particular fibre has low surface
energy (hydrophobic) represented by the wettability
coefficient, µ = 0.08. In panels k) and l) of Figure 5
some of the water volume can be seen to “escape”
from the fibre and go to the outlet of the domain,
which represents the downstream portion of the fuel
line. The escape volume denoted with Ve is of inter-
est in this simulation since its presence signifies that



Figure 1: Sample from a run of SCMP LBM - a droplet of radius 30 lu (lattice units) impacts on a hydrophobic fibre of radius 20 lu.
Density ratio between the two phases is 1:35.

the filter has failed to accomplish its task. The model
as shown previously depends on three input variables,
namely droplet diameter, fibre diameter and fibre sur-
face energy denoted with dd, df , µ, respectively. That
is the relationship between inputs and outputs is given
by Ve = η(dd, df , µ). As seen in Figure 5 and in par-
ticular panels e) to h) the droplet exhibits highly non-
trivial deformation upon impacting the fibre, which
determines its coalescence and separation dynamics.
The simulation domain pictured here is 400 lattice
units long and 300 lattice units high. The average sim-
ulation time was found to be 62 seconds. In order
to perform a reliability analysis on the environment
represented by the code, the GPE had to be used to
construct a more computationally efficient approxi-
mation to the code. For the purpose of training the
emulator, the code was ran at 50 points selected via
Latin hypercube sampling (McKay et al. (1979)). It
is commonly accepted that 10d samples are sufficient
for the purpose, where d is the number of dimensions
of X (Loeppky et al. (2008)). Another 50 data points
were sampled for validating the meta model. Figure
5 shows the predictions of the GPE from the 50 vali-
dation runs, plotted against the observations from the
LBM simulator. Most of the data points lie close to
the 45o line which indicates perfect correspondence
between prediction and observation. There are a few
outliers which represent possible local problems with
the emulator and could be rectified by obtaining more
samples in that vicinity. One of the main diagnostics
of a GP emulator is the analysis of individual predic-
tion errors (IPE) (Bastos and OHagan (2009)) given
in (15). Each IPE gives the error between the sim-
ulator output, yi and the mean of the emulator (13),
normalised by the variance of the emulator’s poste-
rior distribution - the diagonal of C in (14). For a well
working emulator the IPE have a Student-t distribu-
tion and therefore, 95% of them should lie in the inter-
val [−2,2]. Figure 5 depicts the distribution of errors
for the emulator used on the LBM code. Again, most
of the points lie in the desired region and are evenly

distributed in it.

DI
i =

yi −E[η(xi
∗)|y]

√

V[η(xi
∗)|y]

(15)

Figure 2: Predictions against observed values of escape volume
of water. Error bars represent 95% credible interval.

Figure 3: Predictions against individual prediction errors.

Overall, it is accepted that the emulator represents
the simulator appropriately and can be used in its
place. Most importantly a single prediction from the
emulator is instantaneous and thus all desired statisti-
cal analysis can be performed. Subset simulation can
also be run with the emulator. A failure level was set
at Ve ≥ 3270. Following (Au and Wang (2014)) the



Figure 4: Failure probability estimated from 500 runs of SuS.
The mean pF ≈ 0.00107 is plotted with black solid line. The
two dashed lines report ± one standard deviation.

Figure 5: Complementary CDF estimate of escape volume. The
colours indicate different conditional failure levels.

level probability was chosen as p = 0.1. The proposal
PDF, q(·|·) (Algorithm 2) was chosen to be the stan-
dard normal distribution - a popular choice for the
method. Each level was populated with 300 samples
from q. Figure 5 shows the estimation of the CCDF
via SuS with the aforementioned characteristics. An-
other 500 SuS runs were performed, which resulted
in a mean probability of failure, pF = 0.00107. The
estimations of pF are shown in Figure 5. The mean
CCDF, together with the first and third quartiles are
shown in Figure 5. It can be seen that the estimation
deviate very little from the mean value. Each simula-
tion had between 3 and 4 conditional levels, resulting
in a total of either 900 or 1200 samples. A reliable
estimation of probability of the order given above,
would require approximately 100000 samples using
direct Monte Carlo methods.

Figure 6: Complementary CDF estimates of escape volume for
500 runs of SuS. The black dashed line shows the mean estimate.
The red dotted lines represent the 25th and the 75th percentiles.

6 DISCUSSION

In this paper, a combination between Gaussian pro-
cess emulation and Subset simulation was presented
for the estimation of a rare event in Lattice Boltzmann
simulation of a filter. The efficiency gains in compu-
tational time due to the use of the emulator instead of
the LBM code are significant. The reduction in num-
ber of samples required by SuS as compared to DMC
is appreciable. Overall, the performance of the tools is
promising and can be used to a satisfactory result. In
the future the project will focus on modelling the filter
with increasingly higher accuracy. This will introduce
more dimensions to the input space and possibly cre-
ate more complex failure domains. Other causes of
filter failure will also be addressed.
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