
This is a repository copy of Characterization of low-lying excited states of proteins by high-
pressure NMR.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/140628/

Version: Accepted Version

Article:

Williamson, M.P. and Kitahara, R. (2019) Characterization of low-lying excited states of 
proteins by high-pressure NMR. Biochimica et Biophysica Acta (BBA) - Proteins and 
Proteomics, 1867 (3). pp. 350-358. ISSN 1570-9639 

https://doi.org/10.1016/j.bbapap.2018.10.014

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Characterisation of low-lying excited states of proteins by high-pressure NMR 

Mike P Williamsona,* and Ryo Kitaharab  

aDepartment of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western 

Bank, Sheffield S10 2TN, UK 

bCollege of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu 525-8577, 

Japan 

*Corresponding author. E-mail address: m.williamson@sheffield.ac.uk 

Abstract 

Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending 

on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is 

always a state of large partial molar volume. Therefore pressure always destabilises the ground state 

and increases the population of partially and completely unfolded states. This is a mild and reversible 

conformational change, which allows the study of excited states under thermodynamic equilibrium 

conditions. Many of the excited states studied in this way are functionally relevant; they also seem to 

be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 

‘natural’ dynamic energy landscape of the protein fold and sculpted it to optimise function. This 
includes features such as ligand binding, structural change during the catalytic cycle, and dynamic 

allostery. 
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1. The effect of pressure on proteins 

Since the first demonstration over 100 years ago that high hydrostatic pressure causes egg 

white albumen to coagulate in a similar way to boiling [1],  it has been clear that pressure does 

interesting things to proteins. At constant temperature, the effect of pressure p on protein stability 

(ie the free energy difference between ground and excited states) can be approximated as: 

 G =  G0 + V0 (p – p0) – 0.5V0(p – p0)2 (1) 

Here, G0 is the free energy difference between ground state and excited state at a pressure p0 of 0.1 

MPa [1 bar = 0.9869 atm = 105 Pa, so standard atmospheric pressure is 0.1 MPa], V0 is the change in 

partial molar volume between the conformational states at p0, and  is the change in compressibility 

of the protein between ground state and excited state at p0. For small globular proteins, V0 between 

ground state and unfolded is variable, but is around -100 ml/mol (0.1 kJ mol-1 MPa-1) [2]. In other 

words, at 100 MPa, the ground state is destabilised by about 10 kJ mol-1 compared to the unfolded 

state. Given that many proteins have an overall unfolding free energy in the range 20 – 60 kJ mol-1 [3], 

many proteins can be unfolded by relatively mild pressures of a few hundred MPa. For comparison, 

hydrostatic pressure in water increases by 10 kPa m-1 depth, meaning that at the bottom of ocean 

trenches (10 km), the pressure is around 100 MPa or 1 kbar. The standard current commercially 

available high-pressure NMR system [4] goes up to 250 MPa, implying that global unfolding of some 

proteins and partial unfolding of many proteins can be observed straightforwardly by NMR. There are 

cells for crystallography or spectrophotometry that go up close to 1 GPa, meaning that a wide range 



of investigations of protein structural change up to unfolding can be carried out on commercially 

available systems.  

At lower pressures, proteins do not unfold completely, but often display a range of partial 

unfolding behaviour and excited states. The stability of these states depends on the partial molar 

volume of the state compared to the denatured state. Partial molar volume is the volume of a protein 

solution compared to the volume of the same solvent but without the protein. There has been much 

debate over the factors controlling partial molar volume, but the emerging consensus is that 

compression of the van der Waals volume is negligible, implying that the total volume change 

compared to the denatured protein can be described simply as [5] 

 Vtot = Vcavity + Vhyd (2) 

where Vcavity is the change in the volume of cavities, and Vhyd is the change in volume of hydration. 

Folded and unfolded proteins both contain cavities, but there are more and larger cavities in folded 

proteins so that Vcavity is always negative: a folded protein always has a larger partial molar volume 

than an unfolded protein. Vhyd is positive and is more or less proportional to the exposed surface 

area of the protein [5]. It is not entirely clear why this should be so. However, solvation of charges 

generally leads to a reduction in overall volume, a phenomenon often called electrostriction, whereas 

solvation of hydrophobic surfaces generally leads to an increase in volume because of the ice-like 

directional hydrogen bonding properties of water, which are strengthened adjacent to hydrophobic 

surfaces.  Vcavity and Vhyd are of similar magnitude, meaning that the change in partial molar volume 

of a protein on unfolding is small. In almost all cases it is negative [2, 5]: a decrease in partial molar 

volume with pressure, implying that the protein tends to unfold with pressure. 

 All proteins contain cavities. Many of these are large enough to contain a water molecule: 

there is roughly one buried water molecule per 40 amino acid residues [6]. When observed by X-ray 

crystallography, some of the cavities are hydrated and some not. The apparent lack of water could be 

because the water in the cavity is disordered, but a range of studies suggest that many cavities are 

genuinely empty. Buried waters are often well conserved between orthologues [7], typically occurring 

as single water molecules forming around 4 hydrogen bonds [6]. Buried waters typically stabilise 

proteins, by a small amount [8]. They are often well ordered, with crystallographic B factors similar to 

those of surrounding protein atoms. However, an interesting study [9] demonstrates that the most 

stably buried water in bovine pancreatic trypsin inhibitor (BPTI) produces an overall increase in 

conformational flexibility of the protein. It is suggested that this may be because librational motion of 

the water softens delocalised (large-scale) motional modes of the protein [10]: in other words that 

rotation of the buried water ‘drags’ local parts of the protein with it, and therefore facilitates 
conformational change in the protein. This concept will become important below, when we consider 

conformational exchange in proteins at high pressure.   

When proteins are subjected to high pressure, two kinds of conformational change happen 

simultaneously. First, there is a compression of the protein. This has been studied using 

crystallography, NMR, ultrasound and many other methods. The compression is relatively small: a 

roughly 1% decrease in protein volume at 200 MPa [11]. Although the pressure is isotropic, the 

compression is not [12]. The most compressible parts are the cavities, followed by hydrogen bonds. 

Van der Waals distances are almost incompressible [12]. Helical domains compress fairly uniformly, 

but -sheet regions are relatively incompressible, and tend to twist. Interestingly, in lysozyme, this 

twisting seems to rotate around two cavities containing buried water molecules [13], again 

highlighting the importance of hydrated cavities in protein fluctuation under pressure. Some parts of 

proteins even expand locally [13-15], and BPTI undergoes a small overall volume expansion [14], 



although a reduction in partial molar volume due to changes in hydration. Even more interestingly, 

the regions of greatest volume change tend to cluster around the hydrated cavities [11], suggesting 

that the cavities are important for volume change and therefore ultimately for function. This 

connection arises because of the thermodynamic relationship [16] 

 VkBT = <(V)2> (3) 

where  is the compressibility (ie the amount of structural change with applied pressure), and kB is 

Boltzmann’s constant. In other words, the mean square volume fluctuation is proportional to 
compressibility. We shall return to this later, because of the connection between volume fluctuation 

and allostery.  

 Second, high pressure stabilises alternative states, ultimately resulting in unfolding (Figure 1). 

This review focuses on the nature of these alternative states, which lie typically within about 10 kJ 

mol-1 of the ground state, making them populated to a few percent at atmospheric pressure. High-

pressure NMR is a good technique to characterise such states. Whereas increase in temperature adds 

a large amount of kinetic energy (and simultaneously alters both thermal energy and volume), and 

addition of chemicals such as urea or guanidine introduces complications because of binding of the 

denaturants to proteins, high pressure reversibly alters the energy by only a few kJ mol-1, selectively 

destabilising the native state and increasing the population of alternative states. It therefore offers 

the possibility of characterising alternative states at thermodynamic equilibrium. Akasaka has 

provided a framework for understanding this effect by postulating a ‘volume rule’ [17, 18], which 

states that the partial molar volume decreases in parallel with the loss of conformational order. This 

has not been rigorously proven, but seems reasonable. It suggests that pressure may stabilise a range 

of different states, stabilising states of increasing disorder as the pressure increases. The evidence 

discussed here is that such states are functionally relevant. 

 

Figure 1. Pressure has two effects on proteins. (a) Compression. Not necessarily isotropic, and only 

about 1% reduction in volume at 200 MPa. (b) An increase in population of alternative states with 

smaller partial molar volume, often partly unfolded (the helix at centre right is unfolded). 

 

2. The nature of pressure-stabilised alternative states 



2.1 NMR methodology 

The first attempt to study NMR at high pressure was by Jonas. In about 1971, he constructed 

a high-pressure cell, which contained sample and detector coil inside a pressure-resistant vessel [19]. 

It was at first used to study organic solvents, though he later went on to study proteins, and in 

particular pressure denaturation of proteins, partly in collaboration with Markley and Royer [20, 21]. 

This was an impressive achievement, but essentially means building your own NMR probe. It is 

therefore difficult to achieve good linewidth and water suppression, and this method is no longer used 

for biological applications. The record for a custom-built low-resolution pressure cell for NMR is 90 

GPa [22], so there is a potential for obtaining useful data on proteins at very high pressure.  

At around the same time, Yamada produced a high-pressure cell on a quite different design 

[23]. This was a thick-walled quartz tube, pulled out to a capillary. The capillary can then be glued into 

a holder, which can be attached on-line to a pressure pump and lowered into a standard high-

resolution spectrometer. Spectral resolution is excellent, although the active volume is only about 30 

l, meaning that sensitivity is low. It is also difficult to fill, empty and clean. It was first used for 

investigating solvent structure [24], and later used by Akasaka for measurement of proteins [25]. A 

very similar device was constructed and used by Wagner to study the pressure dependence of ring 

flips in BPTI [26], and by Morishima to study heme [27]. Because it uses a standard NMR probe, this is 

a much more versatile system than that of Jonas.  

However, the technology that has had the greatest impact is the recent introduction of a 

commercially available high pressure NMR system. This was developed by Wand for the formation of 

reverse micelles in liquid ethane [4], and uses a ceramic zirconia tube that can be connected up to a 

standard high-pressure pump, and goes up to 250 MPa. The inner diameter is 3 mm, providing an 

active sample volume of about 300 l and thus good signal intensity. It is a safe and reliable system, 

easy to set up, and suitable for programmable pressure changes including pressure-jump experiments 

[28]. Technical aspects have recently been reviewed [29]. A similar system was developed by Kalbitzer 

using a sapphire cell [30]. 

As these NMR techniques developed, they were adopted for studying proteins under pressure, 

and a wide range of techniques have been applied under pressure, including standard NOE-based 

structure determination [31, 32], amide exchange [33-35], 15N relaxation [36, 37], relaxation 

dispersion [38], measurement of J coupling through amide hydrogen bonds [39, 40], residual dipolar 

couplings [41], zz exchange [42] and 31P NMR [43, 44]. 

2.2 Pressure denaturation and unfolding intermediates 

Most of the early protein studies at high pressure had limited resolution and sensitivity, and 

studied protein unfolding, because it was about the only biologically interesting observation possible. 

Folding at high pressure is often at least ten times slower than it is at atmospheric pressure [42, 45, 

46] as a consequence of the large positive activation volume [47], meaning that the folded and 

unfolded forms are often in slow exchange on the chemical shift timescale. It is also frequently 

observed that signals become exchange broadened due to unfolding [48, 49]. Because the freezing 

point of water at 200 MPa is -22 °C, one can also use pressure to follow cold unfolding, which is also 

typically in slow exchange [50, 51]. The spectra of the pressure and cold-denatured forms are not 

random coil, unlike those of the heat-denatured form, providing another example of how pressure is 

a more ‘gentle’ method than heat [20]. Interestingly, H/D exchange protection factors are similar for 

the cold and pressure denatured states, implying that they have similar residual structure [52]. 

Pressure also seems to be more ‘gentle’ than chemical denaturation: it is usually reversible, and for 



example when applied to the protein pp32 one can see intermediates in pressure unfolding whereas 

urea unfolding is apparently two-state [53]. 

There has been much discussion over the origins of pressure denaturation, but it now seems 

clear that because pressure favours states with a lower partial molar volume, one effect of pressure 

is to squeeze water molecules into cavities [41, 54], which takes a water out of the bulk phase and 

inserts it into what previously was effectively vacuum [7, 11]. Molecular dynamics and magnetic 

relaxation dispersion [55] have shown that this generally occurs by the opening of transient channels, 

typically open for no more than 5 ps. This has been shown occasionally to increase the volume locally 

(because the original cavity was not quite large enough for a water molecule) but overall lowers the 

partial molar volume [56].  This hydrates the interior of the protein [57], and leads eventually to 

unfolding [58]. Crystallography has shown the same result [17, 56, 59]. The same effect occurs with 

protein oligomers and amyloid: pressure inserts waters into cavities and leads to their dissociation [36, 

45, 51, 60].   

An interesting observation made very early on [45, 48] was that pressure unfolding is in most 

cases not a two-state process: there are intermediates visible, as seen both from the appearance and 

disappearance of signals at different chemical shifts, and from the patterns of loss of signal intensity 

with pressure, which are different in different regions [21, 45, 61-64] (Figure 2). One can map out 

where for example the loss in signal intensity with pressure is larger, and thus form ideas as to what 

is happening. An interesting recent example involved rapid depressurization from 2.5 kbar to 1 bar, 

permitting characterization by 15N relaxation of partially structured states shown to be ‘failed folding 
events’ [65], which provides a direct experimental demonstration of parallel folding pathways. One 

can also calculate free energies and volumes for the intermediate states [48, 49, 66, 67], as well as (in 

favourable cases) rates and transition state energies [38, 68, 69] and even chemical shifts [70]. It is 

possible to calculate the apparent volume of activation for unfolding, with different residues showing 

different values [53, 69, 71]. High pressure NMR therefore provides a large number of measures of 

the structure of the intermediate. 

 

Figure 2. Examples of local pressure-induced unfolding. (a) Ubiquitin. (b) Sperm whale apomyoglobin. 

Native structure is in blue and unfolded structure in crimson. Adapted from Y. O. Kamatari et al., 

Methods (2004), 34:133-143 with permission. N: native; I: intermediate; MG: molten globule; U: 

unfolded. 

 

Protein folding can also be followed kinetically by measuring spectroscopic changes on 

changing conditions, such as rapid dilution of denaturant. Intermediates have often been seen during 

kinetic refolding, and there has been a wide variety of ingenious experiments to work out the structure 



of these kinetic intermediates. All the data published so far are consistent with the idea that these 

kinetic intermediates are the same as those partially unfolded forms stabilised by high pressure. This 

has been suggested for lysozyme [45, 72], ribonuclease A [73], ubiquitin [66], P13MCTP1 [74] and a large 

number of other proteins [18, 50, 75]. A particularly convincing case was made for ubiquitin [66],  

where the structural changes seen in the pressure-stabilised conformer exactly matched those found 

in a proline-trapped kinetic intermediate found by pulse labelling.  

This suggestion is fully consistent with the prevailing energy landscape view of protein folding. 

Proteins are envisaged as falling down a folding funnel, at the bottom of which they are folded to the 

native state, with a small number of thermally accessible alternative states close to the bottom. There 

is general agreement that evolution has smoothed out the folding funnel and removed many potential 

local minima, to ensure that proteins do not get trapped (‘frustrated’) on the way down, which would 
create a risk of aggregation or proteolytic destruction. Nevertheless, there must be some local minima, 

because most proteins need to adopt alternative states as part of their function, for example in 

catalysis or ligand recognition. All the states on the folding funnel must be attainable under suitable 

conditions, from the  bottom of the funnel as well as the top, and it must therefore be the case that 

the minimum number of folding intermediates (the local minima on the way down) must be at least 

as large as the number of alternative states required for function (the local minima on the way up) 

[76]. It could of course be that there are more folding intermediates than merely those needed for 

function, but this would seem to be risky and unnecessary – one might reasonably expect that 

evolution should have been able to smooth out all local minima other than those that are in some way 

important. (However, Kalbitzer points out [76] that evolution has to simultaneously optimise function 

and folding, with function being more important. There are indeed examples where folding appears 

to result in nonfunctional trapped states, presumably because function dominates [77].) A similar 

argument was made by Akasaka, who concluded that the alternative conformations seen for a wide 

range of proteins at high pressure ‘are designed for function and are closely similar to kinetic 
intermediates’ [75]. Thus a priori we should expect any alternative conformations or identifiable 

metastable states to have functional significance. 

An important consequence of this argument is that the states identified in one set of 

experiments as folding intermediates could be essentially identical to those identified in other 

experiments as functionally important alternative states, or in other words ‘the energetic distinction 
between a low-lying excited state and a locally unfolded state is often obscure’ [78]. A similar 

observation was made for reduced horse cytochrome c, where an alternative state significantly 

populated at normal conditions was identified as closely similar both to the oxidised state (ie 

functionally important) and to a major kinetic folding intermediate [79]. It is highly significant that the 

positions of local minima in the energy landscape seem to be dictated by the protein architecture and 

are therefore fixed for a given protein. Changes to solution conditions, such as the binding of ligands, 

change in pH, pressure, etc, alter the relative energies of the minima but do not alter their 

conformations [3]. This observation adds weight to the argument being made here that the alternative 

states populated at high pressure are functionally relevant. The next section therefore moves on to 

look at other alternative states seen at high pressure. 

 

2.3 Alternative structures and their functional implications 

The chemical shifts of protein NMR signals change as pressure is increased (Figure 3). Often these 

changes are linear with pressure. This has two origins: compression of the protein (which is roughly 

linear with pressure, implying that protein compressibility is more or less unaffected by pressure [64]); 

and pressure-dependent changes in solvation. The two effects are of similar magnitude and direction 

[11], and are broadly similar in all proteins. That is, most proteins compress to roughly the same extent. 

This is consistent with the work of Gekko and Hasegawa [80], who list the compressibilities of 25 



proteins as measured by sound velocity, which fall into the fairly limited range 8.8  3.7 x 10-12 cm2 

dyn-1. However, some chemical shifts have a curved pressure dependence. Curvature is usually an 

indication of an alternative state, whose population is increasing as a consequence of the changing 

experimental conditions. This effect is well established both for temperature [81] and for pressure 

[11]. The obvious way to analyse curvature is to fit the pressure-dependent shift for each nucleus i to 

a quadratic equation 

 i = ai + bi(p – p0) + ci(p – p0)2 (4) 

where a is the shift at atmospheric pressure, b is the linear coefficient, and c is the non-linear 

coefficient. A detailed analysis of many proteins [11, 78] shows that the bi cover a similar range in all 

proteins, whereas the distribution of ci differs widely between proteins. It is particularly significant 

that proteins whose function requires them to be rigid (such as the protease inhibitor BPTI or the IgG-

binding domain of protein G) have few residues with significant curvatures, while proteins whose 

function requires extensive dynamics and allosteric change (such as the Ras-like small signalling 

protein RalGDS and the transporter -lactoglobulin) have many. The non-linear shifts tend to occur 

close to cavities containing buried water molecules, reinforcing the idea that the cavities are protein-

specific and relate to function [78]: this was observed for BPTI [14], hen lysozyme [13], RalGDS-RBD 

[48], -lactoglobulin [82], and protein G B1 domain [15]. For BPTI, lysozyme, protein G and barnase, 

the cavities (and the curved shifts and large fluctuations) are also close to the active sites, providing a 

further link to function. 

 A particularly clear example is provided by ubiquitin. Ubiquitin is attached via its C-terminus 

to a range of other proteins, stimulating processes including protein degradation, inflammation, and 

DNA repair. High-pressure NMR studies on ubiquitin showed a number of curved shift dependences, 

several of which had a sigmoidal pattern [66, 83]. These could not be fitted to equation (4), but 

suggested a Boltzmann equilibration between at least two states, with a significant change in relative 

populations between 0.1 and 350 MPa. The shift changes were therefore fitted to a Boltzmann 

distribution between two native-like states N1 and N2 

 𝛿 = 𝛿𝑁1+𝛿𝑁2𝑒𝑥𝑝{∆𝐺0+∆𝑉0(𝑝−𝑝0)𝑅𝑇 }1+𝑒𝑥𝑝{∆𝐺0+∆𝑉0(𝑝−𝑝0)𝑅𝑇 }   (5) 

resulting in fitted values for G0 (the free energy difference between N1 and N2 at ambient pressure) 

of 4.2  0.4 kJ mol-1 and  V0 (the volume difference between N1 and N2 at ambient pressure) of -24  

2 ml mol-1. The two conformers exchange on a timescale of about 10 s [31]. This implies that at 

atmospheric pressure, the population of N2 is 15%, rising to 78% at 300 MPa. N1 is the familiar native 

state: crystallisation or NMR structure calculation at atmospheric pressure produces a single 

conformation, essentially identical to N1. The structure of N2 was determined by NOE-based methods 

using data collected at 300 MPa [31], and shows differences from N1 located primarily at the C-

terminus and two regions spatially adjacent to it. This structure calculation is likely to be biased 

because of the significant population of N1 still present at this pressure. Therefore, a mutation Q41N 

was identified that stabilises the N2 conformation, such that at ambient pressure Q41N is 70% in the 

N2 conformation, and 98% at 300 MPa [84]. Structure calculation of Q41N at both at 0.1 MPa [84] and 

at 250 MPa [32] confirms the structural changes observed previously, and indicates a water 

penetrated into the protein, giving N2 a smaller partial molar volume than N1. The N2 structure is 

closely similar to the conformation adopted by ubiquitin when it binds to the ubiquitin-activating 

enzyme E1, suggesting that this conformational change is functionally important [32]. Following 

identification of the importance of the Q41-I36 hydrogen bond from high-pressure NMR, subsequent 

investigations confirmed that this hydrogen bond is also important for structural fluctuations at 

ambient pressure [85]. The same equilibration between N1 and N2 is also seen for the ubiquitin-like 

proteins NEDD8 [67] and SUMO-2 [37], which have similar structure and activation, but quite different 



biological function. The free energy difference between the two states is significantly different in the 

three proteins, providing another example of energy landscapes that have minima in similar places 

but with different relative energies.  

 Another interesting example is the R3 domain of talin [86]. This domain is a key part in the 

establishment of focal adhesion complexes that attach the cell to the extracellular matrix, and their 

subsequent linking to the actin cytoskeleton. R3 binds to the RAP-1-GTP-interacting adaptor molecule 

RIAM, and thereby fixes talin to integrin cell surface receptors. Talin binds weakly to actin, but a 

physical pulling force on actin fibres causes a conformational change to the R3 domain, which opens 

out R3 and enables it to bind vinculin, thereby greatly strengthening the affinity for actin. The 

biological function of R3 is therefore to act as a mechanosensitive switch, opening up as a result of 

shear stress.  

 NMR spectra of R3 at variable pressure show marked curvature of some chemical shift 

trajectories (Figure 3), implying a high population of an alternative state. There is also a large linear 

shift change. It was therefore not possible to fit the shift changes to equation (5), and a more 

complicated equation was used that includes both linear shift changes and pressure-dependent 

Boltzmann population changes: 

 𝛿 = (𝛿10+∆𝛿1{𝑝−𝑝0})+(𝛿20+∆𝛿2{𝑝−𝑝0})𝑒𝑥𝑝(−[∆𝐺0+∆𝑉0{𝑝−𝑝0}] 𝑅𝑇⁄ )1+𝑒𝑥𝑝(−[∆𝐺0+∆𝑉0{𝑝−𝑝0}] 𝑅𝑇⁄ )  (6) 

where the symbols have the meanings defined above; in addition, 1
0 and 1

0 are the chemical shifts 

of the ground and alternative states respectively at ambient pressure, and 1 and 2 are the 

gradients of the shift changes with pressure. This equation has four parameters per nucleus plus an 

extra two global parameters (G0 and V0) and therefore requires careful fitting. This was done by 

fitting the two global parameters using a small subset of the most curved nuclei (specifically, those 

with the largest 2 values for fitting to the simple parabola of equation 4), and then fixing the two 

global parameters and fitting everything else. Despite the remarkably curved pattern for some 

residues, all nuclei could be fitted well to this equation, resulting in a value of G0 very close to zero, 

implying essentially 50% of each of the two conformations at ambient pressure. This is a clear benefit 

of using equation (6), because the more standard equation (4) does not provide this information. The 

fitting therefore matches the expected mechanosensitive switch function, because it shows that the 

N1/N2 equilibrium is exactly poised in the middle, and is therefore in exactly the right place to be 

affected by external factors such as binding partners or shear force. The other big benefit of using 

equation (6) is that the fitting produces chemical shifts for 1HN, 15N, 13C, 13C and 13C' for all residues 

in both the N1 and N2 states at atmospheric pressure. This enables standard chemical shift-based 

structure calculations to be used, in this case TALOS-N [87] together with additional information 

available from the 13C and 13C shifts [88]. These calculations showed that the N1 state has the four-

helix bundle structure calculated using standard structure calculations at atmospheric pressure [89], 

while the N2 state has helix 1 opened out (Figure 4). This structure is consistent with the biological 

function of the domain, which requires helix 2 to interact with vinculin, using a face normally buried 

by contact with helix 1 [86]. 



 

Figure 3. Changes in 1H and 15N chemical shifts in the HSQC spectrum of the R3 domain of talin. 

Pressures range from 0.1 MPa (red) to 250 MPa (violet). Three residues with unusually highly curved 

shift changes are highlighted. Adapted from Baxter et al., Structure (2017) 25:1856-1866, with 

permission. 

 

Figure 4. Structural change in the R3 domain of talin as measured using high pressure NMR. Left is the 

closed (low pressure) form, with the helices labelled. Right is the high pressure form, in which helix 1 

is opened out. Adapted from Baxter et al., Structure (2017) 25:1856-1866, with permission. 

 

 Thus for both ubiquitin and talin R3 domain, there is unambiguous evidence to show that the 

pressure-stabilised alternative state is functional. The same can be said for dihydrofolate reductase 

(DHFR) and prion protein. E. coli DHFR shows peak splitting for several resonances at high pressure, 

indicating the pressure-induced appearance of an alternative conformation which has not been 

characterised in detail but matches the structure change expected on going from the occluded to open 

states, necessary for binding of NADPH [75, 90]. The human and Syrian hamster prion proteins have 

almost identical native structures, but do not seed cross-infectivity. High-pressure NMR experiments 

showed that both proteins have alternative states present that are stabilised by pressure. They both 

have native-like states N1 and N2 (with N2 about 22% populated in both) as well as higher energy states 

I1 and I2, the latter of which is populated to only 0.05% in human prion protein. It was suggested that 

the I2 states, which are different for the two species, are the most likely intermediates on going 

between PrPC to PrPSc, with a good match to known hotspots for prion disease [91]. Finally, we should 

mention a cavity mutant of T4 lysozyme, L99A. This is a well-studied protein, and the large cavity is 



known to become gradually hydrated as the pressure is increased. It undergoes a transition to an 

alternative state at high pressure. Both states were characterised using methyl group dynamics, 

showing that conformational fluctuations are located around the cavity, with the fluctuations being 

smaller in the high-pressure state. The high-pressure state appears to have the Phe114 sidechain 

inserted into the cavity, a conformation seen transiently at atmospheric pressure [92]. Thus in this 

example (of an artificial site-directed mutant), the high-pressure state is not functionally important, 

although it is demonstrated to be a state populated transiently at ambient pressure. However, for the 

other examples discussed here, the excited state is often as functionally important as the ground state, 

if not more so. 

 A few studies have been reported of the effect of pressure on NMR spectra of intrinsically 

disordered proteins (IDPs) [93-95]. Two of the three studies reported non-linear pressure-dependent 

chemical shift changes, which the authors interpreted as indicating a change in the conformational 

ensemble with pressure. In both cases, the change was proposed to be from a -sheet towards a 

polyproline-II helix. In one case, -synuclein [95], this was supported by changes in J coupling 

constants. It may therefore be possible to investigate partial or residual structure in IDPs using high 

pressure NMR. 

 

2.4 Fluctuations at elevated pressure 

 The fluctuations undergone by proteins are important. Pressure can provide useful 

information, not easily attainable from other methods. 

 The fluctuations characterised using high pressure are volume fluctuations. These have been 

studied since Wagner’s measurement of the activation volume for ring flips in BPTI [26], and in many 

different measurements since [12]. 15N relaxation measurements provide information mainly on rapid 

fluctuations (ps/ns), and show that fluctuations on this timescale are affected little by pressure [36, 

37, 95]. However, larger fluctuations are slowed dramatically by high pressure. We have already seen 

that protein folding is often more than ten times slower at high pressure. Ring flips are also slowed by 

between 10 and 100-fold at high pressure [36]. These conclusions are in agreement with results from 

quasielastic neutron scattering and molecular dynamics calculations [96, 97]. 

A useful source of information on fluctuations comes from measurements of amide proton 

exchange rates. Under EX2 conditions, these are directly related to the probability of local opening. 

The effect of pressure on exchange rates has been measured [33-35, 39], and should provide 

information on the activation volume for the local unfolding process. However, they have proved 

difficult to interpret, with adjacent sites having very different apparent activation volumes, and no 

correlation for example with changes in entropy or enthalpy. A recent publication [98] has shown that 

amide proton exchange requires simultaneous binding of at least two water molecules to the amide 

group, and it may be that modelling this will make more sense of the data. 

One way to obtain volume fluctuations is through equation (3), which presents the 

thermodynamic connection between compressibility and volume fluctuation. Compressibility is 

essentially the amount of compression at each site in the protein, for which chemical shift changes in 

HSQC spectra are a good proxy. Although equation (3) is valid only for the whole system and not for 

individual parts of it, it appears to hold for local fluctuations as well as global fluctuations (discussed 

in [99]), possibly because the fluctuations are at high frequency and thermodynamically almost 

uncoupled from each other. As discussed in [11], linear pressure-dependent chemical shift changes 

are broadly similar across a range of different proteins, implying that the average compressibility of 

proteins is fairly constant: the data quoted above from Gekko and Hasegawa [80] also support this 

idea. However local compressibilites can be very variable, as shown by the linear shift coefficients, and 

in particular by the non-linear coefficients presented in [11]. The detailed structure changes presented 

for BPTI [14], lysozyme [13], protein G [15] and barnase [99] at high pressure also show that local 



compressibilities can be very variable, with some being negative (ie local expansion with pressure). 

The fluctuations are largest close to buried water molecules, further highlighting the importance of 

buried waters, and suggesting that a good proxy for volume fluctuations could be the magnitude of 

the non-linear shift term (c in equation (4)). In barnase, it was concluded that the fluctuations occur 

on a timescale of ns-s, a difficult timescale to measure experimentally by other methods [99]. In free 

barnase, the overall volume fluctuation is around 60 Å3: roughly the same volume as the activation 

volume for flipping a restricted aromatic ring, so a very large fluctuation if concentrated in one place.  

An interesting observation made by Gekko using ultrasound [100], and later confirmed by NMR [99], 

is that addition of ligands can cause major changes in local compressibility. Gekko pointed out that 

addition of ligands to DHFR changed the compressibility by between -19% (with addition of reaction 

products) and +15% (with addition of reactants), while addition of inhibitory ligands to lysozyme 

progressively decreased the compressibility as the size and potency of the ligands increased: GlcNAc 

-17%, GlcNAc2 -27% and GlcNAc3 -73% [101]. Wilton et al saw a reduction in compressibility of barnase 

by 70% on adding the inhibitor d(CGAC) [99]. Measurements of local compressibility have also been 

made by methyl group relaxation under pressure, and showed that local compressibility varies widely 

in different regions of ubiquitin and decreases at higher pressure; in detail the local compressibilities 

follow no obvious pattern [102].  We therefore conclude that high pressure (and probably something 

as simple as the non-linear shift coefficients) is a good way to measure volume fluctuations. 

Protein fluctuations increase the entropy of the system. It should therefore be true that if for 

example the fluctuations decrease on addition of a ligand, then the entropy change is less favourable 

and the ligand should bind more weakly [103]. Fluctuations could thus be used to understand the 

energetics of ligand binding. The experimental measurement of conformational entropy is not easy, 

and a leading method currently is the order parameters of methyl groups, which appears to correlate 

well with entropy [104]. It does indeed appear that conformational entropy has a major role in ligand 

binding affinity [105]. It would clearly be worth investigating non-linear shift coefficients as an 

alternative measure, in particular because they provide a measure of local fluctuation at almost every 

residue, as compared to methyl order parameters, which only sample dynamics where there are 

methyl groups. 

 

2.5 Dynamic allostery? 

 Over the last few years it has become clear that allosteric effects can be communicated not 

just by the traditional static structure mechanisms, which rely on some kind of mechanical coupling 

between sites, but also by dynamic effects. As commented as far back as 1984, ‘proteins may have 
evolved to take functional advantage of thermal fluctuations’ [106]. In order to have coupling, it is 

merely necessary that the effect of ligand binding at one site be communicated to another site. This 

communication can be (thermo)dynamic rather than structural: binding of a ligand may for example 

change the dynamics in one domain, which alters the interface between that domain and its neighbour, 

and thereby passes on allosteric information [107]. In this context, we note a recent paper which 

specifically linked volume fluctuations to allosteric behaviour [108]. High pressure NMR is a good way 

of investigating this kind of behaviour, and is an exciting opportunity. A particularly good example 

comes in the study of kinases. Kinase function is tightly regulated by allostery, and NMR studies of 

kinases are difficult because typically a large fraction of signals are unobservable due to intermediate 

rate conformational effects. One region often missing from NMR spectra of kinases is the catalytic or 

DFG loop (so called because of the amino acid sequence) which is highly conserved and is in the hinge 

region between the two domains of the kinase, close to the activation loop. Crystallographic studies 

have shown that this loop can exist either in the DFG-in conformation or the DFG-out conformation, 

the latter of which is incapable of binding ATP and is inactive. Different ligands can stabilise one or the 

other form. Nielsen et al [109] studied the kinase P38 at high pressure. Application of pressure to 



the apoprotein results in appearance of signals from the DFG loop, presumably as a result of slowed 

conformational dynamics.  It also gave rise to chemical shift changes suggesting that the conformation 

of the loop changes to a DFG-out state. Conversely, applying pressure to a complex with the ligand 

BIRB796, which is in a DFG-out conformation, alters the conformation to something resembling the 

apo state. It therefore appears that pressure alters the height of regions of the energy landscape in a 

way that mimics the addition of allosteric ligands. The authors comment that ‘pressure selects excited-

state conformations of biological relevance’ [109]. 

 There have been other observations of allosteric effects linked to high pressure [110]. 

Kalbitzer has worked extensively on signalling proteins related to Ras, and also on high pressure, and 

it is therefore not surprising that he has observed population shifts among different states using high 

pressure [111]. Ras has to cycle through different conformations as part of its function. The active 

form of Ras is bound to GTP, and the inactive form is bound to GDP. Release of GDP is induced by 

binding of the GDP-bound form to a guanine nucleotide exchange factor (GEF), while hydrolysis of GTP 

to GDP is catalysed by binding of Ras-GTP to a GTPase activating protein (GAP). An analysis suggests 

that there should therefore be at least 8 forms present at significant population. In the presence of 

GTP, the four predominant forms were identified using a combination of 31P NMR [76] and 1H, 15N 

HSQC [111] at variable pressure (Figure 5). Three out of the four can be made the major species in 

solution depending on the pressure.  

 The significance of this observation is that the different conformations of Ras are all potential 

drug targets, because stabilisation of Ras in one form has important effects on Ras-dependent 

signalling pathways. The same is of course true for many other proteins that display allosteric 

behaviour, and indeed high pressure has been suggested as a way  of identifying drug targets for 

several of these [62, 111-113]. 

 

Figure 5. The conformational states of Ras accessible by use of high pressure. C1 is the conformation 

of the form bound to GTP and guanine nucleotide exchange factor (GEF). C2 is the conformation bound 

to GTP and the effector. C3 is the conformation bound to GTP and the GTPase activating protein (GAP). 

C4 is the conformation bound to GEF but no nucleotide cofactor. These are 4 of the ca. 8 states 



accessed by Ras during its activity cycle. Adapted from Kalbitzer et al (2013) Angew. Chem. Int. Edn. 

52:14242-14246, with permission. 

 

 

3. Conclusions 

Experimental observations have confirmed the general correctness of the energy landscape 

model, and shown that proteins usually populate the major ground state conformation to at least 90% 

under working conditions. However, they clearly also populate other conformations. Enzymes 

minimally have closed and opened conformations, and usually several more when bound to specific 

substrates or combinations of substrates. A good example is provided by dihydrofolate reductase 

[114]. It binds two reactants, and its catalytic cycle requires it to cycle round at least five different 

complexes. For each of these complexes, NMR measurements have shown that it adopts a different 

conformation, but is capable at each stage of sampling at least two more, these being the 

conformations required for the previous and next stages in the catalytic cycle. The binding of its 

different ligands at each stage thus alters the energy landscape to favour the appropriate 

conformations. Similarly, signalling proteins have several conformations, and switch between them 

stimulated by the binding of ligands or allosteric effectors. It is worth repeating that it appears that 

the binding of ligands alters the energies of the different local minima, but does not seem to alter their 

conformations, which are presumably dictated by the protein architecture, the geometries of mutually 

consistent sets of hydrogen bonds, and so on. A major challenge in protein science is to identify these 

conformations, and work out their energies, and the energy barriers between them, in order to 

understand the kinetics of conformational exchange.  

 

Figure 6. Hydrostatic pressure biases the energy landscape according to the partial molar volume of 

each protein conformation. State 3 is the native state, and has a larger partial molar volume than the 

excited states 1 and 2. State 1 is more activated/partially unfolded than state 2, and consequently has 

the smallest partial molar volume. High pressure therefore stabilises 1 and destabilises 3. Figure 

generated using a Mathematica script written by T. Oas (Duke University).  

 

High-pressure NMR can be useful in this enterprise. It also biases the energy landscape, in a 

predictable way, by disfavouring the ground state and favouring excited states to different degrees 

depending on a quantifiable extensive physical property, their partial molar volume (Figure 6). In doing 

so it can alter the populations of different states very greatly, without adding much extra energy to 

the system, and thus make previously unobservable conformations observable, and sometimes even 

the major species present. This makes it easier to characterise and sometimes even determine 

structures of minor (but functionally important) conformers. In general it also slows down the 

exchange between different conformers, further helping to identify the different conformers. This 



could be of particular benefit in allosteric systems, and help in the design of drugs to stabilise specific 

conformations. Pressure-dependent chemical shifts may also be a useful measure of conformational 

entropy. With the recent availability of a simple and reliable commercial system, there would seem to 

be a bright future for high-pressure NMR. 
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