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Two-Dimensional Batch Linear Programming on the

GPU

John Charlton1, Steve Maddock, Paul Richmond

Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK

Abstract

This paper presents a novel, high-performance, graphical processing unit-
based algorithm for efficiently solving two-dimensional linear programs in
batches. The domain of two-dimensional linear programs is particularly use-
ful due to the prevalence of relevant geometric problems. Batch linear pro-
gramming refers to solving numerous different linear programs within one
operation. By solving many linear programs simultaneously and distributing
workload evenly across threads, graphical processing unit utilization can be
maximized. Speedups of over 22 times and 63 times are obtained against
state-of-the-art graphics processing unit and CPU linear program solvers,
respectively.

Keywords:
Graphics Processing Unit, GPU-computing, Incremental Linear
Programming, Cooperative Thread Array

1. Introduction

Linear programming is the challenge of finding an optimal solution to a
linear function subject to linear constraints. It is used in many eclectic areas,
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such as in business problems to maximize profit and in optimal job schedul-
ing. A specialization of this is low dimensional linear programs (LPs) in two
or three dimensions. These often have spatial constraints and are used to
solve spatial problems such as collision detection between geometric shapes,
collision avoidance in pedestrian simulations, and creating cast shapes for
moulds. If the speed of solving LPs can be increased, larger problems could
be solved faster and real-time constraints could be satisfied in more complex
visual simulations, e.g. for fast accurate collision detection.

Graphics processing units (GPUs) are increasingly being used to accel-
erate performance of data and computationally parallel tasks by offloading
such tasks from the CPU. GPUs are a potential candidate solution for im-
proving performance of LP solving due to the inherent levels of parallelism.
In general, the theoretical peak performance of GPUs far outperforms simi-
lar generation CPUs. As such, data parallel implementations on GPUs can
produce much faster code. However, achieving optimal performance of GPU
code requires understanding of the architecture to maximize data parallelism,
transfer bandwidth and computational parallelism, while hiding latency [1].

The general approach to GPU implementations for solving LPs is that
data and constraints are initialized on the CPU, transferred to the GPU
for calculation and transferred back to the CPU for further processing (or
kept on device for other data-intensive tasks and visualisation). A downside
to using the GPU in this way is that extra time must be taken to transfer
data between devices. Nonetheless, for dense problems of sizes larger than
around 700 constraints and 700 dimensions, the computational benefits of
using the GPU for solving single LPs mean that, for dense problems, GPU
methods outperform CPU methods [2]. Below this amount, or for more
sparse problems, any speedup obtained by performing computation on the
GPU is offset by memory transfer and associated overhead. A solution to this
is to solve large numbers of smaller-sized LPs simultaneously. This increases
device utilization and exposes greater parallelism. Simultaneous LP solving,
or batch solving, ensures the cost of data transfer to the device is amortised
by the gain in computational performance improvements. Gurung and Ray
[3] report a performance increase for batches as small as 5x5 (5 dimensions
and 5 constraints).

The focus of this paper is on two-dimensional LPs solved in batched
amounts. We present a Randomized GPU batch (RGB) approach based on
the randomized incremental LP algorithm [4]. A naive implementation of the
algorithm for parallel architectures is shown to contain both computational
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and memory imbalances. This paper presents algorithmic improvements to
ensure high memory bandwidth performance and balanced workload. The
approach taken to ensure computational balance is with subdivision and
redistribution of work units, which are sections of code with a similar amount
of computation and data requirements. These work units are distributed
across the device using ideas inspired from big-data graph analytic algorithms
(i.e. cooperative thread arrays) [5, 6]. This balances workloads between
threads within a warp, the GPU’s SIMD execution unit, i.e. the collection
of threads executing instructions in lockstep. The proposed algorithm can
efficiently solve varied batch sizes by offloading work units of larger problems
onto threads which are computing smaller problems. The code is available
online at https://github.com/coolmule0/LP.

The algorithms proposed within this paper outperform state-of-the-art
CPU and GPU implementations for two-dimensional problems in cases where
the problem size is sufficient to fully occupy the GPU device. Problem size
can be increased with larger numbers of constraints or through an increase
in batch size which represents the number of simultaneous LPs to solve. A
typical example of a two-dimensional problem is physical collision response,
e.g. in pedestrian crowd simulations. Here, pedestrians may be represented
in two-dimensional space as points with a fixed radius size. To avoid collision
with all other pedestrians, each person must solve an LP where each con-
straint is due to a neighbouring pedestrian. This creates a batch of LPs, one
for each person being simulated. Once all the LPs are solved, each person
has a new velocity to take which avoids collision. Positions are updated with
this new velocity, and the calculation is repeated for the next time step. Due
to the repeated nature of this calculation, even a small time reduction in
solving LPs is amplified by the repeated solving process for each time step
of a simulation.

To evaluate the implementation of the proposed RGB algorithm, we have
benchmarked it against a batch linear GPU simplex solver [3], a multicore
CPU solver, CPLEX [7], and two open-source CPU solvers, GLPK [8] and
CLP [9]. The batch linear GPU solver was chosen as the only one of its kind.
CPLEX, GLPK and CLP were chosen due to being high performance solvers
[10, 11]. We show performance increases versus these solvers for a variety of
randomly generated two-dimensional constraints and batch amounts.

The organization of the paper is as follows. Section 2 covers background
theory and related work. Section 3 explains the novel algorithm implementa-
tion and use of thread level work distribution to optimize device utilization.
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Section 4 presents performance comparisons of the algorithm against two
state-of-the-art LP solvers and section 5 discusses the results in greater de-
tail. Section 6 gives the conclusions.

2. Background

2.1. Linear Programming

Linear programming is the problem of maximizing an objective function
subject to linear constraints. The objective function to maximize is repre-
sented as

max c
T
x (1)

where x = (x1, ..., xn) is the set of values to be determined, and c = (c1, ..., cn)
is the objective function coefficients. n is the dimensionality of the problem.
This is subject to the linear constraints

Ax ≤ b (2)

where b = (b1, ..., bm) is a constant for each constraint, the maximum possible
value of the equation, m is the number of constraints of the problem, and A

is a matrix of known constraints of size n×m. This set of constraint vectors
creates a convex polytope if there is a feasible solution. A linear programming
problem is infeasible if there exists no solution for x that satisfies all of the
constraints.

Various algorithms are suitable for large dimension problems, the most
common of which is the simplex algorithm. In order to apply the simplex
algorithm, the linear programming problem must be rewritten in its standard
form. In standard form, comparisons are replaced by equalities with a slack
variable.

Incremental linear programming [4] is an alternative option that is concep-
tually simple and preferable with respect to performance for low dimensional
problems [12]. Incremental linear programming works by considering each
constraint incrementally and calculating the intermediate objective function
for each added constraint. It requires each step to have a unique and well-
defined solution. To ensure this, up to two additional constraints per dimen-
sion are added , x ≤M and x ≥ −M . These ensure a finite solution and M

is taken as very large so as not to affect the optimal solution.
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Two outcomes can occur to the intermediate optimal solution when in-
crementally considering a constraint: (1) if the optimal solution is already
satisfied by the new constraint, no change occurs to the intermediate opti-
mal solution; (2) if the intermediate optimal solution does not satisfy the new
constraint, the optimal solution will exist on a point on the new constraint
intersecting a previous constraint. In the case of (2), the algorithm to find
the location of the new optimal solution is a set of i− 1 (n− 1)-dimensional
linear programs, where i is the current number of incrementally considered
constraints, 0 ≤ i ≤ p. When considering two-dimensional problems (n = 2),
a set of one-dimensional LPs must be solved. It has been previously proven
that one-dimensional LPs can be solved in linear time [13] — the time to
find a new intermediate optimal solution is proportional to the total number
of vertices/constraints currently considered, O(i).

The set of (i − 1) 1D LPs can be parameterized by a variable û, where
û is parallel to the added constraint Aix = bi, labelled l. σ(h, l) is the û-
coordinate of the intersection point of line l and the considered constraint
Ahx = bh, where 0 ≤ h ≤ i, i.e. h indexes over the previously considered
constraints. If there is no intersection then either the constraint at index
h can be ignored or the linear programming problem is infeasible. For each
remaining constraint of the set, two values should be remembered, depending
on whether h is bounded to the left or right:

uleft = max
h=(1,...,i−1)

{σ(h, l) : l ∩ h is bounded to the left} (3)

uright = min
h=(1,...,i−1)

{σ(h, l) : l ∩ h is bounded to the right} (4)

where uleft represents the leftmost valid point on the line, if the line was
horizontal, and, similarly, uright represents the rightmost valid point on the
line. The program is infeasible if uleft ≥ uright, otherwise the solution is either
uleft or uright depending on the objective function.

Calculation of a new optimal solution is only required when the next con-
straint to consider renders the current optimal solution as infeasible. A worst
case input set would require a re-computation of the solution for each con-
straint. In this set, each constraint renders the previous optimum solution
invalid. If the order of consideration of the worst case input set was reversed,
it would create a scenario where only the first constraint would require re-
computing the solution. As such, the order of consideration of the input set
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is important. There is no simple strategy to optimally organize the order of
constraint considerations. To achieve the best expected runtime, the order of
consideration should be selected randomly. For a single LP calculated serially
the expected run time is O(m).

2.2. GPU Parallelism

GPUs are built as high-throughput devices which are designed to max-
imize the throughput of the pipeline rather than minimize the latency of
individual operations [14], as is the case with CPUs. GPUs achieve this
through switching groups of executable units on demand when the appropri-
ate resources are available. For example, when a group of executable units
is stalled due to a memory request, another group of threads are context-
switched so that computation can be performed. Context-switching hides
the memory latency and enables high memory bandwidth. To achieve good
utilization of the GPU device, two factors are required to hide the latency:
compute utilization (high arithmetic intensity) and memory access patterns
(reduce the number of total memory movements through the pipeline).

GPUs programs require many threads which execute the same set of
instructions (a kernel) on different regions of data (data parallelism). At
the execution level, threads are grouped into batches of 32 threads, known as
a warp. If some threads within the warp do not require the computation, they
are masked out. The worst case scenario for GPU performance is when only
one thread requires a certain computation, leaving the remaining threads
masked and effectively idle. Any branching paths of execution within a warp
causes all threads to execute all paths, with the appropriate threads stalled
(or masked out from performing instructions). In general, any aspect of
divergent computation should be minimized to improve compute utilization
and maximize performance.

Optimizing memory access can be understood through the use of memory
fetches. Memory is fetched through 32 byte level two (L2) cache lines. If a
byte of data is required, the corresponding 32 byte cache line where the data
resides is transferred from memory. It is therefore important to utilize as
much data from as few cache lines as possible. In the worst case scenario,
each thread within a warp issues a transfer request to move a unique cache
line (i.e. a scattered read). The transfer of many cache lines requires greater
bandwidth and increases the latency of total memory movement, reducing
the performance of the code.
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2.3. Related Work
Literature on the use of GPU LP solvers can be separated into three main

topics: early solvers before GPU computational APIs, LP solvers aimed at
solving single LPs efficiently, and LP solvers specialized in solving multiple
problems simultaneously.

Research into the use of GPUs for improving linear programming perfor-
mance began with the start of GPUs as programming units. Early examples
(such as [15, 16, 17]) showed limited performance improvements over serial
algorithms for problems larger than 800 dimensions by 800 constraints. Such
early models struggled with limited device memory. With hardware advances
larger problems can now be tackled and larger speed-ups can be obtained.
The advent of dedicated GPU computation programming languages, such as
NVIDIA CUDA [18], has made it easier to develop efficient LP models on
the GPU.

A large proportion of relevant papers examine high-dimensional problems
using simplex algorithms, undoubtedly due to the popularity and efficiency
of the model. Hall [19] provides an overview of early multicore simplex
algorithms, concluding that speed-ups can be obtained by parallelising for
various problem types, excluding large sparse LPs. The trend of applying
the simplex algorithms to GPUs has continued, with speed-ups occurring for
many different simplex algorithms including the regular simplex algorithm
[20, 21] and the revised simplex [2, 22]. Ploskas and Samaras [23] showed that
the Primal-Dual exterior point simplex algorithm is more efficient than the
more standard Revised Simplex algorithm on GPU hardware. They achieved
this through minimizing CPU-GPU memory transfer, since memory transfer
dominates the runtime of such large problems. They achieved speed-up for
all problems tested compared to the simplex-GPU algorithm.

The choice of pivot rule plays an important part in simplex algorithms.
Choosing a poor rule can slow down performance and lead to no optimal
solution being found. Ploskas and Samaras tested the effects of pivot rules
on GPU hardware [24] and found that GPU versions perform better than the
CPU equivalents for problems larger than 500 dimensions and constraints,
for dense constraints. Lalami et al. [20] deals with efficient memory transfer
through page-locked host memory which provides higher memory bandwidth.
In this case, the overhead of data transfer to the device is hidden through
asynchronous transfer and computation by staging the problem into smaller
units of work. They demonstrate a speed-up of around 12 times for prob-
lems larger than 2000 dimensions by 2000 constraints for the regular simplex
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algorithm, and a speed-up of 2.6 times for problems of 500 dimensions by
500 constraints. With respect to GPU implementations of non-simplex algo-
rithms, an early implementation by Smith et al. [25] demonstrates that the
matrix-free interior point algorithm shows some performance speed-up for
large sparse matrices. For problems larger than around 16,000 dimensions
by 16,000 constraints, the GPU implementation outperformed the CPU mul-
ticore equivalent. This was due to the efficiency of computational operations
required.

An observation of the previous literature suggests there exists a small
size limit at which LPs should only be computed on the CPU. This is due
to the limited parallelism available for smaller problem sizes. Below this
amount CPU implementations are equivalent or better performing than GPU
equivalents. CPLEX is a CPU optimization software package containing the
functionality to solve LPs [26]. It is able to solve problems using different
algorithms including dual simplex, primal simplex and barrier method. It
uses multithreading to solve models, but this efficiency decreases up to 4-
8 threads after which increasing thread count will not significantly change
execution time [27]. GLPK [8] and CLP [9] are open-source serial simplex
solver methods. The performance of different CPU LP solvers is extensively
tested [10, 28, 29] but can still remain challenging to find the most efficient
method for a given problem.

In order to expose greater parallelism for small LPs, many small LPs
should be computed simultaneously. Gurung and Ray [3] examines an algo-
rithm for solving numerous dense LPs simultaneously using the simplex algo-
rithm on the GPU. By considering many LPs at once, asynchronous memory
transfer can occur simultaneously with computation of results to increase
performance. Also the use of many LPs ensures the computational cores
on the device are all being utilized. They show a speed-up over equivalent
CPU algorithms for square LPs as small as 5 dimensions by 5 constraints for
100 batches. Multiple concurrent streams are active in the algorithm. Such
streams allow overlapping memory transfer and kernel computation. Thus,
rather than copying all the data across from CPU to GPU, then solving, then
copying data back to CPU, the batch LPs are split into smaller groupings.
Once data has been transferred to the GPU for one of these smaller groups,
the kernel can perform the required computation. Simultaneously, the in-
formation for another group can be copied across to the GPU. By splitting
tasks into these smaller groups, total device utilization is increased, increas-
ing performance. The current implementation limits the size of feasible LPs
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to 511 dimensions by 511 constraints [30].

3. The Algorithm

This paper presents a randomized GPU batch (RGB) algorithm in two-
dimensions that is based on Seidel’s incremental linear programming algo-
rithm [4], explained in section 2.1. Alterations to Seidel’s work were made to
improve performance when implemented on a GPU architecture, increasing
compute and memory parallelism. This was achieved by decomposing the
calculation into small work units (WU), which are shared between threads
in a block to more evenly spread compute and memory load between threads
on the device. The algorithm is designed and tested for solving 2D problems,
though

To implement incremental linear batch LP solving on the GPU, each LP
is assigned to a core/thread. Thus the number of active threads is equal to
the number of LPs to be solved. A naive implementation of Seidel’s algo-
rithm would result in a large divergence in calculations between threads, as
illustrated in Figure 1. In this figure some threads require large amounts
of computation while others require very little. This imbalance can be at-
tributed to all threads within a warp considering the same index of constraint.
In this context, some problems (threads) will be satisfied with the considered
constraint while others need to recompute the intermediate optimal solution.
This divergence causes an imbalance of workload within a warp and hence
results in poor performance.

To address the problem of imbalance, the idea of cooperative thread ar-
rays can be applied [5, 6]. In this case, threads within a warp or block
communicate with each other to share the workload. In the RGB algorithm
the most intensive computational aspect is performing the set of 1D linear
programs for all previous constraints – see equations (3) and (4). This was
found through timing, profiling and analyzing of code performance. Each
constraint to perform a 1D LP can be thought of as the smallest quantity of
work, referred to as a work unit (WU). These WUs can be distributed across
threads in a block so parallel computation is more balanced. The require-
ment for this is that the writing of the results uleft and uright must be done
atomically into shared memory. Atomic writing ensures no race conditions
occur for the results. This ensures the correct result but reduces performance
compared to a standard write to memory. Other techniques are available to
use, such as reduction, but atomic operations work well for unknown set
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sizes at runtime, and atomic operations have improved in performance with
recent hardware [31]. Examination into shared memory atomics shows that
on Maxwell hardware shared memory atomics outperforms global atomics
[32] and device-wide segmented reduction. Shared memory atomics also has
stable performance across a range of workloads, an important aspect for the
RGB algorithm where many different amounts of contention are present. See
Figure 6 in Section 4 for computational results.

Communicating data between threads in a block is done through shared
memory, a region of memory that any threads in the same block can access
on chip. Threads will read appropriate constraint data from global memory,
stored on device DRAM, and write it to shared memory. The data is stored
in shared memory due to low latency access within a block. Since different
threads make numerous reads to the data, shared memory is far more efficient
than the alternative global memory, which takes around 100 times longer to
access [18]. Shared memory is limited in size so only the most accessed pieces
of data are loaded in. The remaining data is loaded from global memory and
access to such memory is coalesced as much as possible to avoid excessive
cache line fetches. Vectorized loads are used to reduce the number of memory
requests and increase the utilization of cache lines where any scattered reads
are required. Since information of half-planes is stored in multiple variables
(2D position and direction) combining the information into one extended
set of data ensures that scattered reads uses as much of each cache line as
possible. Memory transfer between CPU and GPU is managed through the
use of CUDA Managed Memory. This lets the underlying runtime handle the
paged transfer of data to and from the device intelligently. It removes the
requirement that all data be copied to device at kernel launch, instead paging
in memory as demanded and asynchronously during kernel execution. This
reduces the time of copying memory to and from the device. It also allows
for allocating memory up to the size of system memory, rather than being
restricted to a maximum of the dedicated GPU DRAM. This is important in
large problems when the device DRAM is too small, but hardware DRAM is
large enough.

Figure 2 highlights the use of cooperative thread arrays. The amount
of work required is computed and distributed across all available threads.
The sharing of data is done through shared memory. This creates more even
workloads which increases the parallelism of the problem and reduces the
overall time for computation.

An overview of the algorithm is provided in Listing 1. The algorithm runs
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as many threads as there are problems to solve, p. The program incremen-
tally examines each constraint in a problem and loops over the maximum
problem size. The current line to consider is read into shared memory from
global device memory. This read uses coalesced memory access for optimal
performance. It checks whether the LP solution, stored in S, is satisfied by
this line in unsatisfied and writes this logical check to a binary value B. A
sync_block() call ensures all data has been written to before it is accessed,
avoiding race conditions. The binary value B is reduced to calculate the to-
tal number of problems in need of recomputation in the block. All threads
are mapped to a work unit, a unique tuple of problem and line, and this is
repeated over all lines for each problem in need of recomputation. The work
unit calculation reads in the assigned line from device memory, line, and
calculates the intersection point between this line and the considered line in
shared memory, SML. The result is written to shared memory using atomics
to avoid race conditions. Another sync_block() call ensures all calculations
are complete before updating the solution.

Listing 1: RGB GPU Algorithm Overview.

1 //p is batch problem size

2 //lp_max is maximum LP size

3 //L is a device vector of p |×| lp_max line constraints containing all constraint lines

4 //SML is an empty shared memory vector of length p, containing current constraint line

5 //S is an empty device vector of length p, containing the solution

6 //SMS is an empty shared memory scalar of length threads in block,

7 //B is an empty shared memory scalar of length threads in block

8 //block_width is the width of the CUDA Kernel block configuration

9

10 gpu_parallel_for idx ← 1 to p

11 bidx ← idx % block_width

12

13 for n ← 1 to lp_max

14 SML[bidx] ← L[idx][n]

15 B[bidx] ← call unsatisfied(SML[bidx], S[idx])

16 call sync_block()

17

18 active_threads ← block_reduce_sum(B)

19 wu_count = active_threads * n
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20

21 j ← bidx

22 while j < wu_count

23 map_idx, map_n ← map(j)

24 map_bidx ← map_idx % block_width

25 line ← L[map_idx][map_n]

26 i_pos ← call intersect(SML[map_bidx], line)

27 SMS[map_bidx] ← call atomicMin(SMS[map_bidx], i_pos)

28 j ← j + block_width

29

30 call sync_block()

31

32 if not B[bidx]

33 S[idx] ← SMS[bidx]

Work to do

Thread workload

Thread Index0 1 2 3 4 5 6 7

Figure 1: Distribution of workload across a thread before optimizations. Imbalanced
workloads reduces the computation parallelism

4. Results

In this section, results obtained from running the RGB algorithm are
presented and compared against four other algorithms: (i) an open-source
CPU algorithm, the GNU Linear Programming Kit (GLPK) [8]; (ii) CLP,
a high-performing [10] open-source CPU simplex solver [9]; (iii) CPLEX, a

12



Work to do

Thread workload

Thread Index0 1 2 3 4 5 6 7

Work Unit

Figure 2: Distribution of workload across a warp after optimizations. Work units are
distributed evenly across all available threads.

high-performing [10] multi-core CPU solver [7]; (iv) the batch-GPU simplex
algorithm of Gurung and Ray [3], used as an algorithm aimed at solving
batched LPs on the GPU. The naive implementation of the RGB algorithm
without improvements (as described in section 3) is referred to as ‘NaiveRGB’
and is also tested.

The GLPK algorithm is parallelized over LPs, allowing different threads
to solve separate problems, and is referred to in the results as ‘mGLPK’,
standing for ‘multicore-environment-GLPK’. CPLEX is able to use different
methods to solve LPs – in the tests, the automatic algorithm selector was
used, which allows the underlying solver to choose which algorithm it believes
is most suitable. CLP is a single-core solver and is set to solve using the
dual simplex method. Tests were also run for GLPK in a serial manner.
However, the results of this are not shown as performance for the multicore-
environment version (mGLPK) was better, with improvement in performance
of up to 6 times, i.e. the number of cores on the CPU tested.

Tests were run on an NVIDIA Titan V GPU card with 12GB dedicated
memory and a (6 core) Intel i7-6850K with 64 GB RAM. The GPU was
connected by PCI-E 2.0. The GPU software was developed with NVIDIA
CUDA 8.0 on Ubuntu, and CPU code was compiled with gcc 7.3. The
algorithms were timed after the problem had finished initializing on the CPU,
and ended when the result had been written to CPU-usable memory. In the
case of GPU timing, this included data transfer to and from device as a result

13



of CUDA managed memory paging.
Problem sets are generated using random feasible constraints in two-

dimensions: constraint lines are generated randomly and tested to ensure
a solution is possible. Only one LP is generated per run, and copied multiple
times into memory to simulate batch numbers. Due to numerical deviations
between CPU and GPU floating point accumulation, a tolerance value of 5
significant figures is set on the results to ensure that consistent results are
obtained for all algorithms. These problems are repeated multiple times with
new random feasible problems, with the error bars representing one standard
deviation of uncertainty.

The results shown in Figures 3a - 3c use fixed batch sizes and measure
the time taken to solve all LPs when varying the sizes of problems. The
RGB algorithm can be seen to outperform the other algorithms above sizes
of 2 × 102. The algorithm of Gurung and Ray was limited to smaller sizes,
and can be seen to improve compared to CPU algorithms as the number of
batches increases.

Figures 4a - 4b show results from the same experiment, but with varying
batch numbers and fixed problem sizes. In Figure 4a, the RGB algorithm
can be seen to outperform the other algorithms for all tested batch sizes with
LP sizes of 128. In Figure 4b, the RGB algorithm outperforms the CPU
implementations for all tested batch sizes. The Gurung and Ray algorithm
was not able to be tested at this large problem size.

For large batch sizes the majority of the execution time of the RGB
algorithm is due to memory initialization and transfer. For these larger
sizes the computation kernel takes less than 30% of the total execution time,
with the remainder being used to manage memory. This is highlighted in
the surface plot in Figure 5. The bright yellow area represents size-batch
problems which use more than 40% of the time to initialize and transfer
data. The dark blue region is where the majority of time is spent performing
computation. It shows that as batch amounts increase, the proportional
amount of time spent transferring memory also increases.

An important computational aspect of the algorithm is the performance
of the atomic reduction. Figure 6 shows the performance comparison of
shared memory atomics, global memory atomics and device-wide segmented
reduction (using the CUB library [33]) over a range of contention. Contention
is a measure of how many elements must reduce into a final value. A con-
tention of 2 means every 2 elements must reduce their values together. The
maximum measured contention is 512, chosen as the block size of the kernel.
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Results show shared memory atomics to be consistent in timing and bet-
ter performance in comparison for all contention measured. Shared memory
atomics also has stable performance across a range of contention, an impor-
tant aspect for the RGB algorithm where many different values of contention
occur.

The performance difference between naive NaiveRGB and optimized RGB
is examined in Figure 7. To highlight the difference in performance, the
relative computation kernel execution time of naive NaiveRGB and optimized
RGB are shown, which ignores the time taken for data transfer. The y-axis
shows the speedup of the optimized RGB algorithm over the naive NaiveRGB
implementation, with a value of 1 meaning both algorithms execute in the
same time.

5. Discussion

The results show that there is a trend for a greater speed-up to occur for
RGB against CPU algorithms as batch amounts increase and LP sizes de-
crease. There is a similar trend for a speed-up for RGB against the algorithm
of Gurung and Ray, as batch amounts increase and LP sizes also increase.
This means that the CPU models scale better to larger LP sizes but does
not scale with batch amount. This is expected due to the powerful serial
performance of the CPU. This can be seen in figures 4a and 4b where the
time taken to complete execution increases at a greater rate for mGPLK and
CLP than RGB when batch sizes are increased. Figures 3a-3c highlight the
difference in time scaling for varying batch amounts. The batch method of
Gurung and Ray can be seen to scale much worse than RGB in these figures.
This difference in scaling is due to the RGB model using methods suited
to two-dimensional constraints, such as repeatedly running one dimensional
LPs, which is computationally light compared to the operations used in the
batch simplex algorithm. mGLPK tends to be the best performing out of
the CPU models tested due to the multicore environment in which it is run
allowing it to be better suited for solving batch amounts. Maximum speed-
ups are reported as 66x for the RGB algorithm against mGLPK algorithm,
and 22x for the RGB algorithm against Gurung and Ray’s algorithm. The
relative performance of the naive and optimized RGB algorithms peaks in
relative difference around 102 for figures 4a - 7b. This is due to launching
block sizes in such a way as to be optimized for this size. Various operations
used, such as block compression, requires a fixed block size at compile time.
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Figure 3: Timing comparison of the three algorithms for fixed batch sizes and varied LP
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Further improvements to performance of the optimized RGB algorithm can
be made by tailoring block sizes to the expected LP size. A limit in improv-
ing the optimized RGB algorithm performance is the memory bandwidth
limit. Using GPUs with greater memory bandwidth should show increased
performance over the other tested methods.

The RGB algorithm is the best performing out of the algorithms tested
when the GPU device is being fully utilized. For problems that cannot fully
utilize the device’s cores, CPU algorithms mGLPK and CLP are more effi-
cient solvers. Full device utilization occurs when there are more constraints
to consider than cores in the device, i.e. No.-of-batches × size-of-batches ≫
gpu-cores. For the tested hardware, a Titan X Maxwell, this is 3072. Above
this amount all cores are used in the computation. Below full device utiliza-
tion it is hard to hide the large latency that is inherent on the GPU, which
can be hidden by exposing greater levels of parallelism.

A practical use of the RGB algorithm has been applied to an early model
of pedestrian simulation. The initial results are able to solve collision avoid-
ance amongst millions of people to provide real time simulation of large-scale
crowds. The algorithm was purely GPU based without CPU data transfer,
allowing for up to 106 people to be simulated and visualized in real time.
Compared to a CPU implementation this early indication suggests perfor-
mance around 11 times faster for similar numbers of people. Each person
represented a constraint for each neighbour, resulting in a batch of LPs, one
for each person. These were solved to find an optimal velocity for each person
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Figure 7: Relative timing comparison of naive NaiveRGB and optimized RGB algorithms
for fixed constraint size and varied batch amounts.

that avoided collisions with all other people and got them to their destination
in the fastest time and smoothest path. Additional computation is required
due to not guaranteeing LPs to be feasible, e.g. when collision-free motion
cannot be guaranteed. This was repeated each time step, so any performance
improvements that can be obtained are compounded due to the repeated na-
ture of the simulation. Performance of the algorithm is key to allow for more
simulated people while remaining in real time.

6. Conclusion

This paper has presented a novel implementation of a low-dimension
batch linear program solver suitable for GPUs. The implementation makes
use of cooperative thread arrays to share workload across threads. The RGB
algorithm outperforms Gurung and Ray’s work [3] for all problem sizes above
300 constraints in two-dimensions. It also outperforms the CPU algorithms,
GLPK [8] and CPLEX [26], for problems that are known to fully utilize the
device.

Timings were measured to include data transfer to and from device (i.e.
between CPU and GPU). It should be noted that if the batch-GPU LP
algorithm is just one stage of computation that is taking place on the GPU
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then the time of copying data from CPU to GPU can be improved. This
can vastly increase performance at larger data sizes or for iterative problems
such as pedestrian simulations and collision avoidance. When utilizing the
whole device the problem is memory bound. As such, further improvements
to the model should optimize data loading and transference. For this paper
the use of CUDA Managed Memory provided sufficient data performance,
though this could be improved upon on a per-device basis.

The domain of the model is best suited to solving large numbers of low di-
mensional LPs, each of which has numerous constraints. An advantage of the
model is the allowance for different-sized individual LPs within the batches.
The distribution of work units ensures that workload is balanced regardless
of variance in batch problem sizes. Future directions could examine the ap-
plications and performance of the model extended to higher dimensions. It
is expected to scale favourably for low dimensional problems, up to around
5 dimensions, due to the efficiency of the core solving algorithm at such low
dimensions.
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