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ABSTRACT 22 

Land use/land cover (LULC) change models are powerful tools used to understand 23 

and explain the causes and effects of LULC dynamics, and scenario-based analyses with 24 

these models can support land management and decision-making better. This paper 25 

provides a synoptic and selective review of current LULC change models and the novel 26 

frameworks that are being used to investigate LULC dynamics. Existing LULC models 27 

that explore the interactions between human and the environment can be pattern- or 28 

process-based, inductive or deductive, dynamic or static, spatial or non-spatial, and 29 

regional or global. This review focuses on the spectrum from pattern- to process-based 30 

approaches and compares their strengths, weaknesses, applications, and broad 31 

differences. We draw insights from the recent land use change literature and make five 32 

suggestions that can support a deeper understanding of land system science by: (1) 33 

overcoming the difficulties in comparing and scaling Agent Based Models; (2) 34 

capturing interactions of human-environment systems; (3) enhancing the credibility of 35 

LULC change modeling; (4) constructing common modeling platforms by coupling data 36 

and models, and (5) bridging the associations between LULC change modeling and 37 

policy-making. Although considerable progress has been made, theoretical and 38 

empirical efforts are still needed to improve our understanding of LULC dynamics and 39 

their implications for policy-oriented research. It is crucial to integrate the key elements 40 

of research involved in this study (e.g., use of common protocols and online portals, 41 

integration of top-down and bottom-up approaches, effective quantification and 42 
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communication of modeling uncertainties, generalization and simplification of models, 43 

increased focus on the theoretical and empirical bases of models, and open comparative 44 

research) to bridge the gaps between small-scale process exploration and large-scale 45 

representation of LULC patterns, and to use LULC change modeling to inform 46 

decision-making. 47 

 48 
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1. Introduction 82 

Land use/land cover (LULC) changes have been identified as the main driving 83 

forces of local, regional, and global environmental changes, which have been stressed 84 
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increasingly in the evaluation of anthropogenic effects on the environment (Verburg et 85 

al., 2015). LULC changes are the results of dynamic human-environment interactions in 86 

processes operating at differing spatiotemporal scales (Aquilué et al., 2017; NRC, 2014; 87 

Verburg and Overmars, 2009).  88 

LULC change models have become useful research tools in land management, 89 

exploration of future landscape changes, and ex-ante evaluation of policy proposals 90 

because of their capacity to support the analyses of LULC dynamics’ causes and 91 

outcomes (Schulp et al., 2008; Verburg and Overmars, 2009). These models have 92 

played a vital role as computational laboratories for experiments to explore land system 93 

behavior, as real-world experiments frequently are not possible (Matthews et al., 2007; 94 

Rounsevell et al., 2012b). In addition, LULC models can provide a framework to 95 

address and separate the complex suite of biophysical and socioeconomic factors that 96 

affect the rate, quantity, extent, and location of land use changes (Verburg et al., 2004). 97 

Further, the models can be applied to forecast multiple land use conversions’ effects on 98 

climate change, carbon cycling, biodiversity, water budgets, and the provision of other 99 

critical ecosystem services (Alexander et al., 2017; Aquilué et al., 2017; Lacoste et al., 100 

2015; Verburg et al., 2002); they also can support the analyses of potential land use 101 

changes under multiple scenarios and provide insights into planning processes. In 102 

summary, LULC change models are helpful and replicable tools that complement 103 

observational- and experimental approaches to analyze and characterize LULC 104 

dynamics.     105 
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A wide array of land use change models is available currently. They can be 106 

inductive or deductive, pattern- or agent-based, dynamic or static, spatial or non-spatial, 107 

and regional or global (Mas et al., 2014; Overmars et al., 2007; Verburg et al., 2006a). 108 

Because of their different characteristics, this paper outlines comprehensively current 109 

LULC change models’ state, strengths, weaknesses, applications, and frameworks, and 110 

makes inferences about the advantages and disadvantages of different approaches. 111 

Further, the paper reviews and discusses the current knowledge about LULC change 112 

and the way these complex processes are characterized in the models. By doing so, a 113 

number of research gaps are identified and accessible paths are proposed for a better 114 

understanding of LULC dynamics and effective land management.  115 

In the first section, the current state-of-the-art in LULC change modeling is 116 

reviewed and the features that can be used to make broad distinctions between different 117 

modeling approaches are discussed. The second compares two representative models. 118 

The third introduces three novel frameworks to model LULC changes that have been 119 

adapted from existing models. Finally, current research challenges are discussed and a 120 

number of areas for future study are proposed, with the goal to provide a wider 121 

contribution to the field of LULC research by answering the following questions:  122 

(1) What approaches and frameworks have been used to model LULC changes? 123 

(2) What are these models’ strengths and limitations? 124 

(3) What improvements can be made to advance LULC change modeling? 125 

2. Land use/land cover (LULC) change modeling 126 
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2.1 Spectrum of LULC models 127 

Over the past several decades, a large set of LULC change models has been 128 

developed to understand LULC dynamics, explore future landscape patterns, and guide 129 

land management decisions (Mas et al., 2014; Verburg et al., 2002). According to the 130 

classification proposed by National Research Council (NRC, 2014), LULC change 131 

modeling approaches can be placed on a spectrum of pattern- to process-based models 132 

(Table 1). There are two representative types of models along the spectrum: one is 133 

oriented strongly towards describing and extrapolating past patterns (Figure 1), and the 134 

other is designed to represent the environmental and human decision processes that  135 

cause changes in patterns (Brown et al., 2013; Chang-Martinez et al., 2015). However, 136 

these approaches usually are implemented jointly and iteratively in practice.  137 

The top-down, pattern-focused approach typically is based on satellite images, 138 

maps of environmental variables, and census data. These models use an area of land as 139 

the analysis unit and describe the relations between LULC changes and influencing 140 

factors based on past changes analyses (Verburg et al., 2006a). The bottom-up, 141 

process-focused approach, in which the analysis objects are real actors involved in the 142 

LULC change processes, is usually based upon household surveys, and has become 143 

popular recently in land system science (Castella and Verburg, 2007; Chang-Martinez et 144 

al., 2015).  145 

Understanding the model components, data requirements, and functions is essential 146 

to improve their applicability for various research and policymaking purposes. 147 
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Accordingly, five principal modeling approaches are reviewed here briefly: machine 148 

learning and statistical methods, cellular models, sector-based and spatially 149 

disaggregated economic models, agent-based models, and hybrid approaches (NRC, 150 

2014). This review is not exhaustive, but focuses on the broad differences between these 151 

models to understand the way these approaches can be used most effectively. The first 152 

four model categories range from those focused largely on patterns to those focused 153 

primarily on LULC change processes, the first two of which highlight land change 154 

patterns, while the remaining two are more process-based approaches. Hybrid 155 

approaches fall into more than one category because they combine multiple different 156 

models in one simulation framework (Matthews et al., 2007). In the following 157 

subsections, the modeling practices in each of the five categories are discussed in turn.  158 

2.1.1 Machine learning and statistical methods   159 

These methods focus largely on the projection of patterns, and involve approaches 160 

designed to address spatial and temporal relations between LULC changes (outputs) and 161 

the characteristics of locations where they are most likely to take place, as represented 162 

by spatial variables (inputs). The data are used to construct change potential maps that 163 

provide an empirical measure of the likelihood of certain land conversions (NRC, 2014). 164 

Together with traditional statistical methods, multiple machine learning techniques, 165 

including neural networks (NN), genetic algorithms (GA), decision trees (DT), and 166 

support vector machines (SVM) have also been applied to parameterize the biophysical 167 

and socioeconomic variables considered in land change models. Applications of these 168 
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approaches cover various fields, such as NN for urban sprawl, intra-urban dynamics and 169 

projections for policy-based scenarios (Almeida et al., 2008; Guan et al., 2005; 170 

Maithani, 2014), GA for optimized urban land use allocation and rural land reallocation 171 

(Haque and Asami, 2014; Uyan et al., 2015; Zhang et al., 2014), and DT and SVM for 172 

classification of heterogeneous land cover (Huang et al., 2009; Keshtkar et al., 2017). A 173 

comparative analysis of different modeling approaches has shown that SVM achieved 174 

greater agreement of predicted changes than DT and NN in three Belgrade 175 

municipalities (Samardžić-Petrović et al., 2017). Comparisons between traditional 176 

logistic regression and non-parametric neural networks (NN) illustrated that NN provide 177 

a better fit between causal variables and land use patterns (Lin et al., 2011). Dinamica 178 

EGO, LTM (Land Transformation Model) and LCM (Land Change Modeler) are 179 

typical simulation frameworks in which these different modeling methods have been 180 

embedded, and detailed comparisons among them are shown in Table 1. 181 

2.1.2 Cellular models 182 

Cellular-based models use discrete spatial units, shaped pixels, parcels, or other 183 

land units as the basic units of simulation. These models use a series of input data to 184 

simulate transitions of LULC based upon a constant rule set or algorithm. Variations in 185 

decision-making do not stem from the decision differences of agents acting as land 186 

managers, but rather from the attributes of spatial units (NRC, 2014). 187 

The quantity of LULC change is computed (allocated) in a top-down manner or in 188 

a bottom-up procedure that calculates transitions at the level of individual units based 189 
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solely on their neighbors’ conditions. Examples of the former type include Environment 190 

Explorer, CLUE-S, and the Land Transformation Model (de Nijs et al., 2004; 191 

Pijanowski et al., 2002; Verburg et al., 2002), while the SLEUTH model is a typical 192 

representative of the latter category (Clarke, 2008; Clarke and Gaydos, 1998). Often, the 193 

LULC changes interact with processes on a local scale, so it is appropriate to simulate 194 

these interactions by integrating the two allocation algorithms, e.g., Dyna-CLUE 195 

(Verburg and Overmars, 2009). 196 

Cellular models have been widely used because of their simplicity, flexibility, and 197 

intuitiveness in reflecting spatiotemporal changes in land use patterns. Traditional 198 

cellular models have been adapted and combined with other modeling approaches to 199 

improve their availability and performance in solving land system problems. Markov 200 

chains and logistic regression have been employed to calculate the quantity of future 201 

land changes, and the spatial patterns have been determined by cellular models 202 

(Al-sharif and Pradhan, 2013; Arsanjani et al., 2013; Kamusoko et al., 2009). Novel 203 

techniques, such as neural networks and support vector machine outlined in the previous 204 

section, have been merged with cellular models to parameterize the various variables 205 

and define the transition rules (Almeida et al., 2008; Charif et al., 2017). In addition, 206 

allocation sequences and local effects within the neighborhoods are another two critical 207 

components and focuses in research on cellular based models. Novel modeling 208 

frameworks, e.g., LANDSCAPE (LAND System Cellular Automata model for Potential 209 

Effects) and LLUC-CA (Local Land Use Competition Cellular Automata model) were 210 
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developed to address these issues (Ke et al., 2017; Yang et al., 2016).    211 

2.1.3 Sector-based and spatially disaggregated economic models 212 

Two different economic models are used to describe LULC change as a market 213 

process and are distinguished primarily by the scale at which they operate. Sector-based 214 

models, which are structural and focused on economic sectors, operate at varying, but 215 

more aggregated scales. This type of model treats land as a fixed factor of production 216 

and represents supply and demand explicitly as contributors to market equilibria (Golub 217 

and Hertel, 2012). Further, sector-based models can be classified by the economic 218 

system they represent: one type is general equilibrium models that account for the 219 

global economy and interactions among all sectors in the economy (Hertel, 2018; 220 

Timilsina and Mevel, 2012); the other is partial equilibrium models that focus on 221 

specific sectors, including forestry, agriculture, and energy (NRC, 2014; Sands and 222 

Leimbach, 2003). These models have been employed to analyze biofuels’ effects on 223 

global land use, land use change and resulting carbon emissions, competition between 224 

agricultural and forest products, and potential influences of climate change on land 225 

productivity (Choi et al., 2011; Steinbuks and Hertel, 2016; Taheripour and Tyner, 226 

2013). Efforts also have been made to combine partial and general equilibrium models 227 

to complement each other (Britz and Hertel, 2011). 228 

The spatially disaggregated economic models, either in structural or reduced form, 229 

simulate individual decisions at smaller scales, including field, parcel, and 230 

neighborhood levels (NRC, 2014). The reduced-form econometric models focus on 231 
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identifying the causal relations between multiple explanatory factors and the resulting 232 

LULC changes (Brown et al., 2013; Chang-Martinez et al., 2015; NRC, 2014). 233 

Econometric approaches are often employed to evaluate the effects of variables 234 

involved in the spatially disaggregated models (Nelson et al., 2016). Progress has been 235 

made in applying this type of model to account for the discrete and continuous land- and 236 

input-use decisions of farmers (Antle and Capalbo, 2001), the primary environmental, 237 

economic, and policy drivers of land use changes (Fezzi and Bateman, 2011), the 238 

dynamics of urban land use changes, and the association between housing and land 239 

markets (Magliocca et al., 2011).  240 

2.1.4 Agent Based Model 241 

The Agent Based Model (ABM) represents systems that consist of multiple agents 242 

and simulate their behaviors, thereby representing complex LULC change processes. 243 

Agents refer to diverse and interrelated actors, including land owners, farming 244 

households, development firms, cooperatives and collectives, migrant workers, 245 

management agencies, policy makers, and others who make decisions or take actions 246 

affecting LULC patterns and processes (Brown, 2006; Parker et al., 2003). ABMs are 247 

nearly always spatially explicit in land change research context. They simulate the 248 

individual actors’ decisions and assess the resulting micro-scale system behaviors, 249 

including all the interactions among agents and the environment (Couclelis, 2000; NRC, 250 

2014; Valbuena et al., 2008). Applications of ABMs are elaborated in the following 251 

section and compared with another representative model. 252 
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2.1.5 Hybrid approaches 253 

It is difficult to adequately represent the complexity of land use decision-making 254 

and account for the processes underlying LULC changes. The data used in LULC 255 

change research ranges from satellite images to surveys of human behaviors, and many 256 

others in between. Therefore, it is common to combine the approaches described above 257 

to make the best use of the strengths of each and to characterize the multiple facets of 258 

LULC change patterns and processes. Hybrid approaches can incorporate different 259 

conceptual frameworks, theories, and observations (Table 2), allowing modelers to 260 

choose suitable simulation procedures according to their practical demands 261 

(Chang-Martinez et al., 2015).  262 

Figure 1 263 

Table 1 264 

Table 2 265 

2.2 Comparisons of two representative models (CLUE series models & Agent Based 266 

Model)  267 

The CLUE series of models and ABMs are most frequently used in land change 268 

simulation research. To illustrate the characteristics of different modeling approaches, 269 

the basic attributes of these two types of models are described with an emphasis on their 270 

commonalities and differences.  271 

2.2.1 Three generations of CLUE series models 272 

The CLUE series models are among the most commonly used land use models 273 
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worldwide, and their applications range from small areas to entire continents (website of 274 

CLUE series models: see Appendix A). Different versions of CLUE models have been 275 

developed to serve various research objectives in environmental modeling and land 276 

system science, from its original model (Veldkamp and Fresco, 1996b) to later versions, 277 

including CLUE-S (Verburg et al., 2002) and Dyna-CLUE (Verburg and Overmars, 278 

2009).  279 

The CLUE series models includes three versions: (1) The CLUE (Conversion of 280 

Land Use and its Effects modeling framework) was designed to simulate land use 281 

changes by empirically quantifying the relations between land use patterns and their 282 

explanatory variables, and incorporating the dynamic simulation of competitions among 283 

different land use types (Overmars et al., 2007; Veldkamp and Fresco, 1996b). 284 

CLUE-CH (Conversion of land use and its effects in China) is used to apply the CLUE 285 

model framework specifically in China to simulate land use patterns at the country-wide 286 

scale (Chen and Verburg, 2000; Verburg et al., 2000; Verburg et al., 1999). CLUE-CR 287 

is the application of CLUE in Costa Rica that simulates the influences of changing 288 

biophysical and demographical drivers on LULC changes and feedback from LULC to 289 

those forces at the local, regional, and national scales (Veldkamp and Fresco, 1996a). (2) 290 

Subsequently, the modeling approach was modified to operate at regional scales, 291 

resulting in the CLUE-S (Conversion of Land Use and its Effects at Small regional 292 

extent). CLUE-S spatially explicitly simulates the land use changes based upon an 293 

empirical analysis of land suitability, and integrates land systems’ competitions and 294 
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interactions into a dynamic simulation (Verburg and Veldkamp, 2004). (3) An adapted 295 

version, Dyna-CLUE, was developed for certain natural and semi-natural land use types 296 

to integrate demand-driven changes in land areas with locally determined transition 297 

processes (Verburg and Overmars, 2009). The CLUE-scanner is an implementation of 298 

the Dyna-CLUE in DMS software of ObjectVision (Verburg et al., 2011). The principal 299 

characteristics of these three versions of CLUE models and two applications are 300 

summarized (Figure 2), and the detailed procedures of the most popular CLUE-S and 301 

the most recent Dyna-CLUE are illustrated (Figure 3 and 4).  302 

Figure 2 303 

Figure 3 304 

Figure 4 305 

2.2.2 Agent Based Model: the “third way” to conduct science 306 

ABM has been described as the “third way” to conduct science because it is an 307 

amalgamation of the inductive and deductive approaches. ABMs are based on a series 308 

of explicit assumptions and perceptions of the way the world works, and they use these 309 

to generate simulated data that can be analyzed inductively (Matthews et al., 2007). 310 

These models integrate the effects of human decisions on land use in a formal, spatially 311 

explicit way and consider the social interactions, adaptation, and evolution at multiple 312 

levels (Parker et al., 2003). Because of social systems’ complexity and the unique 313 

features of ABM that increase its specificity with respect to individual case studies, no 314 

general framework (analogous to Figure 1 for pattern-based models) has been 315 
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developed to illustrate, design, test, and assess ABMs (Grimm et al., 2005; Murray-Rust 316 

et al., 2011; Tian and Wu, 2008). In this section, we focus on the classification of 317 

ABMs and their uses thus far by reviewing a representative set of case studies. The 318 

following applications of ABMs in four overlapping topic areas related to LULC 319 

changes are discussed: modeling land use patterns; urban simulation and policy analysis; 320 

representation of human-environmental relations and feedback loops, and specific 321 

applications across the regional and global scales. ABMs have been extensively 322 

employed to represent complex socio-ecological systems. Thus, this section does not 323 

seek to identify and characterize all ABM applications, but focuses instead on the 324 

generic aspects of ABM used in LULC change field.  325 

(1) Modeling land use patterns 326 

Compared to the empirical methods, e.g., transition probabilities, ABMs can 327 

provide explicit simulation of human decision-making processes and thereby offer 328 

greater insights into the actual processes underpinning land use pattern changes. In 329 

addition, spatial and landscape metrics are often used in these studies to quantify the 330 

dynamics of landscape structure and configuration. Jepsen et al. (2006) used a spatially 331 

explicit ABM related to farmers’ field location choices to simulate the land use patterns 332 

in Ban Que, Vietnam. Agents in the model act to maximize labor productivity which is 333 

based upon potential yield, labor costs, and physical constraints. By using several 334 

spatial metrics, the modeling outputs are compared with the observed land cover 335 

patterns. The results of baseline scenario showed high levels of spatial clustering and 336 
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the patterns generated in the slope scenario were analogous to the validation data. Using 337 

two landscape metrics and household interview data, Evans et al. (2011) established an 338 

ABM in Lomue village, Laos, to simulate smallholders’ land use decisions and the 339 

resulting landscape dynamics. This model effectively reproduced the general spatial 340 

patterns of the village area, and the results also indicated an increased inequality in 341 

household income over time as a function of the variable rate of rubber adoption.    342 

(2) Urban simulation and policy analysis 343 

In the policy and decision-making cycle proposed by NRC (2014), ABMs play a 344 

critical role in two stages: intervention design and decision & implementation. In the 345 

former stage, ABMs are used to explore the land system structure and its internal 346 

interactions, and investigate dynamics that might benefit from interventions. In the latter 347 

stage, ABMs are used ex ante to assess the possible effects of specific policy scenarios. 348 

For example, Li and Liu (2008) integrated ABM, cellular automata (CA), and GIS to 349 

develop an exploratory spatial tool to compare various development strategies and 350 

assess the potential effects of land use policies in Guangzhou, China, a rapidly 351 

sprawling city. GIS was used to provide spatial information and CA was to reflect local 352 

interactions of physical variables. Sustainable development strategies were embedded in 353 

the simulation by appropriately defining agents’ behaviors. Based on the high-resolution 354 

cadastral data and representations of the interactions among key stakeholders, the Agent 355 

iCity model (Jjumba and Dragićević, 2012) established three urban growth management 356 

scenarios derived from different growth policies. They found that relative household 357 
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incomes and property values are critical causes of urban land use pattern changes 358 

because households look for and move to affordable homes in suitable neighborhoods.  359 

Considering the complexity of urban system, ABMs are preferred to solely 360 

pattern-based models for their ability to encompass various components and elements in 361 

cities, particularly considerations of the government, developers, and residents that can 362 

directly influence the land use patterns and social environment. For example, by 363 

incorporating multiple agent classes (creative firms and workers and urban government), 364 

Liu et al. (2016) presented an ABM that simulated different policy scenarios and the 365 

corresponding dynamics of creative firms’ spatial distributions. Besides, both reviews 366 

and specific case studies were conducted to summarize and advance the development of 367 

ABMs in urban residential choices (Huang et al., 2013; Jjumba and Dragićević, 2012). 368 

By including the agents’ attributes and behaviors, and land-market processes, ABMs 369 

can offer comprehensive and relatively realistic visualizations of potential urban land 370 

use, which may effectively help policy makers adjust land use plans adaptively at 371 

different development stages.  372 

(3) Representation of human-environmental relations and feedback loops 373 

Many of the models focus explicitly on socio-environmental interactions and link 374 

heterogeneous agent decisions to multiple biophysical processes. Using ABMs to 375 

conduct such coupled research between human and environmental systems is helpful in 376 

building a decision support system to inform policy decisions. An et al. (2005) 377 

developed an Integrative Model for Simulating Household and Ecosystem Dynamics 378 
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(IMSHED) to simulate the effects of rural population growth on the forests and giant 379 

panda habitat in China. This study integrated various complex mechanisms to simulate 380 

the spatial patterns of panda habitat and explored the influences of socio-economic and 381 

demographic conditions. The results suggested that policies that encourage family 382 

planning, out-migration, or increased use of electricity would preserve panda habitat to 383 

various degrees (Matthews et al., 2007). Inner Mongolia Land Use Dynamic Simulator 384 

(IM-LUDAS) developed for a semi-arid region in northeast China consists of 385 

heterogeneous socio-ecological components and feedback at multiple scales (Miyasaka 386 

et al., 2017). The study showed that tree plantations expanded under the SLCP (Sloping 387 

Land Conversion Program), accelerated vegetation and soil restoration and household 388 

changes towards off-farm economies. However, the livelihood changes were not 389 

sufficiently large to compensate for the reduced income resulting from policy-induced 390 

reduction in cropland, which provided a new focus for future ecological restoration 391 

strategies. 392 

Figure 5 summarizes the major components of human and environmental systems 393 

that illustrate the associations and interplays between them through the modeling 394 

approach addressed in this subsection (Valbuena et al., 2008; Valbuena et al., 2010; 395 

Veldkamp and Lambin, 2001; Verburg, 2006; Verburg et al., 2006a).   396 

Figure 5 397 

(4) Specific applications across the regional and global scales  398 

ABMs have been proposed as powerful tools to investigate LULC changes because 399 
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of the flexible and context-dependent way in which they represent human 400 

decision-making (An, 2012; Matthews et al., 2007; Parker et al., 2003). However, 401 

because of the inherent complexity of LULC change processes, high data requirements, 402 

and diverse decision-making processes, many applications of ABMs have been limited 403 

to local scales (Le et al., 2008; Miyasaka et al., 2017), although preliminary attempts 404 

have been made to apply it to larger scales (Fontaine and Rounsevell, 2009). Valbuena 405 

et al. (2008) constructed an agent topology and allocated agents to multiple categories 406 

for a regional analysis that sought to simplify and address diverse farming systems and 407 

individual decisions. They also proposed a generic conceptual ABM framework that 408 

explicitly considered the diversity of decision-making strategies for different LULC 409 

change processes over different regions (Valbuena et al., 2010).   410 

Rounsevell et al. (2014) proposed a schematic framework of the primary 411 

components of land-climate systems and their respective interplays across actor, 412 

regional, and global scales. They suggested that improved representation of the human 413 

entity is needed to conceptualize the options to expand LULC change models from the 414 

local to global scales. This includes the processes of agent adaptation, learning, and 415 

evolution, formalizing the role of governance regimes, and stressing technological 416 

innovation and global network connectivity. However, except for this conceptual 417 

framework at the global scale and several integrated models (e.g., integrating CGE 418 

models with ABM), ABMs remain fragmented and face a tricky obstacle in representing 419 

human decision processes at regional and global scales. This may be because of the 420 
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barriers on data availability, agent attributes in model parameterization, as well as the 421 

scaling and aggregation issues for macro-scale applications (Aquilué et al., 2017; 422 

Rindfuss et al., 2004; van Delden et al., 2011).    423 

2.2.3 Comparisons and combinations of the two complementary paradigms to integrate 424 

LULC change patterns and processes  425 

Although initial research has been conducted to investigate the relations between 426 

agent behaviors and land use spatial patterns that benefit from novel modeling platforms 427 

integrating GIS functions (Guzy et al., 2008; Liu et al., 2016; Yamashita and Hoshino, 428 

2018), most studies have lacked a spatial perspective and focus on processes occurring 429 

in specific locations only. This results from using agents as the basic analysis unit, 430 

which makes it difficult to relate agent behaviors to actual land areas and adequately 431 

characterize spatial behaviors (Rindfuss et al., 2002; Rindfuss et al., 2004). Space and 432 

time dimensions are commonly integrated in spatial models of LULC dynamics 433 

(Verburg and Veldkamp, 2004). Some studies have suggested that ABMs are not 434 

always the best prediction tools for LULC change science (Groeneveld et al., 2017). 435 

Nevertheless, such models can advance the knowledge of LULC processes by 436 

conducting experiments that investigate different representations of those processes 437 

(Rounsevell et al., 2014). By including autonomous and heterogeneous agents, ABMs 438 

are able to explicitly cope with the diverse decision-making processes, which is a key 439 

limitation of most land use models that typically apply a single response function over 440 

the entire study region and assume that human decision-making is a homogeneous 441 
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process (Valbuena et al., 2008). Because the ABMs can track individual agents’ actions 442 

and their outcomes, they have an advantage in conveying the model structure and 443 

functions to stakeholders (NRC, 2014). 444 

Both pattern-based and process-driven ABMs have their respective strengths and 445 

weaknesses (Table 3). The first provides insights about the macro-scale variations of 446 

influences and responses to changes in markets, prices, investments, policies, and 447 

climate adaptation measures, while the second offers more information about agents’ 448 

responses and adaptations to variable environmental and policy conditions (Rounsevell 449 

et al., 2012b). Choices of the appropriate modeling approach depend on the specific 450 

study purpose, the process under research, data accessibility, case study characteristics, 451 

and the spatiotemporal extent of the model (Couclelis, 2000; Verburg et al., 2006a). 452 

Some efforts have been made to integrate the two types of models into a rule-based 453 

version of CLUE-S. This can enhance the overall modeling framework by accelerating 454 

the collaboration among researchers from different institutions and between researchers 455 

and local stakeholders (Castella and Verburg, 2007). Wang (2016) combined the ABM 456 

and CLUE-S to investigate the interactions between household land use behaviors at a 457 

micro-level and macro agricultural land use patterns in Mizhi County in Shanxi 458 

Province, China. This study resulted in important theoretical and practical 459 

understanding of the relations between changes in farming households’ activities and 460 

the characteristics of agricultural land use patterns and processes.  461 

Table 3 462 



23 
 

3. Novel frameworks to simulate LULC dynamics 463 

This section describes the development and exploration of novel modeling 464 

frameworks as complementary and parallel approaches to the continued development of 465 

existing models. This will provide much-needed diversity in innovative methodology 466 

from which the next generation of LULC change models is more likely to benefit (NRC, 467 

2014; Rounsevell et al., 2014).  468 

3.1 A spatial demand-allocation procedure based on change occurrence and contagion  469 

Aquilué et al. (2017) introduced a novel spatial demand-allocation procedure to 470 

simulate LULC dynamics. Their study explicitly addressed two critical phases inherent 471 

in land conversions: the occurrence and spread of land change, corresponding to the 472 

initiation of new changes (“patch-of-change”) and the generation of the final spatial 473 

patterns. The allocation procedure used a sorted queue of cells waiting to be changed. 474 

The rate of change occurrence, change expansion, and acceleration of change contagion 475 

co-determined the sequence of queued cells, and eventually determined the emergence 476 

and extent of patches-of-change. By using this allocation procedure, the authors 477 

established a generic, spatially explicit land use model, MEDLUC. The model was 478 

designed to reproduce the transformations in the Mediterranean region that occur most 479 

frequently: urbanization, agriculture conversion, and rural abandonment. The model can 480 

simulate multiple land transitions simultaneously and allows land conversions from 481 

multiple land use types to a target type. The study addressed the effects of each 482 

parameter on the final spatial patterns and acknowledged the time and path dependence 483 
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issue. Further, the demand-allocation procedure also supports the spatial translation of 484 

LULC change scenarios, such as urban development plans, agricultural policies, and 485 

land management strategies, according to the regional policies or global trends.  486 

3.2 A new LULC Population Dynamics P system model 487 

Fondevilla et al. (2016) proposed a novel LULC Population Dynamics P system 488 

model (PDP) that integrates the main LULC change processes, including plant 489 

production, grazing, abandonment, and reforestation. The LULC-PDP model is 490 

constructed in seven stages: 1) define and limit the proposed objective and focus of the 491 

model; 2) describe the LULC processes to be modeled and the interactions between 492 

them; 3) obtain the inputs and parameters; 4) describe the sequences of LULC processes; 493 

5) design the main components of the model; 6) graphically represent the configurations 494 

implying the LULC-PDP execution cycle; 7) design the computer simulator. The 495 

authors constructed and validated the model to predict future LULC changes annually 496 

under three scenarios: business as usual, moderate, and strong reduction of land use 497 

intensity. The advantages of PDP are that it: (1) can study complex problems related to 498 

interplaying agents and processes; (2) can study numerous species and habitats 499 

simultaneously; (3) allows large amounts of information, new modules, and processes to 500 

be introduced; (4) does not require processes to be sequenced totally; (5) is flexible and 501 

can be applied in other research fields. However, it does not involve the spatial 502 

allocation of LULC changes as the classic CLUE family of models.  503 

3.3 GIS-based spatial allocation of LULC changes 504 
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The CLUE family of models allows LULC changes to be visualized more easily, 505 

but under greater uncertainties, in that the models do not consider as many key factors 506 

as more recent models, such as the PDP (Fondevilla et al., 2016). The SPA-LUCC 507 

model (Schirpke et al., 2012) overcomes this limitation with a combination of both 508 

integrated visualization functionality and greater LULC model details, thereby 509 

supporting more realistic assessments of LULC changes. It is a GIS-based model that 510 

spatially allocates land changes to predict the spatial distribution of future LULC 511 

scenarios that consider both environmental and socioeconomic driving forces. It is a 512 

stochastic allocation model that translates LULC change quantity into spatially explicit 513 

land cover distributions. In addition, it includes multiple tools to project future 514 

conversion probabilities on a pixel-by-pixel basis, including calculation of the transition 515 

metrics and the cost distance to provide necessary inputs on demand. Initially, known 516 

historical land cover simulation was used to validate the model before it was applied to 517 

generate future LULC maps for the Stubai Valley, Austria, under three socioeconomic 518 

scenarios: business as usual, reduction, and diversification of use. There are some 519 

problems about the generalizability of this approach because of the complexity 520 

associated with the interactions amongst environmental and socioeconomic conditions, 521 

high data requirements, and the irreproducible modeling processes and algorithms. 522 

However, GIS-based modeling approaches are user-friendly, support spatial data 523 

manipulation, and allow easy implementations under many different modeling 524 

frameworks.  525 
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4. Discussion 526 

4.1 Difficulties in comparing and scaling ABMs 527 

Great efforts have been made to explore different aspects of agent-based models, 528 

including their theoretical foundations, taxonomies, various decision models, scaling, 529 

and applications (An, 2012; Groeneveld et al., 2017; Hare and Deadman, 2004; 530 

Matthews et al., 2007; Rounsevell et al., 2012a). However, these studies are limited to 531 

specific study areas. In part this may be attributable to the difficulties in comparing and 532 

contrasting ABMs, deriving from the strong variation in the terminology used by 533 

authors to describe the same processes and features. Another reason is the highly 534 

diverse ways in which ABMs are conceptualized, constructed, and presented. This 535 

makes it difficult to cross-fertilize concepts, ideas, and structures across these models 536 

developed by different research communities (An, 2012; Groeneveld et al., 2017). 537 

Another problem arises in scaling ABMs for LULC research. Many LULC ABMs 538 

are parameterized with data collected at micro-scales to describe agent attributes and 539 

behavior rules (Rounsevell et al., 2012b). Despite numerous case studies, there has been 540 

no attempt as yet to connect, assimilate, organize, and synthesize the findings of these 541 

local-level studies (Rounsevell et al., 2014). Most ABMs operate at small, simplified, 542 

and hypothetical landscapes, because larger regions include more agents and more 543 

complex interactions, which restricts the ability to expand the models over larger 544 

geographic regions (Verburg et al., 2004). However, the application of ABMs beyond 545 

local scales could provide ways to generate model outputs at scales relevant to synoptic 546 
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land management and policy formulation. Rounsevell et al. (2012a) proposed three 547 

ways to apply ABM over larger geographical extents: scaling out, which uses the same 548 

model over larger regions by increasing the extent of input data; scaling up, which 549 

aggregates model behavior to a higher representational level and changes the 550 

represented entities to a higher level of aggregation, and nesting, which uses a 551 

multi-model approach to explore the feedback and interactions among agents and 552 

processes. Given the paucity of existing research that has applied ABMs above local 553 

scales (Rounsevell et al., 2014; Valbuena et al., 2010), there is a clear research gap in 554 

developing scalable approaches so that ABMs become mature and amenable both to 555 

regional and global applications. 556 

The use of common protocols in standard model description would support the 557 

ability to transfer and generalize LULC ABMs. They serve as a benchmark or checklist, 558 

similar to ODD and the ABM taxonomy for land and resource management (Bousquet 559 

and Le Page, 2004; Grimm et al., 2006; Hare and Deadman, 2004). Thus, this review 560 

proposes that general protocols and architectures related to LULC and LULC changes 561 

should be established to facilitate comparing and scaling ABMs. Additional progress 562 

can be made by using online portals to share and improve access to global 563 

environmental and socioeconomic statistics (Rounsevell et al., 2014). Several websites 564 

that provide data for LULC change research are listed in Appendix A.   565 

4.2 Inadequate capture and representation of human-environment interactions   566 

Because of the complexity of interacting environmental and socioeconomic 567 
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processes, it is difficult to explore causes and effects, to identify leverage points for 568 

targeting management measures, and to assess the potential effectiveness of those 569 

measures (Liu et al., 2007; Summers et al., 2015). Thus far, no model can capture all 570 

causes of LULC changes, nor is there an all-compassing theory that considers all the 571 

driving forces of land systems (Couclelis, 2000; NRC, 2014; Sohl and Claggett, 2013). 572 

The focus of both top-down and bottom-up paradigms also cannot fully interpret the 573 

complexity of human-environment interactions across multiple levels (Rounsevell et al., 574 

2012b). Figure 5 is a snapshot of the interactions between human and environmental 575 

systems that LULC change models represent. These constitute only a small fraction of 576 

the complex relations in human-environment systems and are by no means 577 

comprehensive. However, the figure provides a relevant summary that can facilitate a 578 

deeper understanding of these interactions and support the integration of partial theories. 579 

Synthesis studies have shown that relations in the human-environment systems vary 580 

across time, space, and organizational units. Further, historical relations can have legacy 581 

effects on present and future conditions (Liu et al., 2007). Parker et al. (2008) proposed 582 

three ways to link the human-environment interactions in land system: one-way linkage 583 

to use natural science models as inputs to social system; a one-way chain with natural 584 

system input and output models, and two-way linkage with internal determination of 585 

common variables through interactions in socio-natural systems. Although the 586 

importance of the third way is always highlighted, current research primarily uses the 587 

one-way linkage or one-way chain (Miyasaka et al., 2017). The development of models 588 
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that allow addressing two-way feedback is still ongoing (Filatova et al., 2013).  589 

Integrating different land use models to construct a multi-model framework 590 

provides an alternative way to explore the interactions in human-environment systems 591 

thoroughly. This would use the strengths of existing, individual models while 592 

overcoming their weaknesses and developing new insights. For example, Bone et al. 593 

(2011) proposed a “modeling-in-the-middle” approach that bridges top-down and 594 

bottom-up models and found that this leads to negotiated land use patterns that consider 595 

all of the individuals’ objectives and behaviors. ABMs benefit from top-down 596 

approaches that describe the regional context under different scenarios and provide 597 

information about land managers’ local responses simultaneously (Rounsevell et al., 598 

2012b). Most present top-down models use generalized and universal allocation 599 

mechanisms. However, human responses to different scenarios and environmental 600 

policies vary considerably under the influences of various regional contexts, cultural 601 

history, and other factors, indicating the need to combine the two modeling paradigms 602 

(Rounsevell et al., 2012b). Lastly, these integrated modeling approaches are supported 603 

further by the increased availability of multi-scale geo-referenced environmental and 604 

socioeconomic data that different research groups exchange frequently and may open 605 

new ways to fully explore the complex causal relations in human-environment systems.  606 

4.3 Enhancing the credibility of LULC change modeling 607 

Several practices can improve LULC change modeling and enhance its credibility, 608 

some of which are developed, but not always followed, while others may require more 609 
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efforts to test and advance. Uncertainties in LULC change modeling, an issue known 610 

well, but one on which research progress has been slow, can arise from the input data, 611 

parameters, model structure, processes and their interactions, as well as the 612 

mathematical and algorithmic representation (NRC, 2014; Prestele et al., 2016). On the 613 

historic LULC change reconstruction side, uncertainties can stem from different 614 

reconstruction methods and limited data available for historic states. Future model 615 

projections lack validation procedures and rely on the underlying scenarios, relating to 616 

the likely non-stationarity in processes. A detailed analysis and effective presentation of 617 

uncertainty information provides an increased understanding of the land system 618 

(Petersen, 2006; Wardekker et al., 2008). There are two important considerations related 619 

to uncertainty: quantification and communication. Recent progress includes a spatially 620 

explicit assessment of the uncertainties among a set of existing global-scale LULC 621 

models to recognize their amount, spatial extent, and locations (Prestele et al., 2016); 622 

the exploration of translating macro-scale uncertainties into that in spatial patterns of 623 

land change (Verburg et al., 2013), and the identification and quantification of 624 

uncertainties in European and global LULC projections (Alexander et al., 2017). The 625 

scenario framework provides a tool to communicate uncertainty about future modeled 626 

land use, with broad uncertainties presented as differences in the scenario assumptions. 627 

Explicit recognition of stationarity assumptions and the exploration of data for evidence 628 

of non-stationarity are also important steps in acknowledging and understanding model 629 

uncertainties (Brown et al., 2013). The generalization and simplification of models can 630 
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play a critical role in improving the ability to analyze uncertainties (Sohl and Claggett, 631 

2013). It is also suggested to use a diverse set of modeling methods (multiple rather 632 

than complex models) to evaluate LULC changes’ potential effects on the environment. 633 

Applying multiple models can also help communicate the uncertainties to stakeholders 634 

to gain their trust (Sohl and Claggett, 2013). However, further work to quantify the 635 

different types of uncertainties and communicate them with stakeholders is needed to 636 

address the causes and variations of uncertainties thoroughly, as well as provide more 637 

scientifically rigorous and useful modeling applications.  638 

Validation is often difficult and thus is ignored in most LULC change models, 639 

which results in a lack of confidence in the modeling results (Rindfuss et al., 2004; 640 

Waddell, 2011). Validation refers to comparisons of model outputs and observed 641 

patterns, and the match between processes on which modeled locations and land use 642 

patterns depend and the real-world processes (Brown et al., 2005; NRC, 2014). In 643 

pattern validation, two or more historic land cover maps are needed to calibrate the 644 

model and simulate a map at a subsequent time. The simulated map of land use changes 645 

is then compared to the reference map of actual changes and the differences are assessed 646 

using various indices. The comparison requires three maps: the initial observed map, the 647 

observed and simulated maps at the end of simulation. As an alternative to the usual 648 

three two-map comparisons, a novel three-dimensional contingency tabulation that 649 

compares the three maps simultaneously has been proposed (Pontius et al., 2011). It is 650 

more parsimonious and yields richer information on change amount and allocation 651 
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performance (Moulds et al., 2015; Pontius et al., 2004). Although multiple techniques 652 

have been developed for pattern validation, pattern accuracy has been explored only in 653 

part, or more typically, is ignored in applications (van Vliet et al., 2016). This may be 654 

because of the scarcity of historic data, the large differences in classification of land use 655 

maps and resolution of satellite images, as well as poor conceptual and theoretical 656 

understanding (Sohl and Claggett, 2013; Verburg et al., 2004). Similar to pattern 657 

validation, process validation has received even less attention and remains a challenge 658 

because of the potential (and common) existence of unobservable underlying processes, 659 

their complex correspondences with the predicted patterns, and the path dependence of 660 

themselves (NRC, 2014; van Vliet et al., 2016). Thus far, only rudimentary attempts 661 

have been made to address both pattern and process validation. Much work is needed to 662 

enhance simulation credibility for scenario analysis and policy formulation, including a 663 

continued focus on fitting historical data, more attention on the models’ theoretical and 664 

empirical basis, open comparative research, peer review of the modeling framework, 665 

and justification of the model’s suitability for a given context (Petersen, 2006; Pontius 666 

et al., 2008; Rindfuss et al., 2008; Sohl and Claggett, 2013). Addressing these issues 667 

would considerably alleviate the challenges of model validation.  668 

4.4 Common modeling platform: coupled data and models  669 

A general lack of data, published codes, and common modeling platforms make 670 

reliable simulation of LULC changes and replication difficult. Large data gaps remain. 671 

There is a long way to reach the position where all of the data needed to characterize 672 
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various LULC change processes are available. For ABMs, with their high input 673 

requirements, modeling highly diverse scenarios, decisions, and agents, it is always 674 

difficult to acquire sufficient data to establish a well-parameterized model, especially at 675 

the individual or household level. Another problem is that the observed LULC change 676 

outcomes may not be adequate to validate the model outputs (Verburg et al., 2004). In 677 

addition, the land information from interviews and questionnaires provided by those 678 

involved in landscape management (farmers or other agents) may not match the agents’ 679 

actual behaviors or reflect the real-world situation. Moreover, not all actors behave in 680 

the same way in all areas. Thus, a detailed sample survey that seeks to capture 681 

information over an entire region may not always represent the diverse behaviors and 682 

attitudes amongst the population, which results in a mismatch between the survey 683 

results and the statistics (Valbuena et al., 2008). These issues further increase the 684 

modeling uncertainties and complexities. For cellular models, fine-resolution data for 685 

model validation are not always available because of confidentiality concerns, and 686 

typically, the periodicity that socioeconomic data lag behind those of natural science 687 

(Parker et al., 2003). This suggests a need for a data infrastructure to collate and collect 688 

historical data on LULC changes and a wide array of economic, demographic, and 689 

policy statistics (Appendix A).  690 

Providing model source codes is encouraged whenever possible to support model 691 

(and outcome) transparency, and critically, research replicability (Brunsdon, 2016). The 692 

SLEUTH model has been accepted and used widely since its development in the 1990s. 693 
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One reason for its success is that its code is available freely to download and use, and its 694 

framework is relatively straightforward (Sohl and Claggett, 2013). Several researchers 695 

have argued for a common programming language that allows model structures and 696 

results to be communicated clearly (Parker et al., 2003). In the CLUE-S model, users 697 

can run the model only on the platform provided and have to preprocess the inputs and 698 

perform the statistical analyses in other software, which is time-consuming and 699 

increases the likelihood of user errors. A good solution is the open and extensible 700 

framework Moulds et al. (2015) proposed, in which all modeling steps are implemented 701 

in the R environment, allowing users to test the source code and adapt it to their own 702 

requirements, and thus the developers can share their code, documentations, and 703 

datasets in a common format. 704 

Without a general framework to synthesize findings, the knowledge modeling 705 

activities yield does not accumulate (Couclelis, 2000; Ostrom, 2009). A possible 706 

strategy to address this problem is to develop a common modeling platform that 707 

includes several existing modeling implementations, links to data, and makes the code 708 

open and accessible. Such a platform would allow modelers to make informed decisions 709 

when choosing their models and factors, make LULC change modeling more 710 

transparent and transferable, and thereby address some of the challenges in this field.    711 

4.5 Relating LULC change modeling to policy  712 

The past decade has witnessed a profound increase in the number of LULC change 713 

models and the spectrum of those discussed above can play different roles in the 714 
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four-stage policy cycle NRC (2014) proposed. However, the application of these models 715 

in land use planning and policy formulation has been limited (Couclelis, 2005; Sohl and 716 

Claggett, 2013). Models that can serve as decision support systems for direct use by 717 

end-users are scarce (Matthews et al., 2007). This paper has discussed the application of 718 

ABMs in urban simulation and examinations of policies’ potential effects. However, no 719 

examples were found in which land use planners or policymakers actually used the 720 

modeling results when making their decisions, which is in line with the conclusions of 721 

Rounsevell et al. (2012b). The gaps between LULC change modeling and 722 

decision-making support can be attributed to the differences in modelers and 723 

policymakers’ goals, as well as the models’ inherent complexity and lack of clarity, 724 

transparency, manipulability, and flexibility (except ABMs) (Valbuena et al., 2008). To 725 

bridge this gap, Sohl and Claggett (2013) suggested that land use models should provide 726 

LULC information and analyses rather than just contain data, with the goal of engaging 727 

decision makers with the models and outputs. 728 

There are other approaches that can improve the applications of LULC models in 729 

the decision-making process. Focusing on the most important processes for stakeholders 730 

and generalizing those that are less important would facilitate the understanding of 731 

model functions and outputs, and increase policymakers’ acceptance of the models 732 

(Parker et al., 2008). In the current modeling paradigm, stakeholders are absent during 733 

the construction and development of LULC projections. Greater participation in the 734 

simulation that places decision makers (users) in a central role and involves them in the 735 
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whole modeling process from data acquisition, model design, data analysis to scenario 736 

development is encouraged strongly (Petersen, 2006; Rounsevell et al., 2012b). In 737 

addition, decision support systems are a good way to link fundamental research and 738 

practical applications, for example, LULC modeling. Verstegen et al. (2012) established 739 

a Spatial Decision Support System that includes simulation, uncertainty analysis, and 740 

visualization to choose the optimal locations where bioenergy crops can be planted 741 

without endangering other important land uses and food production. The decision 742 

support systems should incorporate a clear description of modeling framework, suitable 743 

representation and communication of uncertainties, well defined input and output 744 

variables, and the flexibility to meet different user requirements (Sohl and Claggett, 745 

2013). With such systems and user-friendly interfaces, planners can assess different 746 

policy scenarios’ potential effects by adjusting the model inputs and comparing the 747 

resulting spatial graphs. This is helpful for end users without expert knowledge of 748 

modeling theory and statistics, and consequently expands the applications of LULC 749 

models in decision-making processes.  750 

5. Conclusions and future directions 751 

By reviewing and comparing different modeling approaches, this study has 752 

identified a number of important research challenges and highlighted several issues that 753 

need to be addressed to improve current LULC change modeling. The following five 754 

recommendations may fill the key research gaps and stimulate progress in this field: 755 

(1) Developing generic protocols and making use of online data infrastructures provide 756 
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opportunities to overcome the difficulties in comparing and scaling ABMs.       757 

(2) A wide array of models (e.g., top-down and bottom-up paradigms) needs to be 758 

integrated to use the strengths of existing individual models and support 759 

comprehensive analyses of the interactions in human-environment systems.  760 

(3) Further work is needed to quantify different uncertainties and their sources and to 761 

communicate these with stakeholders. This would support the validation of model 762 

results and realize modeling that is theoretically solid and empirically justified.  763 

(4) Common platforms and frameworks populated with multiple existing models should 764 

be established, providing code in an open environment and linking to related data 765 

for further LULC research.  766 

(5) Stronger relations between LULC change modeling and policy making can be 767 

realized by generalizing and simplifying modeling frameworks, embedding relevant 768 

stakeholders in the modeling process, and constructing decision support systems. 769 

This review has not sought to provide a complete list of all LULC change models, 770 

but has focused instead on those most commonly used, comparing their strengths, 771 

weaknesses, applications, and the broad differences. By doing so, a number of major 772 

research gaps have been identified and possible solutions to them proposed. It is hoped 773 

that this work presents a critical perspective on the different LULC change modeling 774 

approaches, provides a contribution to strengthen the field’s interdisciplinary nature, 775 

and suggests a research agenda that indicates a productive path forward.  776 

 777 
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Figures˖ 1198 

 1199 

Figure 1. Flowchart of the generalized procedures used in spatially explicit 1200 

pattern-based LULC modeling. Revised from (Mas et al., 2014; Moulds et al., 2015; 1201 

Verburg et al., 2006a). 1202 
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 1203 

Figure 2. Evolution of CLUE series models. 1204 
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 1205 

Figure 3. Overview of the CLUE-S model structure (Overmars et al., 2007; Verburg et 1206 

al., 2006b; Verburg et al., 2002; Verburg and Veldkamp, 2004). Thick arrows indicate 1207 

the main steps of the simulation and thin arrows represent the model parameters and 1208 

settings. Dotted line in figure 3(a) separates two modules of the CLUE-S model: spatial 1209 

analysis and non-spatial analysis.  1210 
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 1211 

Figure 4. Flowchart of the Dyna-CLUE modeling procedures (Verburg and Overmars, 1212 

2009; Yan et al., 2016).  1213 
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 1214 

Figure 5. Overview of the potential use of LULC change models to link 1215 

human-environment systems. 1216 
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Tables: 1217 

Table 1. Generalized characteristics of main LULC change models [1-5]. 1218 

Model  Pattern
- 
Process 

Key 
assumpti

ons 

Classification criteria Examples Strengths Weaknesses Application 

1.Machine 
Learning 
and 
Statistical 
Models 

 Pattern 

 
  

Strong 
stationari
ty 

Statistical approaches:    •predict by extrapolating historical 
patterns                      
•conduct the extrapolation without 
theory of the detailed processes 
underlying the changes                

•overfitting problem of 
machine learning           
•as a “black box”, difficult 
to interpret the model 
structure and performance 
of machine learning         
•lack of causality[7-8] 

•the weights-of-evidence 
based Dinamica model did 
not consider the interactions 
among variables[9] 

•suitable when data 
related to patterns is 
available while a lack of 
theory concerning 
processes  
 

 •traditional parametric 
approaches (logistic 
regression) 

Dinamica model  

   •weights-of-evidence Dinamica model  
  •markov chains[6]  
   •generalized linear modeling   
   •generalized additive 

modeling 
  

   Machine learning 
approaches:  

  

   •neural networks  LTM; LCM 
   •genetic algorithms  Dinamica EGO       

  •classification and regression 
trees 

   
  

•support vector machine   
2.Cellular 
Models 

  
  
  
  
  
  

stationari
ty 

•a continuation of historical 
trends and patterns 

 •relatively simple structure and 
applications                     
•data format matches the land cover 
data format obtained from satellite 
images; allows for direct processing     
•easy parameterization by empirical 
analyses of time-series data or 
econometric calibration approaches      
•flexibility to represent spatiotemporal 
dynamics 

•limited theoretical links 
between conversion rules 
and actual decision makers   
•mostly ignore interplays 
through societal or other 
networks                  
•difficult to generalize                         
•usually apply constant 
algorithms over space and 
time                   
•ability to reflect the system 
feedback is limited 

•used for various topics 
(e.g., tropical 
deforestation, urban 
growth, biofuel crops, 
farmland abandonment, 
and impacts of LULC 
changes on carbon 
sequestration) 

•allocation based on land 
suitability  

CLUE-S 

•consider the state of 
neighborhood pixels 

CA 

•CA-based, explicitly 
simulate urban expansion 
patterns 

SLEUTH 

•a dynamic CA-based model, 
comprising three levels 
(national, regional and grid) 

[10] 

Environment 
Explorer 

•simulate one-way 
transformation from one to 
another land use type[11] 

GEOMOD 
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3.Economic 
Models 
 

Sector
-based 
approa
ches 

 

Utility or 
profit 
optimisat
ion; 
general 
or partial 
equilibria 

Computable general 
equilibrium (CGE) 

FARM; GTAP;  
EPPA; IMAGE 

•address aggregate-level feedback from 
market interactions or nonmarket 
feedback that affect the equilibrium      
•less reliance on the stationarity 
assumption                 
•improved fidelity on the economic 
processes leading to land use changes    

•PE models require an 
exogenously given land use 
sector   
•CGE models cope with a 
limited number of 
geographical regions[12] 
  

•used to quantify the 
effects of non-marginal 
changes (e.g., policy 
changes) to project 
policy scenario 
outcomes              

   Partial equilibrium (PE) ASMGHG; 
IMPACT; 
GTM; AgLU; 
FASOM; 
GLOBIOM 

Spatia
lly-dis
aggreg
ated 
approa
ches 

  Utility or 
profit 
optimisat
ion;  

structural Equilibrium  
locational-choic
e models[13-14] 

•address the basic role of prices in 
explaining individual decisions         
•address the feedback of predicted 
LULC changes on prices and predict 
the consequences of policy  

•require assumptions on 
agent behaviors, market 
structures, and functional 
forms                    
•limited in the spatial 
dimension                 
•limited data on revenues 
and costs 

•non-marginal land 
change prediction and 
policy scenarios 

   often in reduced form    •focus on causal identification                  
•impose fewer assumptions on the data  
 

•only suitable for simulating 
the effects of marginal 
changes on land change 
outcomes                 
•limited utilization for 
modeling landscape 
changes over longer periods  
•problems on endogeneity 

•used to test multiple 
specific hypotheses by 
recognizing key 
parameters             
•simulate the land use 
dynamics corresponding 
to changes in policies or 
other variables  

4.Agent-Ba
sed Models 

     exploratory-theoretical 
models 

  •suitable for representing complexity in 
land systems                      
•able to represent the agent 
heterogeneity and behaviors, and have 
various representation forms           
•easier to communicate the model 
structure and functions to stakeholders 

•limited generalization 
under other conditions       
•computational constraints 
and limited empirical 
resources 

•study the effects of 
land change process at 
multiple scales and 
organizational levels     
•evaluate projections of 
LULC or other state 
variables               
•model the formation of 
outcome patterns 

   
 
 
 
Process 

  empirical-predictive models   

5.Hybrid 
Approach 

       •Markov-Cellul
ar[15]           
•Global Land 
Model[16-17]         
•Statistical-Cell
ular-ABM[18]   

•use the advantages and reduce some 
inherent limitations of individual 
approaches                    
•flexibly match existing theories and 
approaches to other conditions         
•facilitate development of new methods  
•better representation of reality 
complexity  

•increased complexity and 
difficult causal tracing       
•difficult calibration and 
validation  

See Table 2 

Note: LTM (Land Transformation Model), LCM (Land Change Modeler), CA (Cellular Automata), GTAP (Global Trade Analysis Project model), EPPA (Emissions 1219 

Prediction and Policy Analysis model), GTM (Global Timber Market Model). [1-5]: (Brown et al., 2013; Chang-Martinez et al., 2015; NRC, 2014; Pontius et al., 2008; Pontius 1220 
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et al., 2001), [6]: (Losiri et al., 2016), [7-8]: (Irwin and Geoghegan, 2001; Lambin et al., 2000), [9]: (Mas et al., 2014), [10]: (de Nijs et al., 2004), [11]: (Pontius and Malanson, 1221 

2005), [12]: (Rounsevell et al., 2014), [13-14]: (Klaiber and Phaneuf, 2010; Walsh, 2007), [15]: (Guan et al., 2011), [16-17]: (Hurtt et al., 2011; Hurtt et al., 2006), [18]: (An et 1222 

al., 2005). 1223 

 1224 

 1225 

 1226 

Table 2. Examples for hybrid approaches to simulate LULC changes 1227 

 1228 

Hybrid approaches Goals References 

(1) machine learning/statistical approaches incorporate land suitability with 
neighborhood effects to project future land 
use  

(Li and Yeh, 2002; 
NRC, 2014) 

ˇ 
cellular model      

(2)     sector-based economic model  
downscale land areas determined in 
large-scale general equilibrium 

(Hurtt et al., 2011; 
Hurtt et al., 2006) 

ˇ 
spatial allocation model 

(3)       statistical approaches 

represent the dynamics of both natural and 
human processes involved in land change  (An et al., 2005) 

ˇ 
cellular model 

ˇ 

agent-based model 
(4)         Markov chains 

determine future quantities of change and 
the spatial patterns (Guan et al., 2011) ˇ 

cellular model 
(5)          cellular model MAS (multi-agent system model), represent 

complex spatial interactions under 
heterogeneous conditions and model 
decentralized, autonomous decision making  

(Bousquet and Le 
Page, 2004; Parker 
et al., 2003) 

ˇ 

agent-based model 
(6)            IMAGE 

study policy effects on agricultural land and 
Europe’s rural areas                              

(van Meijl et al., 
2006; Verburg et 
al., 2007) 

ˇ 
Global Trade Analysis Project model 

ˇ 

CLUE-S 
 1229 

 1230 

 1231 

 1232 

 1233 

 1234 

 1235 

 1236 
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Table 3. Comparisons of CLUE series models and agent-based model. 1237 

Model Strengths Limitations Application 
CLUE-S 
(Overmars et al., 
2007; Verburg et 
al., 2002) 

•explicitly concerns the functions of the whole land use system 
•simulates multiple land use types simultaneously 
•can simulate different scenarios 
•straightforward and easily reproducible regression analysis  
•relatively easy data collection 

•requires knowledge about land use history   
•limited representation of the relations between 
variables  
•does not include the spatial configurations of LULC 
changes over the historical calibration period 
•requires external programs 

•suitable for various study areas and 
situations 
•spatial scenario analysis-useful for 
natural resource management 
•simulation of trajectories of LULC 
change 

Dyna-CLUE 
(Verburg and 
Overmars, 2009; 
Yan et al., 2016) 

•incorporates top-down allocation of land use changes with 
bottom-up determination of specific land use conversions 

•uses empirical and statistical models to represent the 
land use changes and allocation patterns; however, the 
relations between land use types and explanatory 
variables are typically nonlinear in reality  
•only calculates the neighborhood factors in the initial 
year, while the impacts of neighborhood will change 
over time  
•difficulty in reflecting the influences of emergent 
policy changes on land use spatial patterns  

•useful in situations where it is difficult 
to determine land use conversions in a 
top-down paradigm and where local 
habitat conditions are the most 
important driving forces of vegetation 
dynamics  

Agent-based 
model (An, 
2012; Hare and 
Deadman, 2004; 
Li and Liu, 
2008; Matthews 
et al., 2007; 
Parker et al., 
2003) 

•flexible specification and design  
•able to reproduce nonlinear and emergent phenomena based 
upon individual behaviors  
•simulates decision-making at different levels, considering the 
interactions among them and between actors and the 
environment, and adaptive behaviors 
•investigates the influences of environmental management 
policies 
•integrates social interactions on decision processes and the 
effects of micro-level decision-making on environmental 
management 
•dynamically links social and environmental structures, 
processes, norms, and institutional factors 
•explicitly simulates the human decision processes and 
provides more insights to the actual processes involved in land 
use change 

•limited predictive power at local level 
•difficult calibration, validation and verification  
•lack of effective architectures and protocols to 
represent local actors and their interactions  
•poor representation of learning processes in real world 
decision making  
•extensive and time-consuming data collection 

•simulate farming or environmental 
management decisions 
•useful to organize knowledge from 
empirical studies, and explore 
theoretical facets of land system 
•land management and policy analysis  
•participatory modeling 
•to explain spatial configuration of land 
use  
•to test social science concepts 
•to explain land use functions  

 1238 
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Table A.1. Suggested websites for LULC change models and related projects & data 1243 

Models Suggested websites 
•CLUE http://www.ivm.vu.nl/en/Organisation/departments/spatial-analysis-decision-support/Clue/index.aspx 

•Dyna-CLUE http://downloads.informer.com/dyna-clue/ 

•CA http://www.geosimulation.cn/index_chs.html 
•Dinamica EGO http://www.csr.ufmg.br/dinamica/ 
•ABM https://www.openabm.org/     &   http://ccl.northwestern.edu/netlogo/ 
•Land Use Scanner http://www.objectvision.nl/gallery/products/ruimtescanner 

•Community Earth System Model http://www.cesm.ucar.edu/ 

•Community Land Model http://www.cgd.ucar.edu/tss/clm/ 

•Open Platform for Urban Simulation http://www.urbansim.com/ 
Projects & Data Suggested websites 
•NASA ,“Global Land Cover Facility” http://glcf.umiacs.umd.edu/data/ 

•European Space Agency & United Nations Food and Agriculture Organization, “GlobCover” http://due.esrin.esa.int/prjs/prjs68.php 
•GEON http://www.geongrid.org 
•National Science Foundation for the Global Collaboration Engine http://ecotope.org/projects/globe/ 

•IPUMS, Terra Populus project https://www.terrapop.org/ 
•IPUMS https://www.ipums.org/ 
•Geoshare project https://geoshareproject.org/ 

•SIMLANDER https://simlander.wordpress.com/about/ 

•GEOSHARE https://mygeohub.org/groups/geoshare 
•NASA’s socio-economic data centre (SEDAC) http://sedac.ciesin.org/ 
•the University of Wisconsin’s SAGE http://nelson.wisc.edu/sage/ 
•DataONE https://www.dataone.org/ 
•the GLOBE project http://globe.umbc.edu/ 
•CCAFS https://ccafs.cgiar.org/resources/baseline-surveys 
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