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ABSTRACT

Land use/land cover (LULC) change models are powerful wesdsl to understand
and explain the causes and effects of LULC dynamics, @mhso-based analyses with
these models can support land management and decision-niztieg. This paper
provides a synoptic and selective review of current LULC chamggels and the novel
frameworks that are being used to investigate LULC dynargiisting LULC models
that explore the interactions between human and k#omment can be pattern- or
process-based, inductive or deductive, dynamic or staiatiat or non-spatial, and
regional or global. This review focuses on the spectmom fattern- to process-based
approaches and compar their strengths, weaknesses, applications, and broad
differences. We draw insights from the recent land bsage literature and make five
suggestions thatan support a deeper understanding of land system science by: (1)
overcoming the difficulties in comparing and scaling Agerds&l Models; (2)
capturing interactions of human-environment systems; (3arerig the credibility of
LULC change modeling; (4) constructing common modeling plat$ooy coupling data
and models, and (5) bridging the associations between LUlaGigehmodeling and
policy-making. Although considerable progress has been mtumretical and
empirical efforts are still needed to improve our understgndf LULC dynamics and
their implications for policy-oriented research. Itsicial to integrate the key elements
of research involved in this study (e.g., use of commatopols and online portals,

integration of top-down and bottom-up approaches, effectiventifigation and
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communication of modeling uncertainties, generalizationsamglification of models,
increased focus on the theoretical and empiricaldaafsmodels, and open comparative
research) to bridge the gaps between small-scale procelssaéigp and large-scale
representation of LULC patterns, and to use LULC change moded inform

decision-making.

Keywords. land cover; land use; pattern-based model; process-basiel; repatially

explicit simulation

Contents
1. Introduction
2. Land use/land cover (LULC) change modeling
2.1 Spectrum of LULC models
2.1.1 Machine learning and statistical methods
2.1.2 Cellular models
2.1.3 Sector-based and spatially disaggregated economic models
2.1.4 Agent Based Model
2.1.5 Hybrid approaches
2.2 Comparisons of two representative models (CLUE seratels & Agent Based
Model)

2.2.1 Three generations of CLUE series models



64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

2.2.2 Agent Based Model: tiféhird way’ to conduct science
2.2.3 Comparisons and combinations of the two complememargdigms to
integrate LULC change patterns and processes
3. Novel frameworks to simulate LULC dynamics
3.1 A spatial demand-allocation procedure based on changer@ace and contagion
3.2 A new LULC Population Dynamics P system model
3.3 GIS-based spatial allocation of LULC changes
4. Discussion
4.1 Difficulties in comparing and scaling ABMs
4.2 Inadequate capture and representation of human-enviromtegattions
4.3 Enhancing the credibility of LULC change modeling
4.4 Common modeling platform: coupled data and models
4.5 Relating LULC change modeling policy
5. Conclusions and future directions
Acknowledgements
Appendix A. Suggested websites for LULC change models anédglabjects & data

References

1. Introduction

Land use/land cover (LULC) changes have been identifietha main driving

forces of local, regional, and global environmentalnges, which have been stressed
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increasingly in the evaluation of anthropogenic effectshe environment (Verburg et
al., 2015). LULC changes are the results of dynamic huenaronment interactions
processes operating at differing spatiotemporal scales (&geilal., 2017; NRC, 2014;
Verburg and Overmars, 2009)

LULC change models have become useful research todind management,
exploration of future landscape changes, and ex-anteiaiaal of policy proposals
because of their capacity to support the analyses of LULGardics causes and
outcomes (Schulp et al., 2008; Verburg and Overmars, 2009). Thedels have
played a vital role as computational laboratories fqeexnents to explore land system
behavior, as real-world experiments frequently are notifdesdatthews et al., 2007;
Rounsevell et al., 2012b). In addition, LULC models can pi@w framework to
address and separate the complex suite of biophysicaloamkesonomic factors that
affect the rate, quantity, extent, and location of lasd changes (Verburg et al., 2004)
Further, the models can be applied to forecast multiptk Use conversioneffects on
climate change, carbon cycling, biodiversity, water budgetd,the provision of other
critical ecosystem services (Alexander et al., 2017; Agqugtual., 2017; Lacoste et al.,
2015; Verburg et al., 2002); they also can support the analysederttipbland use
changes under multiple scenarios and provide insights pfegnning processes. In
summary, LULC change models are helpful and replicabtds that complement
observatioal and experimematl approachesto analyze and characterize LULC

dynamics.
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A wide array of land use change modddsavailable currently. They can be
inductive or deductive, pattern- or agent-based, dynami@te,stpatial or non-spatial,
and regional or global (Mas et al., 2014; Overmars et al., 206fburg et al., 2006a)
Because of their different characteristics, this papglines comprehensively current
LULC change modelsstate, strengths, weaknesses, applications, and frameworks,
makes inferences about the advantages and disadvantagkfexdnt approaches.
Further, the paper reviews and discusses the current knowddge LULC change
and the way these complex processes are charactemized models. By doing so, a
number of research gaps are identified and accessible g&thsroposed for a better
understanding of LULC dynamics and effective land management.

In the first section, the current staigthe-art in LULC change modeling is
reviewed and the features that can be used to make broadtaiss between different
modeling approaches are discussed. The second compares tveemeginee models.
The third introduces three novel frameworks to model LUb@nges that have been
adapted from existing models. Finally, current researcherigdk are discussed and a
number of areas for future study are proposed, with thed tyo provide a wider
contribution to the field of LULC research by answering fibllowing questions:

(1) What approaches and frameworks have been used to mod€l ¢hinges?

(2) What are theemodels’ strengths and limitations?

(3) What improvements can be made to advance LULC chaadelimg?

2. Land use/land cover (LULC) change modeling
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2.1 Spectrum of LULC models

Over the past several decades, a large set of LULC chawogels has been
developed to understand LULC dynamics, explore future landsztperns, and guide
land management decisions (Mas et al., 2014; Verburg et al.,.280&)rding to the
classification proposed by National Research Council (NR@L4), LULC change
modeling approaches can be placed on a spectrum of pattgmocess-based models
(Table 1). There are two representative types of models albagspectrum: one is
oriented strongly towards describing and extrapolating pasrpatEigure 1), and the
other is designed to represent the environmental and hde@sion processes that
cause changes in patterns (Brown et al., 2013; Chang-Masdiredz 2015). However,
these approaches usually are implemented jointly andivtelyain practice.

The top-down, pattern-focused approach typically is basedatellite images,
maps of environmental variables, and census data. Thedelsruse an area of land as
the analysis unit and describe the relations between Ltha&hges and influencing
factors based on past changes analyses (Verburg et al.,, 200@a)bottom-up,
process-focused approach, in which the analysis objectearactors involved in the
LULC change processes, is usually based upon household suradybas become
popular recently in land system science (Castella andwegr 2007; Chang-Martinez et
al., 2015).

Understanding the model components, data requirements, rasiebfis is essential

to improve their applicability for various research and gyofiaking purposes.
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Accordingly, five principal modeling approaches are reviewed beedly: machine
learning and statistical methods, cellular models, sdmeed and spatially
disaggregated economic models, agent-based models, and hgpr@hehes (NRC,
2014). This review is not exhaustive, but focuses on the bréfadetices between these
models to understand the way these approaches can be osedfiectively The first
four model categories range from those focused largelgadterns to those focused
primarily on LULC change processes, the first two of whiifphlight land change
patterns, while the remaining two are more process-baggioaches. Hybrid
approaches fall into more than one category becausecthmapine multiple different
models in one simulation framework (Matthews et al., 2007).the following
subsections, the modeling practices in each of the fivgoges are discussed in turn.
2.1.1 Machine learning and statistical methods

These methods focus largely on the projection of pattants,jnvolve approaches
designed to address spatial and temporal relations betwHdb €hanges (outputs) and
the characteristics of locations where they are niketylto take place, as represented
by spatial variables (inputs). The data are used to consinaoge potential maps that
provide an empirical measure of the likelihood of cerlaim conversions (NRC, 2014)
Together with traditional statistical methods, muétiphachine learning techniques,
including neural networks (NN), genetic algorithms (GA), denidicees (DT), and
support vector machines (SVM) have also been applied to paraaeethe biophysical

and socioeconomic variables considered in land change snag@lications of these



169  approaches cover various fields, such as NN for urban spnéna-urban dynamics and
170  projections for policybased scenarios (Almeida et al., 2008; Guan et al.,, 2005;
171 Maithani, 2014) GA for optimized urban land use allocation and rural laadl@cation

172 (Haque and Asami, 2014; Uyan et al., 2015; Zhang et al., 284d)DT and SVM for

173 classification of heterogeneous land cover (Huang e2@09; Keshtkar et al., 2017). A
174  comparative analysis of different modeling approaches hasnstimt SVM achieved
175 greater agreemenbf predicted changes than DT and NN in three Belgrade
176  municipalities (Samardzi¢-Petrovi¢ et al.,, 2017). Comparisons between traditional
177  logistic regression and non-parametric neural networks {INiStrated that NN provide
178  a better fit between causal variables and land use paftamst al., 2011). Dinamica
179 EGO, LTM (Land Transformation Model) and LCM (Land ChanModeler) are

180 typical simulation frameworks in which these differenbdeling methods have been
181 embedded, and detailed comparisons among them are shdaipl@1l.

182 2.1.2 Cellular models

183 Cellular-based models use discrete spatial units, shapets,pparcels, or other
184 land units as the basic units of simulation. These msods¢ a series of input data to
185  simulate transitions of LULC based upon a constant eil®salgorithm. Variations in
186  decision-making do not stem from the decision diffeesnof agents acting as land
187  managers, but rather from the attributes of spatial INRC, 2014).

188 The quantity of LULC change is computed (allocated) inpadown manner or in

189  a bottom-up procedure that calculates transitions atethed bf individual units based
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solely on their neighborsonditions. Examples of the former type include Envirenim
Explorer, CLUE-S, and the Land Transformation Model (dgs Nt al., 2004,

Pijanowski et al., 2002; Verburg et al., 2002), white SLEUTH model is a typical
representativef the latter category (Clarke, 2008; Clarke and Gaydos, 1998, Gt

LULC changes interact with processes on a local scalé,is appropriate to simulate
these interactions by integrating the two allocation rilgms, e.g., Dyna-CLUE
(Verburg and Overmars, 2009).

Cellular models have been widely used because of their sitypfiexibility, and
intuitiveness in reflecting spatiotemporal changesland use patterns. Traditional
cellular models have been adapted and combined with otbdelimg approaches to
improve their availability and performance in solving lagdtem problems. Markov
chains and logistic regression have been employed to atcile quantity of future
land changes, and the spatial patterns have been determineélliar models
(Al-sharif and Pradhan, 2013; Arsanjani et al., 2013; Kamusokud.,e2009). Novel
techniques, such as neural networks and support vector machineairtlthe previous
section, have been medywith cellular models to parameterize the various vaembl
and define the transition rules (Almeida et al., 2008; Cledrdl., 2017) In addition,
allocation sequences and local effects within the neighbdhare another two critical
components and focuses in reseamh cellular based models. Novel modeling
frameworks, e.g., LANDSCAPE (LAND System Cellular Automnatodel for Potential

Effects) and LLUC-CA (Local Land Use Competition Cellufartomata model) were

10
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developed to address these issues (Ke et al., 2017; Yang2€x18l),
2.1.3 Sector-based and spatially disaggregated economic models

Two different economic models are used to describe LULQ\gthas a market
process and are distinguished primarily by the scale at winighdperate. Sector-based
modesk, which are structural and focused on economic sectorsatepat varying, but
more aggregated scales. This type of model treats landbesdafactor of production
and represents supply and demand explicitly as contributonarket equilibria (Golub
and Hertel, 2012)Further, sector-based models can be classified by theoeon
system they represent: one type is general equilibrium Iswddat account for the
global economy and interactions among all sectors énetonomy (Hertel, 2018
Timilsina and Mevel, 2012); the other is partial equilibriunodels that focus on
specific sectors, including forestry, agriculture, and gngiNRC, 2014; Sands and
Leimbach, 2003). These models have been employed to anabfmeldieffects on
global land use, land use change and resulting carbomsienss competition between
agricultural and forest products, and potential influencesliofate change on land
productivity (Choi et al., 2011; Steinbuks and Hertel, 2016; Taderiand Tyner,
2013). Efforts also have been made to combine partial amerajesquilibrium models
to complement each other (Britz and Hertel, 2011).

The spatially disaggregated economic modeither in structural or reduced form,
simulate individual decisions at smaller scales, includindd,fieparcel, and

neighborhood levels (NRC, 2014). The reduced-form econometddels focus on

11
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identifying the causal relations between multiple explanyatactors and the resulting
LULC changes (Brown et al.,, 201¥hang-Martinez et al., 2015; NRC, 2014)
Econometric approaches are often employed to evaluateefteets of variables
involved in the spatially disaggregated models (Nelson eP@l16). Progress has been
made in applying this type of model to account for therdte and continuous land- and
input-use decisions of farmers (Antle and Capalbo, 2001), theuprienvironmental,
economic, and policy drivers of land use changes (FezziBateman, 2011), the
dynamics of urban land use changes, and the associaiaedn housing and land
markets (Magliocca et al., 2011).
2.1.4 Agent Based Model

The Agent Based Model (ABM) represents systems thagisbof multiple agents
and simulate their behaviors, thereby representing complxC change processes.
Agents refer to diverse and interrelated actors, includingl lawners, farming
households, development firms, cooperatives and coMesti migrant workers,
management agencies, policy makers, and others who mais@odsor take actions
affecting LULC patterns and processes (Brown, 2006; Parker, &08i3). ABMs are
nearly always spatially explicit in land change researafitec. They simulate the
individual actor$ decisions and assess the resulting micro-scale sys¢dsawvibrs,
including all the interactions among agents and the environ(@eniclelis, 2000; NRC,
2014; Valbuena et al., 2008). Applications of ABMs are elaboretdtie following

section and compared with another representative model.

12
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2.1.5 Hybrid approaches

It is difficult to adequately represent the complexityiarfd use decision-making
and account for the processes underlying LULC changes. Theudad in LULC
change research ranges from satellite images to suovdysnan behaviors, and many
others in between. Therefore, it is common to combieeagiproaches described above
to make the best use of the strengths of each and tocthae the multiple facets of
LULC change patterns and processes. Hybrid approachesncarparate different
conceptual frameworks, theories, and observatidrablé 2), allowing modelers to
choose suitable simulation procedures according to their tigghcdemands
(Chang-Martinez et al., 2015).

Figurel

Tablel

Table?2
2.2 Comparisons of two representative models (CLUE series models & Agesd Bas
Model)

The CLUE series of models and ABMs are most frequently usdéahd change
simulation research. To illustrate the characteristicdifferent modeling approaches,
the basic attributes of these two types of models aided with an emphasis on their
commonalities and differences.

2.2.1 Three generations of CLUE series models

The CLUE series models are among the most commonly aseduse models

13



274 worldwide, and their applications range from small areasticeecontinents (website of
275  CLUE series models: see Appendix A). Different version€IdE models have been
276  developed to serve various research objectives in enviroamewtdeling and land
277 system science, from its original model (Veldkamp and Bres296Db) to later versions,
278 including CLUES (Verburg et al.,, 2002) and Dyna-CLUE (Verburg and Overmars,
279  2009)

280 The CLUE series models includes three versions: (1) THeEC(Conversion of
281 Land Use and its Effects modeling framework) was designed tolasenland use
282 changes by empirically quantifying the relations betweed lage patterns and their
283  explanatory variables, and incorporating the dynamic sitiaul of competitions among
284 different land use types (Overmars et al., 2007; Veldkamp aedcd;r 1996h)
285 CLUE-CH (Conversion of land use and its effects in Chisajsed to apply the CLUE
286 model framework specifically in China to simulate land ugéepas at the country-wide
287  scale (Chen and Verburg, 2000; Verburg et al., 2000; Verburg é08B). CLUECR
288 is the application of CLUE in Costa Rica that simulates influences of changing
289  biophysical and demographical drivers on LULC changesfegdback from LULC to
290 those forcestthe local, regional, and national scales (Veldkamp argcbrel996a). (2)
291 Subsequently, the modeling approach was modified to operate iahakegcales,
292 resulting in the CLUE-S (Conversion of Land Use and itedts at Small regional
293  extent). CLUE-S spatially explicitly simulates the land e$anges based upon an

294  empirical analysis of land suitability, and integstand systeniscompetitions and

14
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interactions into a dynamic simulation (Verburg and Veldka2@®4). (3) An adapted
version, Dyna-CLUE, was developed for certain natural antd-satural land use types
to integrate demand-driven changes in land areas witdljodetermined transition
processes (Verburg and Overmars, 2009). The CLUE-scannerngp&mentation of
the Dyna-CLUE in DMS software of ObjectVision (Verburgaét 2011). The principal
characteristics of these three versions of CLUE nsodeld two applications are
summarized Eigure 2), and the detailed procedures of the most popular CLUESS an
the most recent Dyna-CLUE are illustrat&dgure 3 and 4).

Figure2

Figure3

Figure4
2.2.2 Agent Based Modethe “third way” to conduct science

ABM has been described as ttthird way’ to conduct science because it is an

amalgamation of the inductive and deductive approaches.sA®#l based on a series
of explicit assumptions and perceptions of the way the waolks, and they use these
to generate simulated data that can be analyzed inductiMelithews et al., 2007)
These models integrate the effects of human decisiofsnol use in a formal, spatially
explicit way and consider the social interactions, adimptaand evolution at multiple
levels (Parker et al.,, 2003Because of social systemsomplexity and the unique
features of ABM that increase its specificity withgest to individual case studies, no

general framework (analogous to Figure 1 for pattern-based mobats been

15
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developed to illustrate, design, test, and assess ABMs (CGeinaitn 2005; Murray-Rust
et al.,, 2011; Tian and Wu, 2008). In this section, we focus enclssification of
ABMs and th& uses thus far by reviewing a representative set of cadest The
following applications of ABMs in four overlapping topic aserelated to LULC
changes are discussed: modeling land use patterns; urbantisimartal policy analysis;
representation of human-environm@ntelations and feedback loops, and specific
applications across the regional and global scales. #ABMve been extensively
employed to represent complex socio-ecological systelhus, this section does not
seek to identify and characterize all ABM applicationst focuses instead on the
generic aspects of ABM used in LULC change field.
(1) Modeling land use patterns

Compaed to the empirical methods, e.g., transition probabilitisBMs can
provide explicit simulation of human decision-making preessand thereby offer
greater insights into the actual processes underpinning langattern changes. In
addition, spatial and landscape metrics are often usdtege studies to quantify the
dynamics of landscape structure and configuration. Jepsen(2006) used a spatially
explicit ABM related tofarmers’ field location choices to simulate the land use patterns
in Ban Que, Vietnam. Agents in the model act to maxinabed productivity which is
based upon potential yield, labor costs, and physical canistrdBy using several
spatial metrics, the modeling outputs are compared viéh adbserved land cover

patterns. The results of baseline scenario showed higls lef/spatial clustering and

16



337  the patterns generated in the slope scenario were analmgthesvalidation data. Using
338  two landscape metrics and household interview data, Evaals(8011) established an
339  ABM in Lomue \illage, Laos, to simulate smallholders’ land use decisions and the
340  resulting landscape dynamics. This model effectively reprabitice general spatial
341  patterns of the village area, and the results also irgtican increased inequalityg
342 household income over time as a function of the fégieate of rubber adoption.

343 (2) Urban simulation and policy analysis

344 In the policy anddecision-making cycle proposed BJRC (2014),ABMs play a
345  critical role in two stages: intervention design and decig implementation. In the
346 former stage, ABMs are used to explore the land systemetsre and its internal
347  interactions, and investigate dynamics that might litelnefn interventions. In the latter
348  stage, ABMs are used ex ante to assess the possilts effespecific policy scenarios.
349  For example, Li and Liu (2008) integrated ABM, cellular anéita (CA), and GIS to
350 develop an exploratory spatial tool to compare various dpwant strategies and
351 assess the potential effects of land use policies in GuamgzZbbina, a rapidly
352 sprawling city. GIS was used to provide spatial informasind CA was to reflect local
353 interactions of physical variables. Sustainable developsieategies were embedded in
354  the simulation by appropriately defining agents’ behaviors. Based on the high-resolution
355 cadastral data and representations of the interacionsig key stakeholders, the Agent
356  iCity model(Jjumba and Dragicevi¢, 2012) established three urban growth management

357  scenarios deried from different growth policies. They found that relat household
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incomes and property values are critical causes of urbah dae pattern changes
because households look for and move to affordable honsegatle neighborhoods.

Considering the complexity of urban system, ABMs arefepred to solely
pattern-based models for their ability to encompass vacoogponents and elements in
cities, particularly considerations of the governmentebigpers, and residents that can
directly influence the land use patterns and social envieohmFor example, by
incorporating multiple agent classes (creative firmswaorkers and urban government),
Liu et al. (2016) preseatl an ABM that simulated different policy scenarios dhd
corresponding dynamics of creative firngpatial distributions. Besides, both reviews
and specific case studies were conducted to summarize and advwadegdlopment of
ABMs in urban residential choic€Bluang et al., 2013; Jjumba and Dragicevi¢, 2012).
By including the agents’ attributes and behaviors, and land-market process ABMs
can offer comprehensive and relatively realistic visaditins of potential urban land
use, which may effectively help policy makers adjust lané plkns adaptively at
different development stages.
(3) Representation of human-environmental relations and feedback loops

Many of the models focus explilyiton socio-environmeratl interactions and link
heterogeneous agent decisions to multiple biophysical ggese Using ABMs to
conduct such coupled research between human and envir@ahsystemss helpfulin
building a decision support system to inform policy decisiofs. et al. (2005)

developed an Integrative Model for Simulating Household atmkystem Dynamics

18
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(IMSHED) to simulate the effects of rural population growththe forests and giant
panda habitat in China. This study integrated various conmmpéohanisms to simulate
the spatial patterns of panda habitat and explored theemtfesof socio-economic and
demographic conditions. The results suggested that molitiat encourage family
planning, out-migration, or increased use of electricity ld/queserve panda habitat to
various degrees (Matthews et al., 2007). Inner Mongolia LardDymamic Simulator
(IM-LUDAS) developed for a semi-arid region in northeast Chauasists of
heterogeneous socio-ecological components and feedbaakitgtlenscales (Miyasaka
et al., 2017)The study showed that tree plantations expanded under the @ld}g
Land Conversion Program), accelerated vegetation ahdesboration and household
changes towards off-farm economies. However, the livehaehanges were not
sufficiently large to compensate for the reduced incomaltineg from policy-induced
reduction in cropland, which provided a new focus for futureogpcel restoration
strategies.

Figure 5 summarizes the major components of human ancdemeantl systems
that illustrate the associations and interplays betw®em through the modeling
approach addressed in this subsection (Valbuena et al., 2008; \Galeuah, 2010;
Veldkamp and Lambin, 2001; Verburg, 2006; Verburg et al., 2006a).

Figure5b
(4) Specific applications across the regional and global scales

ABMs have been proposed as powerful tools to investigdtel changes because

19



400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

of the flexible and context-dependent way in which theyragent human
decision-making (An, 2012; Matthews et al., 2007; Parker et2@D3). However,
because of the inherent complexity of LULC change prese$sgh data requirements,
and diverse decision-making processes, many applicatiohBM& have been limited
to local scales (Le et al., 2008; Miyasaka et al., 2017), wdth@reliminary attempts
have been made to apptyto larger scales (Fontaine and Rounsevell, 20@8)obuena
et al. (2008) constructed an agent topology and allocatedsaipemultiple categories
for a regional analysis that sought to simplify and adddessse farming systems and
individual decisions. They also proposed a generic concepiBil framework that
explicitly considered the diversity of decision-makingastgies for different LULC
change processes over different regions (Valbuena 20aD).

Rounsevell et al. (2014) proposed a schematic framework ef ptimary
components of land-climate systems and their respedtiterplays across actor,
regional, and global scales. They suggested that impregdsentation of the human
entity is neededo conceptualize the options to expand LULC change modets tine
local to global scales. This includes the processegy@ftaadaptation, learning, and
evolution, formalizing the role of governance regimes] atressing technological
innovation and global network connectivity. However, @kcéor this conceptual
framework at the global scale and several integratedeta (e.g., integrating CGE
models with ABM), ABMs remain fragmented and face &i{ricbstaclan representing

human decision processat regional and global scales. This may be becauseeof th
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barriers on data availability, agent attributesmodel parameterization, as well as the
scaling and aggregation issues for macro-scale applicatiogsilgé et al., 2017;
Rindfuss et al., 2004; van Delden et al., 2011).
2.2.3 Comparisons and combinations of the two complementary paradigms to integrate
LULC change patterns and processes

Although initial research has been conducted to investigiateedations between
agent behaviors and land use spatial patterns that bieogfinovel modeling platforms
integrating GIS functions (Guzy et al., 2008; Liu et al., 2016; &&mta and Hoshino,
2018), most studies have lazka spatial perspective and focus on processes occurring
in specific locations only. This results from using agewstshe basic analysis unit,
which malesit difficult to relate agent behaviors to actual lamdas and adequately
characterize spatial behaviors (Rindfuss et al., 2002jf&éss et al., 2004)Space and
time dimensions are commonly integrated in spatial modél&€lW.C dynamics
(Verburg and Veldkamp, 2004). Some studies have suggested that ARMBsot
always the best prediction tools for LULC change scigi@@®eneveld et al., 2017)
Nevertheless, such models can advance the knowledge ofC LpHocesses by
conducting experiments that investigate different reptaiens of those processes
(Rounsevell et al., 2014). By including autonomous and heterogersgents, ABMs
are able to explicitly cope with the diverse decision-mgkprocesss which is a key
limitation of most land use models that typically applyirale response function over

the entire study region and assume that human degisiking is a homogeneous
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process (Valbuena et al., 200Bgcause the ABMs can track individual agémistions
and their outcomes, they have an advantage in conveyengntidel structure and
functions to stakeholders (NRC, 2014).

Both pattern-based and process-driven ABMs have their teéspetrengths and
weaknessesT@ble 3). The first provides insights about the macro-scaléatians of
influences and responses to changes in markets, pricestmews, policies, and
climate adaptation measures, while the second offers mifmmenation about agenits
responses and adaptatidnsvariable environmental and policy conditions (Rounsevell
et al., 2012b). Choices of the appropriate modeling approgondeon the specific
study purpose, the process under research, data accessibgiystudy characteristics,
and the spatiotemporal extent of the model (Couclelis, 2@0@hurg et al., 2006a)
Some efforts have been made to integrate the two typeodélsinto a rule-based
version of CLUE-S. This can enhance the overall modetagpéwork by accelerating
the collaboration among researchers from differenttitgtns and between researchers
and local stakeholders (Castella and Verburg, 2000@ng (2016) combined the ABM
and CLUE-S to investigate the interactions between housémdduse behaviors at a
micro-level and macro agricultural land use patterns inhMiZounty in Shanxi
Province, China. This study resulted in important theofetiaad practical
understanding of the relations between changes in farndngeholds activities and
the characteristics of agricultural land use patterdgpancesses.

Table3
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3. Novel frameworksto ssimulate LUL C dynamics

This section describes the development and exploradiomovel modeling
frameworks as complementary and parallel approaches twtiteued development of
existing models. This will provide much-needed diversity in wative methodology
from which the next generation of LULC change modetaase likely to benefit (NRC,
2014; Rounsevell et al., 2014)

3.1 Aspatial demand-allocation procedure based on change occurrence and contagion
Aquilué et al. (2017) introduced a novel spatial demand-al@@tairocedure to
simulate LULC dynamicsTheir study explicitly addressed two critical phases inherent
in land conversions: the occurrence and spread of land chemgesponding to the
initiation of new changes (“patch-of-change”) and the generation of the final spatial
patterns. The allocation procedure used a sorted queuefvedting to be changed.
The rate of change occurrence, change expansion, aglération of change contagion
co-determined the sequence of queued cells, and eventually detkitimnemergence

and extent of patchesf-change. By using this allocation procedure, the authors
established a generic, spatially explicit land use model, MEDLThe model was
designed to reproduce the transformations in the Medieararegion that occur most
frequently: urbanization, agriculture conversion, and rdsahdonment. The model can
simulate multiple land transitions simultaneously andwaldand conversions from
multiple land use types to a target typhe study addressl the effects of each

parameter on the final spatial patterns and acknowledgetintk and path dependence
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issue. Further, the demand-allocation procedure also suphertpatial translation of
LULC change scenarios, such as urban development plansulaural policies, and
land management strategies, according to the regionaigsodic global trends.
3.2 Anew LULC Population Dynamics P system model

Fondevilla et al. (2016) proposed a novel LULC Population DyosiRi system
model (PDP) that integrates the main LULC change processekiding plant
production, grazing, abandonment, and reforestation. The CtPRDP model is
constructed in seven stages: 1) define and limit the promigective and focus of the
model; 2) describe the LULC processes to be modeled anthtdractions between
them; 3) obtain the inputs and parameters; 4) describedgoesces of LULC processes;
5) design the main components of the model; 6) graphicallgsept the configurations
implying the LULC-PDP execution cycle; 7) design the computewlsitor. The
authors constructed and validated the model to predict fuluk€ changes annually
under three scenarios: business as usual, moderate, ang stduction of land use
intensity. The advantages of PDP are that i:céih study complex problems related to
interplaying agents and processes; (2) can study numerougesspet habitats
simultaneously; (3) allows large amounts of informatimgw modules, and processes to
be introduced; (4) does not require processe® gefQuened totaly; (5) is flexible and
can be appdid in other research fields. Howevet, does not involve the spatial
allocation of LULC changes as the classic CLUE famflynodels.

3.3 GIS-based spatial allocation of LULC changes
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The CLUE family of models allows LULC changes to be visualizedeneasily,
but under greater uncertainties, in that the models deamstider as many key factors
as more recent models, such as the PDP (Fondevilla e2@l§). The SPA-LUCC
model (Schirpke et al., 2012) overcomes this limitation witbombination of both
integrated visualization functionality and greater LULC modigtails thereby
supporting more realistic assessments of LULC changes.al GIS-based model that
spatially allocates land changes to predict the spatiafitdison of future LULC
scenarios that consider both environmental and socioedondriving forces. It is a
stochastic allocation model that translates LULC chamgntity into spatially explicit
land cover distributions. In addition, it includes npikti tools to project future
conversion probabilities on a pixel-by-pixel basis, inalgdcalculation of the transition
metrics and the cost distance to provide necessary inpuderoand. Initially, known
historical land cover simulatin was used to validate the model before it was applied to
generate future LULC maps for the Stubai Vall@ystria, under three socioeconomic
scenarios: business as usual, reduction, and diversificafiarse. There are some
problems about the generalizability of this approach becafisthe complexity
associated with the interactions amongst environmenthkacioeconomic conditions,
high data requirements, and tlireeproducible modeling processes and algorithms.
However, GIS-based modeling approaches are user-friendly, suppatial data
manipulation, and allow easy implementations under manyerdiiff modeling

frameworks.
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4. Discussion
4.1 Difficulties in comparing and scaling ABMs

Great efforts have been made to explore different aspéetgent-based models,
including their theoretical foundations, taxonomies, varidasision models, scaling,
and applications (An, 2012; Groeneveld et al., 2017; Hare and Read?204;
Matthews et al., 2007; Rounsevell et al., 2012a). However, tted@s are limited to
specific study areas. In part this may be attributable tditheulties in comparing and
contrasting ABMs, deriving from the strong variation time terminology used by
authors to describe the same processes and features.eAme#ison is the highly
diverse ways in which ABMs are conceptualized, constdjctnd presented. This
makes it difficult to cross-fertilize concepts, ideas] atructures across emodels
developed by different research communities (An, 2012; Groahevel., 2017).

Another problem arises in scaling ABMs for LULC reseaidiany LULC ABMs
are parameterized with data collected at micro-scalesesoribe agent attributes and
behavior rules (Rounsevell et al., 2012b). Despite numerases studies, there has been
no attempt as yet to connect, assimilate, organize, andesyzehthe findings of these
local-level studies (Rounsevell et al., 2014). Most ABdperate at small, simplified,
and hypothetical landscapes, because larger regions inolode agents and more
complex interactions, which restricts the ability to expahe models over larger
geographic regions (Verburg et al., 2004). However, the applicafié&tBMs beyond

local scales could provide ways to generate model outpstsakes relevant to synoptic
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land management and policy formulation. Rounsevell e(28112a) proposed three
ways to apply ABM over larger geographical extents: scalingwhith uses the same
model over larger regions by increasing the extent of iolatd; scaling up, which
aggregates model behavior to a higher representational kvl changes the
represented entities to a higher level of aggregation, asfing, which uses a
multi-model approach to explore the feedback and intierec among agents and
processes. Given the paucity of existing research thaap@ised ABMs above local
scales (Rounsevell et al., 2014; Valbuena et al., 2010), thareléar research gap
developing scalable approaches so that ABMs become matdramenable both to
regional and global applications.

The use of common protocois standard model description would support the
ability to transfer and generalize LULC ABMs. They seagea benchmark or checklist,
similar to ODD and the ABM taxonomy for land and resouremagement (Bousquet
and Le Page, 2004; Grimm et al., 2006; Hare and Deadman,. 2004, this review
proposes that general protocols and architectures related t€ Bdd LULC changes
should be establishew facilitate comparing and scaling ABMs. Additional progress
can be made bysng online portals to share and improve access to global
environmental and socioeconomic statistics (Rounsevall. e2014). Several websites
that provide data for LULC change research are listed in AgpeA.

4.2 Inadequate capture and representation of human-environment interactions

Because of the complexity of interacting environmental aocioeconomic
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568  processes, it is difficult to explore causes and effeict identify leverage points for
569 targeting management measures, and to assess the pod#etiaiveness of those
570 measures (Liu et al., 2007; Summers et al., 2015). Thusdamoael can capture all
571 causes of LULC changes, nor is there an all-compassewtithat considers all the
572 driving forcesof land systems (Couclelis, 2000; NRC, 2014; Sohl and Claggett,.2013)
573  The focus of both top-down and bottom-up paradigms edsnot fully interpret the

574  complexity of human-environment interactions acrosgipiallevels (Rounsevell et al.,
575 2012b). Figure 5 is a snapshot of the interactions betweearhand environmeat

576  systems that LULC change models represent. These tav@sinly a small fraction of

577 the complex relationsin human-environment systems and are by no means
578 comprehensive. However, the figure provides a relevant sumtiaiycan facilitate a

579  deeper understanding of these interactions and supporteeation of partial theories.

580 Synthesis studies have shown that relationshe human-environment systems vary
581  across time, space, and organizational units. Furtherribateelationscan have legacy

582  effects on present and future conditions (Liu et al., 20@&)ker et al. (2008) proposed
583  three ways to link the human-environment interactions id &stem: one-way linkage
584  to use natural science models as inputs to social systeme-way chain with natural
585  system input and output models, and two-way linkage withniatedetermination of

586 common Vvariables through interactionea socio-natural systems. Although the
587  importance of the third way is always highlighted, currentameseprimarily uses the

588 one-way linkage or one-way chain (Miyasaka et al., 2017).dElvelopment of models
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that allow addressing two-way feedback is still ongoing (Ruatet al., 2013).

Integrating different land use models to construct a mualeh framework
provides an alternative way to explore the interactiansuman-environment systems
thoroughly. This would use the strengths of existing, inldi@l models while
overcoming their weaknesses and developing new insightsexeonple, Bone et al.
(2011) proposed amodelingin-the-middl& approach that bridges top-down and
bottom-up models and found that this leads to negotiated l@ngatierns that consider
all of the individuals objectives and behaviors. ABMs benefit from top-down
approaches that desazilthe regional context under different scenarios andigeo
information about land managérecal responses simultaneously (Rounsevell et al.,
2012b). Most present top-down models use generalized and unialsedhtion
mechanisms. However, human responses to different scenanid environmental
policies vary considerably under the influences of varimggonal contexts, cultural
history, and other factors, indicating the need to comliisegwo modeling paradigms
(Rounsevell et al., 2012b). Lastly, these integrated magaliproaches are supported
further by the increased availability of multi-scale gefenenced environmental and
socioeconomic data that different research groups egehftaquently and may open
new ways to fully explore the complex causal relatiornsuman-environment systems.
4.3 Enhancing the credibility of LULC change modeling

Several practices can improve LULC change modeling andheahts credibility,

some of which are developed, but not always followed, whilers may require more
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efforts to test and advance. Uncertainties in LULC changeelmg, an issue known
well, but one on which research progress has been slow, sanfrann the input data,
parameters, model structure, processes and their ib@sc as well as the
mathematical and algorithmic representation (NRC, 2014;éeest al., 2016). On the
historic LULC change reconstruction side, uncertaintias stem from different
reconstruction methods and limited data avéelafor historic states. Future model
projections lack validation procedures and rely on the underistenarios, relating to
the likely non-stationarity in processes. A detailadlgsis and effective presentation of
uncertainty information provides an increased understandinghe land system
(Petersen, 2006; Wardekker et al., 2008). There are two impodmasiderations related
to uncertainty: quantification and communication. Recengness includes a spatially
explicit assessment of the uncertainties among a sekisfing global-scale LUC
models to recognize tlieamount, spatial extent, and locations (Prestele.eP@16)
the exploration of translating macro-scale uncertsniinto that in spatial patterns of
land change (Verburg et al.,, 2013), and the identification quantification of
uncertainties in European and global LULC projections (Aleea et al., 2017). The
scenario framework provides a tool to communicate unceytaimbut future modeled
land use, with broad uncertainties presented as differemdbe scenario assumptions.
Explicit recognition of stationarity assumptions andekploration of data for evidence
of non-stationarity are also important steps in ackadgihg and understanding model

uncertainties (Brown et al., 2013). The generalizationsamglification of models can
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play a critical role in improving the ability to analyzecertainties (Sohl and Claggett,
2013). It is also suggested to use a diverse set of modeling métholtiple rather
than complex models) to evaledtULC changes potential effects on the environment.
Applying multiple models can also help communecidite uncertaintieso stakeholders
to gain their trust (Sohl and Claggett, 2013). However, further worguantify the
different types of uncertainties and communicate thath stakeholders is needed to
address the causes and variations of uncertainties thoypaghivell as provide more
scientifically rigorous and useful modeling applications.

Validation is often difficult and thus is ignored in middJLC change models,
which results in a lack of confidence in the modeling tes(Rindfuss et al., 2004;
Waddell, 2011). Validation refers to comparisons of model dstpund observed
patterns, and the match between processes on which mddedtidns and land use
patterns depend and the real-world processes (Brown et al.,, R&U5; 2014). In
pattern validation, two or more historic land cover maes reeeded to calibrate the
model and simulate a map at a subsequent time. The skchutatp of land use changes
is then comparetb the reference map of actual changes and the differaneessessed
using various indices. The comparison requires three:rtiapmitial observed map, the
observed and simulated maps at the end of simulationn/Asternative to the usual
three two-map comparisons, a novel three-dimensionafingency tabulation that
compares the three maps simultaneously has been propasguigfet al., 2011). It is

more parsimonious and yields richer information on gekammount and allocation
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performance (Moulds et al., 2015; Pontius et al., 2004). Afhamultiple techniques
have been developed for pattern validation, pattern agcinas been explored only in
part, or more typically, is ignored in applications (valreVet al., 2016). This may be
because of the scarcity of historic data, the largerdififges in classification of land use
maps and resolution of satellite images, as well as poareptual and theoretical
understanding (Sohl and Claggett, 2013; Verburg et al., 2004). Sitilgattern
validation, process validation has received even lesstiatieand remains a challenge
because of the potential (and common) existence of enadisle underlying processes,
their complex correspondences with the predicted pattand the path dependence of
themselvedNRC, 2014; van Vliet et al., 2016). Thus far, only rudimentargnapts
have been made to address both pattern and process validiégich work is needed to
enhance simulation credibility for scenario analysis anatypd&rmulation, including a
continued focus on fitting historical data, more attente the modelstheoretical and
empirical basis, open comparative research, peer revielve modeling framework,
and justification of the mod& suitability for a given context (Petersen, 2006; Pontius
et al.,, 2008; Rindfuss et al., 2008; Sohl and Claggett, 2013). Addydbsige issues
would considerably alleviate the challenges of model validation
4.4 Common modeling platform: coupled data and models

A general lack of data, published codes, and common modelingrpiatimake
reliable simulation of LULC changes and replicatiorficlifit. Large data gaps remain.

There is a long way to reach the position where athefdata needed to characterize
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various LULC change processes are available. For ABMd) wieir high input
requirements, modeling highly diverse scenarios, decisems,agents, it is always
difficult to acquire sufficient data to establish a weltgraeterized model, especially at
the individual or household level. Another problem is it observed LULC change
outcomes may not be adequate to validate the model ouyperisu¢g et al., 2004)n
addition, the land information from interviews and questnm@s provided by those
involved in landscape management (farmers or other ageatshot matchhe agents’
actual behaviorer reflect the real-world situation. Moreover, not altas behave in
the same way in all areas. Thus, a detailed sample ysuha&t seeks to capture
information over an entire region may not always regné the diverse behaviors and
attitudes amongst the population, which results in a m@mbaetween the survey
results and the statistics (Valbuena et al., 2008). These=d further increase the
modeling uncertainties and complexities. For cellular ngdele-resolution data for
model validation are not always available because of denifiality concerns, and
typically, the periodicity that socioeconomic data l@ghind those of natural science
(Parker et al., 2003). This suggests a need for a data infrtast to collate and collect
historical data on LULC changes and a wide array of eoarodemographic, and
policy statistics Appendix A).

Providing model source codes is encouraged whenever possiSlgport model
(and outcome) transparency, and critically, researdicaduility (Brunsdon, 2016). The

SLEUTH model has been accepted and used widely since its pmezibin the 1990s.
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694  One reason for its success is that its code is availi@#ly to download and use, and its
695 framework is relatively straightforward (Sohl and Clagg2®l3). Several researchers
696 have argued for a common programming language that allows ratydetures and
697  results to be communicated clearly (Parker et al., 2063he CLUE-S model, users
698  can run the model only on the platform provided and haveeprpcess the inputs and
699 perform the statistical analysan other software, which is time-consuming and
700 increases the likelihood of user errors. A good solut®nhe open and extensible
701 framework Moulds et al. (2015) proposed, in which all modeling sispamplemented
702 in the R environment, allowing users to test the sourde emd adapt to their own
703  requirements, and thus the developees share their code, documentations, and
704  datasets in a common format.

705 Without a general framework to synthesize findings, the krady@demodeling
706  activities yield does not accumulate (Couclelis, 2000; Ostrom, 2089ossible
707  strategy to address this problem is to develop a common limpdaatform that
708 includes several existing modeling implementations, links ta, @gand makes the code
709  open and accessible. Such a platform would allow modelerake mformed decisions
710 when choosing their models and factors, make LULC changeeing more
711 transparent and transferable, and thereby address saheeabfallenges in this field.

712 4.5 Relating LULC change modeling to policy

713 The past decade has witnessed a profound increase in themoitULC change

714 models and the spectrum of those discussed above can iffergrd roles in the
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four-stage policy cycle NRC (2014) proposed. However, thecgtjgh of these models
in land use planning and policy formulation has been limi@wli€lelis, 2005; Sohl and
Claggett, 2013). Models that can serve as decision suppoetrsysor direct use by
end-users are scarce (Matthews et al., 2007). This papeisbassgd the application of
ABMs in urban simulation and examinations of politipetential effects. However, no
examples were found in which land use planners or policymmaketually used the
modeling results when making their decisions, which is inwith the conclusions of
Rounsevell et al. (2012b). The gaps between LULC change mgdeind
decision-making support can be attributed to the differencesnadelers and
policymaker$ goals, as well as the modelsherent complexity and lack of clarity,
transparency, manipulability, and flexibility (except ABMs) ([M&na et al., 2008). To
bridge this gap, Sohl and Claggett (2013) suggested that land usks stoaldd provide
LULC information and analyses rather than just contlaita, with the goal of engaging
decision makers with the models and outputs.

There are other approaches that can improve the ajpmiisaif LULC models in
the decision-making process. Focusing on the most impgmtaoesses for stakeholders
and generalizing those that are less important would feilithe understanding of
model functions and outputs, and increase policymakacseptance of the models
(Parker et al., 2008). In the current modeling paradigm, sbédets are absent during
the construction and development of LULC projections. tereparticipation in the

simulation that places decision makers (users) in aateole and involves them in the
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whole modeling process from data acquisition, model dedigta analysis to scenario
development is encouraged strongly (Petersen, 2006; Rounsevall, 2012b). In
addition, decision support systems are a good way to lindafmental research and
practical applications, for example, LULC modeling. Verstegieal. (2012) established
a Spatial Decision Support System that ineligimulation, uncertainty analysis, and
visualization to choose the optimal locations whemebergy crops can be planted
without endangering other important land uses and food produclihe decision
support systems should incorporate a clear descriptiomodeling framework, suitable
representation and communication of uncertainties, wefined input and output
variables, and the flexibility to meet different user regmients (Sohl and Claggett,
2013). With such systems and user-friendly interfaces, ptancan assess different
policy scenarios potential effects by adjusting the model inputs and comgathe
resulting spatial graphs. This is helpful for end useithout expert knowledge of
modeling theory and statistics, and consequently expandapipleeations of LULC
models in decision-making processes.
5. Conclusions and future directions

By reviewing and comparing different modeling approaches, thigyshas
identified a number of important research challengeshagtdighted several issues that
need to be addressed to improve current LULC change modelwegfollowing five
recommendations may fill the key research gaps and stienptogress in this field:

(1) Developing generic protocols and making use of online datsindfictures provide
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opportunities to overcome the difficulties in compgrand scaling ABMs.

(2) A wide array of models (e.g., top-down and bottom-up pamajigheeds to be
integratd to use the strengths of existing individual models and support
comprehensive analyses of the interactiorfsuman-environment systems.

(3) Further work is needed to quantify different uncertasnéied their sources and to
communicate these with stakeholders. This would support tigatan of model
results and realize modeling that is theoretically said empirically justified.

(4) Common platforms and frameworks populated with mulixisting models should
be establisbd, providing code in an open environment dimking to related data
for further LULC research.

(5) Stronger relations between LULC change modeling and patiaking can be
realized by generalizing and simplifying modeling frameworks,estding relevant
stakeholders in the modeling process, and constructing @esigpport systems.

This review has not sought to provide a complete list of dlL@C change models,
but has focused instead a@hose most commonly used, comparing their strengths,
weaknesses, applications, and the broad differences. By dai a number of major
research gaps have been identified and possible solutidnentoproposed. It is hoped
that this work presents a critical perspective on tffierént LULC change modeling
approaches, provides a contribution to strengthen thd’dienterdisciplinary nature,

and suggests a research agenda that indicates a produdtiverpatrd.

37



778

779

780

781

782

783

784

785

786

787

788

789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

Acknowledgements

This work was supported by the National Key Research and DenetdagProgram
of China [No. 2016YFC0501601], and National Natural Science Foundati@hio&
[No. 41571130083] and the Natural Environment Research Council (NERCpiNewt
Fund [NE/NO07433/1] through the China-UK collaborative researchriinat zone
science. Thanks also go to the reviewers who spent ticheféorts to offer very helpful

and constructive suggestions on the earlier versionssoatticle.

Appendix A. Suggested websites for LULC change models and related gr&jefita

TableA.1

References

Alexander, P., Prestele, R., Verburg, P.H., Arneth, A., BarangtlliBatista, E.S.F., Brown, C.,
Butler, A., Calvin, K., Dendoncker, N., Doelman, J.C., Dunford, R., EmgstK., Eitelberg,
D., Fujimori, S., Harrison, P.A., Hasegawa, T., Havlik, P., Holeha8., Humpenoder, F.,
Jacobs-Crisioni, C., Jain, A.K., Krisztin, T., Kyle, P., Lavalle, C.ntbm, T., Liu, J.,
Meiyappan, P., Popp, A., Powell, T., Sands, R.D., Schaldach, R., Stehfe&stginbuks, J.,
Tabeau, A., van Meijl, H., Wise, M.A., Rounsevell, M.D., 2017. Assessing uncesgainti
land cover projections. Glob. Change Biol. 23, 767-781. https://doi.org/10.1111/gcb.13447.

Almeida, C.M., Gleriani, J.M., Castejon, E.F., Soares-Filho, B.S., 2008g Wsiural networks and
cellular automata for modelling intra-urban land-use dynsniidt. J. Geogr. Inf. Sci. 22,
943-963. https://doi.org/10.1080/13658810701731168.

Al-sharif, A.A.A., Pradhan, B., 2013. Monitoring and predicting lars@ @hange in Tripoli
Metropolitan City using an integrated Markov chain and aallautomata models in GIS.
Arab. J. Geosci. 7, 4291-4301. https://doi.org/10.1007/s12517-013-1119-7.

An, L., 2012. Modeling human decisions in coupled human and natural sysRaview of
agent-based models. Ecol. Model. 229, 25-36.
https://doi.org/10.1016/j.ecolmodel.2011.07.010.

An, L., Linderman, M., Qi, J., Shortridge, A., Liu, J., 2005. Exploring complexit a
human-environment system: An agent-based spatial model for istifiithary and
multiscale integration. Ann. Assoc. Am. Geogr. 95, 54-79.

38



809 https://doi.org/10.1111/j.1467-8306.2005.00450.x.
810 Antle, J., Capalbo, S., 2001. Econometric-process models for in@gsdessment of agricultural

811 production systems. Am. J. Agr. Econ. 83, 389-401.
812 https://doi.org/10.1111/0002-9092.00164.

813  Agquilué, N., De Caceres, M., Fortin, M.J., Fall, A., Brotons, L., 2017. Aamltocation procedure
814 to model land-use/land-cover changes: Accounting for occurrence Baadl gpocesses. Ecol.
815 Model. 344, 73-86. https://doi.org/10.1016/j.ecolmodel.2016.11.005.

816  Arsanjani, J.J., Helbich, M., Kainz, W., Boloorani, A.D., 2013. Integratibfogistic regression,
817 Markov chain and cellular automata models to simulateruex@ansion. Int. J. Appl. Earth
818 Obs. Geoinf. 21, 265-275. https://doi.org/10.1016/j.jag.2011.12.014.

819 Bone, C., Dragicevic, S., White, R., 2011. Modelinghe-middle: bridging the gap between
820 agent-based modeling and multi-objective decision-makintafat use change. Int. J. Geogr.
821 Inf. Sci. 25, 717-737. https://doi.org/10.1080/13658816.2010.495076.

822  Bousquet, F., Le Page, C., 2004. Multi-agent simulations and ecosysieagement: a review.
823 Ecol. Model. 176, 313-332. https://doi.org/10.1016/j.ecolmodel.2004.01.011.

824  Britz, W., Hertel, T.W., 2011. Impacts of EU biofuels directives ghobal markets and EU
825 environmental quality: An integrated PE, global CGE analygisic. Ecosyst. Environ. 142,
826 102-109. https://doi.org/10.1016/j.agee.2009.11.003.

827 Brown, D.G., 2006. Ageritased models, in The Earth’s Changing Land: An Encyclopedia of
828 Land-Use and Land-Cover Change. Westport CT: Greenwood Publishing Group, 7-13.
829  Brown, D.G., Page, S., Riolo, R., Zellner, M., Rand, W., 2005. Path demendsd the validation
830 of agent-based spatial models of land use. Int. J. Geogr. Saf. 19, 153-174.
831 https://doi.org/10.1080/13658810410001713399.

832  Brown, D.G., Verburg, P.H., Pontius, R.G., Lange, M.D., 2013. Opportunitiespit@ve impact,
833 integration, and evaluation of land change models. Curr. @pwiron. Sustain. 5, 452-457.
834 https://doi.org/10.1016/j.cosust.2013.07.012.

835  Brunsdon, C., 2016. Quantitative methods I: Reproducible research and guargéagraphy. Prog.
836 Hum. Geogr. 40, 687-696. https://doi.org/10.1177/0309132515599625.

837  Castella, J.C., Verburg, P.H., 2007. Combination of process-orientguhtiech-oriented models of
838 land-use change in a mountain area of Vietnam. Ecol. Mo@déR, 410-420.
839 https://doi.org/10.1016/j.ecolmodel.2006.11.011.

840  Chang-Martinez, L.A., Mas, J.F., Valle, N, Torres, P.2J., Folan, W.J., 2015. Modeling historical
841 land cover and land use: A review from contemporary model®BRS Int. Geo-Inf. 4,
842 1791-1812. https://doi.org/10.3390/ijgi4041791.

843  Charif, O., Omrani, H., Abdallah, F., Pijanowski, B., 2017. A multilaisular automata model
844 for land change simulation. Trans. GIS. 21, 1298-1320. https://doi.org/10.1111/tgis.12279.
845  Chen, Y., Verburg, P.H., 2000. Modeling land use change and itssefffie¢s1S. Ecologic Science
846 19, 1-7. (in Chinese with English Abstract).

847  Choi, S.W., Sohngen, B., Rose, S., Hertel, T., Golub, A., 2011. Total Facuctivity Change in
848 Agriculture and  Emissions  from  Deforestation. Am. J. Agr. Econ.
849 https://doi.org/10.1093/ajae/aaq088.

850 Clarke, K.C., 2008. A decade of cellular modeling with SLEUUHresolved issues and problems,
851 Ch.3 in Planning Support Systems for Cities and Regions. Linnstitute of Land Policy,

39



852 Cambridge, MA, pp. 47-60.
853  Clarke, K.C., Gaydos, L.J., 1998. Loose-coupling a cellular automaton mondeBIS: long-term

854 urban growth prediction for San Francisco and Washinggdtinore. Int. J. Geogr. Inf. Sci.
855 12, 699-714. https://doi.org/10.1080/136588198241617.

856  Couclelis, H., 2000. Modeling frameworks, paradigms, and approaclkeegrdaphic Information
857 Systems and Environmental Modeling. Longman & Co., New York.

858  Couclelis, H., 2005. “Where has the future gone?”” Rethinking the role of integrated land-use models
859 in spatial planning. Environ. Plan. A 37, 1353-1371. https://doi.org/10.1068/a3785.

860  de Nijs, T.C., de Niet, R., Crommentuijn, L., 2004. Constructing land-use mé#ps Métherlands in
861 2030. J. Environ. Manage. 72, 35-42. https://doi.org/10.1016/j.jenvman.2004.03.015.

862 Evans, T.P., Phanvilay, K., Fox, J., Vogler, J., 2011. An agent-based wibagyricultural

863 innovation, land-cover change and household inequality: the tteengrom swidden
864 cultivation to rubber plantations in Laos PDR. JournalLand Use Science. 6, 151-173.
865 http://dx.doi.org/10.1080/1747423X.2011.558602.

866  Fezzi, C., Bateman, [J., 2011. Structural Agricultural Land W&edeling for Spatial

867 Agro-Environmental  Policy Analysis. Am. J. Agr. Econ. 93, 1168-1188.
868 https://doi.org/10.1093/ajae/aar037.

869  Filatova, T., Verburg, P.H., Parker, D.C., Stannard, C.A., 2013. Spagait-based models for
870 socio-ecological systems: Challenges and prospects. Environ. M&tdétlv. 45, 1-7.

871 https://doi.org/10.1016/j.envsoft.2013.03.017.

872  Fondevilla, C., Angels Colomer, M., Fillat, F., Tappeiner, U., 2016. UsingnaRDP modelling
873 approach for land-use and land-cover change predictiorssa study in the Stubai Valley
874 (Central Alps). Ecol. Model. 322, 101-114. https://doi.org/10.1016/j.ecolmodel.2015.11.016.
875  Fontaine, C.M., Rounsevell, M.D.A., 2009. An agent-based approach to fotgkel residential

876 pressure on a regional landscape. Landsc. Ecol. 24, 1237-1254.
877 https://doi.org/10.1007/s10980-009-9378-0.

878  Golub, A.A,, Hertel, T.W., 2012. Modeling land-use change impacts of lsofnghe Gtap-Bio

879 framework. Climate Change Economics, 03, 1250015.
880 https://doi.org/10.1142/S2010007812500157.

881  Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, sk;@sstard, J., Grand, T.,
882 Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jergensen, C., Mooij, W.M., Miiller, B., Pe’er,

883 G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Riger, N.,
884 Strand, E., Souissi, S., Stillman, R.A., Vabg, R., Visser, U., DeAndglls, 2006. A

885 standard protocol for describing individual-based and agenttimasdels. Ecol. Model. 198,
886 115-126. https://doi.org/10.1016/j.ecolmodel.2006.04.023.

887  Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsbadk,, Shulke, H.H., Weiner,
888 J., Wiegand, T., DeAngelis, D.L., 2005. Pattern-oriented modelingeitédbased complex
889 systems: lessons from ecology. Science. 310, 987-91.
890 https://doi.org/10.1126/science.1116681.

891  Groeneveld, J., Miller, B., Buchmann, C.M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F.,
892 Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulz&ydise, H., Schwarz,
893 N., 2017. Theoretical foundations of human decision-making in agsetiband use
894 models-A review. Environ. Modell. Softw. 87, 39-48.

40



895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937

https://doi.org/10.1016/j.envsoft.2016.10.008.

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., Hokao, K., 2011. Modeltrandand use change
by the integration of cellular automaton and Markov modell.BMdodel. 222, 3761-3772.
https://doi.org/10.1016/j.ecolmodel.2011.09.009.

Guan, Q., Wang, L., Clarke, K.C., 2005. An Artificial-Neural-Natkvbased, Constrained CA
Model for Simulating Urban Growth. Cartogr. Geogr. Inf. Sci. 32, 380-
http://dx.doi.org/10.1559/152304005775194746.

Guzy, M.R., Smith, C.L., Bolte, J.P., Hulse, D.W., Gregory, S.V., 2008cyPBlesearch Using
Agent-Based Modeling to Assess Future Impacts of Urban Expam@mfarmlands and
Forests. Ecol. Soc. 13. https://www.ecologyandsociety.org/vol13/is¥a/art

Haque, A., Asami, Y., 2014. Optimizing urban land use allocation famngrs and real estate
developers. Comput. Environ. Urban Syst. 46, 57-69.
https://doi.org/10.1016/j.compenvurbsys.2014.04.004.

Hare, M., Deadman, P., 2004. Further towards a taxonomy of agent-baseatisimuoiodels in
environmental management. Math. Compuit. Simul. 64, 25-40.
https://doi.org/10.1016/S0378-4754(03)00118-6.

Hertel, T.W., 2018. Economic perspectives on land use change and leakagen.lRes. Lett. 13.
https://doi.org/10.1088/1748-9326/aad2a4.

Huang, B., Xie, C., Tay, R., Wu, B., 2009. Land-use-change modeling usibglanced
support-vector machines. Environ. Plan. B-Plan. Des. 36, 398-416.
https://doi.org/10.1068/b33047.

Huang, Q., Parker, D.C., Filatova, T., Sun, S., 2013. A review of udmdential choice models
using agent-based modeling. Environ. Plan. B-Plan. Des. 41, 661-689.
https://doi.org/10.1068/b120043p.

Hurtt, G.C., Chini, L.P., Frolking, S., Betts, R.A., Feddema, J., €is¢h., Fisk, J.P., Hibbard, K.,
Houghton, R.A., Janetos, A., Jones, C.D., Kindermann, G., Kinoshita, Th, B&dewijk,

K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Tmori., van
Vuuren, D.P., Wang, Y.P., 2011. Harmonization of land-use scenasioshé period
150G6-2100: 600 years of global gridded annual land-use transitions, wawdstaand
resulting secondary lands. Clim. Change 109, 117-161.
https://doi.org/10.1007/s10584-011-0153-2.

Hurtt, G.C., Frolking, S., Fearon, M.G., Moore, B., Shevliakova, E., MalysBegWwacala, S.W.,
Houghton, R.A., 2006. The underpinnings of land-use history: threwiress of global
gridded land-use transitions, wood-harvest activity, and negustecondary lands. Glob.
Change Biol. 12, 1208-1229. https://doi.org/10.1111/j.1365-2486.2006.01150.x

Irwin, E.G., Geoghegan, J., 2001. Theory, data, methods: developinglgpataicit economic
models of land use change. Agric. Ecosyst. Environ. 85, @ 7-23.
https://doi.org/10.1016/S0167-8809(01)00200-6.

Jepsen, M.R., Leisz, S., Rasmussen, K., Jakobsen, J., M@ller-Jensen, LiarShristL., 2006.
Agent-based modelling of shifting cultivation field patteviigtnam. Int. J. Geogr. Inf. Sci.
20, 1067-1085. https://doi.org/10.1080/13658810600830848.

Jjumba, A., Dragicevi¢, S., 2012. High resolution urban land-use change modeling: Agent iCity
Approach. Appl. Spat. Anal. Policy. 5, 291-315. https://doi.org/10.1007/s12061-0139071-

41



938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

Kamusoko, C., Aniya, M., Adi, B., Manjoro, M., 2009. Rural sustaingbilinder threat in
Zimbabwe-Simulation of future land use/cover changes in thduBa district based on the
Markov-cellular automata model. Appl. Geogr. 29, 435-447.
https://doi.org/10.1016/j.apge0g.2008.10.002.

Ke, X., Zheng, W., Zhou, T., Liu, X., 2017. ®A-based land system change model: LANDSCAPE.
Int. J. Geogr. Inf. Sci. 31, 1798-1817. https://doi.org/10.1080/13658816.2017.1315536.

Keshtkar, H., Voigt, W., Alizadeh, E., 2017. Land-cover classificagind analysis of change using
machine-learning classifiers and multi-temporal remote sensaggim. Arab. J. Geosci. 10.
https://doi.org/10.1007/s12517-017-28@9-

Klaiber, H.A., Phaneuf, D.J., 2010. Valuing open space in a resiisotiting model of the Twin
Cities. J.Environ.Econ.Manage. 60, 57-ffps://doi.org/10.1016/j.jeem.2010.05.002.

Lacoste, M., Viaud, V., Michot, D., Walter, C., 2015. Landscape-scale muglefi erosion
processes and soil carbon dynamics under land-use and climaaigedh agroecosystems.
Eur. J. Soil Sci. 66, 780-791. https://doi.org/10.1111/ejss.12267.

Lambin, E.F., Rounsevell, M.D.A., Geist, H.J., 2000. Are agricultural lardrogdels able to
predict changes in land-use intensity? Agric. Ecosyst. rBmvi 82, 321331.
https://doi.org/10.1016/S0167-8809(00)00235-8.

Le, Q.B., Park, S.J., Vlek, P.L.G., Cremers, A.B., 2008. Land-Use Dynamigefor (LUDAS): A
multi-agent system model for simulating spatio-temporal dycsmif coupled
humanrlandscape system. I. Structure and theoretical specification. |Bfayim. 3, 135-153.
https://doi.org/10.1016/j.ecoinf.2008.04.003.

Li, X., Liu, X., 2008. Embedding sustainable development strategiesmi-agsed models for use
as a planning tool. Int. J. Geogr. Inf. Sci. 22, 21-45.
https://doi.org/10.1080/13658810701228686

Li, X., Yeh, A.G.O., 2002. Neural-network-based cellular autorfataimulating multiple land use
changes using GlS. Int. J. Geogr. Inf. Sci. 16, 323-343.
https://doi.org/10.1080/13658810210137004.

Lin, Y.P., Chu, H.J., Wu, €, Verburg, P.H., 2011. Predictive ability of logistic regression,
auto-logistic regression and neural network models in ecapiand-use change modeliag-
case study. Int. J. Geogr. Inf. Sci. 25, 65-87. https://doi.org/10.1080/13658811003752332.

Liu, H., Silva, E.A. and Wang, Q., 2016. Incorporating GIS data am agent-based model to
support planning policy making for the development of creatigastries. J. Geogr. Syst. 18,
205-228. https://doi.org/10.1007/s10109-016-0229-7.

Liu, JG., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E.|, PeN., Deadman, P.,
Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., RedmarS&hheider,
S.H., Taylor, W.W., 2007. Complexity of coupled human and naturalrsystecience. 317,
1513-1516. https://doi.org/10.1126/science.1144004.

Losiri, C., Nagai, M., Ninsawat, S., Shrestha, R., 2016. Modeling Urban EapainsBangkok
Metropolitan  Region Using Demographic-Economic  Data  through  @ellul
Automata-Markov Chain and Multi-Layer Perceptron-Markowai@hVodels. Sustainability.
8, 686. https://doi.org/10.3390/su8070686.

Magliocca, N., Safirova, E., McConnell, V., Walls, M., 2011. An economic agesgdbaodel of
coupled housing and land markets (CHALMS). Comput. Environ. Urban 35;s1.83-191.

42



981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

https://doi.org/10.1016/j.compenvurbsys.2011.01.002.

Maithani, S., 2014. Neural networks-based simulation of land s@esrarios in Doon valley, India.
Geocarto Int. 30, 1-23. https://doi.org/10.1080/10106049.2014.927535.

Mas, J.F., Kolb, M., Paegelow, M., Camacho Olmedo, M.T., Houet, T., 2014. Inductive
pattern-based land use/cover change models: A comparison rokdftware packages.
Environ. Modell. Softw. 51, 94-111. https://doi.org/10.1016/j.envsoft.2013.09.010.

Matthews, R.B., Gilbert, N.G., Roach, A., Polhill, J.G., Gotts, N.M., 2007 ntAlgesed land-use
models: a review of applications. Landsc. Ecaol. 22, 1447-1459.
https://doi.org/10.1007/s10980-007-9135-1.

Miyasaka, T., Le, Q.B., Okuro, T., Zhao, X., Takeuchi, K., 2017. Agent-basddlimg of complex
social-ecological feedback loops to assess multi-dimendi@ud-offs in dryland ecosystem
services. Landsc. Ecol. 32, 707-727. https://doi.org/10.1007/s10980-017-0495-x.

Moulds, S., Buytaert, W., Mijic, A., 2015. An open and extensible franteVoorspatially explicit
land use change modelling: the lulcc R package. Geosci. Model 8, 3215-3229.
https://doi.org/10.5194/gmd-8-3215-2015.

Murray-Rust, D., Dendoncker, N., Dawson, T.P., Acosta-Michlik, L., Kail, Guillem, E.,
Rounsevell, M., 2011. Conceptualising the analysis of socio-ecologisténsy through
ecosystem services and agent-based modelling. Journal of LemdStience. 6, 83-99.
http://dx.doi.org/10.1080/1747423X.2011.558600.

Nelson, G., De Pinto, A., Harris, V., Stone, S., 2016. Land use and roeavéngents: a spatial
perspective. Int. Reg. Sci. Rev. 27, 297-325. https://doi.org/10.1177/0160017604266028.

NRC, 2014. Advancing Land Change Modeling: Opportunities and Resdédghirements,
National Research Council, Washington, DC, USA.

Ostrom, E., 2009. A general framework for analyzing sustainalaifityocial-ecological systems.
Science. 325, 419-422. https://doi.org/10.1126/science.1172133

Overmars, K.P., Verburg, P.H., Veldkamp, T., 2007. Comparison of a dedactd an inductive
approach to specify land suitability in a spatially exipliand use model. Land Use Pol. 24,
584-599. https://doi.org/10.1016/j.landusepol.2005.09.008.

Parker, D.C., Hessl, A., Davis, S.C., 2008. Complexity, land-use modelimd),the human
dimension: Fundamental challenges for mapping unknown outcomessgaeoforum 39,
789-804. https://doi.org/10.1016/j.geoforum.2007.05.005.

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P., 2003. Muoiti-ag
systems for the simulation of land-use and land-cover changevidw. Ann. Assoc. Am.
Geogr. 93, 314-337. https://doi.org/10.1111/1467-8306.9302004.

Petersen, A.C., 2006. Simulating Nature: A Philosophical Study of pG@m Simulation
Uncertainties and Their Role in Climate Science and Policy Adtdet Spinhuis Publishers,
Amsterdam.

Pijanowski, B.C., Brown, D.G., Shellito, B.A., Manik, G.A., 2002. Using akoetworks and GIS
to forecast land use changes: a Land Transformation Modeip@. Environ. Urban Syst.
26, 553-575. https://doi.org/10.1016/S0198-9715(01)00015-1.

Pontius,R.G., Malanson, J., 2005. Comparison of the structure and accuraeyw ¢é&rid change
models. Int. J. Geogr. Inf. Sci. 19, 243-265. https://doi.org/10.1080/13658810410001713434.

Pontius, R.G., Boersma, W., Castella, J.C., Clarke, K., de Nijs, Tzddi€., Duan, Z., Fotsing, E.,

43



1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

Goldstein, N., Kok, K., Koomen, E., Lippitt, C.D., McConnell, W., Mohd Sood, A.,
Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T.N., Veldkamp, ¥efourg, P.H., 2008.
Comparing the input, output, and validation maps for several Imofiéand change. Ann.
Reg. Sci. 42, 11-37. https://doi.org/10.1007/s00168-007-0138-2.

Pontius, R.G., Cornell, J.D., Hall, C.A.S., 2001. Modeling the spatial pattern ofisenchange with
GEOMOD?2: application and validation for Costa Rica. Agrico$yst. Environ. 85, 191-203.
https://doi.org/10.1016/S0167-8809(01)00183-9.

Pontius, R.G., Huffaker, D., Denman, K., 2004. Useful techniques oftialidfor spatially explicit
land-change models. Ecol. Model. 179, 445-461.
https://doi.org/10.1016/j.ecolmodel.2004.05.010.

Pontius, R.G., Peethambaram, S., Castella, J.C., 2011. Comparison eofidgpe at multiple
resolutions: a case study of land change simulation in Cho Dsmich Vietnam. Ann.
Assoc. Am. Geogr. 101, 45-62. https://doi.org/10.1080/00045608.2010.517742.

Prestele, R., Alexander, P., Rounsevell, M.D.A., Arneth, A., Calvin, K., Doelman, J., EjtdlbA.,
Engstrom, K., Fujimori, S., Hasegawa, T., Havlik, P., Humpenoeder, F, Al&i., Krisztin,

T., Kyle, P., Meiyappan, P., Popp, A., Sands, R.D., Schaldach, R., Schuengel, kt,&ehfe
Tabeau, A., Van Meijl, H., Van Vliet, J., Verburg, P.H., 2016. Hotspotsnckrtainty in
land-use and land-cover change projections: a global-scale owdphrison. Glob. Change
Biol. 22, 3967-3983. https://doi.org/10.1111/gch.13337.

Rindfuss, R.R., Entwisle, B., Walsh, S.J., An, L., Badenoch, N., Brown, D.G., Reaém Evans,
T.P., Fox, J., Geoghegan, J., Gutmann, M., Kelly, M., Linderman, M., Liaanson,
G.P., Mena, C.F., Messina, J.P., Moran, E.F., Parker, D.C., Parton, W.tkelad3r,
Robinson, D.T., Sawangdee, Y., Vanwey, L.K., Verburg, P.H., 2008. Land use change
complexity and comparisons. Journal of Land Use Science. 3, 1-10.
https://doi.org/10.1080/17474230802047955.

Rindfuss, R.R., Walsh, S.J., Mishra, V., Fox, J., Dolcemascolo, G.P., 2002. Lindisghold and
remotely sensed data, methodological and practical problentsox J, Rindfuss RR, Walsh
SJ, Mishra V (eds) People and the environment. Approachesnking houeshold and
community surveys to remote sensing and GIS. Kluwer Academicdr&@dit Boston
London.

Rindfuss, R.R., Walsh, S.J., Turner, B.L., Fox, J., Mishra, V., 2004. Developingngesof land
change: challenges and methodological issues. Proc. Natl. AcadUSS. A. 101,
13976-13981. https://doi.org/10.1073/pnas.0401545101.

Rounsevell, M.DA., Robinson, D.T., Murray-Rust, D., 2012a. From actors to agents in
socio-ecological systems models. Philos. Trans. R. Soc. B-Biol. 383, 259-269.
https://doi.org/10.1098/rstb.2011.0187.

Rounsevell, M.D.A., Arneth, A., Alexander, P., Brown, D.G., de Noblet-DucoudréEIhs, E.,
Finnigan, J., Galvin, K., Grigg, N., Harman, 1., Lennox, J., Magliocca, N., Parker, DilO'Ne
B.C., Verburg, P.H., Young, O., 2014. Towards decision-based global landaasds for
improved understanding of the Earth system. Earth Syst. Dynam. 5, 117-137.
https://doi.org/10.5194/esd-5-117-2014.

Rounsevell, M.D.A., Pedroli, B., Erb, K.H., Gramberger, M., Busck, A.G., Haberl, H., Kristensen, S
Kuemmerle, T., Lavorel, S., Lindner, M., Lotze-Campen, H., Metzger, M.J., Muiay-B.,

44



1067 Popp, A., Pérez-Soba, M., Reenberg, A., Vadineanu, A., Verburg, P.H., &iaks| B.,

1068 2012b. Challenges for land system science. Land Use Pol. 29, 899-910.
1069 https://doi.org/10.1016/j.landusepol.2012.01.007.

1070 Samardzi¢-Petrovi¢, M., Kovacevi¢, M., Bajat, B. and Dragicevi¢, S., 2017. Machine Learning

1071 Techniques for Modelling Short Term Land-Use Change. ISPRSGat-Inf. 6, 387.
1072 https://doi.org/10.3390/ijgi6120387.

1073  Sands, R.D. and Leimbach, M., 2003. Modeling agriculture and land asentegrated assessment
1074 framework. Clim. Change. 56, 185-210. https://doi.org/10.1023/A:1021344614845.

1075  Schirpke, U., Leitinger, G., Tappeiner, U., Tasser, E., 2012. SPA-LDE®Ioping land-use/cover
1076 scenarios in mountain landscapes. Ecol. Inform. 12, 68-76.
1077 https://doi.org/10.1016/j.ecoinf.2012.09.002.

1078  Schulp, C.J.E., Nabuurs, G.J., Verburg, P.H., 2008. Future carbon saiiprestr Europe-Effects of
1079 land use change. Agric. Ecosyst. Environ. 127, 251-264.
1080 https://doi.org/10.1016/j.agee.2008.04.010.

1081  Sohl, T.L., Claggett, P.R., 2013. Clarity versus complexity: Land-use modaiagractical tool for
1082 decision-makers. J. Environ. Manage. 129, 235-243.
1083 https://doi.org/10.1016/j.jenvman.2013.07.027.

1084  Steinbuks, J. and Hertel, T.W., 2016. Confronting the Food-Energy-Envinbrifriemma: Global
1085 Land Use in the Long Run. Environ. Resour. Econ. 63, 545-570.
1086 https://doi.org/10.1007/s10640-014-9848-

1087  Summers, D.M., Bryan, B.A., Meyer, W.S., Lyle, G., Wells, S., McLean, J., Moomai.Gaans,
1088 G., Siebentritt, M., 2015. Simple models for managing complex somkbgrcal systems:
1089 The Landscape Futures Analysis Tool (LFAT). Environ. Modellftveo63, 217-229.
1090 https://doi.org/10.1016/j.envsoft.2014.10.002.

1091  Taheripour, F., Tyner, W., 2013. Biofuels and Land Use Change: AppR&tgnt Evidence to
1092 Model Estimates. Appl. Sci.-Basel. 3, 14-38. https://doi.org/10.3390/app3010014.

1093  Tian, G., Wu, J., 2008. Simulating land use change with agent-based moalgiesprand prospects.
1094 Acta Ecologica Sinica, 28, 4451-4459. (in Chinese with English Abstract).

1095  Timilsina, G.R., Mevel, S., 2012. Biofuels and Climate Change Mitiga A CGE Analysis
1096 Incorporating Land-Use Change. Environ. Resour. Econ. 55, 1-19.
1097 https://doi.org/10.1007/s10640-012-9609-8.

1098  Uyan, M., Cay, T., Inceyol, Y., Hakli, H., 2015. Comparison of designderdift land reallocation
1099 models in land consolidation: A case study in Konya/Turkey. Computiré&hedgric. 110,
1100 249-258. https://doi.org/10.1016/j.compag.2014.11.022.

1101 Valbuena, D., Verburg, P.H., Bregt, A.K., 2008. A method to define a typdimgagent-based
1102 analysis in regional land-use research. Agric. Ecosyst. Envird28, 27-36.
1103 https://doi.org/10.1016/j.agee.2008.04.015.

1104  Valbuena, D., Verburg, P.H., Bregt, A.K., Ligtenberg, A., 2010. An agendlmsgoach to model
1105 land-use change at a regional scale. Landsc. Ecol. 25, 185-199.
1106 https://doi.org/10.1007/s10980-009-9380-6.

1107  van Delden, H., van Vliet, J., Rutledge, D.T., Kirkby, M.J., 2011. Coisqma of scale and scaling
1108 issues in integrated land-use models for policy support. Algciosyst. Environ. 142, 18-28.
1109 https://doi.org/10.1016/j.agee.2011.03.005.

45



1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

van Meijl, H., van Rheenen, T., Tabeau, A., Eickhout, B., 2006. The ingbadifferent policy
environments on agricultural land use in Europe. Agric. Ecostiron. 114, 21-38.
https://doi.org/10.1016/j.agee.2005.11.006.

van Vliet, J., Bregt, A.K., Brown, D.G., van Delden, H., Heckbert, S., Verburg, POH6. A review
of current calibration and validation practices in lamdnge modeling. Environ. Modell.
Softw. 82, 174-182. https://doi.org/10.1016/j.envsoft.2016.04.017.

Veldkamp, A., Fresco, L.O., 1996a. CLUE-CR: an integrated mulke-snadel to simulate land use
change scenarios in Costa Rica. Ecol. Model. 91, 231-248.
https://doi.org/10.1016/0304-3800(95)00158-1.

Veldkamp, A., Fresco, L.O., 1996b. CLUE: a conceptual model to studyothesrsion of land use
and its effects. Ecol. Model. 85, 253-270. https://doi.org/10.1016/0304-3800(94)00151-0.

Veldkamp, A., Lambin, E.F., 2001. Predicting land-use change. AgrisyEcdEnviron. 85, 1-6.
https://doi.org/10.1016/S0167-8809(01)00199-2.

Verburg, P.H., 2006. Simulating feedbacks in land use and land cloarege models. Landsc. Ecol.
21, 1171-1183. https://doi.org/10.1007/s10980-006-0029-4.

Verburg, P.H., Chen, Y.Q., Veldkamp, T.A., 2000. Spatial explorations of land aisgechnd grain
production in China. Agric. Ecosyst. Environ. 82, 333-354.
https://doi.org/10.1016/S0167-8809(00)00286-

Verburg, P.H., Crossman, N., Ellis, E.C., Heinimann, A., Hostert, P., Mertz, O., Nagendr&pH., Si
T., Erb, K.H., Golubiewski, N., Grau, R., Grove, M., Konaté, S., MeyfréigtParker, D.C.,
Chowdhury, R.R., Shibata, H., Thomson, A., Zhen, L., 2015. Land system scighce a
sustainable development of the earth system: A global langecprgerspective.
Anthropocene, 12, 29-41. http://dx.doi.org/10.1016/j.ancene.2015.09.004.

Verburg, P.H., Eickhout, B., van Meijl, H., 2007. A multi-scale, multi-moggreach for analyzing
the future dynamics of European land use. Ann. Reg. Sci. 42,7757-
https://doi.org/10.1007/s00168-007-0136-4.

Verburg, P.H., Jan Peter, L., Eric, K., Marta, P.S., 2011. Simulaimd) lise policies targeted to
protect biodiversity with the CLUE-Scanner Model, in: Land USkmate Change and
Biodiversity Modeling: Perspectives and Applications. 119-132.

Verburg, P.H., Kok, K., Pontius, R.G., Veldkamp, A., 2006a. Modeling land-+uddaad-cover
change, in: Lambin, E.F., Geist, H. (Eds.), Land-Use and Land-Coveng€hd ocal
Processes and Global Impacts. 117-135.

Verburg, P.H., Overmars, K.P., 2009. Combining top-down and bottom-up dygmamiand use
modeling: exploring the future of abandoned farmlands in Eurogie theé Dyna-CLUE
model. Landsc. Ecol. 24, 1167-1181. https://doi.org/10.1007/s10980-009-9355-7.

Verburg, P.H., Overmars, K.P., Huigen, M.G.A., de Groot, W.T., Veldkamp, A., 2006kystsof
the effects of land use change on protected areas in the Pigdippppl. Geogr. 26, 153-173.
https://doi.org/10.1016/j.apge0g.2005.11.005.

Verburg, P.H., Schot, P.P., Dijst, M.J., Veldkamp, A., 2004. Land use chaodglimy: current
practice and research priorities. GeoJournal. 61, 309-324.
https://doi.org/10.1007/s10708-004-49¢6-

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., MaSusa 2002.
Modeling the spatial dynamics of regional land use: the CBUmEedel. Environ. Manage.

46



1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

30, 391-405. https://doi.org/10.1007/s00267-002-2630-x.

Verburg, P.H., Tabeau, A., Hatna, E., 2013. Assessing spatial uncertainties ofdeaitibal using a
scenario approach and sensitivity analysis: a study fal le&® in Europe. J. Environ.
Manage. 127, S132-S144. https://doi.org/10.1016/j.jenvman.2012.08.038.

Verburg, P.H., Veldkamp, A., 2004. Projecting land use transitions rastfdringes in the
Philippines at two spatial scales. Landsc. Ecol. 19, 77-98.
https://doi.org/10.1023/B:LAND.0000018370.57457.58.

Verburg, P.H., Veldkamp, A., Fresco, L.O., 1999. Simulation of changd®ispatial pattern of
land use in China. Appl. Geogr. 19, 211-233.
https://doi.org/10.1016/S0143-6228(99)00003-X.

Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A., 20180-$@aporal uncertainty in
Spatial Decision Support Systems: A case study of changingalaithbility for bioenergy
crops in  Mozambique. Comput. Environ. Urban  Syst. 36, 30-42.
https://doi.org/10.1016/j.compenvurbsys.2011.08.003.

Waddell, P., 2011. Integrated land use and transportation plaanithignodelling: Addressing
challenges in research and practice. Transp. Rev. 31, 209-229.
https://doi.org/10.1080/01441647.2010.525671.

Walsh, R., 2007. Endogenous open space amenities in a locational romilibr Urban Econ. 61,
319-344. https://doi.org/10.1016/j.jue.2006.09.002.

Wang, Y.N., 2016. The simulation of the regional land-use changedban ABM and CLUES
model-A case study of Mizhi County Shanxi Province, Northwest Usityer(in Chinese
with English Abstract).

Wardekker, J.A., van der Sluijs, J.P., Janssen, P.H.M., Kloprogge, BrsdmetA.C., 2008.
Uncertainty communication in environmental assessments: views fifltan Dutch
science-policy interface. Environ. Sci. Policy 11, 627-641.
https://doi.org/10.1016/j.envsci.2008.05.005.

Yamashita, R., Hoshino, S., 2018. Development of an agent-based noodektimation of
agricultural land preservation in rural Japan. Agric. Syst64, 264-276.
https://doi.org/10.1016/j.agsy.2018.05.004.

Yan, D., Li, A.N., An, X., Lei, G.B., Cao, X.M., 2016. The study of urban |lax@hario simulation
in mountain area based on modified Dyna-CLUE model and SDMs@& staidy of the upper
reaches of Minjiang river. Journal of Geo-information Science, 18, 514-525hiinese with
English Abstract).

Yang, J., Su, J., Chen, F., Xie, P., Ge, Q., 2016. A Local Land Use Gionp€tllular Automata
Model and Its Application. ISPRS Int. Geo-Inf. 5, 106. https://doi.org/10.38®Q70106.

Zhang, W., Wang, H., Han, F., Gao, J., Nguyen, T., Chen, Y., Huang, &, EB., Zhou, L.,
Hong, S., 2014. Modeling urban growth by the use of a multiobjective optianizapiproach:
environmental and economic issues for the Yangtze watershew. G&mviron. Sci. Pollut.
Res. 21, 13027-13042. https://doi.org/10.1007/s11356-014-3007-4.

47



1196

1197

1198

1199

1200

1201

1202

Figures:
]
Driving factors of True LUL True LULG Driving factors of
the quantity of map t0 map tl the location of
LULC change | | LULC change,
=
=
= A4
= LULC change LULC change
:2 analysis map t0-tl
]
o v v
/Rates of change_ &/ Selection of variables & Relationship
Types of transition, between explanatory variables and [
LULC change
v
Ty A—
g top-down constrainw)cdback bottom-up calculation
= v
% | Allocation of change HTrue LULC ma|/
£
N A 4
Simulated time loop
LULC map t2,
True LUL
map t2

Validation

imulated LULC
change map

t1-t

True LULC
change map t1-t2
v

Coincidence between
simulated and true
LULC change maps

A 4

Coincidence between
true changes and
suitability maps

model refinement

* The suitability maps are also referred as probability, propensity, susceptibility and change potential maps in the

literature. The rectangle shape indicates a process, and the parallelogram indicates inputs to and outputs from a process.

Figure 1. Flowchart of the generalized procedures used

in spatially céxpli

pattern-based LULC modeling. Revised from (Mas et al., 2014; ddoet al., 2015;

Verburg et al., 2006a).

48



1203

1204

(CLUE-CR (1996) h
«application of CLUE in Costa
Rica

*conducted at three different
levels: national, regional and the
local individual grid level
*consists of five procedures:
CRNEED/CHANGE/AUTODEV/
\BIOPHEED/DISPEST )

A

CLUE (1996)
*dynamic

*scale: national to continental extent
*coarse spatial resolution
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*data representation: sub-pixel
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*land use data derived from census

CLUE-S (2002)

*dynamic, spatially explicit

*scale: local to regional extent (e.g.,
watershed or province)
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Figure 2. Evolution of CLUE series models.
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Agents’ decisions are dependent on the internal and external factors, responding to the internal feedback mechanism that makes
agents’ s future options based on previous practices, and the external interactions among agents, involving social networks,
governmental organizations and the market. Agents’ actions can change land use patterns and affect the functioning of landscape
and its capacity to provide goods and services. The external factors occur at different organizational levels, including regional and
global scales, which can directly influence the LULC patterns of a region and affect agents’ ability by establishing certain policies
(e.g., subsidies). Land use change models are often used to assess the effects of land change on biophysical factors and processes.
Changes in biophysical system can in turn affect the land use patterns, e.g., erosion and sedimentation processes can change the soil
depth which will affect the suitability for agricultural activities and the consideration in land use decisions. Besides, we are trying to
shedding light upon illustrating the two different modeling paradigms: one is top-down modeling (aforementioned in subsection
2.2.1), which determines the quantity of land use change based on the changes in (global) demand and market conditions; the other is
bottom-up modeling, which uses the real actors of land management as analysis objects and focuses on the underlying processes that
lead to the resulting spatial patterns.

Figure 5. Overview of the potential use of LULC change models to

human-environment systems.
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Table 1. Generalized characteristics of main LULC change mdttéls

M odel Pattern Key Classification criteria Examples Strengths Weaknesses Application
- assumpti
Process ons

1.Machine Pattern  Strong Statigtical approaches: spredict by extrapolating historical eoverfitting problem of esuitable when data
Learning stationari uraditional parametric Dinamica model Patterns machine learning related to patterns is
and /\ ty approaches (logistic conduct the extrapolation without «as a “black box, difficult available while a lack of
Statistical regression) theory of the detailed processes to interpret the model theory concerning
Models - - - - underlying the changes structure and performance processes

-welghts-of-eyldence Dinamica model of machine learning

smarkov chainé elack of causality”8

egeneralized linear modeling «the weights-of-evidence

sgeneralized additive based Dinamica model did

modeling not consider the interaction

Machinelear ning among variabld¥

approaches:
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egenetic algorithms Dinamica EGO

eclassification and regression

trees

esupport vector machine
2.Cellular stationari ea continuation of historical erelatively simple structure and elimited theoretical links eused for various topics
Models ty trends and patterns applications between conversion rules  (e.g., tropical

eallocation based on land CLUE-S edata format matches the land cover and actual decision makers deforestation, urban
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econsider the state of CA . e .
. : ecasy parameterization by empirical networks and impacts of LULC
neighborhood pixels ; - . .
— analyses of time-series data or «difficult to generalize changes on carbon
*CA-based, explicitly SLEUTH

simulate urban expansion
patterns

*a dynamic CA-based model,

Environment

comprising three levels Explorer
(national, regional and grid)

[10]

esimulate one-way GEOMOD

transformation from one to
another land use typéd

econometric calibration approaches
«flexibility to represent spatiotemporal

dynamics

susually apply constant
algorithms over space and
time

«ability to reflect the system
feedback is limited

sequestration)
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3.Economic Sector - Utility or ~ Computable general FARM; GTAP;  -address aggregate-level feedback fro *PE models require an eused to quantify the

Models -based profit equilibrium (CGE) EPPA; IMAGE market interactions or nonmarket exogenously given land us¢ effects of non-marginal
approa optimisat feedback that affect the equilibrium  sector changes (e.g., policy
ches ion; *less reliance on the stationarity *CGE models cope with a changes) to project

general  Partial equilibrium (PE) ASMGHG: assumption limited number of policy scenario
or partial IMPACT; simproved fidelity on the economic geographical regioHg outcomes
equilibria GTM; AgLU; processes leading to land use change
FASOM,;
GLOBIOM
Spatia Utility or  structural Equilibrium eaddress the basic role of prices in erequire assumptions on enon-marginal land
lly-dis profit locational-choic  explaining individual decisions agent behaviors, market change prediction and
aggreg optimisat e model83-14 eaddress the feedback of predicted structures, and functional  policy scenarios
ated ion; LULC changes on prices and predict forms
approa the consequences of policy *limited in the spatial
ches dimension
«limited data on revenues
and costs
often in reduced form +focus on causal identification eonly suitable for simulating  eused to test multiple
simpose fewer assumptions on the data  the effects of marginal specific hypotheses by
changes on land change  recognizing key
outcomes parameters
elimited utilization for esimulate the land use
modeling landscape dynamics corresponding
changes over longer period to changes in policies ol
sproblems on endogeneity other variables
4.AgentBa exploratory-theoretical esuitable for representing complexity in  elimited generalization estudy the effects of
sed Models models land systems under other conditions land change process at
— — eable to represent the agent ecomputational constraints multiple scales and
empirical-predictive models heterogeneity and behaviors, and hav and limited empirical organizational levels
various representation forms resources sevaluate projections of
v eeasier to communicate the model LULC or other state
structure and functions to stakeholder variables
Process *model the formation of
outcome patterns

5.Hybrid *Markov-Cellul  euse the advantages and reduce some eincreased complexity and See Table 2

Approach arftsl inherent limitations of individual difficult causal tracing

*Global Land approaches «difficult calibration and
Model*6-17 +flexibly match existing theories and validation
«Statistical-Cell  approaches to other conditions
ular-ABM[8l «facilitate development of new methods

*better representation of reality

complexity

1219  Note: LTM (Land Transformation Model), LCM (Land Change Model&€@A (Cellular Automata), GTAP (Global Trade Analysisoject model), EPPA (Emissions
1220  Prediction and Policy Analysis model), GTM (Global Timber Market Modie-5]: (Brown et al., 2013; Chang-Martinez et al., 2015; NRC, 2014; Pontius et al., 20@8sPon

54



1221
1222
1223
1224
1225
1226
1227

1228

1229
1230
1231
1232
1233
1234
1235
1236

et al., 2001), [6]: (Losiri et al., 2016), [7-8]: (Irwin and Geoghegan, 2001; Lambin 20@0), [9]: (Mas et al., 2014), [10]: (de Nijs et al., 2004), [11]: (Pontius and Malanson,
2005), [12]: (Rounsevell et al., 2014), [13-14]: (Klaiber and Phaneuf, 2010; Walsh, 2007{Gu&h et al., 2011), [16-17]: (Hurtt et al., 2011; Hurtt et al., 2006), [18]: (An et

al., 2005).

Table 2. Examples for hybrid approaches to simulate LULC changes

Hybrid approaches

Goals

References

(1) machine learning/statistical approache

incorporate land suitability with

(Li and Yeh, 2002;

+ neighborhood effects to project future lan| NRC, 2014)
cellular model use ’
(2) sector-basid economic model downscale land areas determined in (Hurtt et al., 2011;
. . large-scale general equilibrium Hurtt et al., 2006)
spatial allocation model
3) statistical approaches
+ .
represent the dynamics of both natural ar
ceIIuIzi: model human processes involved in land changg (An etal., 2005)
agent-based model
) Markoj\L/ chains determine future quantities of change ang (Guan et al., 2011)
the spatial patterns "
cellular model
(5) cellular model MAS (multi-agent system model), represe (Bousquet and Le
+ complex spatial interactions under Page q2004. Parker
heterogeneous conditions and model ot gl ’2003)‘
agent-based model decentralized, autonomous decision maki "
(6) IMAGE
+ . . (van Meijl et al.,
Global Trade Analysis Project model study QO“Cy effects on agricultural land a 2006; Verburg et
Europe’s rural areas
+ al., 2007)
CLUE-S
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Table 3. Comparisons of CLUE series models and agent-based model.

Model

Srengths

Limitations

Application

CLUE-S
(Overmars et al.,
2007; Verburg et

«explicitly concerns the functions of the whole land use sys' srequires knowledge about land use history

ssimulates multiple land use types simultaneously

ecansimulate different scenarios

olimited representation of the relations betwe
variables

ssuitable for various study areas a
situations
sspatial scenario analysis-useful f

al., 2002) sstraightforward and easily reproducible regression amalysi «does not include the spatial configurations of LUl natural resource management
erelatively easy data collection changes over the historical calibration period esimulation of trajectories of LULC
erequires external programs change
Dyna-CLUE sincorporates top-down allocation of land use changes -suses empirical and statistical models to represent euseful in situations where it is difficult

(Verburg and
Overmars, 2009;
Yan et al., 2016)

bottom-up determination of specific land use conversions

land use changeand allocation pattesy however, the
relations between land use types and explana
variables are typically nonlinear in reality

~only calculates the neighborhood factors in the initi
year, while the impacts of neighborhood will chan
over time

«difficulty in reflecting the influences of emerge
policy changes on land use spatial patterns

to determine land use conversions ir
top-down paradigm and where loc
habitat conditions are the mo
important driving forces of vegetatio
dynamics

Agent-based
model (An,
2012; Hare and
Deadman, 2004;
Li and Liu,
2008; Matthews
et al., 2007;
Parker et al.,
2003)

«flexible specification and design

«able to reproduce nonlinear and emergent phenomena |

upon individual behaviors

esimulates decision-making at different levels, congigethe
interactions among them and between actors and

environment, and adaptive behaviors

sinvestigates the influences of environmental manager

policies

sintegrates social interactions on decision processes rem
effects of micro-level decision-makingn environmental

management

edynamically links social and environmental
processes, norms, and institutional factors

structsire

sexplicitly simulates the human decision processes
provides more insight® the actual processes involved in la

use change

«limited predictive power at local level

edifficult calibration, validation and verification

slack of effective architectures and protocols
represent local actors and their interactions

*poor representation of learning processes in real world
decision making

sextensive and time-consuming data collection

ssimulate farming or environment:
management decisions

euseful to organize knowledge fron
empirical  studies, and explor
theoretical facets of land system
«land management and policy analysis
eparticipatory modeling

to explain spatial configuration of lan
use

«to test social science concepts

«to explain land use functions
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Table A.1. Suggested websites for LULC change models and related gr8jefta

M odels Suggested websites
*CLUE http://www.ivm.vu.nl/en/Organisation/departments/spadiadlysis-decision-support/Clue/index.alspx
*Dyna-CLUE http://downloads.informer.com/dyna-clyie/

*CA http://www.geosimulation.cn/index_chs.html
*Dinamica EGO http://lwww.csr.ufmg.br/dinamica/

*ABM https://www.openabm.orh/ &  |http://ccl.northwestern.edu/netlogo/

eLand Use Scanner

http://www.objectvision.nl/gallery/products/ruimtescarjner

*Community Earth System Model http://www.cesm.ucar.edu/
*Community Land Model http://www.cqgd.ucar.edu/tss/clm/
*Open Platform for Urban Simulatior] http://www.urbansim.com/

Projects& Data

Suggested websites

*NASA ,“Global Land Cover Facility”

*European Space Agency & United Nations Food and Agriculture Organization, “GlobCover”
*GEON

*National Science Foundation for the Global Collaboration Engine
*[PUMS, Terra Populus project

[PUMS

*Geoshare project

SIMLANDER

*GEOSHARE

*NASA’s socio-economic data centre (SEDAC)

the University of Wisconsin’s SAGE

*DataONE

*the GLOBE project

*CCAFS

http://glcf.umiacs.umd.edu/dafa/
http://due.esrin.esa.int/pris/prjs68.php
http://www.geongrid.orp

| http://ecotope.org/projects/globpe/
https://www.terrapop.org/
https://www.ipums.org/
https://geoshareproject.ofg/
https://simlander.wordpress.com/abput/
https://mygeohub.org/groups/geoshare
http://sedac.ciesin.org/
http://nelson.wisc.edu/sage/
https://www.dataone.org/
http://globe.umbc.edu/
https://ccafs.cgiar.org/resources/baseline-survi
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http://www.ivm.vu.nl/en/Organisation/departments/spatial-analysis-decision-support/Clue/index.aspx
http://downloads.informer.com/dyna-clue/
https://www.openabm.org/
http://ccl.northwestern.edu/netlogo/
http://www.objectvision.nl/gallery/products/ruimtescanner
http://www.cesm.ucar.edu/
http://www.cgd.ucar.edu/tss/clm/
http://glcf.umiacs.umd.edu/data/
http://due.esrin.esa.int/prjs/prjs68.php
http://www.geongrid.org/
http://ecotope.org/projects/globe/
https://geoshareproject.org/
https://simlander.wordpress.com/about/

