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SUMMARY

During cytokinesis, an actomyosin contractile ring

drives the separation of the two daughter cells.

A key molecule in this process is the inositol lipid

PtdIns(4,5)P2, which recruits numerous factors to

the equatorial region for contractile ring assembly.

Despite the importance of PtdIns(4,5)P2 in cytoki-

nesis, the regulation of this lipid in cell division

remains poorly understood. Here, we identify a role

for IPIP27 in mediating cellular PtdIns(4,5)P2 homeo-

stasis. IPIP27 scaffolds the inositol phosphatase

oculocerebrorenal syndrome of Lowe (OCRL) by

coupling it to endocytic BAR domain proteins. Loss

of IPIP27 causes accumulation of PtdIns(4,5)P2 on

aberrant endomembrane vacuoles, mislocalization

of the cytokinetic machinery, and extensive cortical

membrane blebbing. This phenotype is observed in

Drosophila and human cells and can result in cytoki-

nesis failure. We have therefore identified IPIP27 as

a key modulator of cellular PtdIns(4,5)P2 homeosta-

sis required for normal cytokinesis. The results indi-

cate that scaffolding of inositol phosphatase activity

is critical for maintaining PtdIns(4,5)P2 homeostasis

and highlight a critical role for this process in cell

division.

INTRODUCTION

Cytokinesis, the final step of cell division, is a fundamental pro-

cess that is required for organismal development and tissue

homeostasis. During cytokinesis, an actin-based contractile

ring forms in the equatorial region of the dividing mother cell

and subsequently constricts to physically divide the cytoplasm

[1–3]. Cytokinesis is completed by the process of abscission,

resulting in complete physical separation of the two daughter

cells [4]. The contractile ring comprises primarily actin,

myosin II, and formins, with various associated factors that

include the scaffolding protein anillin [5]. The primary driver of

contractile ring assembly is RhoA, which becomes activated

by the Ect2 Rho-GEF in the equatorial region of the plasmamem-

brane [1–3, 6]. Another key player is the phosphoinositide lipid

PtdIns(4,5)P2, which is also enriched in the equatorial region

[7–9]. PtdIns(4,5)P2 is a strong inducer of actin assembly [10],

and within the equatorial region it promotes the recruitment of

various factors including Ect2 and anillin [11, 12], as well as ezrin,

radixin, and moesin (ERM) proteins that help link the actin cyto-

skeleton to the plasma membrane [13]. At a late stage of cytoki-

nesis, PtdIns(4,5)P2 is removed to promote actin disassembly,

which is a prerequisite for membrane abscission [14]. It is there-

fore important that the synthesis and removal of PtdIns(4,5)P2

are tightly controlled to ensure effective cytokinesis [9].

Mammalian oculocerebrorenal syndrome of Lowe (OCRL1)

is an inositol 5-phosphatase whose preferred substrate is

PtdIns(4,5)P2 [15, 16]. Mutation of OCRL1 in humans causes

Lowe syndrome [17] and Dent-2 disease [18], which result in

neurological, ocular, and renal defects [19, 20]. OCRL1 is local-

ized to various endomembrane compartments including the

trans-Golgi [21, 22], endosomes [22–25], and lysosomes [26].

OCRL1 has been implicated in a number of cellular functions

including endocytic traffic (reviewed in [27]), where recent

studies have shown it can hydrolyze PtdIns(4,5)P2 during the

uncoating or maturation of clathrin-coated vesicles [28, 29]. In

cytokinesis of mammalian cells, OCRL1 is recruited to the inter-

cellular bridge by Rab35, where it hydrolyzes PtdIns(4,5)P2 to

promote actin dissolution and abscission [14]. In contrast to

mammals, which also express the OCRL1 paralog INPP5B that

may partially compensate for loss of OCRL1 [30], Drosophila

have only a single enzyme, Drosophila ortholog of OCRL

(dOCRL) [31, 32]. Depletion of dOCRL from cultured Drosophila

cells results in a more dramatic cytokinesis phenotype, with

failure at the ingression stage, resulting in binucleation [31]. In

dOCRL-depleted cells, PtdIns(4,5)P2 accumulates on internal

vacuoles, which in turn causes aberrant recruitment of the cyto-

kinetic machinery to these compartments, its depletion from the
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Figure 1. dIPIP Interacts with dOCRL and Is Required for Cytokinesis

(A) Schematic of human IPIP27A and IPIP27B and Drosophila dIPIP.

(B)Pull-downusingGST-dIPIPwild-type (WT)orF&Hmutant (F267A)andDrosophilaS2cell lysate. Input (5%), unbound (5%),andbound fractions (50%)wereblotted.

(C) Confocal microscopy of dIPIP-mRuby (red) co-expressed with GFP-dOCRL (green) in live S2 cells. Scale bar, 5 mm.

(D) Western blot showing RNAi-mediated depletion of dIPIP (left) or dOCRL (right) in S2 cells. Bar graphs show relative protein abundance. Values are means ±

SEM of 3 independent experiments each done in triplicate, ****p < 0.0001, Student’s t test.

(E) RNAi-treated S2 cells were stained with Alexa 488-phalloidin (green, F-actin) and Hoechst 33342 (red, DNA). Arrowheads point to cytoplasmic actin-positive

vacuoles. Scale bar, 5 mm.

(F) Quantitation of multinucleation. Bars represent the mean ± SEM of 4 experiments with �500 cells per experiment. ***p < 0.0001, Student’s t test.

(G and H) Rescue of multinucleation by wild-type Myc-dIPIP (G) or GFP-dOCRL (H). Bars represent the mean ± SEM of 4 experiments with �500 cells per

experiment. ***p < 0.0001, Student’s t test.

See also Figure S1.
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cortex, and ingression failure [31]. dOCRL is therefore required to

maintain cellular PtdIns(4,5)P2 homeostasis, which is important

for cell division. The lack of genetic redundancy in Drosophila

likely explains the severity of the cytokinesis phenotype in this

organism compared to mammals.

Although dOCRL and OCRL1 have been identified as impor-

tant regulators of PtdIns(4,5)P2 during cytokinesis, the mecha-

nisms by which they function in this process remain poorly

understood. In this study, we investigated the OCRL1 binding

partner IPIP27 (inositol phosphatase interacting protein of

27 kDa), which exists as two paralogs in humans, IPIP27A and

IPIP27B (also known as Ses1 and Ses2) [33, 34]. IPIP27A and

B both function in endocytic traffic [34]. IPIP27A acts as a scaf-

fold protein, physically linking OCRL1 to the actin-associated

protein pacsin 2 [35], which is able to recognize or induce mem-

brane curvature via its amino-terminal F-BAR domain [36, 37].

The ability of IPIP27A to link OCRL1 and pacsin 2 is important

for biogenesis of trafficking intermediates, likely by concen-

trating OCRL1 at sites of carrier formation [35]. Here, using

both Drosophila and mammalian cells, we identify the impor-

tance of IPIP27 in maintaining cellular PtdIns(4,5)P2 homeosta-

sis, which in turn is important for cortical actin and plasmamem-

brane integrity during cleavage furrow ingression. IPIP27

function is dependent upon binding to both OCRL and BAR

domain proteins, indicating that its ability to scaffold OCRL activ-

ity is critical tomaintain correct cellular PtdIns(4,5)P2 distribution.

The results provide new insight into how PtdIns(4,5)P2 homeo-

stasis is controlled within cells and highlight the importance of

this process for cell division.

RESULTS

Conservation of IPIP27 in Drosophila

IPIP27 exists as two paralogs in mammals, named IPIP27A and

IPIP27B (Ses1 and Ses2) [33, 34], whereas only a single ortho-

log is present in Drosophila melanogaster, which we refer to as

dIPIP (Figure 1A). As expected from the mammalian proteins

[33, 34], dIPIP interacts with the single OCRL and INPP5B or-

tholog in Drosophila, dOCRL, through its F&H motif (Figure 1B).

The C-terminal region of dIPIP also contains a conserved PxxP

motif (151PxPPPRR157) that in mammalian IPIP27A binds the

SH3 domain of pacsin 2 [35], and a putative clathrin-binding

site at its C terminus that is not present in mammalian IPIP27.

Localization experiments in Drosophila S2 cells indicated the

presence of dIPIP on cytoplasmic puncta that likely correspond

to endocytic compartments, where it colocalizes with dOCRL

(Figure 1C; see also Figure 7C) [32]. IPIP27 interaction and

co-localization with OCRL is therefore conserved in Drosophila

melanogaster.

Depletion of dIPIP Results in Cytokinesis Failure

Given that depletion of dOCRL results in a penetrant cytokinesis

defect [31], we explored whether loss of dIPIP may also disrupt

cytokinesis. dIPIP was depleted from S2 cells using double-

stranded RNA (dsRNA) (Figure 1D), and cytokinesis failure as-

sessed by counting the degree of multi-nucleation. As shown

in Figures 1E and 1F, there was significant cytokinesis failure

upon dIPIP depletion. This effect was observed with two distinct

dsRNAs and could be rescued by re-expression of dIPIP in the

depleted cells (Figure 1G), confirming specificity. The extent of

multi-nucleation was comparable to that seen upon dOCRL

depletion (Figures 1E and 1F), which was also rescued upon

re-expression of dOCRL (Figures 1F and 1H). Interestingly,

depletion of dOCRL led to a loss of dIPIP protein (Figure S1A),

and a similar phenomenon is observed in mammalian cells

depleted of OCRL1 (Figure S1B), suggesting that binding to

OCRL stabilizes IPIP27. In contrast, IPIP27 does not affect

OCRL levels in Drosophila (Figure S1A) or mammalian cells

(Figure S1B).

Dysregulation of PtdIns(4,5)P2 Homeostasis upon dIPIP

Depletion

To investigate the molecular basis of the cytokinesis defect

seen upon dIPIP depletion, which we hypothesized was due

to altered PtdIns(4,5)P2 homeostasis, dIPIP was depleted from

S2 cells stably expressing GFP-Tubby as a PtdIns(4,5)P2

biosensor [38]. Strikingly, dIPIP-depleted cells showed a dra-

matic accumulation of PtdIns(4,5)P2 on intracellular vacuoles,

and a lack of PtdIns(4,5)P2 enrichment at the cleavage furrow

during division (Figure 2A; Video S1). PtdIns(4,5)P2 accumulation

on intracellular vacuoles was also observed in dOCRL-depleted

cells (Figure 2A), as seen previously [31]. The results are

therefore consistent with dIPIP and dOCRL acting together to

maintain PtdIns(4,5)P2 homeostasis. PtdIns(4,5)P2 is a strong

promoter of actin assembly, and we detected strong actin

enrichment on the vacuolar membranes (Figure 2B), where

it colocalized with GFP-Tubby (Figure 2C). Although depletion

of dIPIP or dOCRL caused enlargement of endosomal compart-

ments, consistent with a role for these proteins in the endocytic

pathway (Figures S2A–S2C) [31, 32], the larger vacuoles are

largely devoid of endosome markers (Figures S2D and S2E).

We believe it most likely that the vacuoles derive from

Figure 2. dIPIP Depletion Gives Rise to PtdIns(4,5)P2- and Actin-Rich Vacuoles with Mislocalized Cytokinetic Machinery

(A) Top: live stills of control, dIPIP, or dOCRL-depleted S2 cells stably expressing GFP-Tubby. Scale bar, 5 mm. Bottom: quantitation of PtdIns(4,5)2-rich vacuoles.

Bars represent the mean of 3 experiments with >100 cells per condition per experiment. Error bars indicate SEM and **p < 0.005, ***p < 0.0001, Student’s t test.

(B) Live stills of RNAi-treated S2 cells stably expressing GFP-Utrophin (actin). Scale bar, 5 mm.

(C) RNAi-treated S2 cells stably expressing GFP-Tubby (green), fixed and labeled with phalloidin (F-actin, red) and Hoechst 33342 (DNA, blue). Scale bar, 5 mm.

(D) RNAi-treated S2 cells labeled with anti-Rho1 (green), phalloidin-TRITC (red), and Hoechst 33342 (blue). Scale bar, 5 mm.

(E) Live stills of RNAi-treated S2 cells stably expressing anillin-GFP.

(F) Selected time-lapse frames of dividing control or dIPIP-depleted cells stably expressing anillin-mCherry (red) and Spaghetti-squash (DrosophilaMyosin RLC)-

GFP (green). Times are in hours, minutes, and seconds from start of imaging.

(G) RNAi-treated S2 cells labeled with anti-dMoesin (green), phalloidin Alexa 594 (red), and Hoechst 33342 (blue). Arrowheads indicate cytoplasmic vacuoles.

(H) Quantitation of ratio of Rho1 and dMoesin at endomembranes versus plasma membrane. Bars indicate mean ± SD from 3 independent experiments.

**p < 0.005, ***p < 0.0002, one-sample t test. Scale bars, 5 mm.

See also Figure S2 and Videos S1 and S2.
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endosomes, but, due to their altered phosphoinositide composi-

tion, with ectopically accumulated PtdIns(4,5)P2, they have lost

their endosomal identity [39].

Mislocalization of Cytokinetic Machinery upon dIPIP

Depletion

The accumulation of PtdIns(4,5)P2 on intracellular vacuoles raised

the possibility that cytokinetic machinery normally targeted to the

cleavage furrow through binding PtdIns(4,5)P2 [9] may be mis-

targeted to the vacuoles. Indeed, we observed accumulation of

Rho1, or stably expressed anillin-GFP, on the internal actin-rich

vacuoles (Figures 2D and 2E). Live imaging also showed accumu-

lation of GFP-tagged myosin II regulatory light chain (MRLC) and

anillin-mCherry on the vacuoles of dIPIP-depleted cells undergo-

ing division, indicated by the presence of anillin outside the nu-

cleus [40], whereas in control cells undergoing cytokinesis, they

localized to the contractile ring, as expected (Figure 2F; Video

S2). We also observed vacuolar accumulation of dMoesin, the

single ERM protein in Drosophila involved in linking cortical actin

to PtdIns(4,5)P2 [13, 41] (Figure 2G). Quantitation revealed a

depletion of Rho1 and dMoesin from the plasma membrane,

and a reciprocal enrichment on endomembranes (Figure 2H).

The mis-localization of key cytokinetic machinery to the

PtdIns(4,5)P2- and actin-rich vacuoles is similar to that seen

upon dOCRL depletion [31](Figures 2D, 2E, and 2G) and may

explain the cytokinesis failure seen in dIPIP-depleted cells.

Depletion of dIPIP Causes Cortical Actin Instability

To better understand the cytokinetic defect in dIPIP depletion,

time-lapse imaging of dividing cells was performed. Analysis of

cells stably expressing GFP-utrophin to label F-actin in the cell

cortex, and a-tubulin-mCherry to label microtubules, revealed

a striking perturbation of cortical membrane dynamics, with

extensive membrane blebbing (Figure 3A; Video S3). The bleb-

bing occurred post-anaphase, mainly in the equatorial region,

and was distinct from the natural blebbing of the polar cortex

normally seen in cell division [13, 42–44]. The blebbing pheno-

type was penetrant, with �50% of the cells displaying blebbing

in the equatorial region (Figure 3B, top), of which �30% under-

went cytokinesis failure, with the remainder successfully dividing

(Figure 3B, middle). Of the cells undergoing cytokinesis failure,

�70% had previously undergone blebbing, indicating that

some cells fail cytokinesis without blebbing (Figure 3B, bottom).

This may reflect a more severe ingression defect in these cells

preventing the formation of a cleavage furrow where blebbing

is normally observed. The extensive blebbing upon dIPIP deple-

tion suggested a defect in cortical actin, most likely reduced sta-

bility within the equatorial region. To test this, cells were treated

with the actin destabilizing drug latrunculin A [45] and blebbing

assessed. As shown in Figure 3C, latrunculin A induced blebbing

of control cells, but the extent of blebbing was greatly increased

upon dIPIP depletion, indicating sensitization to the drug. In

contrast, treatment with the actin stabilizing drug jasplakinolide

[46] efficiently rescued the blebbing of dIPIP-depleted cells,

with no effect on control cells (Figure 3D). These results indicate

that depletion of dIPIP causes aberrant blebbing of the equato-

rial plasma membrane, which is a consequence of reduced

cortical actin stability.

Cortical Actin Instability upon Depletion of Mammalian

IPIP27A

To assess whether IPIP27 function is conserved in mammals,

IPIP27A and IPIP27B were depleted from HeLa cells (Figures

4A and S1C) and cell division followed by live imaging. IPIP27A

depletion resulted in dramatic post-anaphase blebbing of

the plasma membrane in the equatorial region (Figure 4B;

Video S4), similar to that seen in dIPIP-depleted S2 cells. In

contrast, no blebbing was observed upon IPIP27B depletion

(Figures S1D and S1E). Blebbing was observed with two inde-

pendent siRNAs to IPIP27A, confirming specificity of the pheno-

type (Figure 4C). To determine whether the blebbing was due to

dysregulation of cortical actin, actin was visualized in dividing

cells using LifeAct. In control cells, actin persisted in the equa-

torial region until late cytokinesis, at which point staining was

lost during actin filament dissolution (Figure 4D). Upon IPIP27A

depletion, the equatorial pool of actin appeared to dissolve

earlier than in control cells, suggesting instability of the cortical

actin in this region (Figures 4D and 4E). This is further supported

by the observed sensitization of IPIP27A-depleted cells to la-

trunculin A, (Figures 4F and 4G), and the rescue of blebbing

with low doses of jasplakinolide (Figures 4H and 4I; Video S5).

These results indicate that depletion of mammalian IPIP27A

results in extensive plasma membrane blebbing at the equato-

rial region during cytokinesis, which is due to reduced cortical

actin stability in this region.

Cortical Actin Instability upon dIPIP or IPIP27A

Depletion Is Due to Dysregulation of PtdIns(4,5)P2

We reasoned that dysregulation of PtdIns(4,5)P2 may underlie

the cortical instability seen upon loss of dIPIP in Drosophila

cells and IPIP27A in human cells. In S2 cells, PtdIns(4,5)P2

accumulation on intracellular vacuoles causes mis-targeting of

the actin-associated cytokinetic machinery to these vacuoles

and its depletion from the cortex (Figure 2). To more directly

test PtdIns(4,5)P2 involvement in the cytokinetic phenotypes,

S2 cells were treated with the phospholipase C (PLC) activator

Figure 3. Depletion of dIPIP Causes Cortical Actin Instability during Cytokinesis

(A) Live stills showing dynamics of GFP-Utrophin in control or dIPIP-depleted cells during cell division. White arrowheads show cortical blebs and yellow

arrowheads mark intracellular vacuoles. Time is in minutes from the last frame of metaphase. Scale bar, 5 mm.

(B) Top: quantification of cell division phenotypes. Middle, quantification of cell division outcome in blebbing cells. Bottom: quantitation of cells failing cytokinesis

that had undergone blebbing. Bars represent mean from 3 experiments with 80–100 cells per experiment. Error bars show SEM. ***p < 0.0005, chi-square

analysis.

(C and D) Left: bright-field stills of control or dIPIP-depleted cells treated with DMSO, 20 nM latrunculin A (LatA; C), or 8 nM jasplakinolide (JAS; D). Right:

quantification of phenotypes upon LatA (C) or JAS (D) treatment. Bars represent themean of 3 experiments with >100 cells analyzed per condition per experiment.

Error bars represent SEM. ***p < 0.0005, chi-square analysis.

See also Video S3.
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m-3M3FBS, which rescues the PtdIns(4,5)P2 vacuolar pheno-

type seen upon dOCRL depletion (K.B.E.K. and S.C., unpub-

lished data). As shown in Figures 5A–5E, treatment of dIPIP-

depleted S2 cells with m-3M3FBS, but not the inactive analog

o-3M3FBS, rescued the PtdIns(4,5)P2 vacuoles, the mis-target-

ing of cytokinetic machinery to the vacuoles, cortical membrane

blebbing, and cytokinetic failure, confirming that these pheno-

types all derive from PtdIns(4,5)P2 dysregulation. Although

we did not detect PtdIns(4,5)P2-positive vacuoles in IPIP27A-

depleted human cells, the similarity in cortical phenotype

with dIPIP-depleted S2 cells suggested a similar underlying

mechanism. This was confirmed by rescue of cortical membrane

blebbing in IPIP27A-depleted cells by m-3M3FBS (Figures 5F

and 5G).

Depletion of dOCRL from S2 cells also caused cortical mem-

brane blebbing, although it was less extensive than that

observed upon dIPIP depletion (Figures S3A and S3B). In

contrast, depletion of OCRL1 or INPP5B from HeLa cells, alone

or together, did not cause blebbing (Figure S3C). This may be

due to redundancy with other mammalian inositol 5-phospha-

tases, of which there are many [47]. Nevertheless, the fact

that depletion of dOCRL in Drosophila S2 cells phenocopies

loss of dIPIP supports the idea that dIPIP acts through dOCRL

to control PtdIns(4,5)P2 homeostasis for cortical membrane

integrity during cytokinesis. In mammalian cells the blebbing

phenotype is also dependent upon PtdIns(4,5)P2 dysregulation

but may involve other 5-phosphatases in addition to OCRL1

or INPP5B.

dIPIP Interactions Are Important for Successful

Cytokinesis

dIPIP contains several protein-protein interaction motifs (Fig-

ure 1A). To determine the functional importance of these motifs,

rescue experiments were performed. In contrast to wild-type dI-

PIP, the F&Hmutant, which is unable to bind dOCRL (Figure 1B),

resulted in a severely reduced ability to rescue the multi-nucle-

ation phenotype (Figures 6A and 6B). Mutation of the predicted

clathrin box in dIPIP had no effect upon rescue, indicating that

dIPIP binding to clathrin is dispensable for cytokinesis (Fig-

ure 6C). Human IPIP27Awas also able to rescue dIPIP depletion,

confirming functional conservation of IPIP27 between species

(Figure 6D). Both IPIP27A and dIPIP have a conserved PxxP

motif, which in IPIP27A is able to bind to SH3 domain proteins

such as pacsin 2 [35]. As shown in Figures 6E and 6F, mutation

of the PxxP motif in dIPIP strongly impaired rescue of actin-rich

vacuole formation, mis-targeting of Rho1 to these vacuoles, as

well as multi-nucleation, indicating the functional importance of

this motif, and therefore binding of dIPIP to an SH3 domain

partner.

dIPIP Binds SH3PX1, which Is Important for Cortical

Membrane Stability in Cytokinesis

To identify the relevant binding partner for the dIPIP PxxP motif,

we first analyzed syndapin, the Drosophila ortholog of pacsin 2,

but it failed to interact with dIPIP (Figure S4A). Instead, we

observed strong binding of dIPIP to SH3PX1, the Drosophila or-

tholog of SNX9 [48], in agreement with a previous genome-wide

interactome study [49], and binding was dependent upon the

PxxP motif (Figure 7A). In addition to the amino-terminal SH3

domain, SH3PX1 contains a lipid binding PX domain and a

BAR domain that is likely involved in membrane curvature

sensing or generation (Figure 7B). SH3PX1 was localized to the

cell cortex but could also be detected on puncta that likely corre-

spond to endocytic structures [50], where there was colocaliza-

tion with dIPIP and dOCRL (Figure 7C). Interestingly, labeling for

SH3PX1 in dIPIP- or dOCRL-depleted cells indicated a striking

accumulation on internal actin-positive compartments, which

may reflect its association with this actin pool (Figure S4B).

We next wanted to determine the requirement for SH3PX1

for successful cytokinesis. Depletion of SH3PX1 from S2 cells

(Figure 7D) resulted in similar phenotypes to those seen upon

depletion of dIPIP or dOCRL, with extensive plasma membrane

blebbing (Figures 7E and 7F; Video S6), increased multi-nucle-

ation (Figure 7G), and accumulation of actin-rich vacuoles that

also contained PtdIns(4,5)P2, Rho1, and dMoesin (Figures 7G,

7H, and 7I). Together, the results are consistent with a functional

interaction between dIPIP and SH3PX1 that is required for

PtdIns(4,5)P2 homeostasis and cortical membrane stability

during cytokinesis.

Pacsin 2 Supports Cortical Actin Stability in Mammalian

Cell Cytokinesis

To determine the requirement for the IPIP27A partner pacsin 2

(Figure S4C) for successful cytokinesis in mammalian cells,

it was depleted from HeLa cells and cytokinesis visualized by

live imaging. Pacsin 2 depletion (Figure S4C) gave a penetrant

membrane blebbing phenotype (Figures S4D and S4E), whereas

depletion of the other described IPIP27A binding partners,

CD2AP or myosin 1E [35], did not (Figures S5A and S5B). Deple-

tion of SNX9 also failed to cause any blebbing in human cells

Figure 4. Depletion of Human IPIP27A Causes Cortical Actin Instability during Cytokinesis

(A) Western blot showing IPIP27A depletion using two independent siRNAs. Bar graph shows relative protein abundance. Values are means ± SEM of 3 inde-

pendent experiments, each done in triplicate, ***p < 0.0001, Student’s t test.

(B) Time-lapse bright-field still images of control or IPIP27A-depleted cells during cell division. Arrowheads indicate plasma membrane blebs. Time is in minutes

from metaphase.

(C) Quantification of phenotypes. Bars represent the mean of 3 experiments with 100–150 cells analyzed per condition per experiment. Error bars represent SEM.

***p < 0.0001, chi-square analysis.

(D) Fluorescence and phase contrast time-lapse live stills of control versus IPIP27A-depleted HeLa cells stably expressing Lifeact-GFP.

(E) Scatterplot of the time for dissolution of Lifeact-GFP from the contractile ring. Bars represent the mean with SD. *p < 0.05 ***p < 0.0001, Mann-Whitney test

(F and H) Time-lapse bright-field stills of control and IPIP27A-depleted cells treated with DMSO, 20 nM LatA (F), or 8 nM JAS (H). Arrowheads indicate plasma

membrane blebs.

(G and I) Quantification of phenotypes after treatment with LatA (G) or JAS (I). Bars represent themean of 3 experiments with 100–150 cells analyzed per condition

per experiment. Error bars indicate SEM. ***p < 0.0005, chi-square analysis. Scale bars, 10 mm.

See also Figure S1 and Videos S4 and S5.
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(Figure S5C), suggesting that the requirement for this protein for

cortical stability is not conserved between flies and humans, or

that this function of SNX9 is redundant with its paralogs SNX18

and SNX33 in mammalian cells [48]. Together, our results sug-

gest that IPIP27A acts together with pacsin 2 for successful

cytokinesis, and that SH3PX1 and pacsin 2, which both asso-

ciate with actin and contain BAR and SH3 domains, operate

in a functionally analogous way to support IPIP function in

Drosophila and mammals, respectively.

dRab35 Is Also Required for PtdIns(4,5)P2 Homeostasis

and Cortical Stability during Cytokinesis

Rab35 can recruit OCRL1 to newly forming endocytic vesicles,

where it contributes to removal of PtdIns(4,5)P2 and membrane

actin post-scission [51]. It was therefore of interest to examine

the functional relationship between dRab35 and dIPIP in control-

ling dOCRL-dependent PtdIns(4,5)P2 homeostasis and cytoki-

nesis. Depletion of dRab35 reduced endosomal targeting of

dOCRL, in agreement with previous work (Figure S6A) [51].

Next, we could show that dRab35 depletion resulted in very

similar phenotypes to those seen upon depletion of dIPIP or

dOCRL. The Rab35-depleted cells displayed increased multinu-

cleation, which has been reported previously [52], and which

could be rescued by dRab35 re-expression (Figure S6B),

accumulation of PtdIns(4,5)P2-containing vacuoles (Figure S6C)

that also contained actin, Rho1 and dMoesin (Figures S6A,

S6B, and S6D), and cortical membrane blebbing (Figure S6E).

Co-depletion of dRab35 and dIPIP gave a similar degree of

membrane blebbing to that seen with dIPIP alone (Figure S6F),

and the degree of multinucleation was the same as that

seen with depletion of either protein alone (Figures S6G, 1A,

and S6B). Hence, both membrane recruitment, mediated

by dRab35, and scaffolding to SH3PX1, mediated by dIPIP,

are required for dOCRL function in PtdIns(4,5)P2 homeostasis,

and normal cell division.

DISCUSSION

Here, we identify a role for IPIP27 in PtdIns(4,5)P2 homeostasis

that is conserved from flies to man. IPIP27 functions as a scaf-

folding protein to link OCRL to BAR domain proteins, which is

crucial for maintaining cellular PtdIns(4,5)P2 homeostasis, and

in turn is important for cortical actin stability in cytokinesis. In

Drosophila, the relevant IPIP27 partner is SH3PX1, whereas in

human cells it is pacsin 2. Both proteins are present in endocytic

intermediates [50, 53, 54], as are IPIP27 and OCRL [24, 29,

34, 54], consistent with an interaction between these proteins

on endocytic structures, and a role in promoting the OCRL-

dependent removal of PtdIns(4,5)P2 from newly forming endo-

cytic vesicles [28, 29, 51]. Failure to remove PtdIns(4,5)P2 at

this stage would result in its accumulation on endosomal com-

partments, as is observed upon dIPIP or dOCRL depletion. The

same phenotype is also seen upon depletion of dRab35, which

is required for OCRL recruitment to endocytic vesicles [51].

Hence, it is both membrane recruitment of OCRL, mediated by

Rab35, and its further engagement with actin-associated BAR

domain proteins, mediated by IPIP27, likely in regions of high

membrane curvature, that is necessary for efficient PtdIns(4,5)

P2 hydrolysis and the cellular homeostasis of this lipid.

Plasma membrane blebbing, as we observe in IPIP27-

depleted cells, is reminiscent of the phenotypes seen upon

depletion of actin nucleators [55] or actin-membrane linker pro-

teins [13, 56, 57], consistent with the view that it is an actin

phenotype [42]. Although blebbing is evident in both

Drosophila and human cells, cytokinesis failure is only seen

in Drosophila cells. However, both phenotypes can be rescued

by correcting PtdIns(4,5)P2 homeostasis or actin stability,

strongly suggesting a common underlying mechanism. We

attribute the phenotypic differences between species to a

lack of functional redundancy in Drosophila compared to hu-

mans. Drosophila has single orthologs of IPIP27 and OCRL,

whereas humans have two paralogs of each (IPIP27A and

IPIP27B, and OCRL and INPP5B), and humans express a

larger number of inositol 5-phosphatases compared to

Drosophila, including others within the endocytic pathway

[47], which offers additional scope for functional redundancy

or compensation in this species.

Our results strongly support the view that IPIP27 is acting indi-

rectly during cytokinesis through the control of PtdIns(4,5)P2

homeostasis on endocytic membranes. However, it remains

possible that it may also have a more direct role, possibly in

the later stages of this process. In mammalian cells, Rab35

can promote OCRL1 recruitment to the midbody region during

late cytokinesis for actin clearance and abscission [14]. It is

therefore possible that IPIP27 may engage with OCRL, and

possibly with BAR domain proteins, to promote OCRL activity

Figure 5. Cortical Instability and Cytokinesis Failure upon dIPIP or IPIP27A Depletion Is Due to Dysregulated PtdIns(4,5)P2 Homeostasis

(A) Top: live stills of S2 cells stably expressing GFP-Tubby depleted of dIPIP or dOCRL and treated with 50 mM inactive analog (o-3M3FBS) or PLC activator

(m-3M3FBS). Bottom: quantification of PtdIns(4,5)P2-rich vacuoles. Bars represent the mean of 3 experiments with 250–400 cells analyzed per condition per

experiment. **p < 0.001, ***p < 0.0001, Student’s t test.

(B) S2 cells depleted of dIPIP or dOCRL and treated with 50 mM of inactive analog or PLC activator, followed by staining with anti-Rho1 (green), phalloidin-TRITC

(red), and Hoechst 33342 (blue). Scale bar, 5 mm.

(C) Quantitation of multinucleation in S2 cells depleted of dIPIP and treatedwith 50 mM inactive analog or PLC activator. Bars represent themean of 3 experiments

with 350–500 cells analyzed per condition per experiment. ***p < 0.0001, **p < 0.001, *p < 0.05, Student’s t test.

(D) Live time-lapse stills of control or dIPIP-depleted S2 cells stably expressing GFP-Utrophin treated with inactive analog or PLC activator. Arrowheads indicate

plasma membrane blebs during cytokinesis.

(E) Quantification of cell division phenotypes, showing the mean of 3 experiments with 50 cells analyzed per condition per experiment. Error bars indicate SEM.

***p < 0.0001, **p < 0.001, chi-square analysis.

(F) Live time-lapse stills of control or IPIP27A-depleted HeLa cells following treatment with 50 mM inactive analog or PLC activator.

(G) Quantification of phenotypes, showing the mean of 3 experiments with 150–200 cells analyzed per condition per experiment. Error bars indicate SEM.

***p < 0.0001, chi-square analysis.

See also Figure S3.
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S2 cells. ***p < 0.0001, **p < 0.001, Student’s t test.

(B) Western blot showing dIPIP depletion and expression of Myc-tagged rescue constructs.

(C and D) Quantification of multinucleation upon expression of Myc-tagged clathrin binding-deficient mutant (CBmut, 293LIQL296 > AAAA) dIPIP (C) or human

IPIP27A (D) in dIPIP-depleted S2 cells. ***p < 0.0001.

(E) Quantitation of multinucleation upon expression of Myc-tagged dIPIP PxxPmutant in dIPIP-depleted S2 cells. ***p < 0.0001. In (A), and (C)–(E), bars represent
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See also Figure S4.
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at this stage. Because IPIP27 functions in the endocytic

pathway, another possibility is that it participates in trafficking

into the cleavage furrow or intercellular bridge, which is required

for delivery of certain factors involved in cytokinesis to these re-

gions [58]. However, the cytokinetic proteins we see accumulate

on internal membranes are not typical endocytic cargoes, and

the profound blebbing we see is not typically observed upon

perturbation of endocytic traffic in cytokinesis [58]. Hence, our

results are more consistent with an indirect involvement, with

IPIP27 scaffolding function being critical for PtdIns(4,5)P2 ho-

meostasis on endomembranes, which in turn is required for

cortical membrane stability during cytokinesis.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-dIPIP Laboratory of Sean Sweeney/This paper N/A

Rabbit polyclonal anti-dOCRL Laboratory of S�ebastien Carr�eno N/A

Rabbit polyclonal anti-dMoesin [59] N/A

Rabbit polyclonal anti-SH3PX1 [50] RRID:AB_2567978

Rabbit polyclonal anti-Rab5 Abcam Cat# ab13253; RRID:AB_299796

Rabbit polyclonal anti-Rab11 [60] RRID:AB_2569806

Rabbit polyclonal anti-syndapin [61] RRID:AB_2569796

Sheep polyclonal anti-IPIP27A [35] N/A

Sheep polyclonal anti-IPIP27B [35] N/A

Sheep polyclonal anti-OCRL1 [22] N/A

Sheep polyclonal anti-pacsin2 [35] N/A

Sheep polyclonal anti-myosin1E [35] N/A

Rabbit polyclonal anti-SNX9 Sigma-Aldrich Cat# HPA031410; RRID:AB_10603339

Rabbit polyclonal anti-GM130 [62] N/A

Mouse monoclonal anti-Rho1 (clone p1D9) DSHB Cat# p1D9; RRID:AB_528263

Mouse monoclonal anti-Rab7 DSHB Cat# Rab7; RRID:AB_2722471

Mouse monoclonal anti-Myc (clone 9B11) Cell Signaling Technology Cat# 2276; RRID:AB_331783

Mouse monoclonal anti-actin (clone C4) BD Biosciences Cat# 612656; RRID:AB_2289199

Mouse monoclonal anti-EEA1 (clone 14) BD Biosciences Cat# 610456; RRID:AB_397829

Mouse monoclonal anti-a-tubulin (clone DM1A) Sigma-Aldrich Cat# T9026; RRID:AB_477593

Mouse monoclonal anti-GAPDH (Clone G-9) Santa Cruz Biotechnology Cat# sc-365062; RRID:AB_10847862

Bacterial and Virus Strains

Escherichia coli BL21-codon plus RIPL cells Agilent technologies Cat#NC9122855

Chemicals, Peptides, and Recombinant Proteins

Alexa 488-conjugated phalloidin Thermo Fisher Scientific Cat# A12379; RRID:AB_2315147

Alexa 647-conjugated phalloidin Thermo Fisher Scientific Cat# A12381; RRID:AB_2315633

Rhodamine-conjugated phalloidin Thermo Fisher Scientific Cat# R415; RRID:AB_2572408

Phalloidin-TRITC Sigma-Aldrich Cat# P1951; RRID:AB_2315148

Goat anti-mouse IgG (H+L) Alexa 488 Thermo Fisher Scientific Cat# A-11001; RRID:AB_2534069

Goat anti-rabbit IgG (H+L) Alexa 488 Thermo Fisher Scientific Cat# A-11008; RRID:AB_143165

Goat anti-rabbit IgG (H+L) Alexa-647 Thermo Fisher Scientific Cat# A-21244; RRID:AB_2535812

Donkey anti-rabbit IgG ECL HRP GE Healthcare Cat# NA9340-1ml; RRID:AB_772191

Sheep anti-mouse IgG ECL HRP GE Healthcare Cat# NA931; RRID:AB_772210

Donkey anti-sheep IgG HRP Santa Cruz Biotechnology Cat# sc-2473; RRID:AB_641190

Vectashield antifade mounting medium with DAPI Vector Laboratories Cat#H-1200

Schneider’s Drosophila medium Thermo Fisher Scientific Cat# 21720024

Dulbecco’s modified Eagle’s medium Sigma-Aldrich Cat#D6429

Heat-inactivated fetal bovine serum Thermo Fisher Scientific Cat#16140071

Penicillin-Streptomycin Sigma-Aldrich Cat#P4333

L-glutamine Sigma-Aldrich Cat#G7513

FugeneHD transfection reagent Promega corporation Cat#E2311

INTERFERin Polyplus transfection Cat#409-10

Opti-MEM Thermo Fisher Scientific Cat#31985062

Latrunculin A Sigma-Aldrich Cat#428021
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Jasplakinolide Sigma-Aldrich Cat#J4580

Hygromycin B Thermo Fisher Scientific Cat#10687010

m-3M3FBS Tocris Bioscience Cat#1941

o-3M3FBS Tocris Bioscience Cat#1942

Pierce ECL Western Blotting Substrate Thermo Fisher Scientific Cat#34577

Critical Commercial Assays

pENTR/D-TOPO Cloning Kit Thermo Fisher Scientific Cat#K240020

T7 RiboMAX Express Large Scale RNA

Production System

Promega corporation Cat#P1320

Gateway LR clonase enzyme mix Thermo Fisher Scientific Cat#11791019

Experimental Models: Cell Lines

Schneider’s S2 cells Laboratory of S�ebastien Carr�eno N/A

HeLa cell line ATCC Cat# CRM-CCL-2; RRID:CVCL_0030

S2 expressing GFP-Utrophin-CH/

GFP-Tubby and mCherry-tubulin

[31] N/A

S2 expressing anilllin-mCherry

and GFP-Spaghetti-squash

Laboratory of Gilles Hickson N/A

HeLa expressing Lifeact-GFP This paper N/A

Oligonucleotides

siRNA targeting sequence: IPIP27A_siRNA1:

GGUGACAGACUCAGCCCAA

Dharmacon Cat#J-015976-12-0005

siRNA targeting sequence: IPIP27A_siRNA2:

AGGGCGAUCUGUGGCCUGAAA

QIAGEN Cat#Hs_FAM109A_2

SMARTpool of 4 siRNAs targeting IPIP27B:

GGAGCUUGGACACGGGAUU,

CUGGCUGGGCUCCGGUAAA,

GGGAAUGUCACCCGAGACU,

UGGCCGAAGAUGCUGGUUU

Dharmacon Cat#L-024579-01-0005

SMARTpool of 4 siRNAs targeting CD2AP:

GAAUUGUUGUGCAUUGUAG,

AACUAAAGCUAGAUUCUGA,

GUAAGGACCUCCAAAGAAA,

UGACAUAGCUUCCUCAGAA

Dharmacon Cat#L-012799-00-0005

siRNA targeting sequence: OCRL1_siRNA1:

GAACGAAGGUACCGGAAAG

Dharmacon Cat#J-010026-07-0005

siRNA targeting sequence: OCRL1_siRNA2:

CGAAGAAGACUAAGGCUUU

Dharmacon Cat# J-010026-08-0005

siRNA targeting sequence: pacsin2_siRNA1:

CCCUUAAUGUCCCGAGCAA

Dharmacon Cat#J-019666-19-0005

siRNA targeting sequence: pacsin2_siRNA2:

CCUCACUGAUGAACGAUGA

Dharmacon Cat#J-019666-20-0005

siRNA targeting sequence: INPP5B:

GGACAAGGCUCAUAUUUUA

Dharmacon Cat#J-021811-09-0005

siRNA targeting sequence: myosin1E:

GUUCAAGGGUGUAAAGCGA

Dharmacon Cat#J-019919-10-0005

siRNA targeting sequence: SNX9:

UAAGCACUUUGACUGGUUAUU

Dharmacon Cat#J-017335-05-0005

Recombinant DNA

cDNA clone SD10969 (CG12393-dIPIP) Drosophila Genomics Resource Center DGRC:4231 Flybase Id: FBcl0275167

http://flybase.net/reports/

FBcl0167040.html

cDNA clone LD21953 (CG9575- Rab35) Laboratory of Vincent Archambault DGRC:7308 Flybase Id: FBcl0167040

pAc5.1/V5-His A Thermo Fisher Scientific Cat t#V411020

(Continued on next page)

Current Biology 29, 1–15.e1–e7, March 4, 2019 e2

Please cite this article in press as: Carim et al., IPIP27 Coordinates PtdIns(4,5)P2 Homeostasis for Successful Cytokinesis, Current Biology (2019),

https://doi.org/10.1016/j.cub.2019.01.043



CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin

Lowe (martin.lowe@manchester.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Drosophila Schneider 2 (S2) cells (derived from a primary culture of late-stage 20-24 hour old Drosophila melanogaster embryos)

were cultured at 27�C in Schneider’s Drosophila medium (Life Technologies) supplemented with 10% (v/v) heat-inactivated FBS

(Thermo Fisher Scientific), 50000 units of Penicillin and 50 mg/ml Streptomycin (Sigma). S2 cells stably expressing mCherry-tubulin

with either GFP-Tubby or GFP-Utrophin-CH [31] anillin-mCherry with Spaghetti-squash-GFP or anillin-GFP only were cultured at

27�C in medium containing 0.3 mg/ml Hygromycin-B (EMD Millipore). Expression of anillin-mCherry with Spaghetti-squash-GFP

or anillin-GFP, all under control of themetallothionein promoter, was inducedwith 0.5mMof copper sulfate 24 hours prior to imaging.

HeLa cells (derived from cervical cancer cells taken from a human female suffering from cervical cancer) were cultured in DMEM

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Thermo Fisher Scientific) and 1 mM L-glutamine at 37�C and in

5% CO2. Cultured HeLa cells were routinely tested for mycoplasma contamination by DNA staining with Hoechst 33342 and by

PCR (EZ PCR Mycoplasma test kit, Geneflow).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pAc5.1/mRuby Laboratory of Richard Baines N/A

pAc5.1-dIPIP-mRuby This paper N/A

pAc5.1-Myc-dIPIP This paper N/A

pAc5.1-Myc-dIPIP F267A This paper N/A

pAc5.1-Myc-dIPIP 156RR157 > AA This paper N/A

pAc5.1-Myc-dIPIP 293LIQL296 > AAAA This paper N/A

pAc5.1-Myc-IPIP27A This paper N/A

GST-dIPIP This paper N/A

pAC5.1-GFP-dOCRL [31] N/A

pAC5.1-GFP-dOCRL G365E [31] N/A

RFP-SH3PX1 Laboratory of Graydon Gonsalvez [50]; N/A

pMT-Ch-W Drosophila gateway vector collection N/A

pMT-mCherry-dRab35 This paper N/A

pEGFP-C1 Lifeact-EGFP Laboratory of George Banting RRID:Addgene_58470

Software and Algorithms

Image Lab Software Bio-Rad http://www.bio-rad.com/en-ca/sku/

1709690-image-lab-software?ID=1709690

RRID: SCR_014210

FIJI (ImageJ version 2.0.0-rc-24/1.49 m) NIH http://fiji.sc RRID:SCR_002285

Volocity version 6.3 Perkin Elmer http://www.perkinelmer.com/

pages/020/cellularimaging/products/

volocity.xhtml

RRID:SCR_002668

GraphPad Prism 7 GraphPad http://www.graphpad.com/ RRID:SCR_002798

MetaMorph Microscopy Automation and

Image Analysis Software

Molecular devices http://www.moleculardevices.

com/Products/Software/Meta-Imaging-Series/

MetaMorph.html

RRID:SCR_002368

NIS-Elements Nikon Instruments https://www.nikoninstruments.

com/Products/Software

RRID:SCR_014329

Huygens Software Scientific Volume imaging https://svi.nl/

HuygensSoftware

RRID:SCR_014237

Adobe photoshop CS6 Adobe https://www.adobe.com/products/

photoshop.html

RRID:SCR_014199

Adobe illustrator CS6 Adobe http://www.adobe.com/products/

illustrator.html

RRID:SCR_010279
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METHOD DETAILS

Molecular Biology

The CG12393 cDNA sequence encoding dIPIP (DGRC clone SD10969) was amplified by PCR to include an N-terminal Myc tag and

subcloned into the pAc5.1-V5-His vector (Invitrogen). dIPIP C-terminally tagged with mRuby was generated by cloning dIPIP cDNA

into amodified pAc5.1-V5-His A vector (obtained fromRichard Baines’ lab,Manchester). dIPIP cDNAwas cloned into the pGEX-6P-1

vector to generate a GST fusion. Human Myc- tagged IPIP27A cDNA was cloned into the pAc5.1-V5-His vector. GFP- and mCh-

dRab35 constructs were generated by PCR amplification of the ORF from cDNA (DGRC Clone LD21953, Vincent Archambault’s

lab, Montreal), followed by cloning into pENTR-D-TOPO (Invitrogen) followed by recombination using LR Clonase into the pMT-

ChW destination vector (DrosophilaGateway Vector Collection; T. Murphy, Carnegie Institution for Science, Washington, DC). Muta-

genesis was performed using the Quikchange site-directed mutagenesis method (Agilent technologies). All constructs were verified

by DNA sequencing (GATC Biotech).

DNA transfections

Transient and stable DNA transfections were performedwith FugeneHD (Promega Corporation) according tomanufacturer’s instruc-

tions using a 3:1 FugeneHD to DNA ratio. Transient transfections in S2 cells (seeded at a density of 3.0x105 cells/250 ml onto sterile

12 mm glass coverslips and incubated overnight at 27�C) were performed with FugeneHD. 0.4 mg or 1.0 mg of DNA was transfected

for rescue experiments and localization experiments respectively and cells were incubated for 48 hours at 27�C prior to fixation and

analysis. For inducible transiently expressed constructs, induction with 0.5 mM Copper Sulfate was performed 10 hours after trans-

fection. A stable HeLa cell line constitutively expressing Lifeact-GFP was generated by transfecting 3.0x106 cells with 12 mg of the

pEGFP-C1 LifeAct-EGFP plasmid (George Banting, University of Bristol, UK). Resistant cells were selected in 1 mg/ml G418 for

48 hours after transfection, and high-expressing cells were sorted by FACS (FACSAria Fusion, BD).

RNA interference

RNA interferencewas performed in S2 cells using double stranded RNAs (dsRNA). Between 200-600 bpDNA template was amplified

from cDNA or genomic DNA (in the case of UTR regions) by PCR using gene-specific primers that included the T7 promoter

sequence, and subsequently used for in vitro transcription to generate dsRNA (T7 RiboMAX Express, Promega Corporation). dIPIP

RNAi_2 (targeting the 30UTR) was used for all depletion-rescue experiments. dIPIP RNAi_1 was generated using primer sequences;

50-TAATACGACTCACTATAGGGAGGTCAACAAGGCCTTCCA-30 and 50-TAATACGACTCACTATAGGGACGTCTCCATGCTGTCT

TGG-30, dIPIP RNAi_2 was generated using primer pair 50- TAATACGACTCACTATAGGGATTCCGCACCCAGCAATCGATAACC-30

and 50-TAATACGACTCACTATAGGGGGCTGCACTGTCTCGGGCTGC-30. dOCRL_RNAi_1 was generated using primer pair: 50- TAA

TACGACTCACTATAGGGAGAAAGGACATTGTCAAGGAGCGC-30 and 50-TAATACGACTCACTATAGGGAGAATCGCGTAGATATCC

GGCGGC-30 and dOCRL_RNAi_2 was generated using primer sequences: 50- TAATACGACTCACTATAGGGGATTGCCAATAATTG

TCATCGC-30 and 50- TAATACGACTCACTATAGGGGATTCTGAG TACTGATAGGG-30. dsRNAs against SH3PX1 and dRab35 were

generated using primer pairs; 50- TTAATACGACTCACTATAGGGAGAGGCCATCTCGCCGCCGG-30 and 50- TTAATACGACTCACT

ATAGGGAGACTGACGGCTGGCCTCCT-30 [63] and 50- TAATACGACTCACTATAGGGATGAAATATTTTCGGCACCAAATCGCC

GTC-30 and 50-TAATACGACTCACTATAGGGAGCTGCTGTTGCTGATGTTTTTGTTGCTGT-30 respectively. For fixed sample imaging

of depleted cells, 1.2x105 S2 cells were cultured on glass coverslips in 50% (v/v) of serum free medium and treated with the relevant

dsRNA for 6 days. dsRNA (1.5 mg/well or 3.5 mg/well of a 96- or 24-well plate respectively) was added directly to the cells in fresh

serum-free medium on day 0 and day 3. 50% (v/v) of complete medium was added to the cells after 20 minutes of incubation

with dsRNA in serum-free medium. For live-cell time lapse imaging, 1.2x105 S2 cells were treated with dsRNA for 6 days and trans-

ferred into a 4 or 8-well chamber slide (Ibidi) an hour prior to imaging. RNA interference in HeLa cells was performed using Interferin

(Polyplus Transfection) and suitable siRNA oligos according to manufacturer’s instructions. pGL2 Firefly Luciferase (CGUACGCG

GAAUACUUCGA) (Eurogentec) was used as a negative control. IPIP27A was targeted with 15 nM of an oligo derived from a Dhar-

macon SMARTpool (GE Healthcare Dharmacon) (referred to as siRNA_1), or 12 nM of the Hs_FAM109A_2 oligo from the Flexitube

Genesolution package (QIAGEN) (referred to as siRNA_2). OCRL1, INPP5B, pacsin 2 and myosin1E, were also targeted with single

oligos derived from a Dharmacon SMARTpool while IPIP27B and CD2AP were targeted with complete Dharmacon SMARTpools. All

siRNA target sequences are listed in the Key Resources Table. HeLa cells were plated in 35mmdishes at a density of 3.5x104 cells/ml

24 h prior to siRNA transfection, and RNA interference was carried out for a further 72 h.

Drug treatments

For drug treatments, S2 cells were depleted of the protein of interest for 6 days and transferred at a density of 1.0x106 cells/ml onto

4-well chamber slides followed by treatment with the relevant drug. HeLa cells were depleted of the protein of interest for 48 hours

and then split at a density of 2.4x104 cells/ml and incubated overnight before drug treatments. Latrunculin A (LatA), Jasplakinolide

(JAS) (Sigma-Aldrich), a PLC agonist (m-3M3FBS) and a PLC analog (o-3M3FBS) (Tocris Bioscience) were diluted in complete growth

medium and added to cells for 2 hours prior to the start of live imaging and cells were imaged in the presence of the drugs throughout

the duration of the time-lapse. An equal volume of the respective drug solvent (DMSO for LatA and JAS) or Ethanol (PLC agonist and

PLC analog) was added alongside to cells of each condition as a control. When PLC agonist and PLC analog were used in rescue
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experiments in S2 cells, the drugs were added at a final concentration of 50 mM straight to cells 4 days after protein depletion and

incubated for a further 2 days. The cells were split and placed in fresh media prior to the start of imaging.

Immunofluorescence microscopy

S2 cells were grown on 12mm coverslips and fixed in 4% paraformaldehyde for 20 minutes at room temperature. Cells were washed

in TBS (20mMTris HCl pH 7.6, 150mMNaCl) and blocked for 30minutes in blocking buffer (5%normal goat serum in TBS containing

0.1% Triton X-100 (TBST) for 1 hour at room temperature. Incubation with primary antibodies was performed for 2 h at room tem-

perature (for SH3PX1) or overnight at 4�C (for all remaining antibodies) in TBST. Following incubation with Alexa Fluor-conjugated

secondary antibodies (Thermo Fisher Scientific) for 2 hours at room temperature, coverslips were mounted in Vectashield mounting

medium with DAPI (Vector Laboratories) and visualized on a DeltaVision fluorescence microscope (Applied Precision) using a 60x/

1.42 Plan Apo oil objective. Images were collected with a Z optical spacing of 0.2 mm using a CoolSNAP HQ (Photometrics) camera

withMetaMorph software (Molecular Devices). Predictive deconvolution was then carried out on raw images using Huygens software

(Scientific Volume Imaging). Quantification of multi-nucleation was carried out in FIJI (National Institutes of Health). All images were

adjusted for contrast using Adobe Photoshop CS6 and figures were assembled using Adobe illustrator CS6.

Live cell imaging

S2 cells were depleted of the protein of interest for 6 days then split into a 4 or 8-well chamber slide (Ibidi) an hour prior to imaging.

Cells were maintained at 25�C in an environmentally controlled chamber and imaged over 10-16 h. Brightfield and fluorescence im-

ages were acquired using a CoolSNAP HQ2 (Photometrics) camera on a Nikon Ti-E inverted microscope using a 60x/1.4 Plan Apo oil

objective equipped with a Perfect Focus System (PFS) and driven by NIS Elements software (Nikon Instruments Inc.). Time-lapse

imaging of S2 cells expressing MRLC-GFP and anillin-mCherry cells was performed using a DeltaVision microscope (Applied

Precision) equipped with a CoolSnap HQ2 camera (Photometrics) and with a 60x/1.42 planApo objective with a Z optical spacing

of 2 mm. Deconvolution was carried out using the softWoRx software (Applied Precision). Time-lapse imaging of S2 cells expressing

GFP-Tubby was performed using a spinning-disc confocal system (Ultra-VIEW Vox; PerkinElmer) using a scanning unit (CSU-X1;

Yokogawa Corporation of America) and a CCD camera (ORCA-R2; Hamamatsu Photonics) fitted to an inverted microscope

(DMI6000 B; Leica) equipped with a motorized piezoelectric stage (Applied Scientific Instrumentation). Image acquisition was per-

formed using Volocity version 6.3 (PerkinElmer) using Plan Apochromat 63x oil immersion objectives, NA 1.4, with a Z optical spacing

of 0.5 mm and with camera binning set to 2x2. Montages of time-lapse videos were generated in FIJI (National Institutes of Health).

HeLa cells were depleted of the protein of interest for 2 days after which they were split into fresh medium at a density of 2.5x104

cells/ml in a 6- or 12-well plastic culture dish (Corning Inc.) and subjected to time-lapse live imaging 3 days after protein knock

down. Cells were maintained at 37�C and 5% CO2 in an environmental control chamber (Solent Scientific). Phase contrast or fluo-

rescence images were acquired every 5-6 minutes over 16-18 h using constant exposure parameters, on an AS MDW live cell im-

aging system (LeicaMicrosystems,Wetzlar Germany) using a 20x/ 1.30 Plan Apo glycerine objective. Themicroscope was equipped

with an automated stage (PZ-2000; Applied Biosystems) and point visiting was used to allow multiple positions to be imaged within

the same time course. The images were collected using a CoolSNAP HQ camera (Photometrics) and Imaging software Image Pro 6.3

(Micromanager Media Cybernetics Ltd).

Antibody generation and affinity purification

Polyclonal antibodies to dIPIP were generated in rabbits using GST-tagged full-length dIPIP as immunogen, and antibodies were

affinity purified against this protein. A polyclonal antibody to dOCRL was raised against the amino terminus of dOCRL (amino acids

1-183) and generated in rabbits.

Recombinant protein expression

Recombinant GST-tagged proteins were expressed and purified from BL21 Escherichia coli cells. Cells were grown in LBmedium at

37�C to an optical density of 0.6 at A600 and recombinant protein expression induced by addition of 0.1 mM isopropyl b-D-1-thio-

galactopyranoside (IPTG) and further incubation at 18�C overnight. Cells were resuspended in lysis buffer (20 mM HEPES pH 7.4,

0.2 M NaCl,1 mM EDTA, 5 mM MgCl2, 0.1% Triton X-100, 1 mg/ml lysozyme, 10 mg/ml DNase) containing and protease inhibitors

(Cocktail inhibitor set III, Calbiochem) and lysed by a freeze-thaw cycle, consisting of snap freezing in liquid nitrogen followed by

incubation at 37�C for 10 min. Bacterial lysates were cleared by centrifugation at 13 000 rpm for 20 min at 4�C and applied to gluta-

thione-Sepharose beads (GE Healthcare) for 3 h at 4�C with rotation. Following washing with column buffer (20 mM HEPES pH 7.4,

0.2 M NaCl, 1 mM DTT), GST-tagged proteins were eluted by addition of column buffer containing 50 mM glutathione and desalted

on PD-10 columns (GE Healthcare). Following addition of 10% (v/v) glycerol, proteins were snap frozen in liquid nitrogen and stored

at �80�C.

Cell extract preparation

S2 cells (growing in 6-well dishes) were harvested by centrifugation after 6 days protein knock down and the cells were washed twice

in ice cold PBS prior to lysis in 100 ml/dish HMNT (20 mM HEPES pH 7.4, 5 mMMgCl2, 0.1 M NaCl, 0.5% Triton X-100 plus Protease

Inhibitor Cocktail III (Sigma-Aldrich)) by incubation on ice for 30 min with vortexing every 5 min. Extracts were clarified by centrifu-

gation at 13K rpm for 15 min at 4�C in amicrofuge. Extracts were prepared fromHeLa cells (growing in 3.5 cm dishes) by washing the
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cells twice in cold PBS for 5min and extraction in 150 ml/dish of HMNT for 15min on ice with shaking. Extracts were clarified by centri-

fugation at 13K rpm for 15 min at 4�C in a microfuge.

Protein binding experiments

S2 cell extract (500 ml/pull down at 2.5 mg/ml) was cleared by ultra-centrifugation at 55,000 rpm for 20 min at 4�C and incubated with

glutathione-Sepharose beads containing GST-tagged bait protein (40 mg/pull down) for 4 h at 4�Cwith shaking. After binding, beads

were centrifuged at 4,500 rpm for 5 min at 4�C and the unbound fraction collected. Beads were washed 3 times with cold HMNT and

the bound fraction was eluted by incubating the beads in 2X SDS sample buffer at 95�C for 10 min.

Immunoblotting

Samples were subjected to SDS-PAGE, transferred to Amersham Protran nitrocellulose membrane using constant current (300 mA)

for 2.5 hours. Membranes were blocked in 5% milk in PBS containing 0.15% Tween-20 (PBST) for 45 min at room temperature and

incubated in blocking solution containing primary antibody overnight at 4�C. Membranes were washed in PBST and incubated with

the relevant HRP-coupled secondary antibody in blocking solution for 1 h at room temperature, followed by washing in PBST and

signal development with ECL SuperSignal West Pico chemiluminescence substrate (Thermo Fisher Scientific) and visualization on

a ChemiDoc MP imaging system (Bio-Rad, UK).

Experimental design

Sample size and replication

For quantification of multinucleation and cells harboring PtdIns(4,5)P2-rich vacuoles, at least 500 cells were quantified per condition

per experimental repeat. At least 3 independent biological replicates were carried out for each experiment and every condition was

set up in duplicate per experiment. For live cell imaging in S2 and HeLa cells at least 50 or 100 cells respectively, were quantified per

condition per experimental repeat. At least 3 experimental repeats were performed for every experiment. The number of cells

analyzed in each experiment is indicated in the respective figure legend.

Randomization

For quantification of multinucleation and cells harboring PtdIns(4,)P2-rich vacuoles, fields of view were selected randomly during

quantification while ensuring (i) non-overlapping fields of view and (ii) that cells in at least 5 fields of view spanning the entire coverslip

were quantified that is, 2 fields in the extreme top and bottom right of the coverslips, a field in the center of the coverslip and another

2 fields in the extreme top and bottom left of the coverslip. The order of visualization of these fields was random in each condition.

Inclusion and exclusion criteria of any data

In the case of rescue experiments, the coverslip was carefully scanned laterally starting from top left through to bottom right to visu-

alize all transfected cells. Only the transfected cells that displayed fluorescence intensity at least twice above background intensity in

the respective channel were included in the count. For live cell imaging data using HeLa cells, cell divisions were analyzed and scored

for phenotypes 3 days after RNAi knock down of the respective protein. Only cells that were in metaphase (as indicated by the cell’s

rounded shape) at the start of imaging were included in the count. For live imaging in S2 cells, all cell divisions were analyzed and

scored for phenotypes after 6 days of protein knock down. Only dividing cells that started off as mononucleated were included in

the count, and cells that were already binucleated and subsequently attempted to undergo a second round of division, were not

counted.

QUANTIFICATION AND STATISTICAL ANALYSIS

ImageJ was used to obtain fluorescence intensity values to determine the rescue ability of the various dIPIP and dOCRL constructs

and to calculate the ratio of Rho1 and dMoesin at the plasma membrane versus endomembranes. Multinucleated cells were as-

sessed by the presence of at least 2 nuclei in one cell, as labeled by Hoechst 33342 and the plasma membrane labeled with actin.

To measure the time for actin dissolution in the contractile ring, movies were analyzed using FIJI and kymographs were generated

from line scans drawn through the contractile ring and spanning the entire length of the dividing cell from one pole of a dividing

daughter cell to the opposite pole of the other daughter cell. The time for actin dissolution was then measured from fluorescent in-

tensity plots derived from the kymograph. The time point after which the fluorescence intensity values of three consecutive time

points approached basal interphase values, was taken as the time point for the completion of actin dissolution. Colocalization anal-

ysis was performed in Volocity version 6.3 (Perkin Elmer). The thresholdswere setmanually by drawing a region of interest outside the

cell that was analyzed.

All western blots were quantified using Image Lab software versions 5-6 (BioRad). All graphs were generated and statistical ana-

lyses conducted using GraphPad Prism 6-7 software (GraphPad Software). At least 3 independent replicates were carried out for

each experiment (unless otherwise indicated in the figure legend). Statistical details (test used, p values and significance level)

and the sample size (number of cells assessed per experimental repeat) of all experiments are indicated in the respective figure leg-

ends and significance is indicated using asterisks above bars in graphs displaying quantification in the figures. Gaussian distribution

of data was assessed using the D’Agostino-Pearson test. Means were compared using an unpaired Student’s t test to analyze data
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with a normal distribution. AChi-square test was conducted on categorical data (numbers of cells displaying the different phenotypes

in knock down versus control siRNA or after drug treatments). In these cases, raw data was used for statistical analysis while graphs

presented show percentages. Statistical differences in the time for actin dissolution between control and IPIP27A-depleted cells

were assessed using the non-parametric Mann-Whitney test. A one-sample t test was used to compare the mean ratio of fluores-

cence intensity of Rho1 and dMoesin on endomembranes versus the plasma membrane in dOCRL- or dIPIP-depleted cells with

the mean ratio in control cells. Statistical significance cut-offs were defined as: *p < 0.05, **p < 0.001, ***p < 0.0001.
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