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ABSTRACT  

 

Neutrophils are rapidly recruited to the mammalian skin in response to infection with the 

cutaneous Leishmania pathogen. The parasites use neutrophils to establish the disease, 

however, the signals driving early neutrophil recruitment are poorly known. Here, we identified 

the functional importance of TLR2 signaling in this process. Using bone-marrow chimeras and 

immunohistology we identified the TLR2-expressing cells involved in this early neutrophil 

recruitment to be of non-hematopoietic origin. Keratinocytes are damaged and briefly in contact 

with the parasites during infection. We show that TLR2 triggering by L. major is required for 

their secretion of neutrophil-attracting chemokines. Furthermore, TLR2 triggering by L. major 

phosphoglycans is critical for neutrophil recruitment impacting negatively on disease 

development, as shown by better control of lesion size and parasite load in Tlr2-/- compared to 

wild type infected mice. Conversely, restoring early neutrophil presence in Tlr2-/- mice through 

injection of wild type neutrophils or CXCL1 at the onset of infection resulted in delayed disease 

resolution comparable to that observed in wild type mice. Taken together, our data demonstrate 

a new role for TLR2-expressing non-hematopoietic skin cells in the recruitment of the first 

wave of neutrophils following L. major infection, a process delaying disease control.   
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INTRODUCTION  

The skin is one of the first barrier and line of defense against invading pathogens. Keratinocytes 

are a major constituent of the epidermis where they are a source of cytokines and growth factors 

(Pivarcsi et al., 2004). In response to pathogens, keratinocytes play multiple roles in the control 

of cutaneous diseases, secreting chemokines and cytokines that contribute to the shaping of the 

local microenvironment and the attraction of neutrophils to the site of infection.  

Leishmaniases are vector-borne diseases transmitted by sand flies that cause a spectrum of 

diseases manifesting as self-healing cutaneous lesions, mucocutaneous lesions or the more 

severe visceral form that is fatal if not treated. Following the bite of an infected sand fly, both 

the epidermis and the dermis where the parasite is deposited, are damaged. There is an 

increasing interest in better understanding the role of keratinocytes during the onset of an 

immune response following Leishmania infection (Descatoire et al., 2017, Ehrchen et al., 2010, 

Eidsmo et al., 2007, Gasim et al., 1998, Scorza et al., 2017b). Early neutrophil recruitment is 

rapidly observed following sand fly infection or needle inoculation of a high dose of L. major 

in mice. Neutrophils can either have a protective or a deleterious impact on disease evolution 

depending on the infecting Leishmania species (spp) and the host, reviewed in (Carlsen et al., 

2015, Hurrell et al., 2016).  

Healthy human skin keratinocytes express Toll-like receptors 2 (TLR2) (Kawai et al., 2002, 

Kollisch et al., 2005, Lebre et al., 2007, Li et al., 2009), a TLR that recognizes several pathogen-

associated molecular patterns including peptidoglycans (PGN) (Schwandner et al., 1999, 

Yoshimura et al., 1999), glycosylphosphatidylinositol anchors from protozoan parasites 

(Campos et al., 2001) and Leishmania lipophosphoglycan (LPG) (Spath et al., 2000).  Whether 

TLR2 signaling in skin cells contributes to early neutrophil recruitment at the onset of L. major 

infection and the type of cells involved are unknown. 
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Here, we demonstrate that within hours of infection, Leishmania surface glycoconjugates 

trigger TLR2 signaling in non-hematopoietic cells including keratinocytes, inducing their 

release of neutrophil chemoattractants. This mechanism contributes to delayed control of 

disease.  

 

RESULTS 

Leishmania major induces CXC chemokine expression in infected skin and primary 

keratinocytes  

KC (CXCL1), MIP-2 (CXCL2) and lipopolysaccharide-induced LIX (CXCL5) chemokines 

play a major role in neutrophil recruitment. To investigate their induction in the first hours of 

infection, L. major parasites were injected in the ear dermis (i.d.) of C57BL/6 mice and the 

kinetics of chemokine mRNA levels was analysed in infected skin during the first hours after 

infection. Infection increased the mRNA levels of all three chemokine transcripts but with 

distinct kinetics (Figure 1a). To assess the contribution of keratinocytes in chemokine 

secretion, primary keratinocytes were derived from the skin of C57BL/6 neonates and exposed 

to L. major. Significantly higher levels of KC, MIP-2 and LIX were released in response to L. 

major (Figure 1b). To investigate if chemokine secretion resulted from parasite internalization, 

mCherry-L. major parasites were generated. The frequency of infection was analysed by flow 

cytometry 16 hours after incubation with keratinocytes and compared to that observed 

following infection of macrophages and neutrophils. A clear mCherry+ population was detected 

among macrophages and neutrophils but only a low frequency of keratinocytes appeared 

infected (Figure 1c). To further analyze infection of keratinocytes, fluorescent parasites were 

incubated with primary keratinocytes and parasite presence determined by confocal microscopy 

16 hours later. No parasites could be detected within the cells but Leishmania interacted with 

keratinocytes through the flagellar tip, the flagellar base or with the posterior pole of the parasite 
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(Figure 1d). These results suggest that surface recognition of L. major by keratinocytes triggers 

the secretion of MIP-2, KC and LIX by keratinocytes. 

 

TLR2 expression is required to recruit neutrophils after L. major infection. 

TLRs are pathogen receptors at the surface of various body cells, including keratinocytes. 

Amongst all TLRs expressed, TLR2 showed the highest mRNA expression level in primary 

keratinocytes of naïve mice (Figure 2a). To assess the role of TLR2 and the downstream 

adapter protein myeloid differentiation factor-88 (MyD88) in L. major-induced rapid neutrophil 

recruitment in the skin, Tlr2-/- and MyD88-/- mice were infected i.d. with L. major and CXC 

chemokine levels assessed in the ear skin. Absence of TLR2 and MyD88 in infected ears 

resulted in a markedly reduced induction of KC, MIP-2 and LIX mRNA (Figure 2b). 

Neutrophil accumulation assessed in the infected ear by flow cytometry and histology peaked 

at 24 hours post-infection. A significantly reduced neutrophil number was observed in the ear 

skin of Tlr2-/-mice (Figure 2c-e), accounting for the majority of the decrease observed in 

absence of MyD88 (Figure 2c). These data suggest a predominant role for TLR2 signaling in 

neutrophil recruitment early after infection and a minor role for other TLRs in this process. 

 

L. major LPG triggers TLR2 signaling and neutrophil recruitment  

LPG is one of the most commonly expressed surface molecules on the infectious promastigote 

parasites that also express other phosphoglycan-containing molecules (PGs) (Sacks et al., 

2000). To check the importance of LPG on the TLR2-dependent induction of CXC chemokine 

secretion by keratinocytes, WT or Tlr2-/- primary keratinocytes were isolated and exposed to L. 

major or LPG.  Both induced KC and MIP-2 secretion in WT keratinocytes, a process markedly 

decreased in Tlr2-/- keratinocytes (Figure 3a-b). To demonstrate the role of LPG in TLR2-

induced early neutrophil recruitment in vivo, WT mice were infected with WT L. major, L. 
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major deficient for LPG alone (lpg1-/-) or with L. major deficient for LPG and all PGs (lpg2-/-). 

The complemented “add back” (AB) lpg1-/- or lpg2-/- parasites were used as controls. Injection 

of L. major deficient in lpg1-/- significantly reduced neutrophil recruitment, and adding back 

lpg1 (lpg1AB) restored the capacity to recruit neutrophils in these parasites (Figure 3c). 

Injection of lpg2-/- parasites resulted in even stronger inhibition of neutrophil recruitment to the 

site of infection, with levels that were comparable to those observed following injection of 

medium. Adding back lpg2 to the L. major mutant (lpg2AB) restored neutrophil recruitment 

upon infection. (Figure 3d).  Only a very low number of neutrophils were attracted following 

injection of WT, AB and lpg1-/- or lpg2-/- L. major parasites in Tlr2-/- mice (Figure 3e). These 

data show that LPG and other phosphoglycans present at the surface of L. major promastigotes 

trigger TLR2, resulting in local secretion of chemo-attractants that recruit most of the 

neutrophils observed at the site of infection during the first 24 hours post-infection.  

 

TLR2 triggering of non-hematopoietic skin cells induces early neutrophil recruitment 

To further investigate the source of TLR2-dependent neutrophil chemoattractants in the skin, 

we generated bone marrow (BM) chimeras as depicted in Figure 4a. Eight weeks later, the 

chimeras were infected with L. major. Twenty-four hours post-infection, the presence of 

CD11b+Ly6G+ neutrophils was analyzed by flow cytometry (Figure 4b). Neutrophil 

recruitment was similar in the ear of WT and irradiated WT mice that received Tlr2-/- or WT 

BM (Figure 4c). In contrast, irradiated Tlr2-/- mice that received WT BM showed markedly 

reduced neutrophil recruitment 24 hours after L. major infection (Figure 4d). These data 

demonstrate that TLR2 expression on non-hematopoietic or radio-resistant cells is required for 

neutrophil recruitment at the site of parasite inoculation. In addition, two weeks post-infection, 

decreased parasite burden was observed selectively in irradiated Tlr2-/- that received WT BM 
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(Figure 4 e-f), further showing a positive correlation between neutrophil number at the onset 

of infection and subsequent parasite burden.  

To visualize the cells producing early KC and MIP-2, WT mice were infected with L. major 

and 4 hours later, ear skin was isolated and subjected to immunofluorescence staining. High 

levels of KC staining were observed predominantly in the Epcam+ keratinocytes of infected 

WT and Tlr2-/- mice (Figure 5a and data not shown), but not when the primary antibody was 

omitted (Figure S1). Similar levels of KC protein were found in the epidermis of naive mice 

(Figure 5a) suggesting this chemokine is constitutively expressed and stored in keratinocytes.  

In contrast, most of the MIP-2 staining was observed in the dermis and not the epidermis. 

Similar to KC, MIP-2 protein was present in ear skin of both naïve and infected WT mice 

(Figure 5b) suggesting that this chemokine is also constitutively expressed and stored in dermal 

cells; no staining was observed in absence of the primary antibody (Figure S1). Upon L. major 

infection, dot-like MIP-2+ staining appeared in WT dermis, often in close proximity to cells 

harboring large quantities of intracellular MIP-2 (Figure 5b, c), suggesting that the dots 

represent chemokines released by the dermal MIP-2 source. Interestingly, these MIP-2 dots 

were only observed locally at the site of swelling and inflammation in WT dermis (Figure 5c), 

in close proximity to infiltrating myeloid cells. In Tlr2-/- mice, a similar number of MIP-2+ cells 

was present in naive and infected ear skins, however, the infection triggered less dot-like MIP-

2+ staining, suggesting less release from the major dermal MIP-2 source. This finding correlated 

with reduced attraction of myeloid cells, composed mainly of neutrophils (Figure 5d and 

Figure S1). Quantification of MIP-2+ cells and released dots indicated a significant increase in 

MIP-2+ released dots specifically in inflamed areas of L. major infected ears of WT but not in 

Tlr2-/- infected ears (Figure 5e). CD11b+, NIMP-R14+ cells and Ly6G+ neutrophils (Figure 5c-

d and S1) showed only little colocalization with cytoplasmic MIP-2 staining, suggesting that 

MIP-2 is not being expressed at high levels by monocytes and neutrophils. To further define 
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the MIP-2 expressing cell type and rule out the contribution of potentially radio-resistant 

macrophages in early neutrophil recruitment, the dermis was stained for mannose receptor 

(CD206) and F4/80, two additional dermal macrophage markers. No co-localization with MIP-

2 was observed ruling out dermal macrophages as major MIP-2 producing cells. Similarly, no 

co-localization was observed on CD207+ Langerhans cells (Figure 5f). Absence of detectable 

levels of CD45 expression on most MIP-2+ cells in the skin of naïve and infected mice 

confirmed their non-hematopoietic origin. MIP-2+ cells were negative for VE-cadherin staining 

and not associated with Collagen type IV+ basement membranes ruling out lymphatic or 

endothelial endothelium as well (Figure 5f). Collectively, these data indicate that in the first 

hours after infection, L. major triggering of TLR2 on non-hematopoietic skin cells, including 

mostly keratinocytes and dermal stromal cells, leads to KC and MIP-2 release and thereby 

neutrophil recruitment. 

 

Absence of TLR2 signaling reduces disease development following L. major infection 

To assess the global impact of TLR2 on the disease, Tlr2-/- mice were infected i.d. with L. major 

and lesion development measured. Tlr2-/- mice developed a significantly smaller lesion 

compared to WT mice as represented by lesion score. To bypass the TLR2 signaling required 

to attract neutrophil, 10 g of KC was injected i.d. in Tlr2-/- mice at the time of infection, a dose 

that recruited a similar number of neutrophils compared to that observed following L. major 

infection. Tlr2-/- mice injected with KC developed a lesion score similar to that observed in WT 

mice, while injection of KC in WT mice did not change lesion development (Figure 6a). Eighty 

days post-infection Tlr2-/- mice infected in the presence of exogenous KC had a parasite load 

significantly increased compared to that measured in the ear of similarly infected Tlr2-/- mice 

(Figure 6b). To further assess if this phenotype was linked to the restored recruitment of 

neutrophils, Tlr2-/- or WT mice were injected with 106 inflammatory WT or Tlr2-/- neutrophils 
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at the time of infection. Of note, the injected inflammatory WT and Tlr2-/- neutrophils did not 

differ functionally (Figure S2). Lesion development in Tlr2-/- mice that received WT or Tlr2-/- 

neutrophils was similar to that observed in L. major infected WT mice (Figure 6c, d), with a 

comparable parasite load observed 35 days post-infection that was significantly higher than that 

observed in Tlr2-/- ears (Figure 6e), confirming the absence of functional deficiency in Tlr2-/- 

neutrophils. Conversely, injection of WT or Tlr2-/- neutrophils in WT mice did not impact lesion 

size development (Figure 6c,d) and parasite load was similar in WT mice transferred with WT 

or Tlr2-/- neutrophils. Unlike Tlr2-/- mice, in addition to transferred neutrophils, L. major also 

massively recruit neutrophils in the infected skin of  WT mice, altogether providing a protecting 

parasite shelter resulting in a subsequent higher parasite load observed in transferred WT mice 

(Figure 6f).  Altogether these data demonstrate that L. major infection induces rapid TLR2 

signaling in skin non-hematopoietic cells, triggering chemokine-mediated neutrophil 

recruitment, a process favoring transient survival of parasites within neutrophils, delaying 

subsequent development of a protective response.  

 
 
DISCUSSION 
 

During the first day of infection, L. major is using newly recruited neutrophils as a transient 

shelter, resisting destruction by the otherwise efficient killing machinery of neutrophils (Regli 

et al., 2017). We show here that KC, MIP-2 and LIX, three major neutrophil-attracting 

chemokines are induced locally in the skin in the first hours of infection and we show that pre-

stored KC and MIP-2 are released within four hours of infection. Upregulation of KC mRNA 

and CXCL6 were previously shown to be associated with neutrophil recruitment following L. 

major infection (Muller et al., 2001, Uyttenhove et al., 2011). In addition to chemokines, other 

factors produced by the parasites (van Zandbergen et al., 2002) or contributed by the sand fly 

during natural infection such as egested bacteria, salivary gland products and a 
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proteophosphoglycan gel, are likely to also participate in neutrophil recruitment (de Moura et 

al., 2010, Dey et al., 2018, Giraud et al., 2018). Thus, multiple factors may contribute and 

synergize to promote neutrophil recruitment at the site of infection. We show here that during 

the first hours of infection, TLR2 signaling induced by parasite phosphoglycans (especially 

LPG) expressed at the surface of the parasite is playing a major role in rapid neutrophil 

migration to the site of parasite inoculation.  

Leishmania and their LPGs were reported to be recognized in vitro via TLR2 expressed on 

macrophages, neutrophils, natural killer cells or dendritic cells (Becker et al., 2003 , Charmoy 

et al., 2007, de Veer et al., 2003, Faria et al., 2014, Huang et al., 2015, Kavoosi et al., 2010, 

Tolouei et al., 2013). Prostaglandin E2 secretion by macrophages in response to L. donovani 

was also shown to be TLR2-dependent (Bhattacharjee et al., 2016). However, a role for TLR2 

signalling in non-hematopoietic cells had not been reported. Here, we show that in response to 

L. major, TLR2 is the most induced TLR expressed in keratinocytes and that secretion of 

neutrophil chemoattractants by keratinocytes is TLR2-dependent. Furthermore, recognition of 

purified L. major LPG induced the secretion of chemokines by primary keratinocytes in a 

TLR2-dependent manner. In vivo, recognition by TLR2 of L. major LPG and other PGs was 

shown to be crucial in the early recruitment of neutrophils following infection with L. major. 

In contrast to macrophages and neutrophils, L. major was not internalized by keratinocytes, in 

line with previous reports (Blank et al., 1993, Mbow et al., 2001, Scorza et al., 2017b). 

However, as shown by confocal microscopy, L. major interacted with keratinocytes at locations 

where LPG and proteoglycans are enriched (Sadlova et al., 2010). This resulted in the secretion 

of neutrophil attracting chemokines in a TLR2-dependent process. BM chimera and 

immunofluorescence microscopy revealed the predominant early role of two main L. major 

induced neutrophil attractants, KC and MIP-2 produced by keratinocytes and dermal stromal 

cells, respectively. KC and MIP-2 chemokines appeared pre-stored in non-hematopoietic cells 
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of naïve skin in line with former studies (Johansson et al., 2015, Oynebraten et al., 2004 ) 

suggesting that in response to TLR2 triggering rapid release of these pre-stored chemokines can 

occur, in addition to de novo synthesis. In the epidermis, keratinocytes are the main non-

hematopoietic cell type that can sense microbes. Within the dermis, various non-hematopoietic 

cells exist, including endothelial cells as well as fibroblasts and adipocytes (Lai and Gallo, 

2008). We showed that TLR2 induces KC release by keratinocytes. Currently, we cannot 

exclude that radio-resistant Langerhans cells also produce some KC. Very few keratinocytes, 

and no endothelial cells expressed MIP-2. The exact source of non-hematopoietic cells 

releasing MIP-2 remains to be determined. Despite the low or lack of chemokine co-localization 

with CD45+ hematopoietic cells, a few dermal macrophages showed co-staining with MIP-2. 

Collectively these data suggest that chemokine secretion by macrophages and Langerhans cells 

do not seem to be responsible for the majority of neutrophils recruited.  

Neutrophils play important roles not only in the cutaneous forms but also in the experimental 

visceral form of the disease (Dey et al., 2018, McFarlane et al., 2008, Sacramento et al., 2015, 

Smelt et al., 2000). Decreased neutrophil recruitment in the liver and spleen of L. infantum-

infected Tlr2-/- mice was recently described (Sacramento et al., 2017) further implying the 

importance of TLR2 signalling in the inflammatory response to infection with  Leishmania spp 

inducing visceral diseases. Leishmania exposure to human primary keratinocytes induced 

cytokine and chemokine production in vitro, however, L. infantum was a better inducer than L. 

major (Scorza et al., 2017a), suggesting that there may exist differences between the impact of 

distinct Leishmania spp on keratinocytes function, as previously observed for neutrophils 

(Hurrell et al., 2016).  

 

We show here that L. major-infected Tlr2-/- mice developed a significantly smaller lesion size 

and better controlled parasite load than WT mice. These data are in line with a deleterious role 
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for neutrophils early in infection. The presence of neutrophils in the skin during the first day of 

infection, through their release of cytokines and other granule factors (Tecchio et al., 2014), 

most likely contributes to shaping the microenvironment at the site of infection with a 

significant impact on subsequent lesion development, in line with previous reports (Hurrell et 

al., 2015, Peters et al., 2008). 

In contrast, Tlr2-/- mice infected subcutaneously in the footpad with L. major were reported to 

become transiently susceptible to infection (Halliday et al., 2016). The differences observed 

between the aforementioned and our study, may be explained by the distinct sites used to 

inoculate the parasites. During the first hours of infection, neutrophils are poorly recruited 

following subcutaneous (s.c.) infection while they are strongly recruited following dermal 

parasite inoculation (Ribeiro-Gomes et al., 2014), a site corresponding to parasite delivery by 

the sand fly. In line with our data, treatment of mice injected s.c in the footpad with TLR2 

agonists, increased neutrophil recruitment to the site of infection (Huang et al., 2015), and 

treatment with anti-TLR2 antibodies suppressed the anti-inflammatory response but not 

parasite load (Komai-Koma et al., 2014).  

Altogether, we demonstrate here a crucial role for TLR2 signalling in skin non-hematopoietic 

cells in the early recruitment of neutrophils. This impacts the evolution of cutaneous 

leishmaniasis, revealing a pathogenic role for early TLR2 signalling in the skin, opening 

avenues to modulate disease onset. 

 

 

 

 

MATERIALS AND METHODS  
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Mice 

C57BL/6 mice were from Harlan (Envigo, Huntington, United Kingdom). MyD88–/–, Tlr2-/-

mice backcrossed onto a C57BL/6 background (from Prof. S. Akira, University of Osaka, 

Japan) were bred and maintained under pathogen free conditions (UNIL, Epalinges, 

Switzerland). The maintenance and care of mice complied with and the studies were approved 

by the ethical guidelines of the state of Vaud Ethic Committees.  

Parasites 

L. major bearing homozygous deletions of LPG1 (lpg1-/-or lpg1-) or LPG2 (lpg2-/-or lpg2−) 

genes, and their respective complemented “add backs” (AB) were generated previously in the 

LV39 clone 5 background (Spath et al., 2000, Spath et al., 2003). These and L. major LV39 

(MRHO/SU/59/P) were maintained as previously described (Tacchini-Cottier et al., 2000).   

Keratinocytes culture and chemokine production 

Newborn mice primary keratinocytes were cultivated and grown as previously described 

(Missero et al., 1996). Confluent monolayer of keratinocytes were exposed to 106/ml parasites 

in LCM. Chemokines were measured by ELISAs (R&D, Minneapolis, MN). For 

immunofluorescence, L. major was labeled with CMFDA (Molecular Probes, Eugene, US) 

fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton and counter stained with 

rhodamin phallodin (Molecular Probes), mounted and analyzed with Axioplan2 fluorescent 

microscope (Zeiss, Jena, Germany). 

Two-step SYBR green RT-PCR 

 mRNA was purified (Qiagen, Hilden, Germany) and reverse transcribed using SuperScript II 

RT (Invitrogen Life Technologies, Carlsbad, CA). Quantitative PCR was performed using the 

primers listed in the Supplementary Methods.  
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L. major inoculation, ear explant and neutrophil recovery 

Mice were injected i.d. with 106 stationary phase, wild type or mutants L. major or 5x105 

metacyclic promastigotes in a volume of 10 µl of DMEM. At the end of the experiment, mice 

were sacrificed and ears prepared as previously described (Charmoy et al., 2010). Stained cells 

were analyzed in PBS 2% FCS using a FACSCan or FACS Calibur flow cytometer and 

analyzed with the FloJo software. 

Immunofluorescence and flow cytometry  

Ears were prepared for immuno-histology as previously described (Fasnacht et al., 2014). 

Details are provided in the Supplementary Methods. Antibodies against Ly6G, CD4, CD19 

(Biolegend) and against CD8, CD11b and CD45, AnnexinV from e-Bioscience, San Diego, CA 

were used for Flow cytometry. L. major infected keratinocytes were counterstained with 

rhodamine phalloidin (Molecular Probes, Eugene, OR) and analyzed with a fluorescent 

microscope Axioplan2 coupled with an ApoTome system (Zeiss, Jena, Germany). 

Immunohistology quantification of MIP-2+ cells and “dots” was performed using the ImageJ 

software (University of Wisconsin). The area of determined regions was calculated and the 

number of MIP-2 positive events/area counted and expressed as events/50.000 m2.  

Generation of mCherry-fluorescent parasites  

L. major LV39 mCherry parasites were generated by transfecting log-stage promastigotes with 

linearized mCherry expression plasmid using the AMAXA nucleofection system (Lonza, 

Basel, CH), and selecting clones with 50g/ml hygromycin B (Calbiochem Merck, Darmstadt, 

Germany) as detailed in the Supplementary Methods.  In selected experiments, L. major was 

labeled with 5M CMFDA according to the provider's protocol (Molecular Probes, Eugene, 

OR). ROS formation was measured with the dihydrodamine (DHR) 123 probe (Sigma) or 

luminol (Carbosynth) as described by the manufacters.  

Bone marrow chimera  
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Recipient mice were irradiated (900 rad) and reconstituted with 1 × 107 donor mouse BM cells. 

Six weeks later, mice were bled, and the presence of CD4+, CD8+, CD19+cells was determined 

by flow cytometry. Chimeric mice were inoculated with L.major in the ear and 24 hours post-

infection the recruitment of neutrophils were analysed by flow cytometry and two weeks post-

infection, parasite load determined by limiting dilution analysis (LDA), (Charmoy et al., 2010).  

Transfer of neutrophils 

Mice were injected i.p. with 5x107 L. major and neutrophils collected 4 hours later and purified 

using MACS-negative selection (Myltenyi Biotec, Gladbach, Gemany). Purity of neutrophils 

(>96%) was assessed by flow cytometry. 10 g of KC, a dose resulting in similar neutrophil 

number recruited in the infected ear 24 hours post-injection than that observed following 

infection with 106 L. major (60360 ± 4002 versus 65810 ± 8181 neutrophils/ear) was injected 

i.d +/- L. major. In other experiments, 5x105 C57BL/6 or Tlr2-/- neutrophils were co-injected in 

the ear dermis with 106 stationary phase L. major promastigotes. Development of ear lesion 

was measured and a score given (Schuster et al., 2014).  Parasite presence was quantified using 

qRT-PCR using Leishmania Kmp11gene-specific primers or limiting dilution analysis as 

previously described (Ives et al., 2011). 

Statistical analysis  

Results are expressed as the mean ± SD. Statistical differences between groups were analyzed 

using T test for unpaired data. A value of p < 0.05 was considered significant.  
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FIGURE LEGENDS 

 

Figure 1.  L. major parasites stimulate chemokine secretion by keratinocytes but do not 

infect them. 

(a) Chemokine mRNA levels in ears injected with L. major or PBS. Results are expressed as 

fold increase compared to expression detected in uninfected skin. The data are representative 

of two experiments. (b). Primary keratinocytes were co-cultured with L. major promastigotes 

at a MOI:10 during 24 hours. Chemokine levels were measured in supernatants by ELISA. *** 

p<0.001 between non-exposed and exposed to L. major (c) mCherry-expressing L. major were 

incubated with macrophages, neutrophils or primary keratinocytes. The frequency of infection 

was analyzed by flow cytometry. A representative plot is shown and the frequency given in the 

bar graph. (d) CMFDA-stained L. major parasites were incubated with macrophages or 

keratinocytes for 16 hours. L. major presence was analyzed by fluorescent microscopy . 

Representative pictures are shown.  

Figure 2.  Neutrophil attraction to L. major inoculation site is TLR-2 dependent.  

(a) Relative TLR mRNA expression was determined in naive primary keratinocytes. (b) mRNA 

levels of the indicated chemokines were assessed at the indicated time point post-infection in 

infected ears of WT, Myd88-/- and Tlr2-/- mice. Results are expressed as fold increase relative 

to expression in uninfected ears.  (c-d) WT, Tlr2-/- and MyD88-/- mice were infected i.d. with 

106 L. major promastigotes. (c) Flow cytometry gating strategy and (d) mean number ± SD of 

neutrophils recruited measured at the indicated time by flow cytometry ***: p<0.001 comparing 

L. major-infected WT to Tlr2-/- or MyD88-/- mice. n=4 mice/group . (e) Representative 

Haemotoxylin and Eosin staining of histological sections of ears from WT and Tlr2-/- mice, 0, 

4 and 24 hours post L. major infection. The data are representative of three independent 

experiments.  
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Figure 3. Triggering of TLR2 by L. major lipophosphoglycans induce neutrophil 

recruitment to the site of infection  

 (a-b) Primary WT and Tlr2-/- keratinocytes were exposed to L. major or L. major-purified LPG. 

24 hours later, cell-free supernatant was collected and tested for KC and MIP-2 content by 

ELISA. Representative mean values ± SEM of n≥3, from one of four experiments are shown. 

(c) Kinetics of neutrophils recruitment in the ears of C57BL/6 mice following injection of WT, 

lpg1-1- (lpg1 knockout) and lpg1 add-back (AB) L. major, and (d) lpg2-1- (lpg2 knockout) and 

lpg2 AB L. major. (e) Kinetics of neutrophil recruitment during the first day after infection in 

Tlr2-/- mice with the indicated L. major parasites. The data presented are representative of three 

independent experiments (n = 3 to 5 mice/group per time point) with similar results. * p < 0.05, 

**p<0.01  

 

Figure 4. TLR2 signaling in non-hematopoietic cells is involved in early neutrophil 

recruitment 

(a) WT and TLR2 recipient mice were irradiated and reconstituted with bone marrow (BM) 

from WT or Tlr2-/- donor mice as depicted. As a control WT BM was transferred into irradiated 

WT mice. 8 weeks later, BM reconstituted mice were inoculated i.d. in the ear with 106 L. major. 

(b) Representative gating strategy and (c-d) number of Ly6G+ neutrophils recruited to the site 

of injection 24 hours post-infection as quantified by flow cytometry analysis. The data are 

representative of two independent experiments. (e-f) Two weeks post-infection the parasite 

burden in the infected ears of the indicated chimeras was analyzed by limiting dilution analysis. 

The data are representative of two independent experiments including ≥ 3 mice/ group. * p < 

0.05 *** p<0.001 
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Figure 5. MIP-2 and KC producing skin cells in the first hours of L. major infection 

Staining for (a) KC and DAPI in naïve and L. major infected WT and Tlr2-/- mice 4 hours after 

infection. 'c': cartilage. (b) Staining for MIP-2 and DAPI in WT naïve and infected mice. 

Magnifications of the indicated area are shown below. The arrows points to MIP-2+ dots 

presumably showing released chemokine. (c) Noninflammed and inflammed areas of infected 

WT skins stained for MIP-2 and for NIMP-R14highCD11b+ neutrophils. Below is an 

enlargement of the defined areas. (d) Similar staining as in (c) performed for naïve and L. major 

infected Tlr2-/- mice. (e) Quantification of MIP-2+ cells (arrow head) and “dots” (small arrow). 

The number of MIP-2+ events/50’000m2 for WT and Tlr2-/- ears is shown. n=4 ears/group, 

representative of 2 independent experiments. (f) Co-localisation of MIP-2 was assessed for 

CD206+F4/80+ dermal macrophages, CD207/Langerin+ Langerhans cells,  CD45+ 

hematopoietic cells, VE-cadherin+ endothelium and collagen IV+ endothelium associated 

basement membranes. Representative images are shown. Size bar: 100 m. *** p<0.001, ns: 

not significant. 

 

Figure 6. TLR2-dependent neutrophil recruitment impacts lesion development and 

parasite control.  

(a) WT and Tlr2-/- mice were co-injected or not with KC at the time of L. major infection and 

lesion score development (± SEM) measured (n=5 mice/group). (b) The parasite load was 

determined by qRT-PCR  80 days post-infection.* p<0.05. The data are representative of two 

experiments. (c) WT or Tlr2-/- inflammatory neutrophils were injected in the ear dermis of WT 

or Tlr2-/- mice together with L. major. Lesion development was monitored using a caliper and 

compared to that of mice not co-injected with neutrophils. Score size ± SEM of lesions is 

shown. (n=5 mice per group)  (d) 35 days post-infection representative pictures of ear are shown 
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(e-f) and parasite load was evaluated by qRT-PCR. p<0.05, ** p<0.01, ns: not significant. 

Results are representative of two experiments.  

















Supplementary Materials and Methods 

 

Immunofluorescence and flow cytometry  
Ears were embedded and frozen in Tissue-Tek O.CT. (Sakura, Benigau, D). Sections 

of 8µm were prepared as previously described (Fasnacht et al., 2014). Primary 

antibodies: rabbit polyclonal anti-GRO/KC alpha (Abcam, Cambridge, UK) and anti-

MIP-2 (BioRad, Hercules, CA), biotinylated rat anti-CD206 (Biolegend, San Diego, 

CA), rat antibodies to CD326/EpCAM (G8.8), CD45 (M1/9.4), F4/80 (F4/80), CD11b 

(M1/70)(all grown in house), NIMP-R14 (Adipogen, Epalinges, CH), Ly6G, CD207 

(eBioscience, San Diego, CA) and goat antibodies to collagen IV (Southern Biotech) 

and VE-cadherin (R&D Systems, Wiesbaden, Germany). The following secondary 

reagents were used: donkey antibodies to rabbit IgG Cy3, to APC (Jackson 

ImmunoResearch, Rheinfelden, CH), rat IgG Alexa 488 or to goat IgG Alexa647 or 

streptavidin Alexa488 (Invitrogen). All slides were stained with DAPI (Sigma-

Aldrich, St Louis, MO) and mounted using DABCO solution. Images were acquired 

on a Zeiss Axiovision microscope with an AxioCam and processed using Adobe 

Photoshop. Some colors were switched in this process to improve the visualization of 

signals. For Flow cytometry, mAb against Ly6G, CD4, CD19 are from Biolegend and 

and mAbs against CD8, CD11b and CD45 and AnnexinV are from e-Bioscience. 

Keratinocytes infected with L. major were fixed with PBS/paraformaldehyde (4%), 

permeabilized by PBS/Triton (0.1%), counterstained with rhodamine phalloidin 

(Molecular Probes, Eugene, OR), mounted with Vectashield (Vector Laboratories, 

Burlingame,CA) and analyzed with a fluorescent microscope Axioplan2 imaging 

coupled with an ApoTome system (Zeiss, Jena, Germany). Immunohistology 

quantification of MIP-2+ cells and “dots” was performed using the ImageJ software 

(University of Wisconsin). Regions of interest were identified, area size calculated 

and the number of MIP-2 positive events/area counted and expressed as events/50.000 

µm2.  

 

Two-step SYBR green RT-PCR 
 mRNA was purified (Qiagen, Hilden, Germany) and reverse transcribed using 

SuperScript II RT (Invitrogen Life Technologies, Carlsbad, CA). Quantitative PCR 

was performed using the following primers listes in the supplementary Methods. KC 

FW: GCC TAT CGC CAATGAG and RV CTATACTTCGGTTTGGG ; MIP-2 FW 

ATCCAGAGCTTGAGTGTGACGC and RV AAGGCAAACTTTTTGACGCC ; 

LIX  FW CTA CGGTGGAGTCATAGC and RV CTTGCCGCTCTTCAGTAT. The 

primers used to amplify TLRs and HPRT were as described (Charmoy et al., 2007). 

 

Generation of mCherry-fluorescent parasites  
L. major LV39 mCherry parasites were generated by transfecting log-stage 

promastigotes with linearized mCherry expression plasmid using the 

AMAXA nucleofection system (Lonza, Basel, CH), and selecting clones with 

50µg/ml hygromycin B (Calbiochem Merck, Darmstadt, Germany). The plasmid 

(pGL1894) integrates into the ribosomal RNA locus (pSSU-int) (Misslitz et al., 2000) 

and contains the mCherry gene that is fused at the N-terminus to a mutant version 

of the first 18 amino acids of L. major hydrophilic acylated surface protein B 

(HASPB G/A) (Prickett et al., 2006) and an E-alpha peptide (Itano et al., 2003). The 

resulting fusion protein is expressed in the cytosol of Leishmania promastigotes and 

amastigotes (Millington et al., 2010). In selected experiments, L. major was labeled 

with 5µM CMFDA according to the provider's protocol (Molecular Probes, Eugene, 



OR). ROS formation was measured with the dihydrodamine (DHR) 123 probe 

(Sigma) or luminol (Carbosynth) as described by the manufacters.  
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