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Abstract

Summary: Tumour evolution results in progressive cancer phenotypes such as metastatic spread

and treatment resistance. To better treat cancers, we must characterize tumour evolution and the

genetic events that confer progressive phenotypes. This is facilitated by high coverage genome or

exome sequencing. However, the best approach by which, or indeed whether, these data can be

used to accurately model and interpret underlying evolutionary dynamics is yet to be confirmed.

Establishing this requires sequencing data from appropriately heterogeneous tumours in which

the exact trajectory and combination of events occurring throughout its evolution are known. We

therefore developed HeteroGenesis: a tool to generate realistically evolved tumour genomes,

which can be sequenced using weighted-Wessim (w-Wessim), an in silico exome sequencing tool

that we have adapted from previous methods. HeteroGenesis simulates more complex and realis-

tic heterogeneous tumour genomes than existing methods, can model different evolutionary dy-

namics, and enables the creation of multi-region and longitudinal data.

Availability and implementation: HeteroGenesis and w-Wessim are freely available under the

GNU General Public Licence from https://github.com/GeorgetteTanner, implemented in Python and

supported on linux and MS Windows.

Contact: l.f.stead@leeds.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The evolution of a tumour affects its clinical course: malignant phe-

notypes undergo selection resulting in increased growth, invasion,

metastases or therapy resistance. Elucidating the mode and course of

tumour evolution therefore impacts upon our understanding of dis-

ease progression and how to more effectively treat patients

(Amirouchene-Angelozzi et al., 2017). Characterizing suitable mod-

els of tumour evolution and testing our ability to identify them from

observable sequencing data requires datasets from tumours where

the subclonal architecture and mutational events that define them

are completely known; i.e. it requires sequencing data from realistic-

ally simulated, suitably heterogeneous tumours (Sun et al., 2017;

Williams et al., 2016, 2018). Numerous tumour genome simulation

tools exist (see Supplementary Material), but they lack the ability to

recreate the complexity inherent in real data as they do not model

certain phenomena known to occur through actual tumour

VC The Author(s) 2019. Published by Oxford University Press. 2850

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(16), 2019, 2850–2852

doi: 10.1093/bioinformatics/bty1063

Advance Access Publication Date: 4 January 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/16/2850/5273483 by U
niversity of Leeds user on 02 Septem

ber 2019

http://orcid.org/0000-0001-7695-7480
http://orcid.org/0000-0002-9550-4150
https://github.com/GeorgetteTanner
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1063#supplementary-data
Deleted Text: s
Deleted Text: Information
https://academic.oup.com/


evolution, such as: (i) multi-level subclone phylogenies, (ii) individ-

ual chromosome and whole-genome aneuploidy, (iii) overlapping

copy number variants (CNVs)— either nested within the same

chromosome copy, or partially or fully overlapping the same

region on different copies, (iv) variants occurring in a flexible order

and (v) distinct germline and somatic variants (see Supplementary

Table S1).

To address these shortcomings, we developed HeteroGenesis: a

simulator of genomes from realistically heterogeneous tumours that

can result from varied and user-determined evolutionary trajecto-

ries. We also improved an in silico whole exome sequencing (WES)

tool, Wessim (Kim et al., 2013; McElroy et al., 2012), and provide

this as weighted-Wessim (w-Wessim). Together, these tools create

sequencing data and ‘ground truth’ variant profiles for simulated

bulk tumour samples, which can include ‘normal’ contamination

and be manipulated to model multi-region and longitudinal

sampling.

2 Implementation and workflow

2.1 HeteroGenesis
HeteroGenesis consists of three consecutive python programmes

(Supplementary Box S1 and Fig. S1); heterogenesis_vargen generates

lists of variants (single nucleotide variants [SNVs], insertions/dele-

tions [InDels], CNVs [with or without inversion] and aneuploid

events) to be incorporated into the genomes for each clone in a tu-

mour, along with a matched germline. It takes as input: (i) a refer-

ence FASTA genome sequence, (ii) an optional file containing

known germline SNV and InDel locations and minor allele frequen-

cies formatted from dbSNP and (iii) a JSON file containing a set of

parameters. It outputs a JSON file with lists of variants for each

clone in the simulated tumour and a matched germline, as well as

files containing the order that mutations occurred. heterogenesis_-

varincorp is run separately for each clone, and the germline sample.

It takes the lists of variants generated by heterogenesis_vargen and

incorporates them into the reference genome sequence, as well as

calculating copy numbers and variant frequencies along the genome.

freqcalc is then run to combine variant profiles for individual clones

from heterogenesis_varincorp outputs to describe one or more bulk

samples.

Further details are included in the Supplementary Material and

Supplementary Figures S2–S4. HeteroGenesis is freely available at

https://github.com/GeorgetteTanner/HeteroGenesis.

2.2 w-Wessim
We adapted the only existing in silico WES tool, Wessim (Kim et al.,

2013; McElroy et al., 2012), to create w-Wessim, and combine it

with an altered protocol. This includes, among others (see

Supplementary Material), two significant improvements;

2.2.1 Weighted probe selection

Wessim aims to mimic exome capture, during sequencing library

preparation, through the use of BLAT (Kent, 2002) alignments of

capture probe (primer) sequences to a genome in order to define

regions for sequencing. However, the programme selects probes

at random for in silico hybridization each time it creates a read,

negating the modelling of copy number variation. We modified

the code to weight probe selection by the number of times each

probe aligns to a genome, thereby increasing the coverage in

replicated regions.

2.2.2 Probe sequences taken from real WES reads

The use of exome capture kit probes for in silico sequencing results

in unrealistic read coverage distributions (Supplementary Fig. S5).

Instead we provide a set of probes taken from reads in real WES

data and show that this approach results in a more realistic distribu-

tion of generated reads.w-Wessim is freely available from https://

github.com/GeorgetteTanner/w-wessim.

3 Discussion

3.1 HeteroGenesis
We developed HeteroGenesis to simulate genomes for multiple

clones in a heterogeneous tumour, along with a matched germline.

When compared with previous methods, HeteroGenesis has several

significant improvements to allow it to recreate much of the com-

plexity observed in real tumours (see Supplementary Material). In

particular, the user has full control over the phylogenetic relation-

ships between clones and, therefore, varied and complex evolution-

ary trajectories can be modelled (Supplementary Box S1).

Following tumour genome simulation, freqcalc can be used to

combine variant information generated for each subclone to give

overall bulk outputs that reflect user defined proportions of each

clone in a sample. This is useful, for example, when testing how

sampling affects the ability of subclonal deconvolution pipelines to

elucidate different evolutionary trajectories from known ground

truths. Moreover, this approach can: (i) include simulated germline

sequencing data to mimic the contamination of normal cells in a tu-

mour sample, (ii) create multiple bulk datasets from the same tu-

mour with different proportions of clones to mimic multi-region

sampling, an approach that enables more reliable delineation of sub-

clone architectures (Sun et al., 2017) and (iii) create multiple bulk

datasets with different combinations of clones to represent longitu-

dinal samples. An example of this is given in Supplementary Box 1.

3.2 w-Wessim
We sought a tool to enable in silico WES of our simulated genomes

and were only able to identify Wessim for this purpose (Kim et al.,

2013; McElroy et al., 2012). However, Wessim is not able to model

copy number variation (Supplementary Fig. S5B), so we adapted it

to create w-Wessim, which, through weighting probe selection by

the number of times each is found to align to the genome, results in

accurate modelling of copy number variation (Supplementary Fig.

S5C).

We also aimed to improve the distributions of reads created by

w-Wessim/Wessim to more realistically model WES data. Exon cap-

ture kits do not result in a perfect enrichment for only target regions,

with only around 65% of reads aligning on-target (Supplementary

Material). However, w-Wessim/Wessim result in very high propor-

tions of bases aligning on or near target regions when used with

probe sequences from the Agilent SureSelect Human All Exon

V4þUTRs kit and default BLAT parameters; 90.6 and 90.0% on

target and 99.6 and 98.1% on or near target for w-Wessim and

Wessim, respectively (Supplementary Fig. S6A). Furthermore, the

mode coverage in three real WES datasets that used the V5þUTRs

kit, each with 70m reads, was 8x-29x, whereas the mode coverage

for the same number of reads from w-Wessim and Wessim, using

the V4þUTRs kit probes (the V5 probe sequences were not publi-

cally available), was 66x and 80x (Supplementary Fig. S6B).

We overcame this using read sequences from real WES data

(with 75.8% of bases on or near target) as the probes in the BLAT

alignment. By filtering these reads for those with a high alignment
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mapping score and adjusting the stringency of the BLAT align-

ment, we are able to generate reads with w-Wessim that match the

distribution of reads seen in the real data, with 79.7% of bases

aligning on or near target and a mode coverage of 28x

(Supplementary Figs S5 and S6). A demonstration of the combined

use of HeteroGenesis and w-Wessim is provided in Supplementary

Figures S7 and S8.
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