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Incorporating transportation safety into land use planning: Pre-assessment of 

land use conversion effects on severe crashes in urban China 

Abstract: 

Severe crashes (SCs) have raised significant challenges to public safety in China. Given 

the prevalence of urban redevelopment, there is an urgent need to incorporate 

transportation safety into new-phase land use planning. This study presents an approach 

to pre-assess the traffic safety outcomes of land use conversions by investigating the 

association between land use conversions and variations in SCs in urban China. 

Generalized structural equation modelling (GSEM) was used to construct the 

hierarchical relationships among the SC frequency, land uses, and SC-related features. 

The Wald test was then employed to examine the reshaping of SC-related features and 

the SC frequency variation in land use conversions. The results showed that urban 

residential, commercial and business and mixed residential-commercial land uses had 

the highest SC risk exposure levels. A set of land use conversions oriented towards these 

three land uses were positively associated with the SC frequency and would universally 

drive the reshaping of SC-related features in the traffic volume, accessibility of 

destinations, and spatial variations in the population and employment at the traffic 

analysis zone level. These types of conversions were highly sensitive to the generation 

of mixed traffic flows, thereby leading to a higher risk of exposure to SCs. In contrast, 

land use conversions were less associated with the reshaping of zonal traffic speeds. 

The applicability of the proposed approach and the corresponding findings in 

supporting land use planning strategies for traffic safety improvements in transitional 

cities and urban China in particular was discussed. 
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1. Introduction 1 

Traffic crashes contribute to 1.2 million deaths each year. Globally, this number is 2 

growing rapidly due to the increase in motorization and the acceleration of 3 

urbanization. Poor road safety has raised significant challenges to public safety, 4 

especially in developing countries, where traffic mortality accounts for 90% of the 5 

total number of deaths globally (Zhang, et al., 2013). As the country with the highest 6 

number of traffic deaths, the situation is particularly severe in China. According to the 7 

2016 report of the Global Burden of Disease project, severe crashes (SCs), including 8 

injury and fatal crashes, have become the third leading contributor to premature death 9 

in mainland China (Naghavi, et al., 2017). More than 260,000 Chinese people die 10 

from road collisions each year. In contrast, in the U.S., a country with a comparable 11 

number of registered vehicles, the same figure is a disproportionately low 34,000 12 

(World Health Organization, 2015). Given these alarming figures, there is an urgent 13 

need to improve the traffic safety in China. 14 

The ultra-dense population, prevalent vehicle dependency and booming car ownership 15 

in urban China have increasingly worsened its traffic safety situation (Zhang, Huang, 16 

Roetting, Wang, & Wei, 2006). Additionally, large cities throughout China are 17 

experiencing radical changes led by urban redevelopment projects, and the existing 18 

built environment and transport system are being widely and purposefully reshaped 19 

(Lau, 2013). Given this context, road safety issues might also be subject to 20 

unpredictable changes in the absence of effective and targeted countermeasures and 21 

strategies. Therefore, transportation safety should be given higher priority in planning 22 

practices than ever before. 23 

Development in urban China is inseparable from land use conversion (Liu, Fang, & 24 

Li, 2014). Urban land use conversion can be categorized into two modes: urban land 25 

use development, defined as a mode in which a non-urban land use within the urban 26 

fringe is transformed into an urban land use, and urban land use redevelopment, 27 

namely, a mode in which a specific type of urban land use is converted into another 28 

within urban internal spaces (Zhou, Li, Li, Zhang, & Liu, 2016). Since the 29 

implementation of the reform and opening up policies in the late 1970s, Chinese cities 30 

have experienced remarkable growth. Serving as a crucial economic asset, land has 31 

played a pivotal role in the accumulation of local capital and in turn contributed to 32 

substantial transformations of the built environment and urban expansion (Lin & Yi, 33 



2011). Nevertheless, in recent years, similar to the most transitional countries under 34 

rapid urbanization, the deficiency of non-urban land uses in China has catalysed 35 

urgent efforts to rein in the expansion of built-up areas and to encourage urban 36 

redevelopment within urban internal spaces (Chen, Wang, & Guo, 2016). Given this 37 

scenario, urban land use redevelopment, the aim of which is to optimize the existing 38 

land structure via the reconfiguration and rearrangement of land parcels, has 39 

dominated planning projects and become the mainstream development mode in 40 

China’s large cities. Consequently, unprecedented opportunities for traffic safety 41 

improvements within inner cities have emerged. Hence, new-phase land use 42 

conversions should be taken as a central strategy in promoting long-range traffic 43 

safety and creating travel-friendly environments in urban China. Correspondingly, 44 

assessing the potential safety outcomes prior to the implementation of conversion 45 

strategies, namely, performing a pre-assessment, would become particularly 46 

important.  47 

As the fundamental landscape component that shapes diversified regional forms and 48 

functions, the roles of individual land use classes, including commercial (Kim, Pant, 49 

& Yamashita, 2010), industrial (Priyantha Wedagama, Bird, & Metcalfe, 2006), 50 

residential (Kim & Yamashita, 2002), educational (Sebos, Progiou, Symeonidis, & 51 

Ziomas, 2010), and official land uses (Narayanamoorthy, Paleti, & Bhat, 2013), in 52 

explaining SCs have been continually investigated. Several recent studies have also 53 

emphasized the effects of land use structures on SCs. Previous studies have found that 54 

a mix of land uses is positively associated with the frequency and severity of crashes 55 

(Miranda-Moreno, Morency, & El-Geneidy, 2011; Verzosa & Miles, 2016b). 56 

Additionally, Pulugurtha, Duddu, and Kotagiri (2013) found that a delicate balance of 57 

land use structures may reduce the frequencies of total and fatal crashes. Nevertheless, 58 

although these studies provide a basic empirical basis for crafting land use conversion 59 

countermeasures against the prevalence of SCs, they are limited in several ways. 60 

First, the literature is replete with studies incorporating land use variables and 61 

variables of other SC risk factors into the same non-hierarchical estimation models 62 

while simultaneously overlooking the interrelationship, namely, the hierarchical 63 

structure, among those factors. Land uses have played a crucial role in shaping crash-64 

related factors, such as the transportation network, accessibility to destinations, and 65 

spatial variation in employment and population (Pulugurtha, et al., 2013; Shoshany & 66 



Goldshleger, 2002; Xiao, Sarkar, Webster, Chiaradia, & Lu, 2017); in turn, these 67 

factors have implications for the traffic volume and speed, two major determinants of 68 

the area-level traffic safety (Ewing & Dumbaugh, 2009; Ewing, Hamidi, & Grace, 69 

2016). To illustrate this situation with an example, the enlargement of commercial 70 

areas is accompanied by rises in the zonal employment density, the number of 71 

commercial facilities, and the street connectivity; under such circumstances, larger 72 

traffic volumes would be produced as origin- and destination-specific trips are 73 

eventually generated more frequently, while traffic speeds would be depressed, a 74 

result attributable to increased numbers of road conflicts; all of these factors (i.e., 75 

employment density, accessibility to commercial facilities, street connectivity, and 76 

traffic volumes and speeds) are closely associated with both land uses and SCs. 77 

Accordingly, non-hierarchical modelling might lead to an underestimation or 78 

overestimation of land use effects on SCs. 79 

In addition, as mentioned above, the essence of land use conversion is the mutual 80 

transformation among various types of land uses (Zhou, et al., 2016). To wit, these 81 

land uses are always intertwined and associated with others being converted since the 82 

area of overall land use remains constant. To date, most studies have not explicitly 83 

constructed these transformation relationships in a modelling framework; 84 

correspondingly, the variation in SCs and the reshaping of SC-related features in land 85 

use conversions, which constitute a key prerequisite for the pre-assessment of 86 

conversion strategies, remain to be explored. 87 

As such, the two objectives of the research presented in this paper are as follows: 88 

(1) Explore the hierarchical relationship among land uses, SC-related features, and the 89 

SC frequency by employing generalized structural equation modelling (GSEM). 90 

(2) Construct land use conversions and explain the reshaping of SC-related features 91 

and variations in the SC frequency in the conversions at the traffic analysis zone 92 

(TAZ) level using the Wald test.  93 



2. Literature review 94 

2.1. Mediators for the association between land uses and crashes 95 

The existing evidence is generally supportive of the belief that traffic volumes and 96 

traffic speeds are major determinants of the macro-level (e.g., the community-, TAZ-, 97 

and city-level) traffic safety. On the one hand, passive safety theory assumes that 98 

driver errors are a function of the accumulation of driving behaviours (Dumbaugh & 99 

Li, 2010). A vast repository of literature has associated greater exposure to traffic 100 

volume with a higher frequency and a higher severity of SCs (Ewing, et al., 2016; 101 

Morency, Gauvin, Plante, Fournier, & Morency, 2012; Verzosa & Miles, 2016a). On 102 

the other hand, it is widely accepted that higher traffic speeds shorten the response 103 

time to react to instantaneous traffic risks, increase the occurrence of a potential crash, 104 

and exacerbate the probability of severe injuries resulting from crashes, ceteris 105 

paribus (Abdel-Aty, Lee, Siddiqui, & Choi, 2013; Haleem, Alluri, & Gan, 2015; Yu & 106 

Abdelaty, 2014). 107 

A systematic review has proposed a conceptual framework to illustrate how two 108 

important dimensions of the built environment, namely, development patterns and 109 

roadway designs, are associated with traffic safety through traffic volumes and traffic 110 

speeds (Ewing & Dumbaugh, 2009). In this framework, traffic volumes and speeds 111 

are considered as the primary determinants of the crash frequency and crash severity, 112 

respectively. Although both development patterns and roadway designs are associated 113 

with traffic volumes and speeds to a certain extent, the primary mechanism by which 114 

they affect the traffic safety varies. In general, development patterns, which are 115 

reflected by the land use, distribution of sociodemographic components, spatial 116 

structure of urban elements, and accessibility to destinations, influence crashes 117 

primarily via the traffic volumes they generate. The roadway design, including the 118 

type of roads, street connectivity (e.g., characteristics of conflict points), road width, 119 

and roadside parking, impacts SCs primarily through the traffic speeds they allow.  120 

Similarly, the research conducted recently by Najaf, Thill, Zhang, and Fields (2018) 121 

has examined the relationship between traffic safety and the city-level urban form, 122 

which is conceptualized as a physical configuration of the parts constituting a city 123 

from the land use pattern and distribution of sociodemographic components of a city 124 

to the citywide layout of the transportation network and travel demand. Their research 125 

team conceptualized and identified four potential mediators, namely, traffic 126 



congestion, non-driving transport modes, walkability, and average commuting time, 127 

all of which were deemed to be closely associated with traffic volumes and speeds at 128 

the area level. 129 

Prior studies have examined the correlation between crashes (both overall and severe) 130 

and their neighbouring land use characteristics; in this correlation, crashes are affected 131 

by land uses primarily through the traffic volumes and secondarily through the speeds. 132 

The classic four-step model (FSM) provides a mechanism by which traffic volumes 133 

are evaluated, calibrated, and validated during four sequential processes, namely, trip 134 

generation, trip distribution, mode split and network assignment, based on the land 135 

uses (Zhong, Shan, Du, & Lu, 2015). As the integral reflection of zonal functions, 136 

land uses play a vital role in shaping both the destination accessibility (Wee, 2011) 137 

and the spatial variation in the employment and population (Lu & Guldmann, 2015; 138 

Shoshany & Goldshleger, 2002) and hence the generation of human activities (e.g., 139 

economic and travel activities). In the FSM, the activity system, which is 140 

characterized by the land uses and the activities that occur in those land uses, 141 

determines the initial trip productions, trip attractions, and travel demand (Pulugurtha, 142 

et al., 2013).Through the transportation system, another factor associated with land 143 

use characteristics, an equilibrated network traffic flow is then created (Mcnally, 144 

2000). In addition, traffic speeds are associated with land uses to a certain extent. In 145 

dense urban areas (e.g., residential and commercial zones) and institutional areas, 146 

enhanced traffic-calming measures would largely reduce traffic speeds and improve 147 

the traffic safety performance (Ewing & Dumbaugh, 2009). Moreover, these areas are 148 

also associated with more intersections, a result attributable to a higher street network 149 

connectivity (Xiao, et al., 2017), ultimately contributing to lower-than-prevailing 150 

traffic speeds (Guevara, Washington, & Oh, 2004). 151 

2.2. Crash-related factors 152 

Land use characteristics has been examined in numerous investigations on crashes. 153 

The literature has largely found that the proportions of commercial and business land 154 

uses are positively associated with the SC frequency (Wier, Weintraub, Humphreys, 155 

Seto, & Bhatia, 2009). Moudon, Lin, Jiao, Hurvitz, and Reeves (2011) found that 156 

large commercial centres increase the probability of fatalities in pedestrian collisions. 157 

Dumbaugh and Li (2010) differentiated commercial land uses in terms of their 158 

morphology and spatial configuration and observed that commercial strip land may 159 



increase all types of crashes, while few crashes occur in areas with pedestrian-scale 160 

retail uses. Regarding residential land use, Pulugurtha, et al. (2013) reported that areas 161 

with higher-density residential (urban residential) land uses present a positive 162 

correlation with fatal crashes. Moreover, SCs occur more frequently in TAZs with 163 

larger areas devoted to resources and industrial land uses (Hadayeghi, Shalaby, & 164 

Persaud, 2010), although these areas are closely associated with fewer pedestrian 165 

collisions (Chen & Zhou, 2016). Lee, Yasmin, Eluru, Abdelaty, and Cai (2017) also 166 

indicated that land uses that are remote from urban areas are associated with a higher 167 

proportion of light truck-involved crashes. In contrast, as a particularly unfriendly and 168 

inaccessible zone, military land use inhibits SCs to a certain extent (Kim, et al., 2010). 169 

Scholars have also found that governmental (Hadayeghi, et al., 2010) and office land 170 

uses (Narayanamoorthy, et al., 2013) might be positively correlated with the 171 

frequency of crashes, whereas open and green spaces could decrease the crash 172 

occurrence (Miranda-Moreno, et al., 2011). In addition, several previous studies 173 

considered different land use structures and found that highly mixed land uses could 174 

have positive implications on the frequency of crashes (Verzosa & Miles, 2016a) and 175 

exacerbate the crash severity (Mohamed, Saunier, Miranda-Moreno, & Ukkusuri, 176 

2013). Furthermore, Wang, Yang, Lee, Ji, and You (2016) observed that pedestrian 177 

crashes may increase with an increasing development intensity.  178 

A plethora of studies have found significant correlations between SCs and 179 

sociodemographic characteristics. For different demographic groups, children and 180 

older adults are more vulnerable to SCs in particular (Aguero-Valverde & Jovanis, 181 

2006; Wier, et al., 2009). More pedestrian crashes might also occur in areas with a 182 

higher proportion of African Americans (Jaeyoung, Mohamed, & Ximiao, 2015). 183 

Aguero-Valverde and Jovanis (2006) found that greater numbers of SCs are observed 184 

in areas with larger proportions of an impoverished population. Similarly, Noland and 185 

Quddus (2004) observed that area-level multiple deprivation can have positive 186 

implications for traffic casualties. Lee, Abdel-Aty, and Choi (2014) also found that the 187 

median family income presents a positive correlation with the number of at-fault 188 

drivers within ZIP codes. In contrast, a lower proportion of households without an 189 

available vehicle within a ZIP code is negatively associated with the risk for 190 

pedestrians to be involved in a crash (Lee, Abdelaty, Choi, & Huang, 2015). 191 

Researchers have also focused on the role of the transportation network in crashes. 192 



For example, increases in the road mileage and road density are associated with a 193 

higher SC frequency (Aguero-Valverde, 2013; Aguero-Valverde & Jovanis, 2006). 194 

Hadayeghi, et al. (2010) reported that the lengths of arterial roads, collector roads and 195 

laneways constitute a positive predictor for the SC frequency. Moreover, additional 196 

pedestrian- and bicycle-involved crashes occur in areas with a higher proportion of 197 

local roads (Cai, Lee, Eluru, & Abdel-Aty, 2016). Lengths of roadways with poor 198 

pavement are also positively correlated with the SC frequency (Lee, Abdel-Aty, & 199 

Jiang, 2014). A higher proportion of arterial streets without public transit also tends to 200 

increase the injury crash occurrence (Wier, et al., 2009). A county-level study found 201 

that more SCs occur in areas with a higher density of principal arterial roads and 202 

minor arterial roads; in contrast, the density of freeways is negatively associated with 203 

the SC frequency (Huang, Abdel-Aty, & Darwiche, 2010). Meanwhile, the existing 204 

findings on intersections are inconsistent. Ukkusuri, Miranda-Moreno, Ramadurai, 205 

and Isa-Tavarez (2012) found that the density of complicated intersections is 206 

positively correlated with the pedestrian-involved SC frequency, as intersections are 207 

regarded as conflicts between pedestrians and vehicles. In contrast, several 208 

researchers indicated that intersections, especially simple 3-way types, are negatively 209 

associated with the crash frequency, which might be attributed to the lower traffic 210 

speeds in those intersections (Cai, et al., 2016; Dumbaugh & Li, 2010; Guevara, et al., 211 

2004). 212 

Another set of studies recently examined the relationship between SCs and the 213 

destination accessibility. Destinations are expected to attract a larger traffic volume 214 

and more human activity within their vicinity than their adjacent regions (Jiao, 215 

Moudon, & Li, 2013). Accordingly, the density of bus stops has been found to be 216 

positively correlated with the frequency of SCs (Kim, et al., 2010), and SCs are also 217 

more likely to take place near schools for pedestrians and cyclists (Zahabi, Strauss, 218 

Manaugh, & Miranda-Moreno, 2011). Moreover, several scholars have noted that 219 

commercial and institutional facilities, such as retail stores (Lee & Abdelaty, 2017), 220 

big box stores (Dumbaugh & Li, 2010) and neighbourhood commercial centres 221 

(Moudon, et al., 2011), might have a bearing on the frequency and severity of crashes. 222 

Additionally, Jiao, et al. (2013) noted that destination proxies must be carefully 223 

selected and utilized. For example, the density may embody the effects of bus stops 224 

on pedestrian collisions more robustly than a presence proxy.  225 



As such, a framework is proposed in this paper to explore the potential mechanism by 226 

which variations in the SC frequency are affected by land use conversions (Figure 1). 227 

In this framework, land use conversions reshape the spatial variations in the 228 

employment and population, layout of the transportation network, and destination 229 

accessibility. We hypothesized that along with the mediating effects of the traffic 230 

volumes and speeds, these changes ultimately result in variations in the SC frequency 231 

at the TAZ level. 232 

 233 

Figure 1 Potential linkage between land use conversions and variations in SCs at the 234 

TAZ level. 235 

 236 

3. Research design 237 

3.1. Study area and data sources 238 

The city centre of Wuhan served as the study area. In 2015, 70.12% of all SCs in 239 

Wuhan occurred in this focal area (Figure 2). As the largest metropolis in central 240 

China, Wuhan is growing rapidly coincident with high-speed urbanization, which has 241 

increased vehicle ownership considerably, especially over the last decade. According 242 

to the 2016 Wuhan Vehicle Emission Control Annual Report, this figure has increased 243 

continually by an annual rate of over 10% since 2011 (Wuhan Environmental 244 

Protection Bureau, 2017). In addition, more than 60% of all residents of Wuhan are 245 

concentrated in the centre of the city with a gross population density of 8,771 people 246 

per km2. To maintain economic development therein and meet the surging residential 247 

requirements, residential, commercial and mixed residential-commercial land uses 248 

have dominated the land use planning in this area. As a result, larger and more mixed 249 

traffic flows, which could exacerbate the risk of exposure of residents in our focal 250 

area to both pedestrian-involved and vehicle-to-vehicle SCs, have been generated 251 

throughout the city centre.  252 

For the basic research units, the TAZs (n=602) were adopted. Two types of data were 253 

used in this study: SC records and environmental features. In the current study, SCs 254 



were defined as crashes that involved the first harmful event and resulted in a fatality 255 

or an incapacitating injury. SC data from 2015 were extracted and provided by Wuhan 256 

Emergency Medical Centre (WEMMC), which is responsible for receiving and 257 

collecting information on all crashes involving the first harmful event from the Wuhan 258 

Public Security Bureau and sending the injured to the suitable hospital according to 259 

the severity. Environmental data, including land use, traffic volume, traffic speed, 260 

population, employment, point of interest and road network data, from 2015 were 261 

derived from the Wuhan Land Resources and Planning Information Centre. The SC 262 

records and environmental features in each TAZ were geocoded and quantified by 263 

using the ArcGIS overlay and spatial join functions. The descriptive statistics and 264 

descriptions of the variables considered and included in this study are shown in Table 265 

1. 266 

  267 



 268 

Figure 2 SC locations in Wuhan, China (2015). 269 

  270 



Table 1 Summary and definition of variables.  271 

Domains Variables Mean SD Min Max Description 

Severe Crash Severe Crash Frequency 10.31 10.55 0.00 70.00 Number of severe crashes occurring in a TAZ (n). 
Land Use Pattern Land Area 75.20 81.13 3.49 1565.71 Total land area of TAZ (ha). 

Urban Residential (UR) 18.94 18.64 0.00 113.53 Area of urban residential district, including areas with 3-grade 
residential uses and neighbouring service facilities (ha). 

Government & Office (G&O) 2.79 4.70 0.00 37.84 Area of governmental and office district, including areas with 
education, health care and social welfare uses (ha). 

Commercial & Business (C&B) 10.60 18.25 0.00 180.13 Area of commercial and business district, including areas with retail, 
commercial, recreation, business, and culture uses (ha). 

Mixed Residential-Commercial 
(MRC) 

0.13 0.74 0.00 13.17 Area of mixed residential and commercial district, which is typically 
associated with high-intensity development (ha). 

Public Space (PS) 3.45  9.45  0.00  111.34  Area of green and public district (ha). 

Industrial (IND) 12.54  50.54  0.00  1104.92  Area of industrial district, including areas with research and 
manufacturing uses (ha). 

Transportation (TRANS) 6.02  10.46  0.00  114.28  Area of transportation land use, including areas with railway, highway, 
urban road and neighbourhood pathway uses (ha). 

Infrastructure (INFRA) 1.76  5.34  0.00  83.30  Area of infrastructure land use, including areas with safety and basic 
provision uses (ha). 

Warehouse (WHSE) 1.40  4.47  0.00  52.68  Area of warehouse land use (ha). 

Area under Construction (AUC) 7.06  12.10  0.00  126.94  Area of district under construction (ha). 

Village Construction (VC) 10.50  28.65  0.00  402.50  Area of village settlement district (ha). 

Traffic Volume Vehicle Miles Travelled (VMT) 11.04 1.98 6.36 13.02 Annual average daily traffic multiplied by the length of the road 
segment (this variable was transformed by the natural logarithm). 

Traffic Speed Road Speed < 25 KPH 0.06  0.15  0.00  1.00  Proportion of roads with an average driving speed below 25 KPH (%). 

Road Speed between 25 and 35 KPH 0.20  0.24  0.00  1.00  Proportion of roads with an average driving speed between 25 and 35 
KPH (%). 



Road Speed between 35 and 45 KPH 0.21  0.25  0.00  1.00  Proportion of roads with an average driving speed between 35 and 45 
KPH (%). 

Road Speed >  45 KPH 0.13  0.21  0.00  1.00  Proportion of roads with an average driving speed over 45 KPH (%). 

Spatial Variation in 
Population 

Population Density 17.25  19.24  0.00  119.14  Population/ land area of the TAZ (k/ha). 

Spatial Variation in 
Employment 

Employment Density 7.58  6.18  0.00  36.22  Employment population/land area of the TAZ (k/ha). 

Layout of 
Transportation 
Network 

Major Road Density 0.09  0.06  0.03  0.33  Major Road length/ land area of TAZ (km/ha). 

3-way Intersection 12.47  29.29  27.00  467.00  Number of 3-way intersections (n). 

4-way Intersection  7.09  9.95  13.00  111.00  Number of 4-way intersections (n). 

5-or-more-way Intersection 0.80  1.92  0.00  25.00  Number of 5-or-more-way intersections (n). 

Destination 
Accessibility 

Corporation Density 3.60  5.16  0.00  38.45  Number of corporations/land area of the TAZ (1/ha). 

Car park Density 0.09  0.11  0.00  0.88  Number of car parks/land area of the TAZ (1/ha). 

Catering Service Density  0.63  0.92  0.00  7.61  Number of caterings/land area of the TAZ (1/ha). 

Metro Station Density 0.02  0.05  0.00  0.42  Number of metro stations/land area of the TAZ (1/ha). 

Bus Stop Density 0.06  0.05  0.00  0.32  Number of bus Stops/land area of the TAZ (1/ha). 

Number of Parks 2.05  9.39  0.00  66.00  Number of parks of the TAZ (1/ha). 

Age structure Children 0.05  0.02  0.00  0.12  Population aged under 12/census population (%). 

Adolescents 0.03  0.01  0.00  0.09  Population aged between 12-18/TAZ population (%). 

Adults 0.72  0.09  0.00  0.89  Population aged between 19-59/TAZ population (%). 

Older Adults 0.18  0.05  0.00  0.30  Population aged above 60/census population (%). 

Household Wealth Housing Price 10922.31  2245.02  3681.08  25996.00  Average housing price of the TAZ. (yuan) 

Note: items in italics denote variables considered but not included in the research. 272 

  273 



3.2. Examination of spatial dependency 274 

Previous research has suggested that the spatial dependency of dependent variables 275 

might lead to endogeneity issues in area-level estimations and ultimately contribute to 276 

biased results (Lesage & Pace, 2009). Accordingly, before the implementation of the 277 

statistical analyses, the global Moran’s I statistic was calculated to measure the spatial 278 

autocorrelation of the SC frequency within the TAZs across the whole focal area. 279 

Global Moran’s I values closer to 1 or -1 indicate that the SC frequency within a TAZ 280 

presents a highly positive or negative correlation, respectively, with the SC 281 

frequencies in their adjacent TAZs. Regarding our dataset, the global Moran’s I was 282 

calculated to be 0.037 (p-value<0.01), indicating that the SC frequencies within the 283 

TAZs are roughly not spatially correlated with other SCs in adjacent TAZs, which 284 

might be attributed to the division criteria of TAZs maintaining the homogeneity and 285 

uniqueness within TAZs (Pulugurtha, et al., 2013). 286 

3.3. Statistical analyses 287 

3.3.1. GSEM 288 

GSEM was employed to construct the hierarchical relationships among land uses, SC-289 

related features, and the SC frequency at the TAZ level. Compared with univariate 290 

and multivariate regression techniques, SEM provides an efficient way to model and 291 

examine the interrelationships among structured variables, and it is relatively robust 292 

against the potential multicollinearity issue (Malhotra, Peterson, & Kleiser, 1999; 293 

Najaf, et al., 2018). Nevertheless, classic SEM is also limited in the modelling of non-294 

linear relationships (Najaf, et al., 2018). Alternatively, GSEM is a flexible 295 

generalization of SEM that allows the modelling of response variables with multiple 296 

distributions. Previous studies performing research on traffic safety have tended to 297 

employ non-linear approaches, such as the Poisson (Lord, Washington, & Ivan, 2005) 298 

and negative binomial (NB) models (Zou, Wu, & Lord, 2015), since crash data 299 

constitute a non-negative integer variable. The NB distribution, also called the 300 

Poisson-Gamma distribution, assumes that the variance should be greater than the 301 

mean value, which is consistent with the modelling of dispersed and sporadic crash 302 

data (Wei & Lovegrove, 2013). The ability to handle over-dispersion problems makes 303 

the NB model efficient in the analysis of crash data, and thus, it has been widely used. 304 

More than 12% of all TAZs in our focal area did not report SCs; therefore, GSEM is 305 



introduced given the distribution and the nature (i.e., count variable) of SC data. 306 

Specifically, the dependent and independent variables were modelled via two types of 307 

models and specific canonical link functions: (1) linear models with identity links for 308 

continuous dependent variables following a normal distribution; and (2) NB models 309 

with logarithmic links for count-dependent variables following a NB distribution (i.e., 310 

the SC frequency). The dispersion parameter and likelihood-ratio (LR) test were 311 

employed to validate the NB models. The resulting index values significantly greater 312 

than zero indicates that the SC data exhibit over-dispersion, and hence, the NB models 313 

are preferable to the Poisson model for data modelling herein. 314 

In this analysis, the selected land use variables are included in the GSEM, and all 315 

variables are connected to the SC-related features and SC frequency via pathways. 316 

Specifically, only the variable of village construction was excluded, while the other 10 317 

land use variables and the total land area variable were included in the GSEM. The 318 

objective was to construct village construction-involved land use conversions and 319 

examine the variations in the SC frequency and the reshaping of SC-related features 320 

during this process. In a multi-variable explanatory model, the corresponding 321 

coefficients are used to measure the ceteris paribus effect (i.e., the so-called partial 322 

effect) of certain land use classes on SCs (Barreto & Howland, 2006). To interpret 323 

certain land use effects, only the variables (e.g., the total land area and areas for 324 

specific land uses) included in the model should be held fixed, while all other 325 

excluded variables should not be subject to an explicit control. Since only the 326 

excluded land use variable, i.e., village construction, was not subject to a control, 327 

changes in a certain land use area as well as its effect on the SC frequency could only 328 

be logical under the premise that the area of village construction changed in the area. 329 

Therefore, the setting of these land use variables depicts a set of one-to-one village 330 

construction-involved land use conversion relationships. 331 

Eq. (1) shows a specific example of the NB model in the GSEM, in which the village 332 

construction variable was excluded from the model. As shown in Eq. (2), when 333 

holding the other land use variables fixed (i.e., the total land area A and the area for a 334 

specific land use x), a one-unit change in the industrial land use (i.e., IND) would 335 

cause the average natural logarithm of the SC frequency (i.e., log(i)) change in 336 .ߛ 

Thus, a conversion relationship is constructed between the village construction land 337 

use and industrial land use. Likewise, this treatment is also used to examine the 338 



relationship between village construction-involved land use conversions and the 339 

reshaping of SC-related features. 340 

 0log( )i i i j ij iA IND x     = + + + +  (1) 341 

 
dlog(ș)

=
dIND

  (2) 342 

Given the richness of other predictors that we initially considered in the model, 343 

several criteria were employed for the selection of other predictors and the 344 

construction of pathways. First, severe multicollinearity should not exist among the 345 

variables, and classic variance inflation factors (VIFs; best if below 5) were employed 346 

to determine the input variables. Moreover, to ensure the fitness and interpretability of 347 

the model, the included variables should be either directly or indirectly associated 348 

with the SC frequency; thus, the pathways along which the estimated coefficients 349 

were not significant at the 0.10 level were ultimately excluded. Before implementing 350 

the GSEM, all explanatory variables were normalized.  351 

In addition, the assessment of model goodness of fit was implemented based on three 352 

classic indices: (1) comparative fit index (CFI; >0.90) (Hu & Bentler, 1999); (2) 353 

goodness of fit index (GFI; >0.90) (Kelloway, 1998); and (3) root mean square error 354 

of approximation (RMSEA; <0.08) (MacCallum, Browne, & Sugawara, 1996). As 355 

mentioned above, it was necessary to retain all the paths (even if they were not 356 

significant) between the land use variables and variables of SC-related features/SC 357 

frequency in the GSEM in order to construct the conversion relationships. Although 358 

this treatment was less associated with the identification of SC-related features, it 359 

would largely reduce the model goodness of fit. In order to validate the robustness of 360 

identification of SC-related features and the reliability of hierarchical structure, a total 361 

of three models were assessed: (1) the main model (i.e., the model we ultimately 362 

established); (2) the model that excluded insignificant pathways between land use 363 

variables and variables of SC-related features/SC frequency; and (3) the model that 364 

excluded land use variables. 365 

3.3.2. Wald test 366 

In Section 3.3.1, the treatment and setting of land use variables in GSEM are 367 

introduced to illustrate how a set of village construction-involved land use 368 

conversions is constructed. Here, by examining the statistical differences (i.e., 369 



significant differences) in the total effects of various types of land uses, the Wald test 370 

is employed to extend these conversions to broader mutual conversions involving the 371 

overall 11 types of land uses and hence examine the reshaping of the SC-related 372 

features and variations in the SC frequency in those land use conversions. The logic 373 

behind this approach is that the total effects of a certain land use in the GSEM 374 

established herein on the SC-related features or SC frequency could be interpreted as 375 

changes in the SC-related features/SC frequency in the mutual conversions between 376 

that type of land use and village construction. Under such a circumstance, the village 377 

construction could be regarded as a reference; furthermore, if the difference between 378 

the total effects of two different land uses is statistically significant, the mutual 379 

conversion between these two land uses could also contribute to either the reshaping 380 

of the SC-related features/variations in the SC frequency.  381 

The Wald test is widely used in tests of hypotheses on parameters based on the Chi-382 

square statistic. As such, to examine the statistical differences between the total effects 383 

of different land uses on certain SC-related features/SC frequencies, two hypotheses 384 

are constructed as follows: 385 

 1 20H E E=:  (3) 386 

 1 1 2H E E:  (4) 387 

where H0 and H1 are the null hypothesis and the alternative hypothesis, respectively, 388 

and E1 and E2 indicate the total effects of land use 1 and land use 2, respectively, on 389 

certain SC-related features/SC frequencies. The total effect of a certain land use 390 

variable on the SC-related features/SC frequency is calculated based on the 391 

cumulative impact over all of the involved pathways. If there is a significant 392 

difference between E1 and E2, their magnitudes could be used to indicate the 393 

directions of changes in the dependent variables (i.e., the SC frequency or SC-related 394 

features) in this conversion.  395 

4. Results and discussion 396 

4.1. Identification of SC-related features 397 

Using GSEM, hierarchical relationships were established among land uses, SC-related 398 

features, and the SC frequency at the TAZ level. Accordingly, the features that were 399 

either directly or indirectly associated with the SC frequency were able to be 400 

identified. As shown in Figure 3, a simplified path diagram was constructed due to 401 



the richness of land use variables (total 11 variables) and the related pathways in the 402 

GSEM. Specifically, the unidirectional arrows indicate the causal pathway between 403 

dependent and independent variables at different levels. The causal pathways of 404 

effects estimated based on the NB models are represented by red arrows, and those of 405 

effects estimated based on the linear models are represented by blue arrows. The 406 

dispersion parameter was calculated to be 1.24 (LR test: p-value<0.001), indicating 407 

that the NB model is preferable to the Poisson model in modelling the SC data in our 408 

research. To establish the village construction-involved land use conversions, we 409 

retained every pathway linking the land use variables and SC-related features/SC 410 

frequency. Accordingly, the ‘land use’ variables represent all land use variables 411 

included in the GSEM, and all pathways involved with these variables are depicted by 412 

single unidirectional arrows to ensure the readability and clarity of the path diagram. 413 

The goodness of fit for models was reported in Table 2. The main model presents a 414 

relatively poor goodness of fit, which was largely attributed to the insignificant paths 415 

between land use variables and variables of SC-related features/SC frequency. 416 

Nevertheless, the goodness of fit measures for the model that excluded insignificantly 417 

land-use-involved pathways fell in a very good range of GFI and an acceptable range 418 

of CFI (>0.8, see Najaf, et al. (2018)), and all the three measures (i.e., CFI, GFI, and 419 

RMSEA) for the model that excluded land use variables fell in a very good range, 420 

indicating a high robustness of the identification of SC-related feature and a high 421 

reliability of the hierarchical structure we established to a certain extent. 422 

We first consider the direct relationships between the SC frequency and selected 423 

features (Table 3). Many studies have found that traffic volumes are positively 424 

correlated with the frequency of SCs (Abdel-Aty, et al., 2013; Dumbaugh & Li, 425 

2010), and this study is no exception. Moreover, our results indicated that a greater 426 

exposure to SCs was also expected in TAZs with a larger proportion of medium-speed 427 

roads (road speeds between 25 and 35 KPH), ceteris paribus, in contrast to the 428 

exposure to SCs in TAZs with a larger proportion of low- or high-speed roads. 429 

Moreover, the population density and employment density were positively correlated 430 

with the SC frequency, which was consistent with the research of Abdel-Aty, et al. 431 

(2013) and Hadayeghi, Shalaby, and Persaud (2003). Regarding the layout of the 432 

transportation network, the major road density had a positive impact on the frequency 433 

of SCs, which was consistent with the findings of Aguero-Valverde and Jovanis 434 



(2006). We also found that a larger number of simple intersections (3-way 435 

intersections) was directly related to a lower frequency of SCs. With regards to the 436 

destination accessibility, the bus stop density was positively correlated with the 437 

frequency of SCs, which was consistent with the research conducted by Kim, et al. 438 

(2010) on the SC frequency and similar to the research of Quddus (2008), who 439 

focused on the frequency of crashes that led to injuries. Moreover, the proportion of 440 

older adults was positively correlated with the SC frequency; these findings were 441 

consistent with the research reported by Wier, et al. (2009) in San Francisco, 442 

California, USA. The uneven geographical distribution of older adults in Wuhan has 443 

made this group particularly vulnerable to SCs. As Xie, Zhou, and Luo (2016) argued, 444 

a majority of these older adults are concentrated in the urban core in Wuhan, which is 445 

characterized by a high population density and dense commercial facilities. 446 

Accordingly, such groups that are in a stage of functional decline are exposed to a 447 

larger traffic volume; thus, they are more likely to be involved in crashes and to be 448 

more seriously injured. Previous research has suggested that a higher housing price is 449 

strongly associated with a larger household wealth (Aartolahti, Tolppanen, Lönnroos, 450 

Hartikainen, & Häkkinen, 2015), which in turn potentially contributes to variations in 451 

vehicle ownership, more prevalent motorized travel modes, and greater exposure to 452 

SCs at the area level (Najaf, et al., 2018). However, the relationship between the 453 

average housing price and SC frequency at the TAZ level remained unclear in this 454 

research. 455 

Mediated by traffic volumes, the current research also identified several features that 456 

are indirect linked to the SC frequency; these features included the population density, 457 

employment density, major road density, bus stop density, car park density, and 458 

number of parks, all of which were deemed to be associated with trip generation and 459 

attraction. In contrast, in addition to land uses, traffic speeds did not act as mediators 460 

for the association between the frequency of SCs and the features involved in the 461 

GSEM. It should also be noted that the negative correlation between 3-way 462 

intersections and the SC frequency was mediated by neither traffic volumes nor traffic 463 

speeds. This finding might be attributed to reduced road conflict in addition to the 464 

setting of simple intersections. As Dumbaugh and Li (2010) argued, compared with 465 

complicated intersections, 3-way intersections provide better vision for pedestrians 466 

and drivers and thus help reduce vehicle-pedestrian crashes. 467 



 468 

 469 

Figure 3 Path diagram for SCs in terms of land uses and SC-related features. 470 

Note: the causal pathways of effects estimated based on the NB models are represented by red 471 

arrows, and those of effects estimated based on the linear models are represented by blue arrows. 472 

Pathways for error correlations are not displayed in the diagram.  473 

  474 



Table 2 Model goodness of fit. 475 

Model CFI GFI RMSEA 
Main model 0.484 0.768 0.243 
Model that excluded insignificantly land-use-involved pathways 0.822 0.935 0.109 
Model that excluded land use variables 0.938 0.977 0.073 

Abbreviations: comparative fit index (CFI); goodness of fit index (GFI); root mean square error of approximation (RMSEA). 476 

 477 

Table 3 Relationship between the SC frequency and SC-related features. 478 

Dependent Variable  Independent Variable Domain Coeff. Z-value Significance 
SC Frequency Ī VMT*** Traffic Volumes 0.380 4.674  <0.001 
SC Frequency Ī Road Speed 25-35 KPH  Traffic Speeds 0.099 1.722  0.085 
SC Frequency Ī Employment Density* Spatial Variation in Employment  0.139 2.273  0.023 
SC Frequency Ī Population Density* Spatial Variation in Population  0.173 2.432  0.015 
SC Frequency Ī Major Road Density* Layout of Transportation Network 0.109 2.097  0.036 
SC Frequency Ī 3-way Intersection Layout of Transportation Network -0.102 1.845  0.065 
SC Frequency Ī Bus Stop Density* Destination Accessibility 0.211 2.290  0.022 
SC Frequency Ī Older Adults* Age Structure 0.110 2.086  0.037 
VMT Ī Population Density*** Spatial Variation in Population  0.361 4.082  <0.001 
VMT Ī Employment Density*** Spatial Variation in Employment  0.329 4.281   <0.001 
VMT Ī Major Road Density*** Layout of Transportation Network 0.241 3.712  <0.001 
VMT Ī Bus Stop Density* Destination Accessibility 0.166 2.457  0.014 
VMT Ī Car Park Density** Destination Accessibility 0.184 2.807  0.005 
VMT Ī Number of Parks* Destination Accessibility 0.122 2.484  0.013 

Note: all explanatory variables have been normalized. p<0.10;  p<0.05;   p<0.10;   p<0.001. 479 

Abbreviation: vehicle miles travelled (VMT). 480 



4.2. Variation in the SC frequency and reshaping crash-related features in land 481 

use conversions 482 

The variation in the SC frequency and the reshaping of SC-related features in land use 483 

conversions were examined using the Wald test based on the total effects of various 484 

land uses on the SC frequency/SC-related features. Ultimately, a total of 110 mutual 485 

conversion relationships were established. To provide a clear interpretation, the 486 

corresponding variations in the frequency of SCs are visualized in Figure 4, in which 487 

each row represents the reduction in a specific land use area in the conversions, and 488 

each column indicates an increment in a specific land use area within the TAZs. In 489 

this diagram, the red grids and blue grids denote an increase and decrease, 490 

respectively, in the SC frequency in the mutual conversions at a significance level of 491 

0.10. 492 

Our results showed that approximately 55% (i.e., 60 of 110) of the conversion 493 

relationships engendered variations in the zonal SC frequency. There were no 494 

significant variations in the TAZ SC frequency during the mutual conversions among 495 

areas devoted to government and office, industry, transportation, infrastructure, 496 

warehouse and districts under construction. In contrast, for four land use classes, 497 

namely, village construction, residential, commercial & business, and mixed 498 

residential-commercial areas, a set of related land use conversions had robust and 499 

broad impacts on the SC frequency; during these types of conversions, 83% (i.e., 56 500 

of 68) of related land use conversions were associated with significant changes in the 501 

SC frequency at the TAZ level. At the expense of reducing areas devoted to all other 8 502 

land use classes, increases in the areas of residential, commercial & business, and 503 

mixed residential-commercial land uses are correlated with a significant increase in 504 

the TAZ SC frequency; in summary, these 3 land use classes had the highest risks of 505 

exposure to SCs. This finding indicates that increasing the areas of other land uses and 506 

creating a delicately mixed land use structure within the districts dominated by 507 

residential, commercial and business, and mixed residential-commercial land uses 508 

might function as efficient countermeasures for zonal traffic safety improvements. In 509 

contrast, when converting from other land use classes, except for areas devoted to 510 

infrastructure, warehouses, and areas under construction, a corresponding increment 511 

in the area of village construction would cause negative variations in the SC 512 

occurrence within TAZs. Additionally, a noticeable increase in the SC frequency 513 



would occur when transforming areas devoted to infrastructure or industry into 514 

districts for public space, and vice versa.  515 

Likewise, SC-related features during the abovementioned land use conversions were 516 

reshaped, and we gained new knowledge regarding the correlation between land use 517 

planning and road safety issues. As shown in Figure 5, reshaping the motorized traffic 518 

volume, destination accessibility, and spatial variations in the population and 519 

employment was largely driven by land use conversions that involved residential, 520 

commercial, and mixed residential-commercial land uses. Our findings confirmed our 521 

hypothesis that traffic volumes could be regarded as primary mediators linking land 522 

use conversions to the variation in SCs. In general, as they exacerbate the spatial 523 

agglomeration of features that are closely associated with travel demand, residential- 524 

and commercial-oriented land use conversions (i.e., three types of land use 525 

conversions aimed at expanding the areas of residential, commercial & business, and 526 

mixed residential-commercial land uses) are highly sensitive to the generation of 527 

activities and trips, thereby resulting in a higher risk of exposure to SCs. For example, 528 

Table 4 indicates that the major features all experienced a reshaping process during 529 

the residential- and commercial-oriented land use conversions, and all 3 types of 530 

conversions were associated with significant increments in the population density and 531 

car park density within TAZs. Accordingly, a greater mixed traffic flow, more contact 532 

opportunities, and subsequently greater risks of exposure to both vehicles and 533 

pedestrians would be generated due to the agglomeration of the population and car 534 

parks.   535 

Moreover, despite a similar increment in the frequency of SCs, a discrepancy existed 536 

in the reshaping features during these 3 types of conversions. For example, the bus 537 

stop density increased with increases in the unitary residential and commercial and 538 

business areas. However, such a trend was not found for the conversions that were 539 

oriented towards mixed residential-commercial land use. An increased employment 540 

density was universally correlated with an increment in the areas of commercial and 541 

mixed residential-commercial land uses, opposite to the trend for unitary residential-542 

oriented conversions. Given the close association among the bus stop density, 543 

employment density, and diversified traffic volume (e.g., transit trips or walking 544 

trips), reshaping the traffic volume is more complex during land use conversions; 545 

consequently, single motorized traffic volume instead of a mixed traffic flow, 546 



including the flow from pedestrian to cyclist to vehicle, might not fully capture this 547 

correlation.  548 

In addition, the results showed that reshaping the traffic speeds corresponded only to a 549 

few sets of conversions without a clearly regular pattern and indicated that macro-550 

level land use conversions were less associated with the reshaping or re-regulation of 551 

zonal traffic speeds. This issue might be attributed to two reasons: first, “one-size-fits-552 

all” zonal traffic speed regulations have come to dominate urban China; second, 553 

controls on traffic speeds might be largely regulated by location-specific traffic-554 

calming countermeasures or targeted engineering practices that are predominately 555 

independent of the influences of land use conversions. 556 



 557 

Figure 4 Variations in the frequency of TAZ SCs during land use conversions. 558 

Abbreviations: urban residential (UR); commercial and business (C&B); mixed residential-559 

commercial (MRC); government and office (G&O); public space (PS); industrial (IND); 560 

transportation (TRANS); infrastructure (INFRA); warehouse (WHSE); area under 561 

construction (AUC); village construction (VC). Each row represents a reduction in a specific 562 

land use area during the conversion process, and each column indicates an increment in a 563 

specific land use area within the TAZs. 564 

565 



 566 
Figure 5 Reshaping SC-related features during land use conversions. 567 

Abbreviations: urban residential (UR); commercial and business (C&B); mixed residential-568 

commercial (MRC); public space (PS); industrial (IND); transportation (TRANS); 569 

infrastructure (INFRA); warehouse (WHSE); area under construction (AUC); village 570 

construction (VC). Each row represents a reduction in a specific land use area during the 571 



conversion process, and each column indicates an increment in a specific land use area within 572 

the TAZs. 573 

 574 

Table 4 Reshaping the major features during residential- and commercial-oriented 575 

land use conversions. 576 

Land use conversions Major reshaping features at 
the TAZ level 

Number of 
involved 
conversions 

G&O, PS, IND, TRANS, 
INFRA, WHSE, AUC, 
VCĺUR 

VMT (+) 6 
Population density (+) 7 
Road density (+) 6 
Car park density (+) 7 
Bus stop density (+) 8 
Number of Parks (+) 6 

G&O, PS, IND, TRANS, 
INFRA, WHSE, AUC, 
VCĺC&B 

VMT (+) 6 
Population density (+) 6 
Employment density (+) 8 
Road density (+) 6 
Road speed 25-35 km/h (-) 4 
Car park density (+) 8 
Bus stop density (+) 8 
Number of Parks (+) 4 

G&O, PS, IND, TRANS, 
INFRA, WHSE, AUC, 
VCĺMRC 

VMT (+) 6 
Population density (+) 7 
Employment density (+) 8 
Road density (+) 6 
Car park density (+) 8 
Number of Parks (+) 6 

Note: ĺ denote unidirectional land use conversions. (+) and (-) indicate an increment and a 577 

reduction, respectively, in SC-related features.  578 

Abbreviations: urban residential (UR); commercial and business (C&B); mixed residential- 579 

commercial (MRC); government and office (G&O); public space (PS); industrial (IND); 580 

transportation (TRANS); infrastructure (INFRA); warehouse (WHSE); area under 581 

construction (AUC); village construction (VC). 582 

  583 



4.3. Implications for land use planning and road safety promotion 584 

Over the last two decades, the shift in land system reform and the institutional 585 

changes from a central planning perspective to a market orientation have drastically 586 

benefitted the urban land markets in China (Zhu, 2005). In pursuit of economic 587 

benefits, large land parcels have been packaged and uniformly leased out to 588 

developers by local governments, resulting in relative single and low mixed 589 

development patterns that primarily combine residential, retail and business functions 590 

(Shin, 2014). Nevertheless, as indicated by our findings, these development patterns 591 

have dramatically increased the spatial agglomeration of the employment and 592 

population and the accessibility to destinations, resulting in larger and more mixed 593 

traffic volumes. Moreover, in the majority of land use conversions, zonal traffic 594 

speeds also seem to be lacking effective and stringent regulations. Under such 595 

circumstances, it is frustrating to admit that hidden dangers for road safety would be 596 

inevitably exacerbated. With the intensifying conflict between the growing demands 597 

for residential and commercial land resources associated with increasing traffic risks, 598 

the road safety in urban China will continue to deteriorate without explicit and 599 

preventive strategies that incorporate traffic safety considerations into land use 600 

planning. 601 

Our approach could be used to assess, ex ante, the potential safety outcome of land 602 

use conversion strategies in not only urban China but also other transitional cities. 603 

Although the pre-assessment results might vary with changes in focal cities and actual 604 

planning practices are much more complex, the proposed approach has a relatively 605 

extensive applicability. According to the pre-assessment, urban planners could devote 606 

more efforts to siting and allocating high-risk land parcels to avoid unplanned road 607 

dangers to relatively large districts. Under circumstances without alternatives (e.g., 608 

converting old villages into urban residential areas coincident with urban expansion), 609 

urban planners could also be aware of the potential surge in road hazards and 610 

accordingly construct targeted countermeasures to offset the negative consequences in 611 

advance. For example, considering the weak association between land use 612 

conversions and reshaped zonal traffic speeds, there is an urgent need to formulate 613 

efficient zonal traffic speed regulations to weaken the negative effects of high-risk 614 

conversions in urban China. 615 

 616 



5. Conclusion 617 

This article presented an approach to pre-assess the road safety outcomes of land use 618 

conversion strategies by investigating the hierarchical relationship among land use 619 

conversions, reshaped SC-related features, and variations in SCs. Using GSEM and 620 

the Wald test, land use conversion relationships were constructed, and the 621 

corresponding variations in the SC frequency at the TAZ level were examined. Three 622 

land use classes were identified at the highest level in terms of the risk of exposure to 623 

SCs: urban residential, commercial and business, and mixed residential-commercial 624 

land uses. A set of land use conversions aimed at enlarging the areas of these three 625 

land uses was positively associated with the frequency of SCs at the TAZ level. Our 626 

research also revealed that the reshaping of SC-related features was closely associated 627 

with land use conversions. The reshaping of motorized traffic volumes, spatial 628 

variations in the employment and population, and accessibility to destinations were 629 

primarily driven by residential- or commercial-oriented land use conversions, 630 

indicating that these types of conversions largely exacerbate the agglomeration of 631 

high-risk SC-related features and are highly sensitive to the generation of mixed 632 

traffic flows, leading to a higher risk of exposure to SCs. In contrast, land use 633 

conversions were less associated with the reshaping of zonal traffic speeds. The 634 

proposed approach and the corresponding findings could be used to support land use 635 

planning strategies for improving the traffic safety and controlling SCs in transitional 636 

cities and urban China in particular. According to the pre-assessment results, urban 637 

planners could become aware of the potential variations in road hazards associated 638 

with conversion strategies; accordingly, they could pay more attention to siting and 639 

allocating high-risk land parcels and to crafting targeted countermeasures in advance. 640 

Our study also had some limitations. First, regarding the data constraints, to protect 641 

the privacy of the injured, the SC data provided by WEMMC do not contain detailed 642 

information about the severity of the injury, although the effects of different land uses 643 

on different crashes divided by the injury severity might vary. The traffic volume 644 

variable (i.e., VMT) contained only motorized flow; as shown in our results, 645 

reshaping the traffic volume would be more complex during land use conversions. 646 

Geometric factors of the road design (e.g., road width and road curvature) were not 647 

considered comprehensively due to restrictions in the data. Second, the pre-648 

assessment of land use conversions was implemented based on cross-sectional 649 



research design. Third, this study did not adequately take into account the emerging 650 

traffic safety equity issue in developing countries, which focuses on guaranteeing 651 

equal access to traffic safety resources across diversified population groups (Najaf, 652 

Isaai, Lavasani, & Thill, 2017). Therefore, future studies should employ SC data 653 

involving detailed severity information, diversified traffic volumes and road design 654 

variables to establish a comprehensive association between land use conversions and 655 

road safety. Longitudinal design could be developed to investigate the dynamic 656 

relationships between land use conversions and variations in SCs. Moreover, 657 

considering the remarkable variations in socioeconomic status, living environment, 658 

travel demand, and travel pattern among citizens in transitional cities, traffic safety 659 

inequity potentially ensues from policy implementation and planning practices; 660 

accordingly, the issue of incorporating traffic safety equity consideration into the 661 

evaluation of land use planning strategies deserves to be further explored. 662 
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