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Abstract

Hail and graupel are linked to lightning production and are impoctamponents of

cloud evolution. Hail can also cause significant damagenwgecipitates to the
surface. The accurate prediction of the amount andidocat hail and graupel and the
effects on the other hydrometeor species depends uporzéhgidribution assumed.
Here, we use ~310 km of in-situ observations from flighthefSouth Dakota School of
Mines T-28 storm penetrating aircraft to constrain the sgmtation of the Particle Size
Distribution PSD) of hail. The maximum ~1km hail water content encountered was 9 g
m3. Optical probe PSD measurements are normalized using 2-mooremlization
relations to obtain an underlying exponential shape. By linkiagwo normalizing
moments through a power-law, a parametrization of thePt&lll is provided based on
the hail water content only. Preliminary numerical weasivaulations indicate that the
new parametrization produces increased radar reflecteliyive to commonly used PSD

representations
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1. Introduction

Hail is observed on every continent but Antarctica (Cewl Blankenship, 2012)
Significant hail damage to crops and structures occurs wftegions on the flanks of
mountain ranges in Europe, North America, South Amesigathern and eastern Africa,
the European portion of Russia, and in China (Court and Gyiff#86). Large hail is

often produced by thunderstorms forming during the warm seasoterior continental
plains regions, such as the High Plains of the US (CGlamdl977), the steppes of Russia
(Cecil and Blankenship, 2012), and central China (Ni eR@l6). And storm
electrification is intimately tied to the growth of gratped hail in these storms (See,

e.g. MacGorman and Rust 1998, Ch. 3).

Our objective is to provide guidance on how to parameterize graap&SDs for use in
cloud models The representation of graupel (heavily rimed particles <Gdmmeter)
and hail (heavily rimed particles >5 mm diameter) in moHatsbeen shown to be a
source of large uncertainty in terms of cloud coverpggsipitation and cloud evolution.
The 5mm size threshold for graupel to hail is from timefican Meteorological&iety
glossary definition, but it recognized that model repried@ms that separate graupel and
hail will do so based on differing process rates or prauadsvays. @more et al. (2004)
demonstrated using idealized simulations that the preagpitatnounts and condensed
water species mixing ratios in deep convection were sengititree representation of the
hail size distribution. Van den Heever and Cotton (2004) desthiow supercell
development could be strongly modified by changing the reza&nof hail particles.

Similarly Cohen and McCaul (2006) noted that modifying the matn size affects the
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evaporative cooling in downdrafts that theregon to influence the subsequent evolution
of convective storms. But we note that some regional stmmathave also shown less
sensitivity (e.g. Van Weverberg et al. 2Q1Clearly there is great uncertainty related to
the representation of graupel and hail that can have @actnon the prediction and
simulation of extreme weather phenomena such as largective systems. Therefore,
there is a need to constrain the representation qfafiele size distribution of these

species in numerical simulations of clouds and storms.

Graupel and hail particle size distributions (PSD) have beeviously derived from
hailpads at the surface, from aircraft using foil impactond from optical array probes
(Ulbrich and Atlas, 1982; Cheng and English 1983; FedereWaidvogel 1975, Spahn
and Smith, 1976, Morgan,1982; Smith and Jansen 1982; Petersoh3&1alMusil et al
1991, Heymsfield and Musil, 1982). Airborne observations hawaded hail water
contents up to 3 g ¥hand number concentrations up to 28 for sizes larger than 5mm
(Spahn and Smith 1976, Musil et al 1991, Heymsfield and Musil, 1982), fohifail
observations at the surface lower hail water conte@$8(g m®, Cheng and English) and

number concentrations (<4for sizes>4mm) have been reported.

Aircraft based observations have indicated that hailg@rizes are distributed as a
negative exponential function with increasing size wéempling is restricted to particles
larger than ~5mm (Spahn and Smith, 1976). Size distributiqgrest@her than a simple
exponential have been proposed such as a double expotenéipiesent different size

ranges (Musil et al. 1976; Smith and Jansen, 1982), power Aawes &nd Marwitz



80 1972), gamma distributions (Wong et al. 1988) or truncated expaheistributions

81 (Morgan and Summer 1975). Inclusion of sizes smaller 5inam can include particles

82 such as raindrops and ice aggregates that can contammé&i@tRSD. Measurements of
83 hail PSDs at the ground can be affected by the lossalfesrhail and graupel due to

84 melting and sublimation, or size sorting effects redudiegftequency of occurrence of
85 smaller particles resulting in gamma- distribution-shap8ds €-g-Jamesen-and

86 Srivastava-1974de.g.Milbrandt and Yau 2005, Kumjian and Ryzhkov 2012, and Loftus

87 etal. 2014)In particular, Jameson and Srivastava (1978) used Doppleadad

88 reflectivity information to determine hail particle sizistdbutions. They showed that

89 Dbelow cloud base the size distributions display markewtigal distributions with a mean

90 size of ~1.5cm while higher up (in the cloud) the hail sig&ridutions become

91 exponential in agreement with in-situ observations.

92

93 Graupel and hail particle densities are often representeifeative densities for a

94  spherical particle with a diameter equal to some charstitedimension of the actual

95 irregular particle. Previous work, based on observed grampoehail particles, suggests

96 that for sizes up to 20 mm effective spherical densitiesémolume of sphere with a

97 diameter equal to the maximum span of the particle) cansspame from 100-910 kg

98 m3(Magono, 1953; Braham, 1963; Bashkirova and Pershina, 1964; Zikaramd

99 Vali, 1972; Locatelli & Hobbs, 1974; Heymsfield, 1978; Knight and Heyntsfied83;
100 List, 1985). As the particles become larger the speddfitsity of hail derived from the
101 immersion method of estimating density approaches thadliofice (Prodi, 1970; Vittori

102 and Di Caporiacco, 1959; Macklin et al., 1960). However, agiavs larger it tends to
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become less spherical and so the equivalent sphdenaity will be lower. Recently,
Heymsfield et al. (2018) combined multiple datasets using 3D daaas of individual
hailstones collected at the ground to estimate hail velionshow that the effective

density of hail particles decreases with size for hatigdas (5mm- 5cm).

For numerical cloud models the representation of graamqkhail density is often done
by assuming constant density. For example densities of 400 and 91 73kigmgraupel
and hail respectively are assumed by Ferrier (1995). Owardaw relationship can be
adopted that continuously varies the effective hydrometensity with size (Heymsfield
et al. 2018, H18: mass[kg]=89.2m[>%9). Other modellers have attempted to represent
the evolution of density from low values to solid ice dignisy predicting continuous
changes to the density throughout cloud lifetime as pastideome more heavily rimed

(e.g. Mansell et al. 2010, Morrison and Milbrandt 2015).

Airborne hail spectrometer data has been reported previbuslysually on a case study
basis (e.g. Spahn and Smith 1976, Smith et al. 1976, Smittaasen)1982). For this
study, we have synthesized hail spectrometer data fronipraulights of the South
Dakota School of Mines and Technology (SDSMT) T-28 storm pemgjraircraft
(Detwiler et al. 2012) to produce a normalized PSD that can beiusaodels that
represent hail at heights close to and above {Gdadémperature level. The
parametrization can also be potentially used for graupethie 5mm lower size
threshold of the observations would constitute an assexteapolation of these results

into the size range more appropriate for graupel. Wedlyitiest our results in a modelling



126 framework in this study but leave the challenge of a maialeleé comparison of hail in
127 observed and simulated storms to a later paper. Theseliz@hfSDs do not
128 necessarily apply to observations made at the surface soelting and evaporation

129 experienced by hail falling below cloud base.

130 2. Hail spectrometer description

131 The SDSMT Hail Spectrometer was designed and built for usieeon-28 aircraft and is
132 described in detail by Smith and Johnson (1980). The probe-i3 aptical array probe,
133 and although modified to a 2-D probe in the 1980s, the padatkewas still recorded in
134 the archive data used here ab Yertical size information collected along roughly

135 horizontal aircraft tracks. The probe was mounted aspylons under the left wingfo
136 the aircraft. A sheet of laser light emitted froneqaylon illuminates a photodiode

137 detector array behind a window in the other pylon. The tetacray has 128

138 photodiodes with 0.9mm separation. The pylon spacing is $€auhng to a sample

139 volume of ~10 ms?, or 100 M km™ for a typical 100 m$aircraft speed. The

140 maximum number of vertically-arrayed photodiodes occludedpastile passes through
141 the light sheet is taken as a measure of hail sizeoiédfin the photodiode array had a
142 total height of 11.5 cm, size distributions are recorded iortlye 5mm to 5¢cm range,

143 with increasing size bin width as size increases. Durirsgions, guidance from a

144  meteorologist on the ground with access to data froesearch-grade weather radar was
145 provided to the pilot so that areas with hail larger than S@ntd be avoided. Hall this

146 large could have caused serious damage to the armorexdtaircr
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3. Data treatment

The data analyzed here were obtained with the hail speeter on a number of flights in
different projects. The counts per size bin (partidhes dccluded the edge of the detector
array were excluded) in 1-s records (Honomichl 2011, Hoctaret al. 2013) were
combined with air temperature to filter out regions warthan the @C level. Pilot

reports were used to identify the time periods where hail wasuatered. Depending on
pilot workload during the flight and the main objectivedta project in which the
aircraft was participating, hail encounters may not haea lbéwvays reported by the
pilot. But if hail was reported by the pilot then it wagsent. A time window of +/- 1
minute was used to recover 10-s PSDs (~1km horizontal resofatiartypical 100 m$
airspeed from that reported time, which given the probes’ sample volume, would be able
to detect a concentration as low as 0.G1@werall, this meant that we used ~310s10-
PSDs, or ~310km of along-track cloud sampling, from 18 flights @olorado,
Oklahoma and Kansas from 1995 to 2003 (see Table 1). Thesgatatdom altitudes
where the air temperature was between 0 antC-a8d the aircraft was flying straight
and level (some profiles were not included due to potentiairiggyf the optical surfaces
in the probe on descent to warmer lower altitudes). Suréata information was relayed
from the ground to the pilot in order to avoid flying in regiavith reflectivity > 55 dBZ.
Therefore, there is some sampling bias that will meartlieaargest hailstones in these

storms may have been avoided.

Other ways of determining when the hail was present weregtdmrhese included i)

listening to the aircraft audio record, which included akiracorded from a microphone
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attached to the front windscreen, but there was too much backbnmise to distinguish
impacts of hail; ii) inspecting imagery from a Particleddering Systems 2D-C optical
array prde, but shape information is only robust for particles senallan 500 microns
and these size particles cannot confidently be linkekde@opulation starting at 5mm
measured by the hail spectrometer. iii) the occurrentargé particles observed with the
hail spectrometer (diameter>4cm) was also consideredhibuddes not always correlate
with when hail was reported. (These large particles mighe fbeen large snow
aggregates in some cases, for instance.) Therefoneg®EDs centered around the
pilot’s hail reports seem the most reliable way to capture BlsPBut it is accepted
that these will potentially be contaminated by non-hailiglas and may miss some that
were not reported. If the properties of particles largan tSmm (the minimum size of the
particles detected) are different between the hail regaod non-hail regions then we
should be able to observe this by changing the lengtieadteraging window centered
around the pilot report of hail. We tested the impaatan§ing the length of the time
window centred on the pilot report of hail to determinédf thoice of +/- 60s was
justified. This was done by examining the mean values of medsooments of the
PSDs as a function of the window length. Because dstfi@ minimum size threshold
for the observations it is expected that hail partialéishave higher concentrations than
other particle types in this size range. Figure 1 shogvsetbult for the geometric mean
of the concentration (other moments show the samavimef). This plot indicates that the
mean concentration remains approximately constant fol 8ma periods centred
around the pilot report, but rapidly departs towards thenroéthe whole dataset that

includes norhall regions asAt exceeds 100s becoming constant againfst000s as
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the non-hail regions dominate the statistics. Theredarieoice of +60s for the window
length appears acceptable. Later we will show that inspeatibistograms of the PSD
moments indicates that the hail population is distiranfthe distributions of the whole
population. For each PSD the (truncated - 5mm to 5cm) nisraes calculated and used

to define the fit parameters.

Additional filtering of the PSDs included removing PSDs timemred to be
contaminated by electronic noise. These PSDs were igehbf filtering out
anomalously flat distributions of particles counted.udisnspection of the PSDs
indicated that the 2.5-3 cm size bin sometimes reportedch higher number of counts
than the neighboring two size bins. This was believed fmobsibly due to electronic
noise affecting a group of detectors on the probe. To alkethis problem the particle
count in this bin was replaced by the mean of the adijaize bins. No particle-by-
particles information or interarrival time data wereil@e to assess for the effects of
particle shattering, but we note that lower resolution gsare less susceptible to the
effects of shattering that dominate particles sizesfefv hundred microns and smaller

(e.g. Field et al. 2006).

4. Normalizing the Particle Size Distributions

Process rates involving hydrometeor species in bulk microgghgshemes used in cloud
models need some assumption about the shape of ttdisti#fgution. This is commonly

done by assuming a functional form and determining the pagesribiat define it.
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We can make an assessment of the underlying shape dbhbyPnormalizing the
observations. To normalize the PSD, no assumption neédsrmade about the final
shape of the distribution (e.g. Testud et al. 2001, Lee 20@4, Field et al. 2007). But
because the measured distribution is truncated we will@esaufunctional form to allow
extension of the PSD to smaller and larger sizes. As we®&@allan exponential

distribution will be adequate to describe the data and wealitfas:

N(D) = Ngexp(—=AD) (1)

whereN (D)dD s the particle number concentrafior?, assuming Sl units] between
sizesD [m] and? + dD . Ng[m*] and) [m?] are the ‘intercept’ and ‘slope’
parameters that define the exponential distribution. \Wa ttial usinga generalized
gamma function but found that it did not improve the fitthhand would still require
assumptions about the shape parameter to carry outeéhmsexof adjusting for the PSD

truncation described below.

Numerical weather prediction models that represent hdilba graupel prognose the
water content of this species. To be able to predict thee€RZDfunction of the total hail
water content the mass-size relation needs to be intedduc

my = aD?

Where"ly is the particle mass [kg]. If we assume a spddageometry then we are

assuming a constant bulk density for the hail dnd  would blewdever, we make the

10



238 exponent variable to allow for changing effective sphédeasity with size. Where

239 effective density is the density that a sphere of#me maximum size of a non-spherical
240 particle would possess to have the same mass as théepartic

241

242  For the normalization we define thd"  complete mometh@®PSD as

N T(n+1)

243 M, = D"N(D)dD = o

: (2)

244  whererl is the gamma function. We note that the use obtserved size distribution
245 necessarily means that we are dealing with truncated disbris that in this case start at
246 5mm(D;) and end at 5cifDy). Therefore we have thd'truncated moment of the

247 observed distribution as

248 m =IDD”D”N(D)dD= /;\'g [y(n+1,4D,)-y(n+14D,)], (3)

n+1

249 wherey is the incomplete gamma function.

250

251 If the characteristic size of the distribution appreathese thresholds sizes (5mm or
252 5cm) the measured moments will be biased relative to ddisbn that extends from O
253 to infinity. We also note that due to the relatively smaithple size available that

254 moment estimates are likely to be biased (e.g. Smith antid<I2005). Using ratios of
255 ~moments can mitigate this effect to some extent.

256

257 Two moments (integrating from 0 to infinity) can be combinedefine a characteristic

258 size for the PSD. Here we choose the  th asd th lst moments. This guotient gives

259 mass weighted mean siZé,.

11
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B = [ aDPYIN, exp(—AD)dD _ M _B+1
T TaDPN, exp(—AD)dD  Mj ) @

and rearranging gives the slope parameter,

\_ (B+1)My
Mg | (5)

We can now use the assumption about the size distribstiape and the estimate of the
slope parameter to compute complete moments from thaureeasuncated moments.
By using the initial estimate af derived from the measurements we can use a
rearrangement of (2) and (3):

B r(n+1)
Mo =M e 1./D,)- 7(n+1/D)) ©)

to provide improved estimates of the complete moment.néleestimates of the
complete moment are then used to update the estimateud the process is iterated
until A values become unchanging (within 1%). An approach likenthgspreviously
used by Vivekanandan et al., 2004, for droplet distributiodsTasm et al., 2010, for ice

crystal size distributions.

Once we have the complete moments and the updated expbpanaimeters we can
proceed by assuming integrals from zero to infinity. Thergapt parameter for the

exponential can be linked to hail water mass, W [i&), through the” th moment

(3 + 1)aN,

W= aﬁ/f@ - A5+l . (7)

12
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Rearranging fof¥s and substituting for  gives

_ (B e ME

g (B+1)
T(B+1) MBH ) (8)

Finally, substitutingYs and into eq. 1 leads to

Mg (B+1)AH M

N(D

This is similar to the normalization proposed by SekhonSaivdstava (1971) but differs
in that this expression is independent of density assungpaibout hail if we assume a
constai bulk density . For spheres, the density informatiomessina which has
canceled out. If a variable bulk densit§ ¢ 3) is assumed then density will start to enter

M}

N(D)
the normalization through the valuefof If we assumé = 3 then pIottin’b’[é?

M D 256
againstMs  should collapse the data onto an exponentigbdtgin with intercept 6

and slope of -4 if the data are well represented by an erpiahdistribution. If this
collapse agrees with the predicted behavior then this sispmar choice of assuming an

exponential distribution as the functional form foe thail PSD.

For an exponential distribution, to predict the PSD, tmaments are required that

cloud model would ideally predict to completely define thsgrihution. Typically a

13
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‘double-moment microphysics setme’ would predict number concentration and mass
concentration as required. However, many models usedifoemcal weather prediction
currently use single moment representations and only pmad&s concentration. If one
moment can be parameterized as a function of the ittt will be possible to predict
the PSD given one moment alone (e.g. Milbrant and Yau 200&imgson et al. 2008,
Zhang et al. 2008, Wainwright et al 2014) which would be convefoeihiulk
microphysics representations that predict hail waterectriiut not number

concentration.

We can relate moments to each other by adopting an eaipiower law with. and as

constants (e.g. see Testud et al. 2001)

M,,=aM; , (10)

which allows the PSD parametéhd, 1) to be defined by the hail water content alone

and its link toMs as follows through combining (eq. 5,7)

_T(p+2) W+
A T(p+1) aa -

B+l (b-1)(f+1)-
N = F(ﬂ + 2) o DAL 1W1+(ﬁ+l)(1—b) (12)
[¢] p+2 S+l
(B +1) a

14
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Some microphysical representations formu¥ite  in tedms(e.g. Ferrier 1994). If we

eliminatelV between egs 11 and 12 we get

J\rg — ]\'TUQAB (13)
Where
RAVER SN

Ny, _{F([m) a} 14)

And

5o 1+ (B+D(@A-Db) (15)
L-b)

5. Results

Size distributions from the hail periods (~310 10-s periogisivalent to ~310km of
sampling) are shown in Figure 2. The sizes cover thgerlom 5mm to 5cm; a range of
sizes large snowflakes as well as hail can attain, patigrigading to overlap between
the populationsOverplotted are mean PSDs for 0.01, 0.1, 1.0 and 18 gathwater
contents (using Heymsfield et al. 2018: H18 mass[kg]=89%). This indicates
tendency for the PSD to become broader as the interceptgtarancreases.
Normalized histograms of moments of the PSD show a distifietatice between the
PSDs dominated by the hail population and when all 10-sec fP&Dshe set of flights
are considered (Fig. 3). All of the moments for the pagulation exhibit higher modal
values than for the background population indicating higherreatgent and number

concentrations for particles with size >5mm. Figur@i8es the H18 relation to estimate

15
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the hail water contents that reach a maximum of @dan1 10s period (approximately
1 km distance) and exhibit a mode in the observations ~0:1 §haracteristic size is
the mass weighted mean size assuming a mass-size expbged8. This histogram
(Fig. 3f) indicates that the maximum mass weighted rseas encountered reaches

~3cm, while the mean is ~1cm.

Values from the literature fé¥s and have been presentem). 4a to provide some
comparison to the observations. Using the 310 PSD momeeatgalues foNe and for
each PSD have been calculated and plottedyind® . For this study’s and have
ranges of 2x19- 3x1¢ m* and 100-900 m respectively. The range of values for this
study is in agreement with previous work and towards the lawed (i.e. broader
distribution) of the range of reported values. Also shaowlRigure 4a are some examples
of intercept parameter used in cloud microphysical reprdasemaf graupel and hail.
These intercept values used in the models tend to be Himwbserved range reported
here. For the same water content this would meanhbahbdel particle mean sizes
would be smaller, their fallspeed slower and so increaseetiidence time of the halil

within the cloud.

The hail PSDs have been normalized using the 3rd and 4th rmaneéplotted in Figure
5a. The collapse of the data reduces the spread from 215 ofdeagnitude (Fig. 2) to
about 1 order of magnitude. The normalized distribuiscapproximated quite well by an

exponential distribution (the expected exponential ctova 3 and 4" moment

16
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normalisation is overplotted: intercept=256/6, slope=-4), @djpg our choice of an

exponential distribution to represent the PSD.

Finally, cloud microphysical representations that use desmgment, such as the halil
water content to represent hail, need to parameterizefdhe moments in terms of the

moment prognosed by the model. Figure 5b shows power lationslaips between the

and +1 moments where h¢e3, 2.69. It can be seen that the power laws vary slightly

in terms of the exponent. The best fit lines to relaéeemoments shown in figure 5b are

My = 0.10M31° (16)

M3.69= 0.10M.eg-2° (17)

Table 2 uses the power law relation for the moments to gertbeparameters required

for estimating the PSD based on hail water content ooip #qs 11, 12

The results indicate that as water content increa¥esncreases anl  decreases as was
seen in figure 2. This decreasé\iwith increasing water content is similar to behavior
reported by Knight et al. (198 the US National Hail Research Experiment (conducted
in 1972-1976Yor increasing precipitation rate based on data from dilespectrometer

and a foil impactor on the SDSMT armored T.-2Bis means that the intercept parameter
(or concentration) increases at the same time adistrébution gets broader (or mass

weighted mean particle size gets larger).
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Figure 4b includstwo results for the single moment parameterizatiomgueguation 13
with values given in table 2 overplotted, as curves. Tag gurve uss a constant bulk
density to relate size to mass, while the black curve is lmast#te mass-size
relationship fronH18. In principle a double moment representation of hail el able
to better cover this phase space. But because the haildpgi3entation has been
reduced to a single moment, it is not able to cover ah@phase space that the observed
size distributions explore, and instead follows a ttajey that bisects the data.
Microphysics process rates or diagnostics ultimatedydiferent moments of the size
distribution. For a parametrization of the PSD basethermass moment that is close to
3 the least well predicted moments of interest are ¢ggdo be the number
concentration (1) and the radar reflectivity (8. Figure 6 shows the predicted and
measured (adjustito represent a PSD extending from zero to infinity in pargize as
described above)™ 6" moments and the exponential distribution parametensd).

The geometric means and standard deviations suggest tbathevange of the data
used, the mean predicted values are a factor of 1.4 andltbh& measured values foroM
and M, respectively. Geometric standard deviations indicatehkatariability is a

factor of 3 around the mean value. Similarly the pararesgtrvalues of. and N, based

on water content (table 2) can be compared to those dérradhe PSDs and the mean
bias and standard deviation can be assessed of thefraticametrized to observed. It
was found that fok-parametrized/-observed the mean and standard deviation was 1.2
and 0.5. And for log(Ng-parametrizetNg-observed) the mean and standard deviation
was 0.2 and 0.6. The parametrizegisfNmore biased than the parametrizdoecause it is

more related to number concentration than the magsediefeference moment used in
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the analysis. A parametrization using the concentraomtd be constructed to reduce the
bias in N, but because the moments of the process rateséhiam@ortant
(sedimentation, collection) are closer to the monfiekéd to the water content (~3) it

would be less useful for modelling.

6. Model testing

We have used the Met Office Unified Model to test the irhpachanging the rimed
particle PSD relationship. The model uses a single masseprigsentation of graupel
based on a gamma distribution: N(D);ENexp(AD), where N is given by equation 13.
In the operational model the values are;=8e25,6=-4.0, u=2.5‘Control’) and an
effective density of 500kg this assumed. For the test we take the values for the sa
density in table 2(‘This study’) Nog=7.9€9,6=-2.58, u=0 (where p=0 comes from the
assumption of an exponential distribution) and the wataea more widely used
assumption based on Lin et al. (1983)sMe4,6=0.0, u=0 (‘Lin”), for comparison.
Strictly, the PSD observations and parametrization ibddrmarticles between 5mm and
5cm in size. However, we have applied the PSD to all rime&tieartepresented in the
model. We note that radar reflectivity is derived dinefitbm the hail size distribution
(Ze~DP) parameters assuming a constant density of 500k@ssuring consistency
between the microphysical treatment of the hail andatiar response.

The case study is from the®2May 2013, where an EF5 tornado caused significant
damage in and around the city of Moore, Oklahoma. The nooddiguration is as
described in Stratton et al (2018), but with a finer horizagridl resolution of 1.5 km and
70 vertical levels with stretched vertical spacing (~100dken). The domain of the

simulation is as shown in figure 7. The model is initediat 00Z on 20 May 2013 and
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run for 24 hours. Model fields are inspected and comparetHd® (to coincide with the
reported timing of the tornado on the grourdere we will comment on the qualitative
differences in simulated reflectivity patterns due to civathe PSD alone and leave the
challenge of verification with data for a later papédre Rbility to reproduce observed
radar reflectivities is a challenging problem. It reliestmndccurate representation of not
only the hail/graupel particle size distribution but alsth&)microphysical process rates
that provide sources and sinks for graupel/hail, that are hugiglgrtain; 2) the radar
forward model to convert the model PSD into reflectivitg &éme radar wavelength
assumep3) accurate reflectivities from the other condensed watssiess that will
contribute to the radar response and impact the sourdesirks of graupel/hail.

The points 1,2 and 3 will be different for different nuroaliweather models. Our
approach here is to demonstrate the relative respoiise afodel using the new PSD
relative to using a classic one from the literature twigeomotivation for others to
assess the impact of this PSD in their model. This warkigees an in situ based
observational constraint around which more uncertaincésgeach as microphysical hail
source (e.g. riming and droplet freezing) and sink rates (elgngrand shedding) can be

tuned.

From figure 4 it is clear that the diagnhosed concenimatwill be lower in the
parametrization proposed in this study than is ordinaggdu This will mean that for the
same water mass there will be lower concentratiopsudicles but the mean size and
hence mean fallspeed will be larger. Therefore, faelaparticles we would expect that,
all things being equal, we will see reduced hail water pathpateatially increased

radar reflectivity signals (if not offset by reduced wateassg). Figure 7 shows the result
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of the test compared to the UM control PSD representatidrthe widely used Lin et al.
(1983) PSD representation. The control and Lin PSD prodogkusresults in terms of
composite reflectivity, hail water path and a lack of kaén at the surface. For the new
PSD presented in this work, it can be seen that the cadgyosite reflectivity

(maximum reflectivity in the vertical column) increasehile the hail water path
decreases. The new PSD is the only representation thedties hail at the surface with

max hail sizes of up to 25 mm.

7. Conclusions

Using a comprehensive hail data set collected in-siturgideatures @ and below with
an airborne instrument that has large sample voluelave to data collected at the
ground, normalization of the PSD using moments of theilolision indicates that the

hail PSD can be represented as an exponential betweeetdia of 5 mm and 5 cm. Halil
water contents of up 9 gi(in 10 s or 1km of flight sample) were inferred. Exponential
distribution intercept parameters derived from thesdtsesuggest that commonly used
exponential intercept values for models are larger thaereedn-cloud. By linking two
moments of the size distribution together with a powser the parameters of the
exponential distribution are predictable from hail watentent alone. However, the
variability exhibited by the intercept parameters suggestshbability to predict two
moments of the hail distribution may be advantageouméatelling the evolution of hail
The results of our study have considerable utility for moddehe development of
graupel and hail within convection. A preliminary test ofribev PSD parametrization

indicates that radar reflectivities are increasad more hail is able to survive to fall to
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the surface at warmer temperatures, relative to simoatigth a previous more

commonly used PSD representation.
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Table 1. List of T-28 campaigns and flights used in anali#ight numbers increment

serially from flight to flight, beginning in 1972. For more distaee:

Project name/date Flights used Location airport
CHILL 21 July - 3 August 2003 815,819,820 Greely, Colorado
JPOLE/TELEX 15 March - 15 June 2003 798,803 Norman, Oklahoma
CHILL-TEX 3-18 June 2002 781 Greely, Colorado

STEPS May - July 2000

754,756,757,759

761

Goodland, Kansas

TCAD June 1999

728.729,735

Ft. Collins, Colorado

VORTEX April-June 1995

658,667,668,670

Ft Collins,
Colorado/Norman,

Oklahoma
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Table 2. Results for different geometry assumptions. witsiare Sl.

N

geometry | B a b A g Nog o

p =500 |262 3 0.1 1.15 [|98w?P+1 57770W=9 | 7.9%9 -2.58
kg ni®

p =910 |[473 3 0.1 1.15 [[107W°| 45820W3° | 7.9e9 -2.58
kg ni®

H18 89.2 2.69 [0.082 |1.14 |85W?° | 36570W3° | 4.7e7 -1.61
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content. (f) is the mass weighted mean size of thteilolition. Solid lines show the
original measured moment and the dashed lines are theeadjustnent assuming an

exponential distribution integrated from 0 to infinity.
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Figure 4. a) Previous slope and intercept parameters for expohtstia the PSDs. The
boxes (solid: Cheng et al., 1985, also shown is thgk Mlationship; dotted: Federer
and Waldvogel. 1975; dot-dashed: Smith and Spahn, 1976) show ramgekédro
literature where slope and intercept were given. The hdakbmes towards the bottom
of the panel show the range of slope values from tiature where only the slope was
known (usually derived from hailpads). The symbols to theofette figure indicate
intercept values used for microphysics schemes in clouttisioThe open squares
denote the range used in Thompson et al. 2008. The ‘+’ is from Hong et al. and the ‘x’

from Lin et al. b) The open circles are the slope atetéept parameters for the halil
PSDs in this study. The grey solid curwerked ‘Sphere’, represents the anty

values assuming a constant bulk density (it is insensdidensity, but different
densities will sit at a different point along the line fiee same water content). The black
solid curve uses the H18 mass-size relationship. The dotésdshow contours of

constant hail water content based on the 500Rgphere density.
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Figure5. a) normalized size distribution using moments 3 and 4 for aiieP$Ds. The

solid line indicates the theoretically expected curveafoexponential distribution

normalized with the'8and 4" moment. The variability bars indicate 1 standard

deviation in log space (correlation coefficient r=-0.&%)Power law relations between

moments 3 and 4. c) the same as b) but for moments 2162 The relationship

between M3:M4 and M2.6R13.69 are shown (correlation coefficients of 0.99,0.98,

respectively)
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Figure 6. a) predicted complete zeroth moment versus measuredeztipesoth moment
(i.e. concentration). Correlation coefficient r=0.B9Same as a) but fof"énoment.
Correlation coefficient r=0.94. c) predicted and measiredrrelation coefficient
r=0.72 d) predicted and measuregl,Mdorrelation coefficient r=0.57 The 1:1 lines are
overplotted for all panels. Right panels show histograintise logarithm of the ratio of

the predicted to measured parameters depicted in the left panelgeometric mean is
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716 shown as a vertical dashed line with 1 geometric stardfandtion either side of the
717 mean shown as dotted lines.
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Figure 7. Top panel location map: blue rectangle is region of interestd®sensitivity
tests for 20 UTC 20 May 2013 for PSD settings used for Cotgfocplumn), this study
(centre column) and Lin et al. (right column). Top r@emposite radar reflectivity,

middle row: max hail size at surface, bottom row: hail watér.pa
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