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Abstract

By harvesting energy from more than one source, it is possible to improve the power output from

an energy harvester. In this paper we present an analysis that allows the maximum power absorbed

by a multi-source harvester to be found. This is based on an extension to analysis that was previously

used to derive a power bound for a single source mechanical energy harvester driven by stochastic

vibration. Firstly, a single source power bound is derived for a system with thermo-electrical coupling,

driven by stochastic time-varying temperature gradients. This power bound is verified using numerical

simulations carried out in MATLAB. This analysis is then extended to a system with thermo-electro-

mechanical coupling, driven by both fluctuating temperature gradients and mechanical vibration. It

is shown that the resulting power bound is the sum of the maximum power absorbed by the thermal

system and the mechanical system. As this power bound is greater than that for a single source system,

it demonstrates that a system driven by multiple sources has the potential to absorb more power than

a system driven by a single source.

1 Introduction

Energy harvesting is a process for converting energy from one form into another, more useful form. Previously
this was done with harvesters that could only convert from one form of energy. However, devices that can
convert from multiple sources are now being explored as they can achieve a greater power output for the
same size device. There are two main types, harvesters that use multiple methods to enhance the output
from a single source and harvesters that harvest from multiple distinct sources. This paper will define a
true multi-source harvester as one that utilises multiple distinct sources. As there are a huge number of
possible theoretical combinations, in this paper the scope is restricted to devices using some combination of
the piezoelectric and pyroelectric effects.

One of the first hybrid devices of this type used shape-memory alloys in combination with dielectric
materials so that piezoelectric and pyroelectric effects could be combined to enhance the amount of energy
harvested from a single thermal source [3]. Piezoelectric and pyroelectric effects were combined to enhance
the output from a triboelectric generator in [5]; despite using multiple effects, this device still only harvests
energy from a single mechanical source. The combination of tribo/piezo/pyro-electric effects was also used
in a device [4] to harvest energy from independent mechanical and thermal sources at the same time, making
this a true multi-source harvester. In this paper we will explore a device which harvests from both mechanical
and thermal source by utilising the piezoelectric and pyroelectric effects.

The upper limit on the power that an energy harvester can absorb is a useful method for benchmarking
devices, as this will be the limit to how much useful power they can generate. This number does not
depend on the efficiency of the device, and merely represents how much energy is available to a device. By
comparing the upper limits on the power absorbed, it can be shown that there is more power available when
harvesting from multiple sources. There already exists a power bound for a piezoelectric harvester driven by
mechanical vibration [2]. Since no such bound exists for a pyrorelectric harvester, in Section 2, it is necessary
to derive an expression for the power absorbed by a pyroelectric harvester driven by stochastically varying
temperatures. In Section 2.1, this expression will be verified through numerical simulations. Finally, in

∗Address all correspondence to this author jsgosliga1@sheffield.ac.uk.

1



Section 3, we will derive an expression for the power absorbed by the full harvester from both a mechanical
and a thermal source.

2 Deriving a bound on the power absorbed by a pyroelectric sys-

tem

The theoretical power bound for a mechanical harvester using piezoelectric materials with stochastic vibra-
tional input has been shown to be

P =
πS0xm

2
. (1)

as demonstrated in [2]. P represents the power absorbed by the device; S0x is the amplitude of the power
spectral density of the input vibrations; and m is the total mass of the device. This bound has been
shown to be valid for piezoelectric devices in [1], however it has not been extended to pyroelectric devices.
Since pyroelectric devices are driven by a temperature gradient which creates a potential rather than a
displacement, the analysis will differ from that presented by [2] or [1]. Furthermore, the coupling between the
voltage and temperature gradient is not the same as the electromechanical coupling found in piezoelectrics.

The state equations for a pyroelectric device in an equilibrium state are as follows

Csθ̈ +Rsθ̇ − pu̇ = 0 (2)

Cvü+R−1

v u̇+ pθ̈ = 0, (3)

where Cv is the electrical capacitance; Rv is the electrical resistance; Cs is the analogous thermal capaci-
tance; Rs is the analogous thermal resistance; θ is the temperature difference between the device and the
surroundings with reference to an equilibrium state; u̇ = v where v is the instantaneous voltage; and p
represents the pyrolectric coupling coefficient.

To write these equations in a state-space form we need to eliminate the second-order term θ̈ in Eq. (3).
So it is necessary to substitute in Eq. (2) into (3). This gives

Cvü+ (R−1

v + p2C−1

s )u̇− pRsC
−1

s θ̇ = 0. (4)

We can now introduce c which represents the temperature difference between the heat source and the
surroundings. This difference is assumed to fluctuate in such a way that it is equivalent to a stationary
white-noise input such that E[c̈(t)c̈(t + τ)] = πS0θδ(τ), where S0θ is the amplitude of the power spectral
density of the temperature fluctuations of the heat source, and δ is the value of the Dirac delta function at
time τ . This gives us a pyroelectric system which is driven by a stochastically varying thermal gradient as
represented by

Csθ̈ +Rsθ̇ − pu̇ = Csc̈. (5)

where the term on the right-hand side represents an entropy flow into the system.
These can be combined and expressed in a form describing the state of the coupled system and the

outputs
ẋ = Ax +Gζ(t), (6)

where the coefficients for the state-space variables are

A =









0 1 0 0
0 −C−1

s Rs 0 −pC−1

s

0 0 0 1
0 pC−1

s C−1

s Rq 0 −C−1

v (R−1

v + p2C−1

s )









. (7)

If we assume τ = 0, then E[c̈(t)2] = πS0θE[ζ(t)
2] and so c̈(t) =

√
πS0θ ζ(t). This results in the input matrix

G =









0√
πS0θ

0
0









. (8)



If we introduce an augmented mass matrix,

M =









0 0 0 0
0 Cs 0 0
0 0 0 0
0 0 0 Cv









, (9)

then we can express the power absorbed by the coupled system in a similar fashion to [2], which gives

P = (1/2)Tr[MGGT], (10)

where Tr is the trace of the resultant matrix. Therefore

P = (1/2)Tr









0 0 0 0
0 πS0θCs 0 0
0 0 0 0
0 0 0 0









, (11)

which in this case leads to the following expression for the maximum power absorbed by the pyroelectric
system

P =
πS0θCs

2
. (12)

2.1 Numerical simulation of the pyroelectric system

In order to verify the analytical results, a numerical simulation of the system was carried out. The system
described by Eqs. (4) and (5) was excited by a fluctuating temperature gradient, such as that shown in
Fig. 1. The results in Fig. 2, show that the absorbed by the system increases linearly with Cs the thermal
capacitance. The numerical results for the power absorbed match the power bound predicted by Eq. (12).
Also included in the figure is total power dissipated. This is the sum of the power dissipated by the resistor
and as entropy through the thermal resistance. Since the power dissipated can never exceed the power
absorbed, the total power lost by the system is limited by Eq. 12.

The parameter values used in the simulation are S0θ = 2 × 10−3π−1 ◦K2/s; Cv = 1 × 10−6 F ; Rv =
1×106Ω; p = 1×10−10 Rs = 1×106 ◦K2/W ; and Cs was varied between 1×10−2J/◦K2 and 1×10−4J/◦K2.
In the thermal simulation, the expression for the power absorbed from the varying temperature gradient is

P = E[Csc̈ θ̇] (13)

and the amount of power that is dissipated is given by

P = E[R−1

s θ̇2] + E[R−1

v u̇2]. (14)

3 Deriving a power bound for a multi-source electro-mechanical

system

Now that we have found the state equations for a pyroelectric system, we can combine these with the
equations for a piezoelectric system. In this way, we can derive a power-bound for a system driven by both
thermal and mechanical energy. This will also allow us to examine a system with multiple outputs rather
than a single output.

We will consider a system in which a single piece of dielectric material—displaying both pyroelectric
and piezoelectric effects—experiences both varying mechanical displacement and fluctuating thermal gradi-
ents. This dielectric material is then connected to a simple resistor-capacitor (RC) circuit, representing the
harvesting circuitry. The system can be described using the following system of coupled equations

mÿ + γẏ + ky + du̇ = −mb̈, (15)

Csθ̈ +Rsθ̇ − pu̇ = Csc̈ (16)
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Figure 1: A 0.1s sample of the time history of the stochastically varying input temperature gradient c

Cvü+ (R−1

v + p2C−1

s )u̇− pRsC
−1

s θ̇ − dẏ = 0. (17)

where Eq. (15) represents a mechanical system with mass m, damping coefficient γ and stiffness k. These
equations were derived in a similar fashion to Eqs. (5) and (4).

This system is being driven not only by vibration, but also by some form of stochastically varying
temperature difference. Since these equations represent a dielectric system, there is an piezoelectric elec-
tromechanical coupling term d and a pyroelectric thermoelectrical coupling term p. Therefore thermal energy
into the system can either remain as thermal energy, or convert into electrical or mechanical energy. The
same goes for any mechanical energy into the system. The flow of energy in the system is demonstrated in
Fig. 3.

Energy in the system can be dissipated through mechanical damping or as entropy or dissipated through
the resistor. The amount of energy dissipated in each case is determined by the damping coefficient γ,
the thermal resistance Rs, or the electrical resistance Rv, respectively. In this system, we consider that
the resistor and other circuitry are separated from the dielectric material. This means that heat dissipated
through the resistor can be considered lost to the environment and does not feed back into the thermal
system. We also consider that the mechanical damping dissipates energy is such a fashion that this is also
completely lost to the environment.

It is assumed that both the motion of the base, b, and the fluctuation of the temperature gradient, c,
can be approximated as stationary white-noise processes, such that

E[b̈(t)b̈(t+ τ)] = πS0xδ(τ), (18)

E[c̈(t)c̈(t+ τ)] = πS0θδ(τ). (19)

The separate coupled Eqs. (15), (16) and (17), can be combined using generalised state-space variable
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Figure 2: The solid line (orange) shows the linear increase in power from increasing thermal capacitance,
where the power spectral density of the fluctuating temperature S0θ and other system parameters are held
constant. It can be seen that the power absorbed (marked by crosses) from the stochastically varying
temperature gradient c is equal to the total power dissipated by the system (marked by circles)
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Figure 3: A schematic of the system showing arrows into the dashed box representing energy absorbed by
the system from both vibrations and fluctuating temperatures. Energy is transferred within the system via
the piezoelectric and pyroelectric effect. Arrows out of the system (dashed box) represent energy dissipated
through the damping, and electrical and thermal resistance



x to describe the displacement y, the temperature gradient θ and voltage u where

x =

















y
ẏ
θ

θ̇
u
u̇

















. (20)

The new equation describing the state of the coupled system and the outputs then becomes

ẋ = Ax +Gζ(t), (21)

where the coefficients for the state-space variables are

A =

















0 1 0 0 0 0
−m−1k −m−1γ 0 0 0 −m−1d

0 0 0 1 0 0
0 0 0 −pC−1

s Rs 0 −C−1

s

0 0 0 0 0 1
0 pC−1

v d 0 C−1

v C−1

s Rs 0 −p2C−1

v (R−1

v + C−1

s )

















(22)

and the input matrix

G =

















0
−
√
πS0x

0√
πS0θ

0
0

















. (23)

Again we can introduce an augmented mass matrix

M =

















0 0 0 0 0 0
0 m 0 0 0 0
0 0 0 0 0 0
0 0 0 Cs 0 0
0 0 0 0 0 0
0 0 0 0 0 Cv

















. (24)

Using this augmented matrix M, we can express the power absorbed by the coupled system in a similar
way to that derived previously

P = (1/2)Tr[MGGT], (25)

where Tr is the trace of the resultant matrix. Therefore

P = (1/2)Tr

















0 0 0 0 0 0
0 πS0xm 0 0 0 0
0 0 0 0 0 0
0 0 0 πS0θCv 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, (26)

which in this case leads to the following expression for the combined maximum power

P =
πS0xm

2
+

πS0θCv

2
. (27)

This theoretical limit for a system with multiple sources appears to be the sum of Eqs. (1) and (12), which
describe the thermal power bound and the mechanical power bound respectively.



4 Conclusion

The aim of this paper was to explore devices which utilise multiple sources of energy in order to improve
output. Upper limits on the power that a harvester could absorb were used as it provides a measure with
which to benchmark devices. If the upper limit of a theoretical device that harvests from multiple sources
is greater than that for a single source, then it represents a potential improvement. In order to compare
the upper limits for a multi-source harvester, it was necessary to find limits for different energy types. In
this case, a limit on the amount of thermal energy that could be harvested using the pyroelectric effect was
found. This showed that the same theoretical framework used to find the limit for a mechanical harvester
could be extended to different types of harvester. Once the limit for a pyroelectric harvester had been
found, the expression was validated using a numerical simulation. The equations of state for a system with
inputs from multiple sources were then derived. This system used both the piezoelectric and the pyroelectric
effect in combination. This allowed for both mechanical and thermal energy to be converted into electrical
energy. A similar state-space analysis was carried out on these equations. This combined system was found
to have an upper limit on the power absorbed that was the sum of the power-bounds for the mechanical
and thermal systems individually. This demonstrates that there is more power available to this type of
multi-source harvester than the single source harvesters.

It is believed that this theoretical framework can be extended to harvesters of other forms of energy, so
that the maximum possible power available in a given environment can be quantified. As a result it would
be possible to make a systematic comparison of which combination of energy sources would provide the most
potential power in a given system.
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