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The Journal of Immunology

Hif-1a–Induced Expression of Il-1b Protects against

Mycobacterial Infection in Zebrafish

Nikolay V. Ogryzko,*,† Amy Lewis,*,‡ Heather L. Wilson,‡ Annemarie H. Meijer,x

Stephen A. Renshaw,*,‡ and Philip M. Elks*,‡

Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tu-

berculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In

this study we use an Il-1b fluorescent transgenic line to show that there is an early innate immune proinflammatory response to

well-established zebrafish models of inflammation and Mycobacterium marinum infection. We demonstrate that host-derived

hypoxia signaling, mediated by the Hif-1a transcription factor, can prime macrophages with increased levels of Il-1b in the

absence of infection, upregulating neutrophil antimicrobial NO production, leading to greater protection against infection. Our

data link Hif-1a to proinflammatory macrophage Il-1b transcription in vivo during early mycobacterial infection and importantly

highlight a host protective mechanism, via antimicrobial NO, that decreases disease outcomes and that could be targeted ther-

apeutically to stimulate the innate immune response to better deal with infections. The Journal of Immunology, 2019, 202: 494–

502.

P
ulmonary tuberculosis (TB) is a major world health

problem caused by the bacillus Mycobacterium tuber-

culosis (1). It is a current priority for infectious disease

research because of increasing rates of multi- and totally drug–

resistant strains causing high levels of mortality, especially in the

immunocompromised (2). Mycobacteria are specialized at evading

killing mechanisms of the immune system to survive. Mycobacteria

and immune cells create a highly organized niche, called the

granuloma, in which M. tuberculosis can proliferate or enter a

latent phase, protected from the immune system (3, 4). In human

M. tuberculosis infection, bacteria first encounter cells of the in-

nate immune system in and around the lungs, either macrophages

in the alveolar space or neutrophils in the surrounding capillary

vasculature, before the involvement of adaptive immunity and

granuloma formation (5, 6). These initial phagocytosis events are

followed by the attraction of other innate immune cells which

signal to draining lymph nodes to activate the adaptive immune

response, signs of which only become apparent 3–8 weeks post-

infection in humans (6). Although granuloma formation is rea-

sonably well characterized, the initial interactions of the bacteria

with the host innate immune cells are less well defined in vivo.

M. tuberculosis, like many other bacterial and pathogenic mi-

crobes, triggers a proinflammatory immune response via the ac-

tivation of TLRs (7). The activation of the innate immune cells via

TLR signaling is a critical early host response to many invading

pathogens for successful clearance of infection, and, in the ab-

sence of TLR signaling, mycobacteria grow unchecked to cause

systemic infection (8). Although mycobacteria can hijack host

leukocytes to create a niche for their growth, in zebrafish models,

many of the initial M. marinum inoculum are neutralized by

macrophages and neutrophils before infection can take hold

(9, 10). Early mycobacterial interaction with host leukocytes is

critical for the pathogen, and manipulation of the macrophage by

the bacteria is required for establishment of a permissive niche in

which the bacteria can grow and build its host-derived protective

structure, the granuloma (11, 12). Indeed, the control of the

macrophage by M. marinum may happen early in infection, as

there is a phase of infection from 6 h to 1 d postinfection (dpi) in

the zebrafish model that is characterized by a dampening of the

cytokine transcriptional response (13). Greater understanding of

the diverse phenotype of macrophages immediately postinfection

may allow therapeutic tuning to provide maximal early control of

mycobacteria during infection (14, 15). Recent studies in optically

translucent zebrafish infection models have indicated that initial

interactions between M. marinum and macrophages and neutro-

phils are more complex than originally thought, with successive

rounds of bacterial internalization and leukocyte cell death lead-

ing to granuloma formation (9, 16, 17). The immune molecular
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mechanisms involved in these early processes are poorly

understood.

We have previously demonstrated in a zebrafish/M. marinum

model of TB that the initial immune response to infection can be

enhanced by stabilizing host-derived hypoxia-inducible factor-1 a

(Hif-1a), leading to reduced bacterial burden (18). Hif-1a is a

major transcriptional regulator of the cellular response to hypoxia,

which has been implicated in the activation of macrophages and

neutrophils during infection and inflammatory processes (19, 20).

Stabilization of Hif-1a in zebrafish upregulated proinflammatory

neutrophil NO production, leading to lower mycobacterial burden

(18, 21). The mechanisms by which proinflammatory cytokines

associated with this NO increase are regulated by Hif-1a signaling

is not known.

Il-1b is a critical macrophage-derived activator of immune cells

with wide-ranging and complex effects on immune signaling and

downstream pathways. Il-1b has been shown to be upregulated in

the onset and formation of M. marinum and M. tuberculosis

granulomas (22–24). We hypothesized that Il-1b would be acti-

vated in specific immune cell populations early in M. marinum

infection (within 1 dpi, pregranuloma formation) and that Hif-1a

acts via altered expression of this important proinflammatory

mediator to confer protection against mycobacterial infection. In

this study, using the zebrafish M. marinum model and fluorescent

transgenic lines, we show that il-1b is transcriptionally upregu-

lated in macrophages early during in vivo infection. Stabilization

of Hif-1a upregulates il-1b transcription in macrophages in the

absence of infection. il-1b signaling is required for protective

NO production by neutrophils and a subsequent decrease in in-

fection. Our data indicate that protective Hif-1a mediated NO is

at least partially regulated by the key proinflammatory mediator

Il-1b, increasing our understanding of the mechanism of action

of the potential therapeutic target, Hif-1a, as a host-derived

factor in TB.

Materials and Methods
Zebrafish and bacterial strains

Zebrafish were raised and maintained on a 14:10 h light/dark cycle at 28˚C,
according to standard protocols (25), in U.K. Home Office–approved fa-
cilities at The Bateson Centre aquaria at the University of Sheffield. Strains
used were Nacre (wild type), Tg(mpeg1:mCherry-F)ump2Tg, TgBAC(il-
1b:eGFP)sh445, Tg(mpeg1:mCherryCAAX)sh378, Tg(phd3:EGFP)i144,
and Tg(lyz:Ds-RED2)nz50 (26–30).

M. marinum infection experiments were performed using
M. marinum M (no. BAA-535; ATCC) containing a psMT3-mCherry or
psMT3 mCrimson vector (31). Injection inoculum was prepared from
an overnight liquid culture in the log-phase of growth resuspended in
2% polyvinylpyrrolidone (PVP) 40 solution (Calbiochem) as previ-
ously described (32). One hundred to one hundred and fifty CFU
were injected into the caudal vein at 28–30 h postfertilization (hpf) as
previously described (33).

Generation of TgBAC(il-1b:GFP)sh445 transgenic and

il-1bSH446/il-1bSH446 mutant zebrafish

An eGFP SV40 polyadenylation cassette was inserted at the il-1b ATG start
site of the zebrafish bacterial artificial chromosome (BAC) CH-211-
147h23 using established protocols (34). Inverted Tol2 elements were
inserted into the chloramphenicol coding sequence, and the resulting
modified BAC was used to generate TgBAC(il-1b:eGFP)sh445.

il-1
2/2 (il-1bSH446

/il-1b
SH446) mutant embryos were generated by

CRISPR–Cas9 mediated mutagenesis targeted around an Mwo1 restriction site in
the third exon of il-1b using the method described by Hruscha et al. (35) and the
template sequence 59-AAAGCACCGACTCGGTGCCACTTTTTCAAGTTGA-
TAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACTGAG-
CATGTCCAGCACCTCGGCTATAGTGAGTCGTATTACGC-39 (il-1b target
sequence in bold). PCR with il-1gF 59-TAAGGAAAAACTCACTTC-39 and
il-1gF 59-ATACGTGGACATGCTGAA-39 and subsequent Mwo1 digestion were
used for genotyping.

Morpholino knockdown of il-1b

The il-1b morpholino (Gene Tools) was used as previously reported (36). A
standard control morpholino (Gene Tools) was used as a negative control.
RT-PCR of il-1b was performed on embryos at 2 and 5 d postfertilization
(dpf), as previously described (36). The following primers were used: il-1b,
accession number NM_212844 (https://www.ncbi.nlm.nih.gov/nuccore/NM_
212844.2), forward primer: 59-ATGGCATGCGGGCAATATGAA-39, re-
verse primer: 59-CACTTCACGCTCTTGGATGA-39; ppia1 control, acces-
sion number AY391451 (https://www.ncbi.nlm.nih.gov/nuccore/AY391451),
forward primer: 59-ACACTGAAACACGGAGGCAAG-39, reverse primer:
59-CATCCACAACCTTCCCGAACAC-39.

Confocal microscopy of transgenic larvae

1 and 4 dpi, transgenic zebrafish larvae infected with fluorescent
M. marinum strains were mounted in 0.8–1% low melting point agarose
(Sigma-Aldrich) and imaged on a Leica TCS SPE confocal on an
inverted Leica DMi8 base and imaged using 203 or 403 objective
lenses.

For quantification purposes, acquisition settings and area of imaging
(in the caudal vein region) were kept the same across groups. Corrected total
cell fluorescence was calculated for each immune-stained cell using Image J
as previously described (18, 21).

Tailfin transection

Inflammation was induced in zebrafish embryos by tail transection at 2 or 3
dpf as described previously (34). Embryos were anesthetized by immersion
in 0.168 mg/ml Tricaine (Sigma-Aldrich), and tail transection was per-
formed using a microscalpel (World Precision Instruments).

Quantitative PCR of il-1b

SYBR Green quantitative PCR (qPCR) was performed on 1dpiM. marinum

infected (or PVP control) embryos as previously described (37). The fol-
lowing primers were used: il-1b, accession number NM_212844 (https://
www.ncbi.nlm.nih.gov/nuccore/NM_212844.2), forward primer: 59-
GAACAGAATGAAGCACATCAAACC-39, reverse primer: 59-ACGG-
CACTGAATCCACCAC-39; ppia1 control, accession number AY391451
(https://www.ncbi.nlm.nih.gov/nuccore/AY391451), forward primer: 59-
ACACTGAAACACGGAGGCAAG-39, reverse primer: 59-CATCCA-
CAACCTTCCCGAACAC-39.

Bacterial pixel count

M. marinum mCherry–infected zebrafish larvae were imaged at 4 dpi on an
inverted Leica DMi8 with a 2.53 objective lens. Brightfield and fluores-
cent images were captured using a Hamamatsu OrcaV4 camera. Bacterial
burden was assessed using dedicated pixel counting software as previously
described (38).

RNA injections

Embryos were injected with dominant hif-1ab variant RNA at the one-cell
stage as previously described (20). hif-1a variants used were dominant
active (DA) and dominant negative (DN) hif-1a (ZFIN: hif1ab). Phenol red
(PR) (Sigma-Aldrich) was used as a vehicle control.

Hydroxylase inhibitors

Embryos were treated from 32 hpf until 2 dpf by addition to the embryo
water, and DMSO was used as a negative solvent control. The pan hy-
droxylase inhibitor, dimethyloxaloylglycine (DMOG; Enzo Life Sciences),
was used at a 100-mM concentration by incubation in E3 embryo media as
previously described (20). The selective PHD inhibitor JNJ-402041935
(Cayman Chemicals) was used at 100 mM (39).

Hypoxia incubation of embryos

Embryos were incubated in 5% oxygen (with 5% carbon dioxide) in a
hypoxia hood (SCI-tive UM-027; Baker Ruskinn) from 32 h postinfection
for 6 or 16 h and were imaged at 2 dpf. Embryos from the same clutch kept
in incubated normoxic room air were used as controls.

Anti-nitrotyrosine Ab staining

Larvae were fixed in 4% paraformaldehyde in PBS overnight at 4˚C, and
nitrotyrosine levels were immune labeled using a rabbit polyclonal anti-
nitrotyrosine Ab (06-284; Merck Millipore) and were detected using an
Alexa Fluor–conjugated secondary Ab (Invitrogen Life Technologies) as
previously described (18, 21).
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Statistical analysis

All data were analyzed (Prism 7.0, GraphPad Software) using unpaired,
two-tailed t tests for comparisons between two groups and one-way
ANOVA (with Bonferroni posttest adjustment) for other data. The p val-
ues shown are *p , 0.05, **p , 0.01, and ***p , 0.001.

Results
il-1b:GFP is upregulated in macrophages during early and

later stage M. marinum infection

Early M. marinum infection in zebrafish is characterized by a

period of increased proinflammatory signaling (9, 13). Levels of

proinflammatory cytokines have only been previously studied at

a transcriptional level in whole embryos or FACS-sorted cells

rather than detecting levels in situ, over time, in an intact or-

ganism (13). We hypothesized that Il-1b is a major proin-

flammatory cytokine that would be upregulated by both

mycobacterial infection and Hif-1a stabilization. We have pre-

viously shown upregulation of il-1b message after induction of

inflammation via tailfin transection by qPCR and wholemount in

situ hybridization (WISH) in the zebrafish (40). il-1b is one of

the most readily detectable proinflammatory cytokines during

early granuloma stages of M. marinum infection and at 1 dpi

(Fig. 1A) (37). At 1 dpi, transcription is upregulated 1.7-fold

measured by qPCR, compared with PVP injection controls

(Fig. 1A). Macrophage expression of il-1b is greatly underrep-

resented when measured in this way on the whole-body level

because of the small proportion of cells that contribute to the

immune lineage. Therefore, to investigate il-1b expression on a

cellular level in vivo, we developed a BAC-derived il-1b pro-

moter–driven GFP line, TgBAC(il-1b:GFP)SH445, to assess il-1b

expression in real time during mycobacterial infection. We

sought to examine il-1b:GFP expression in our well-established

inflammation assay before investigating its expression during

mycobacterial infection. WISH of il-1b and il-1b:GFP does not

exhibit any immune cell expression under basal conditions

(Supplemental Fig. 1A, 1B, Fig. 1B). il-1b:GFP recapitulates

il-1b WISH expression in response to tail transection, with

upregulation observed in cells in and around the caudal he-

matopoietic region, consistent with immune cell expression

(Supplemental Fig. 1A, 1B) (40), although, as expected, the

synthesis of GFP occurs over a longer timescale than that of

il-1b mRNA detected by WISH. Neutrophils are the first cells

to respond to tailfin transection with increased il-1b:GFP, with

fluorescence first observed at 1 h postwounding (hpw) and still

present at 6 hpw (Supplemental Fig. 1C). Having demonstrated

that the il-1b:GFP is responsive to inflammation in similar cells

over a similar timespan as the in situ hybridization, we sought to

investigate its regulation during mycobacterial infection.

We used the TgBAC(il-1b:GFP)sh445 line to show that GFP is

expressed in cells proximal to M. marinum infection sites at

pregranuloma phases (1 dpi) (Fig. 1B) and in larval granulomas

(4 dpi) (Fig. 1C). Many of these cells contained M. marinum and

had the appearance of activated immune cells with a dynamic

branched phenotype (Fig. 1B, Supplemental Video 1). The earliest

timepoint at which il-1b:GFP could be detected by confocal

microscopy was between 6 and 8 h postinfection, (Fig. 2A),

consistent with rapid transcriptional activation of the il-1b pro-

moter postinfection and similar to the timing of macrophage il-1b:

GFP expression after tailfin transection (Fig. 2B). il-1b:GFP was

predominantly upregulated in infected macrophages at 1 dpi (Fig.

2C), consistent with their containment of phagocytosed M. mar-

inum (Fig. 1B). These data demonstrate that during early stages of

infection, il-1b is transcriptionally activated in infected macro-

phages as part of an early proinflammatory response.

FIGURE 1. TgBAC(il-1b:GFP)sh445 is upregu-

lated by M. marinum (Mm) in infected macro-

phages at early and later stage infection. (A) Graph

showing relative whole-body il-1b mRNA expres-

sion in whole embryos by SYBR Green qPCR in

M. marinum infected 1 dpi larvae and mock-injected

(PVP) controls. Data shown are mean 6 SEM (n = 3

independent experiments). *p , 0.05. (B) Fluores-

cent confocal micrographs of 1 dpi larvae, prior to

granuloma formation. Unchallenged TgBAC(il-1b:

GFP)sh445 has no detectable expression in immune

cells and low detectable levels in the yolk (dotted

line) and some muscle cells. il-1b expression was

detected by GFP levels, in green, using the TgBAC(il-

1:eGFP)sh445 transgenic line. M. marinum mCherry

is shown in the red channel. Increased levels of il-1b:

GFP expression were detectable in cells associated

with infection. Infected macrophages with il-1b-

GFP levels have an activated, branched phenotype

(white arrowheads). (C) Fluorescent confocal mi-

crographs of 4-dpi larvae. il-1b expression was de-

tected by GFP levels, in green, using the TgBAC(il-1:

eGFP)sh445 transgenic line.M. marinum mCherry is

shown in the red channel. Increased levels of il-1b:

GFP expression were detectable in immune cells that

are in the blood vessels [(Ci) and blown up in (Ciii),

blood vessel indicated by solid white lines] and in

early tissue granulomas [(Cii) and blown up in (Civ)].

496 HIF-1a–INDUCED il-1b PROTECTS AGAINST TB

 by guest on M
arch 18, 2019

http://w
w

w
.jim

m
unol.org/

D
ow

nloaded from
 

http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1801139/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1801139/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1801139/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1801139/-/DCSupplemental
http://www.jimmunol.org/


Stabilization of Hif-1a upregulates il-1b:GFP at early stages

of infection

We have previously shown that stabilization of Hif-1a induces

neutrophil proinflammatory NO production (18, 21). We hypoth-

esized that this may be a part of an increased proinflammatory

profile in innate immune cells; therefore, we tested whether

Hif-1a is upregulating a proinflammatory program in the absence

of infection using the il-1b:GFP transgenic line. DA Hif-1a sig-

nificantly increased il-1b:GFP expression in the absence of

M. marinum infection at 2 dpf, whereas DN Hif-1a caused no

difference in il-1b:GFP expression (Fig. 3A, 3B).

To assess whether stabilization of physiological levels of Hif-1a

is sufficient to induce il-1b:GFP expression in the absence of

M. marinum infection, embryos were treated with the hydroxylase

inhibitors DMOG and JNJ-402041935 (20, 39). Hydroxylase in-

hibitors stabilize endogenously produced levels of Hif-1a by

blocking hydroxylation by the PHD and FIH hydroxylase en-

zymes. Both hydroxylase inhibitors increased il-1b:GFP in the

absence of infection (Fig. 3C, 3D) to a similar extent as that ob-

served with DA Hif-1a (Fig. 3A, 3B). Finally, to understand

whether a physiological stimulus could also induce il-1b:GFP

expression, zebrafish were incubated in physiological hypoxia.

The lowest level of oxygen zebrafish embryos tolerate without

developing abnormally is 5% oxygen (and 5% carbon dioxide)

(26). To demonstrate that this level of hypoxia activated Hif-1a,

two time periods were tested in the Tg(phd3:EGFP)i144 trans-

genic line. We have previously demonstrated that phd3 is a major

downstream target of hypoxia in zebrafish embryos and that this

transgenic line accurately reports Hif-1a activation (26). Incuba-

tion in 5% oxygen overnight (for 16 h) mimicked the time period

used for the hydroxylase inhibitors and robustly activated phd3:

GFP (Supplemental Fig. 2A, 2C); however, due to the effects of

limiting oxygen on other pathways (including metabolomic

pathways), the zebrafish at 2 dpf were developmentally delayed

(denoted by smaller eyes and less pigment). Five percent oxygen

incubation for a shorter 6-h period was sufficient to activate

phd3:GFP by 2 dpf without any overt developmental delay

(Supplemental Fig. 2A, 2B). Both time periods of 5% oxygen

incubation were sufficient to increase levels of il-1b:GFP in the

absence of infection to a similar extent to both hydroxylase in-

hibition and DA Hif-1a (Fig. 3E, 3F).

Together, these data indicate that il-1b expression is part of a

proinflammatory response to increased Hif-1a levels that could

aid the host response to M. marinum challenge.

Inhibition of il-1b increases M. marinum burden and inhibits

the Hif-1a NO response

IL-1b is a major proinflammatory cytokine that in many infections

is instrumental in coordinating the immune response (41, 42). We

sought to test whether Il-1b was important in early M. marinum

infection. When functional Il-1b was blocked using a well-

characterized and validated il-1b morpholino (Supplemental

Fig. 3A), the morphants showed significantly increased infection

compared with control morphants (Fig. 4A, 4B).

We have previously shown that stabilization of Hif-1a induces

proinflammatory neutrophil NO production, via inducible NO

synthase (iNOS) (18, 21). DA Hif-1a was not sufficient to reduce

M. marinum infection levels when il-1b expression was blocked

(Fig. 4A, 4B), suggesting that the il-1b response to M. marinum

infection is critical to control infection. These results were sup-

ported by generation of an il-1b null mutant (il-1bSH446/il-1bSH446)

FIGURE 2. il-1b:GFP is activated 6–8 h after

challenge in macrophages. (A) Fluorescent confocal

micrographs of a time lapse between 6 and 8 h post

M. marinum infection. M. marinum mCherry is shown

in the red channel and il-1b:GFP is shown in the green

channel, with the microscope settings set to detect low

GFP levels. Arrowheads indicate the emergence of

il-1b:GFP expression in an infected cell. (B) Fluores-

cent confocal micrographs of TgBAC(il-1b:GFP)sh445

crossed to Tg(mpeg1:mCherryCAAX)sh378 line labeling

macrophages. The tailfin was transected at 3 dpf,

and fluorescence imaging was performed at the

wound at 1 hpw and 6 hpw. Red macrophages are

not positive for il-1b:GFP expression at 1 hpw, and

the first detectable il-1b:GFP expression is found in

the macrophages at 6 hpw. (C) Fluorescent confocal

micrographs of 1 dpi caudal vein region of infection.

il-1b expression was detected by GFP levels, in green,

using the TgBAC(il-1b:eGFP)sh445 transgenic line.

Macrophages are shown in red using a Tg(mpeg1:

mCherryCAAX)sh378 line. M. marinum Crimson is

shown in the blue channel (right panels) with a PVP

control (left panels). Without infection there is little

overlap of il-1b:GFP and mpeg:mCherry, whereas in

infected larvae macrophages have higher levels of

il-1b:GFP. Arrowheads indicate infected macrophages

with high levels of il-1b:GFP. Dotted lines indicate the

yolk extension of the larvae where there is nonspecific

fluorescence.
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(Supplemental Fig. 3B–E) in which DA Hif-1a also did not

decrease infection, whereas in wild type siblings, infection was

reduced (Fig. 4C, 4D).

NO production is found primarily in neutrophils after

M. marinum infection in zebrafish larvae (Supplemental Fig. 4)

(18, 21). We have previously demonstrated that inhibiting pro-

duction of NO by Nos2 can block the antimicrobial effect of DA

Hif-1a (18). Blocking Il-1b production also significantly

dampened the neutrophil NO response after M. marinum infec-

tion at 1 dpi (Fig. 5A, 5B). As we have previously observed,

DA Hif-1a upregulated NO in the absence of infection

(PVP), an effect that is dampened by introduction of the bacteria

(M. marinum) through currently unknown mechanisms, (Fig. 5C, 5D)

(18). In this study, we find that il-1b morpholino blocked the in-

creased production of nitrotyrosine by DA Hif-1a in the absence

of bacteria (PVP) (Fig. 5C, 5D). These results show that Hif-1a

activation of Nos2 may, at least in part, be acting through il-1b

activation (Fig. 6) and hint at a much more complex regulation

of proinflammatory signaling by Hif-1a than simply acting on

Hif-responsive elements in the promoter of Nos2.

Discussion
Antimicrobial resistance is a rising problem in TB infections

worldwide, and there is an urgent need to understand the regulation

of host immunity by TB so that we can target host-derived factors to

help tackle disease. Our data identify an early proinflammatory

FIGURE 3. il-1b:GFP is upregulated in the absence of infection by stabilized Hif-1a. (A) Fluorescent confocal micrographs of 1 dpi caudal vein region

of infection. il-1b:GFP expression was detected by GFP levels, in green, using the TgBAC(il-1b:eGFP)sh445 transgenic line. Larvae were injected at the

one-cell stage with DN or DA Hif-1a or PR control. Noninfected larvae are in the left panels (PVP), and M. marinum Crimson infected larvae are in the

right panels (M. marinum). Dotted lines indicate the yolk extension of the larvae where there is nonspecific fluorescence. (B) Corrected fluorescence

intensity levels of il-1b:GFP confocal z-stacks in uninfected larvae (PVP, empty bars) and infected larvae (M. marinum, filled bars) at 1 dpi. DA Hif-1a

(DA1) had significantly increased il-1b:GFP levels in the absence of M. marinum bacterial challenge compared with PR and DN Hif-1a (DN1)–injected

controls. Data shown are mean 6 SEM (n = 24–48 cells from four to eight embryos representative of three independent experiments). (C) Fluorescent

confocal micrographs of 2 dpf caudal vein region in the absence of infection. il-1b:GFP expression was detected by GFP levels, in green, using the TgBAC

(il-1b:eGFP)sh445 transgenic line. Larvae were treated with hypoxia mimetics (hydroxylase inhibitors) DMOG and JNJ42041935 or solvent control

(DMSO). Dotted lines indicate the yolk extension of the larvae where there is nonspecific fluorescence. (D) Corrected fluorescence intensity levels of il-1b:

GFP confocal z-stacks in uninfected larvae at 2 dpf after treatment with DMOG and JNJ42041935 or solvent control (DMSO). Data shown are mean 6

SEM (n = 108 cells from 18 embryos accumulated from three independent experiments). (E) Fluorescent confocal micrographs of 2 dpf caudal vein region

in the absence of infection. il-1b:GFP expression was detected by GFP levels, in green, using the TgBAC(il-1b:eGFP)sh445 transgenic line. Larvae were

raised in 5% oxygen (hypoxia) for 6 h (6 h 5%) or 16 h (16 h 5%) at 32 hpf and imaged at 48 hpf. Dotted lines indicate the yolk extension of the larvae

where there is nonspecific fluorescence. (F) Corrected fluorescence intensity levels of il-1b:GFP confocal z-stacks in uninfected larvae at 2dpf after

treatment with DMOG and JNJ42041935 or solvent control (DMSO). Data shown are mean 6 SEM (n = 108 cells from 18 embryos accumulated from

three independent experiments). **p , 0.01, ***p , 0.001.
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response, involving macrophage il-1b expression, that is important

for the onset of early disease but ultimately fails to control in-

fection leading to granuloma formation. Using a well-established

zebrafish M. marinum model of TB, we show that manipulation of

Hif-1a can stimulate this proinflammatory network, aiding the

host fight against infection and moving toward early clearance of

infection. Specifically, we identify that Hif-1a–driven Il-1b con-

tributes to the NO response, a response we have previously shown

to be host protective (18, 21).

In this study, we took advantage of a novel transgenic zebrafish

line to understand the dynamics and cell specificity of il-1b pro-

duction in inflammation and mycobacterial infection, with a focus

on the understudied early stages (,1dpi) of the innate immune

response to TB infection. We confirmed that the il-1b:GFP ex-

pression of our line was faithful to il-1b transcription by following

its expression in a well-characterized tailfin transection model of

inflammation and comparison with in situ hybridization data (40,

34). Furthermore, the expression pattern of our BAC transgenic

line closely matches another recently published BAC promoter–

driven il-1b transgenic (43). The il-1b:GFP line also displayed

some GFP signal in muscle and epithelial cells in the tail. Similar

GFP expression can be seen when driven by NF-kB response el-

ements (44) but not by WISH, suggesting that this might be off-

target expression resulting from the promoter region missing some

negative regulatory elements; however, it could also be specific

expression that is at too low a level to be detectable by in situ

hybridization. Although previous studies have shown il-1b:GFP

to be upregulated in leukocytes at a tailfin transection (43), we

combined the il-1b:GFP line with leukocyte-specific transgenics

to show that neutrophils are the first to respond at the wound, with

macrophages both migrating to and upregulating il-1b:GFP at

later timepoints.

The M. tuberculosis granuloma is widely studied, both in terms

of immunohistochemistry of human granulomas and in mamma-

lian models (45–47). These studies have demonstrated that the

granuloma is rich in proinflammatory cytokine production and can

have necrotic centers that may be hypoxic. This proinflammatory

environment has been observed in human TB, with Il-1b found to

be in high levels in pleural fluid from TB patients with granulomas

present (48). In our study, we observe that the proinflammatory

response is present at pregranuloma stages. Lack of a proin-

flammatory response has been linked to poor treatment outcomes,

indicating that this host response is important even in the presence

of antimycobacterial agents (49). The upregulation of proin-

flammatory cytokines in mycobacterial infection has also been

shown in the zebrafish/M. marinum larval model of TB granulo-

mas, but previous studies have mainly relied on immunohisto-

chemistry and/or transcriptomics data from either whole-body

larvae or FACS-sorted immune cell populations (13, 27). Using

live cell imaging, we found that il-1b transcription was upregu-

lated at the granuloma formation stage; however, we also dem-

onstrated that it is upregulated before the granuloma stage within

6–8 h postinfection. Upon infection, il-1b:GFP expression was

predominantly upregulated in infected macrophages, indicating

that within the first 24 h of infection, there is a macrophage

proinflammatory response. Murine and human cell studies have

indicated that macrophages are able to produce Il-1b a few hours

after mycobacterial challenge, indicating that an early response is

also present in mammalian systems, at least on a cellular level (22,

50). Our observations are in line with our previous observation of

Hif-1a signaling early postinfection (detected using a phd3:GFP

transgenic line), which was also observed in infected macrophages

at 1 dpi (18), indicating that il-1b, alongside Hif-1a signaling, is

part of an immediate proinflammatory macrophage response. This

Hif-1a activation was shown to be transient, with M. marinum

rapidly downregulating this in a live bacteria–dependent manner.

Of note, we have previously shown that suppressing this transient

early Hif-1a signal does not affect the outcome of infection, and

this observation was replicated in the study, indicating that this

natural, early Hif-1a stabilization is not sufficient to control in-

fection (18). As with Hif-1a, our Il-1b data indicate that

M. marinum–triggered il-1b is not sufficient to control infection

FIGURE 4. il-1b knockdown abrogates the pro-

tective effect of DA Hif-1a on bacterial burden.

(A) Stereo-fluorescence micrographs of M. marinum

mCherry infected 4 dpi larvae after injection with DA

Hif-1a (DA1) and the il-1b morpholino (Il-1b MO),

using the standard control morpholino and PR (Con-

trol) as a negative control. (B) Bacterial burden of

larvae shown in (A). Data shown are mean 6 SEM

(n = 46–50 as accumulated from three independent

experiments). (C) Stereo-fluorescence micrographs of

M. marinum mCherry infected 4 dpi larvae after in-

jection with DA Hif-1a (DA1) or PR (negative control)

in an il-1b mutant (2/2) and WT (sibling +/+)

background. (D) Bacterial burden of larvae shown

in (C). Data shown are mean 6 SEM (n = 16–20 as

accumulated from three independent experiments).

*p , 0.05.
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with subsequent widespread granuloma formation at later stages;

however, if primed with high il-1b and NO via Hif-1a, the im-

mune response is boosted, leading to lower infection and toward

early infection clearance.

We have previously demonstrated that stabilization of Hif-1a

can aid the zebrafish host to control M. marinum infection, at least

in part by priming neutrophils with increased nitrotyrosine gen-

erated by the Nos2 enzyme (18). If the Nos2 enzyme is blocked

either pharmacologically or genetically, the protective effect of

Hif-1a stabilization is lost (18). In our study, we show that sta-

bilization of Hif-1a upregulates proinflammatory macrophage

il-1b expression in the absence of an infection challenge. If Il-1b

FIGURE 5. il-1b knockdown abrogates DA Hif-1a–dependent nitrotyrosine production. (A) Example fluorescence confocal z-stacks of the caudal vein region of

embryos stained with Alexa Fluor 633–labeled anti-nitrotyrosine Ab (red), imaged at 1 dpi in the presence or absence of M. marinum infection. One-cell stage

embryos were injected with PR. One-cell stage embryos we coinjected with il-1b morpholino or (il-1b MO) or standard control morpholino (Cont MO). At 1 dpi,

larvae were infected with eitherM. marinummCherry (M. marinum) or PVP as a noninfected control (M. marinum channel not shown in these panels). (B) Example

fluorescence confocal z-stacks of the caudal vein region of embryos stained with Alexa Fluor 633–labeled anti-nitrotyrosine Ab (red), imaged at 1 dpi in the

presence or absence ofM. marinum infection. One-cell stage embryos were injected with DA Hif-1a. One-cell stage embryos we coinjected with il-1b morpholino

(il-1b MO) or standard control morpholino (Cont MO). At 1 dpi, larvae were infected with either M. marinum mCherry (M. marinum) or PVP as a noninfected

control (M. marinum channel not shown in these panels). (C) Corrected fluorescence intensity levels of anti-nitrotyrosine Ab confocal z-stacks of PR control injected

embryos in the presence or absence of M. marinum infection at 1 dpi. Control morpholino is shown in the clear bars and il-1b morpholino (il-1b MO) in the filled

bars. Data shown are mean6 SEM (n = 54–59 cells from 10 to 12 embryos accumulated from three independent experiments). (D) Corrected fluorescence intensity

levels of anti-nitrotyrosine Ab confocal z-stacks of DA Hif-1a (DA1) injected embryos in the presence or absence of M. marinum infection at 1dpi. Control

morpholino is shown in the clear bars, and il-1b morpholino (il-1b MO) is shown in the filled bars. Data shown are mean 6 SEM (n = 54–59 cells from 10 to 12

embryos accumulated from three independent experiments). ***p , 0.001.

FIGURE 6. Hif-1a stabilization leads to upregula-

tion of il-1b and increased neutrophil NO production

that is protective against infection. During normal

(control) M. marinum infection, Hif-1a, Il-1b, and NO

transcript levels rise postinfection but are not sufficient

to control infection (18). When Hif-1a is stabilized, Il-

1b and subsequent neutrophil NO upregulation occurs

in the absence of infection, priming the immune re-

sponse to better deal with infection leading to lower

burden.
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activity is repressed then Hif-1a induced reduction in bacterial

burden is abrogated, alongside the Hif-1a–dependent increase in

NO production. These data show regulation of both Nos2 and

Il-1b by Hif-1a and that Hif-1a–driven NO production is partially

dependent on Il-1b induction. Both human NOS-2 and IL-1b

have HIF-responsive elements in their promoters, and direct

regulation by HIF-a signaling has been previously demonstrated

in vitro (51, 52). The link between HIF-1a and IL-1b has been

previously demonstrated in murine macrophages via inflamma-

tory activation by succinate, in the absence of infection (53). In a

murine model of M. tuberculosis, it was found that HIF-1a is

critical for IFN-g–dependent control of M. tuberculosis infec-

tion, but it has not previously been demonstrated that HIF-1a is

important for innate defense of macrophages against M. tuber-

culosis (54). Our data do not rule out direct regulation of Nos2

by Hif-1a, as blocking Il-1b is likely to have wider spread im-

mune effects; however, they do suggest that Nos2 is partially

upregulated by Il-1b in the stabilized Hif-1a context. These

observations, alongside our finding that blocking Il-1b, primarily

observed in macrophages, can block Hif-1a–induced neutrophil

nitrotyrosine production, indicate a close interplay between

macrophages and neutrophils during early mycobacterial infec-

tion that is not yet fully understood.

Il-1b is an important proinflammatory component and is one of

the cytokines that has been shown to be transcriptionally de-

pressed during the 6 h to 1 dpi period of M. marinum/zebrafish

pathogenesis (13). Although this depression was not detectable

using the il-1b:GFP line, presumably owing to the early tran-

scriptional response postinfection coupled with the stability of the

GFP protein, our data indicate that increased il-1b transcription

due to Hif-1a stabilization during this early stage of M. marinum

infection is protective to the host. Alongside transcription, the

processing of Il-1b by caspases plays a crucial role in immune cell

pyroptosis mediated by the inflammasome (54). Recent findings in

the M. marinum/zebrafish model indicate that neutrophils and

macrophages can efficiently phagocytose bacteria and undergo

rounds of cell death and reuptake during the initial days of in-

fection (9). Although in this study we show a role for early

proinflammatory il-1b transcription during M. marinum infection,

the role of Il-1b processing and inflammasome induced

pyroptosis/cell death in these earlyM. marinum immune processes

remain undetermined.

In conclusion, our data demonstrate an early proinflammatory

response of M. marinum–infected macrophages in vivo. By sta-

bilizing Hif-1a, macrophage Il-1b can be primed in the absence of

infection and is protective upon M. marinum infection via neu-

trophil NO production. Therapeutic strategies targeting these

signaling mechanisms could decrease the level of initial myco-

bacteria in patients and act to block the development of active TB

by reactivation of macrophage proinflammatory stimuli. Further-

more, our findings may have important implications in other

human infectious diseases in which the pathogen is able to cir-

cumvent the proinflammatory immune response to allow its sur-

vival and proliferation. Therapies that target host-derived

signaling pathways such as these would be beneficial against

multidrug resistant strains and could act to shorten the currently

long antibiotic therapies required to clear TB from patients.
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