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Abstract 9 

Solvent-based post-combustion carbon capture (PCC) is currently the most promising method to reduce CO2 emission. To achieve a plant-wide 10 
controller for flexible operation, it is necessary to develop a data-driven model to understand the dynamic characteristics of PCC plant. This paper 11 
aims to: (i) carry out system identification to develop a data-driven model and (ii) provide insights into the nonlinear dynamics among the key 12 
variables from the PCC process in a wide operating range. These key variables include: CO2 capture rate, reboiler temperature, condenser 13 
temperature and lean solvent temperature. Pilot-scale PCC process implemented in gCCS was used to generate simulation data for system 14 
identification and model comparison. Linear single-input-single-output (SISO) transfer function models were firstly developed at different capture 15 
rates. Open loop step tests on identified models were then introduced to report the dynamics of key variables in various operating conditions and 16 
to indicate the level of system nonlinearity graphically. The nonlinearity analysis was carried out to investigate the system nonlinearity distribution 17 
in a quantitative manner. Based on the nonlinearity analysis, a multi-input-multi-output (MIMO) piece-wise model was proposed to simulate the 18 
nonlinear characteristics of PCC plant. The piece-wise model shows a satisfactory agreement with gCCS simulation data. Results of this study 19 
successfully demonstrate the nonlinear behavior of the solvent-based PCC process, which can be applied in the design of flexible plant-wide 20 
controllers. 21 
 22 
Keywords: Post-combustion carbon capture; Solvent-based carbon capture; System identification; Piece-wise model; Nonlinearity analysis 23 

1. Introduction 24 

1.1 Background 25 

Global warming has increasingly drawn public attention. Extensive research has been performed to combat this trend. The 26 

Intergovernmental Panel on Climate Change (IPCC) stated that CO2 contributed to about 50% of the increasing temperature in the 27 

earth surface among all the greenhouse gas [1]. Most of the CO2 emissions originate from combustion of fossil fuels in large-scale 28 

power plants. For the near future, it is necessary to take measures to reduce CO2 emission from these sources since fossil fuel is 29 

still attractive to meet future energy demands due to its rich availability, large energy density and low cost [1].  30 

Among all the approaches, solvent-based PCC technology is viewed as the most mature option for existing power plants [3]. It 31 

offers advantages over other capture technologies because of high selectivity and pure CO2 stream collection [3]. It can also be 32 

retrofitted as an end-of-pipe solution.  33 

In the past decades, research efforts have been devoted to understanding the intricate nature of this carbon capture process. 34 

Solvent regeneration is energy intensive and it requires a lot of steam extracted from power plants. Given its high energy 35 

requirement, the solvent regeneration process will reduce the overall power plant efficiency significantly [4]. It is therefore 36 

important to minimize the energy demand and make more steam available for power generation [5]. However, it is still a matter of 37 

concern to find a trade-off to balance CO2 removal rate and energy cost under the time-varying economic conditions. In this regard, 38 

there is a need to develop a flexible plant-wide control structure in order to achieve optimal performance in the presence of 39 

disturbance, load-changing and other scenarios. The nonlinear dynamic characteristics of PCC process need to be analyzed to 40 

provide information for the advanced controller’s design. 41 

1.2 Motivation 42 

To study the dynamics of solvent-based PCC plant, several first-principle models have been developed (Lawal et al [5, 6, 7] ). 43 

These models have been proven to be able to closely predict the real process. A number of carbon capture pilot plants are now 44 



available worldwide to provide steady-state or dynamic validation data (Dugas [8], Biliyok et al [9]). Nevertheless, it is clear that 45 

the simulation with first-principle models is computationally demanding. This makes controller design based on first-principle 46 

models difficult. Therefore, it is necessary to use a data-driven black-box identification method to serve as an alternative. On the 47 

other hand, most of the studies for PCC plant are focused on the linear models developed at a fixed operating point. Under varying 48 

operating conditions, the transient behavior of PCC plant will change and it would be difficult for linear models to simulate the 49 

nonlinear features. The linear model’s failure to capture the nonlinear dynamics of the PCC plant will deteriorate the control 50 

performance. In order to develop a model predictive controller for wide-range capture rate change, Wu et al [10] proposed a simple 51 

nonlinear distribution analysis for solvent-based PCC plant. However, since multi-variable model is used in the analysis, the 52 

nonlinearity for a certain input-output loop cannot be revealed in detail. Motivated by these shortcomings, an investigation was 53 

carried out to further understand the operational features of a PCC plant over a wide range of operating conditions, and to identify 54 

possible control difficulties which may arise.  55 

1.3 Aim of the study and main novel contributions 56 

This study aims to identify a plant-wide black-box model based on piece-wise linear identification method. There are two major 57 

novelties in this paper: 58 

 A fuzzy-based piece-wise model which can approximate the nonlinear dynamic features of a PCC process from 50% - 95% 59 

capture rate is achieved at a fixed power plant load. This model can be used for the plant-wide controller design. 60 

 Detailed nonlinear characteristics of key variables in PCC process are researched quantitatively. These key variables include: 61 

CO2 capture rate, reboiler temperature, condenser temperature and lean solvent temperature. 62 

1.4 Outline  63 

The paper is organized as follows: Section 2 presents the available literature review on modelling and identification of PCC 64 

process. Section 3 generates the simulation data of solvent-based PCC process in gCCS platform and uses these data to identify 65 

linear local SISO system models from 50% to 95% capture rate. In Section 4, a critical sensitivity analysis is performed by 66 

introducing step changes in the input variables. Nonlinearity degree analysis is carried out in Section 5. Section 6 presents the 67 

MIMO fuzzy-based piece-wise model. Conclusions are drawn in Section 7.  68 

2. Literature review 69 

Mass transfer and chemical reaction are two key factors to consider in modelling solvent-based PCC process. To describe the 70 

mass transfer process, two approaches are usually used in most studies: the equilibrium-based approach and the rate-based approach. 71 

In Lawal et al [6], a critical comparative evaluation showed that a rate-based model gives better agreement with experimental data. 72 

To date, many studies on dynamic modelling have been implemented. In Kvanstal et al [11], a dynamic model of standalone 73 

absorber column in rate-based modelling approach was presented. This model was simulated in two load-varying cases, namely, 74 

start-up and load-reduction, to evaluate the operability of absorber. In Ziaii et al [12], a standalone stripper model was built in 75 

Aspen Customer modelling environment. Dynamic simulation was carried out to run the stripper flexibly during the period of high 76 

electricity demand and price.  77 

However, the limitation of the aforementioned publications is that stand-alone model cannot represent the whole PCC process 78 

due to the intricate nature with regard to high nonlinearity and process interactions. Therefore, a dynamic model considered 79 

interacted units is significant to combine them together as a whole plant. Lawal et al [5] presented a dynamic model including 80 

absorber, stripper and recycle. Based on a comparative assessment, the whole process model gives more accurate results in 81 

predicting temperature profile than standalone columns. In their follow-up work [7], a scaled-up integrated model to industrial size 82 

of a 500 MW coal-fired subcritical power plant was made available. This work gave a preliminary technical evaluation of integrated 83 

PCC process and power plant. Due to lack of experimental data, dynamic validation is very rare. Biliyok et al [9] presented data at 84 

transient scenarios for dynamic model validation. In the same paper, dynamic process analysis proved that mass transfer is the 85 

major factor which limits CO2 absorption.  86 

First-principle model provides the advantage to realize accurate simulation, as well as understanding the underlying dynamics 87 



of the process. Nevertheless, as stated previously, first-principle model is computational intensive and it is hard to realize. Thus, 88 

carrying out black-box identification has emerged as an attractive alternative to first-principle dynamic modelling.  89 

Arce et al [13] used MatlabTM identification toolbox (Ljung [14]) to obtain a linear model for solvent regeneration process. This 90 

model was composed of a first-order linear discrete transfer function with a sampling time of 200 ms. However, a first-order model 91 

cannot mimic the dynamic features compared with a higher order model. For capturing nonlinear characteristics, Manaf et al [15] 92 

employed a multivariable nonlinear autoregressive with exogenous input (NARX) model. To reduce computational demand, 93 

identified model for absorber, rich/lean heat exchanger and stripper were acquired separately and united as a 4-input-3-output PCC 94 

model. The distinguished contribution of [15] is that the rich/lean heat exchanger, a major investment and operating penalty unit 95 

[16], was considered in the modelling. However, this paper did not provide available control structure to operate heat exchanger.  96 

Li et al [17] presented a bootstrap aggregated neural approach to build a multiple-inputs-single-output (MISO) dynamic model. 97 

Results showed its superiority in predicting capture level compared with conventional neural networks. One-step-ahead and multi-98 

step-ahead prediction were used as the neural network input. It was found that one-step-ahead prediction is more accurate, because 99 

the prediction errors were accumulated every sampling time in a multi-step-head prediction and this would increase the prediction 100 

error at the following sampling time.  101 

In data-driven modelling of a nonlinear system, the most typical way is to use polynomial functions to approximate the 102 

nonlinearity [18]. But the model order resulted from the polynomial function is always high, especially for a complicated industrial 103 

process. It is not always easy to solve these equations analytically. There is another option for nonlinear approximation which uses 104 

piece-wise-linear (PL) functions. PL functions aim to approximate the nonlinear features by a combination of linear pieces. In 105 

general, the nonlinear model produced by a serial of linear models is expected to result in an easier implementation, theoretical 106 

analysis and calculation [19]. The proposed work tries to use a piece-wise modelling method to simulate the real PCC process, and 107 

also to investigate the nonlinear features. 108 

3. Process description and local model identification 109 

3.1. Process description 110 

gCCS simulation software was developed based on gPROMS modelling platform to support simulation and design of power 111 

plants, carbon capture, transport and storage [20]. It was developed by Process Systems Enterprise (PSE) Ltd in London and it is 112 

commercially available. As shown in Fig. 1, a pilot-scale dynamic model of solvent-based PCC process is implemented in gCCS 113 

environment. Process model used in gCCS is based on the detailed dynamic model in Lawal et al [5]. The equipment parameters 114 

are kept the same at all the simulation scenarios. To validate the identified models in this manuscript, dynamic experimental data 115 

is not available in the current publications, the simulation data from gCCS was therefore used for model identification and 116 

comparison. 117 

The working process of the considered solvent-based PCC plant is as follows: flue gas from a power plant or an industrial 118 

process is firstly cooled down to 40-50oC for a higher absorption performance, then it is fed into the bottom of absorber and comes 119 

in contact with lean MEA solvent counter-currently. CO2 is absorbed chemically and the treated gas leaves from the top side of 120 

absorber. Rich (CO2 concentration amine) solvent from the bottom of absorber is then pumped into the cross-heat exchanger and 121 

preheated by hot lean (CO2 concentration amine) solvent before entering the stripper. Low-pressure steam from power plants is 122 

used in the reboiler. As a result of heat, the chemical bonds are thermally broken, releasing CO2. The operational temperature of 123 

the reboiler needs to be maintained within 383-393k to avoid amine degradation [21]. The vapor from the top of stripper is 124 

condensed and separated in the condenser, water and amine are then refluxed back to stripper. Finally, the lean amine solution from 125 

the reboiler is cooled in the cross-heat exchanger by exchanging heat with rich CO2 concentration amine before returning to 126 

absorber. In general, a buffer tank containing a cooling coil is needed to keep water and MEA balance, as well as maintaining lean 127 

solvent temperature.  128 

 129 

 130 

 131 

 132 



 133 

Fig 1. Model topology in gCCS 134 

 135 

The next step in this section is to select the manipulated and controlled variables. Lean solvent flowrate and steam flowrate are 136 

the key variables influencing the characteristics of PCC plant. The control structures between lean solvent flowrate/steam flowrate 137 

and capture rate/reboiler temperature are mostly discussed in previous studies [22, 23]. Moreover, this study considers the effects 138 

of condenser temperature and lean solvent temperature since they are closely related to the operation of PCC plant. Condenser 139 

temperature is related to the purity of CO2 product [24]. Therefore, for a higher concentration of CO2 product, it is necessary to 140 

maintain low condenser temperature since this has the benefit of reducing compression costs. Aroonwilas and Tontiwachwuthikul 141 

[25] reported that an increase in lean solvent temperature (at the Absorber top inlet) from 298K to 309K can lead to the increase 142 

of CO2 absorption ability. Beyond 309K, a further increase in the temperature to 318K may result in a reduction of overall mass 143 

transfer coefficients. Therefore, lean solvent temperature is a vital parameter to be controlled for the best absorption performance. 144 

For this reason, this paper mainly studies the dynamic characteristics of these key variables. As listed in Table 1, the lean solvent 145 

flow rate to absorber (u1), steam flowrate to reboiler (u2), cooling water flowrate to condenser (u3) and cooling water flowrate to 146 

cooler (u4) are taken as 4 major manipulated variables, while capture rate (y1), reboiler temperature (lean solvent side) (y2), 147 

condenser temperature(y3) and lean solvent temperature(y4) are corresponding controlled variables.  148 

Table 1. Steady-state controlled values 149 

 Manipulated variables Controlled variables Setpoint 

Control loop 1 Lean solvent flowrate Capture rate / 

Control loop 2 Steam flowrate Reboiler temperature 383 K 

Control loop 3 Cooling water flowrate to condenser Condenser temperature 313.15 K 

Control loop 4 Cooling water flowrate to cooler Lean solvent temperature 313 K 

3.2. Steady-state values 150 

  This section carries out the steady-state analysis on these key variables. The steady-state values will provide preliminary 151 

information on the steady-state features of PCC plant.  152 

In this paper, capture rate is used as scheduling variable and to determine operating condition of PCC plant. This is due to its 153 

inherent nature of indicating the fulfillment of carbon absorption requirement in terms of environmental protection. Under this 154 

control circumstance (in Table 1), capture rate is varied in large scale while reboiler temperature, condenser temperature and lean 155 

solvent temperature are remained constant. Therefore, capture rate can be used to reveal the variation of working conditions for 156 

PCC plant and it is an important variable to be considered. 157 

Reboiler 

Absorber 

Stripper 

Buffer tank 

Condenser 
Lean solvent cooler 

Heat exchanger 



Steady-state simulations are carried out by adjusting capture rate setpoint from 50% to 95% in intervals of 5%. All the 158 

manipulated and controlled variables are collected in Table 2 and plotted in Fig. 2. From the figure, it can be observed that all the 159 

manipulated variables show an upward trend with increasing capture rate. Lean solvent flowrate and steam flowrate are 160 

approximately proportional to the capture rate, while cooling water flowrate to cooler experiences a sharp increase when capture 161 

rate reaches 90%. The cooling water flowrate to the condenser increases gradually until it reaches 90% capture rate. Above 90% 162 

capture rate, the flowrate starts to decline.  163 

Table 2. Steady-state manipulated values 164 

MVs Lean solvent flow rate 

(kg/s) 

Steam flowrate 

(kg/s) 

Cooling water flowrate 

to condenser (kg/s) 

Cooling water flowrate 

to cooler (kg/s)  

50% capture rate 0.70801 0.0368226 0.162656 0.4388 

55% capture rate 0.78350 0.0421757 0.166775 0.5239 

60% capture rate 0.85924 0.0477303 0.170163 0.6234 

65% capture rate 0.93545 0.0534870 0.172964 0.8099 

70% capture rate 1.01332 0.0595083 0.175292 0.9964 

75% capture rate 1.09216 0.0657443 0.177172 1.2504 

80% capture rate 1.17361 0.0722941 0.178686 1.6191 

85% capture rate 1.25718 0.0791476 0.179722 2.2229 

90% capture rate 1.34627 0.0865317 0.180230 3.4151 

95% capture rate 1.45123 0.0952342 0.179464 7.5704 

 165 

Fig. 2 Steady-state manipulated values 166 

From Table 2 and Fig. 2, we can have a preliminary understanding on how these inputs will change at different capture rates. A 167 

quantitative analysis of the process requires the identification of system models to provide dynamic parameter information, such 168 

as time constant and settling time. 169 

3.3. Local model identification 170 

At different capture rates (50%, 60%, 70%, 80%, 90%, 95% capture rate), local models between manipulated variables and 171 

controlled variables (As listed in Tables 1) are obtained using System Identification Toolbox in MATLAB [14]. SISO transfer 172 

function is selected as the model type because it is simple in identification and convenience in model analysis.  173 

Such an identification technique utilizes input-output data to estimate mathematical model. The information provided by the 174 

input-output data will influence the accuracy of the identified model. Considering the large time constant of PCC process, low 175 

frequency pseudo-random binary sequence (PRBS) signal with a sampling time of 5 secs is designed as input to persistently excite 176 

the PCC system and provide enough information. An example of PRBS excitation data in lean solvent flowrate (u1) at 90% capture 177 

rate is given in Fig. 3.  178 



To generate data for identification, the PCC process is in open loop. The input perturbation is applied to each input channel 179 

individually. All the identification and comparison data are generated in the gCCS modelling software. Before performing 180 

identification, all the data are pre-treated to remove mean value, outliers and noise. Singular value decomposition (SVD) on the 181 

Hankel matrix constructed from input-output data is conducted to estimate the model order [26]. A total number of 16 transfer 182 

functions (4 inputs by 4 outputs) are identified at every capture rate. The details of the identified model are available in the Appendix.  183 

 184 

Fig.3. Excitation data of lean solvent flowrate at 90% capture rate 185 

 186 

Fig. 4. Comparison of lean solvent flowrate – capture rate model at 50% capture rate 187 

 188 

Fig. 5. Comparison of condenser cooling water flowrate – condenser temperature model at 70% capture rate 189 



 190 

Fig. 6. Comparison of cooler cooling water flowrate – reboiler temperature model at 90% capture rate 191 

Step response tests are introduced to compare the identified local models with simulation data. As shown in Figs. 4-6, the local 192 

models are in satisfactory agreement with the simulation data from gCCS software. However, due to the space limits, only 3 models 193 

at 50%, 70% and 90% capture rate are chosen as examples. All the remaining models also give good results when compared with 194 

corresponding simulation data. 195 

4. Open-loop step response analysis  196 

  Based on the identified local models in Section 3.3, open-loop step response tests are carried out under 50%, 60%, 70%, 80%, 197 

90% and 95% capture rates for the major variables listed in Table 1. This study can provide the dynamic information of these 198 

variables, such as time constant and settling time. Besides, the step response test can inherently reveal how the input influences the 199 

corresponding output under varying operating conditions. This can enhance the understanding of nonlinear dynamic characteristics 200 

of PCC plant in a qualitative manner. 201 

 A relative variation of input οu with a fixed value of 0.1 is performed in every scenario. The relative input οu is expressed in 202 

Equation (1).  203 

u u
u

u


                                              (1) 204 

where u denotes the absolute value introduced to input channel while ݑത  denotes the steady-state values in different capture rates. 205 

Likewise, the model output is treated in the same way. The relative variations of outputs are depicted in Figs. 7-10.  206 

All the step response curves are presented in the same benchmark in order to make reasonable performance comparison. To run 207 

the simulation, only one input is varied and the others remain constant.  208 

4.1. Step changes in lean solvent flowrate 209 

Using lean solvent flowrate to regulate capture rate is the most typical control option. It offers the advantage of faster response 210 

and lower overshoot [27]. To gain insight into the transient behaviors of this loop, a relative step change ο u with a positive 211 

amplitude of 0.1 is introduced to the lean solvent flowrate in the step time of 1000 secs. The relative output responses are displayed 212 

in Fig. 7. It can be observed that capture rate increases sharply at the start of simulation for all cases, revealing the instant influence 213 

of step change. Simultaneously, the solvent lean loading (mol CO2 /mol MEA) also increases, leading to the decrease of capture 214 

rate after 1300 secs. Therefore, final value of the capture rate is lower than its initial value. This shows a typical non-minimum 215 

phase feature, which may lead to the fluctuation of manipulated variable and it may also deteriorate control performance. Therefore, 216 

an advanced control technique, e.g. pole assignment method, is advised to deal with this problem. Besides, the model time constants 217 

at different capture rates are almost the same. Steady-state gains decrease with the increase of capture rate up to 90%, while the 218 

gain in 95% capture rate has a sudden increase.  219 



 220 

Fig. 7. Relative capture rate with the step change in lean solvent flowrate 221 

4.2. Step changes in reboiler steam flowrate 222 

Reboiler temperature is an important parameter which plays a key role in MEA regeneration process. It is regarded as the 223 

indicator of lean loading [23], which in turn reflects water makeup and capture rate controls. In this section, investigation of the 224 

effect of a positive increase in reboiler heat duty is carried out. The required reboiler heat duty is supplied from the low-pressure 225 

steam turbine in power plant. A relative increase of 0.1 in the steam flowrate is implemented in a relatively short period of time. 226 

Consequently, these is a significant increase in reboiler temperature, as observed in Fig. 8. The perturbations’ amplitude raises 227 

gradually with increasing capture rate. It appears a relatively smooth change in the output response.  228 

4.3. Step changes in cooling water flowrate to condenser 229 

Condenser temperature is inversely related to the CO2 purity [24]. Changing the flowrate of cooling water provides a potential 230 

option for the manipulation of the system. In this section, the open-loop performance of the condenser is investigated by increasing 231 

the flowrate of cooling water passing through the condenser. The process was simulated over a period of 50000 secs with a relative 232 

increase of 0.1 in the step time of 1000 secs. As shown in Fig. 9, condenser temperature reaches steady state after 40000 secs or 233 

10 hrs, which indicates a very large inertia in the condenser. Furthermore, with decreasing capture rate, the settling time in 234 

condenser increases. Under this circumstance, condenser temperature will not be easily affected by other manipulated variables 235 

due to its large time constant. 236 

4.4. Step changes in cooling water flowrate to cooler 237 

  According to [25], lean solvent temperature will affect the overall mass transfer coefficients of absorber column. Therefore, lean 238 

solvent temperature needs to be controlled for the higher absorption performance. In this paper, we used a counter-current heat 239 

exchanger (As shown in Fig. 1) to maintain lean solvent temperature. This may reduce the system ability to resist disturbances in 240 

lean solvent flowrate, but the time necessary for controlling lean solvent temperature can be reduced, since it doesn’t have massive 241 

liquid storage. Fig. 10 shows the output response in the presence of step change in the flowrate of cooling water entering the cooler. 242 

The amplitude of a relative step change in flowrate of cooling water is 0.1. It can be observed that the cooling water flowrate has 243 

an instant influence on the lean solvent temperature. This is due to the large heat transfer coefficient and heat transfer area in the 244 

cooler. After that, the lean solvent temperature decreases gradually, this is influenced by the decrease in reboiler temperature. On 245 

the other hand, the model in 50% capture rate has the highest steady state gains and longest settling time. With the increase of 246 

capture rate, these two parameters decrease dramatically. Preliminary results can be obtained to indicate a much stronger 247 

nonlinearity in the cooler compared with other mentioned units.   248 

 249 



 250 

Fig. 8. Relative reboiler temperature with the step change in steam flowrate 251 

 252 

 253 

Fig. 9. Relative condenser temperature with the step change in cooling water flowrate to condenser 254 

 255 

 256 

Fig 10. Relative lean solvent temperature with the step change in cooling water flowrate to cooler 257 



4.5. Sensitivity analysis 258 

A sensitivity analysis is carried out using the input variable perturbation method. This analysis provides a quantitative evaluation 259 

of outputs relating to possible changes in input variables. The relative input data along with their sensitivity index (relative outputs) 260 

are portrayed in Table 3. Sensitivity analysis can provide information in the process dynamics and are able to calculate process 261 

gains. According to the results, there is an inverse correlation between lean solvent flowrate (u1) and capture rate (y1). A similar 262 

correlation can be found between condenser cooling water flowrate (u3) and condenser temperature (y3) as well as cooler cooling 263 

water flowrate (u4) and lean solvent temperature (y4). u1 has a strong effect to its corresponding output y1, while u2, u3, u4 are much 264 

less influential towards their outputs (y2, y3, y4). This indicates that the controller gain designed for u1-y1 model should be smaller 265 

than those in u2-y2, u3-y3 and u4-y4 models. Furthermore, the sensitivity index changes with the variation of capture rates. Indexes 266 

of models in u1-y1, u2-y2 and u3-y3 loops has a narrow change at different capture rates, while the index in u4-y4 loop varies rapidly. 267 

This supports the nonlinearity analysis obtained in Section 5.1.  268 

 Table 3. Sensitivity analysis of 4 SISO models 269 

Inputs(ui) Step changes 
Sensitivity Index (Output ȏyi) 

ȏyi(50%) ȏyi(60%) ȏyi(70%) ȏyi(80%) ȏyi(90%) ȏyi(95%)  

ȏu1 10% -0.1729 -0.1966 -0.2178 -0.2355 -0.2447 -0.2360 ȏy1 

ȏu2 10% 0.0077 0.0086 0.0097 0.0106 0.0123 0.0147 ȏy2 

ȏu3 10% -0.0359 -0.0321 -0.0291 -0.0261 -0.0231 -0.0219 ȏy3 

ȏu4 10% -0.0065 -0.0054 --0.0039 -0.0026 -0.0013 -0.00063 ȏy4 

5. Nonlinearity analysis 270 

With variation in operating conditions, dynamic characteristics of solvent-based PCC plant may change and exhibit an inherent 271 

nonlinearity. Using the local models developed in Section 3.3, this section provides a nonlinearity analysis based on gap metric to 272 

quantify the nonlinearity degree of PCC process (as modelled in gCCS). Compared with [10], this paper put more key variables 273 

(As listed in Table 1) in consideration to investigate their nonlinear characteristics in a quantitative manner. Nonlinearity 274 

measurement is also carried out in SISO model to reveal the relationship between input and output variables at varying capture 275 

rates. These discussions set this section apart from the similar work in [10]. 276 

  The notion of gap to measure distance between nonlinear system was explained in Zams and El-Sakkary [28]. In the same paper, 277 

gap metric was firstly introduced to capture the uncertainty in feedback system. Later it was found that gap metric is more suitable 278 

to measure the distance between two linear systems than using a norm-based metric calculation [29]. This section is to use a 279 

differential gap metric defined in [30] to measure the distance between two linear models. The method used in [30] is more 280 

applicable and feasible in real process. The gap metric is defined by Equation (2): 281 

 1 2 1 2 2 1( , ) max ( , ), ( , )d d dN N N N N N                                (2) 282 

where: 283 

1 2
21

1 2 1 2( , )=supinf ( , )d d r rrr
N N L N L N   284 

1 2 1 21 2
1 2 ( ) ( )( , )=

r rd r r G L N G L NL N L N   ௥೔ܮ 285  ௜ܰ  represents the linear approximation model of ௜ܰ  at the point of ݎ௜  and L denotes linearization. ȫ  represents the 286 

rectangular projection and G is the subspace of the product Hilbert space. SISO transfer functions will be used in Section 5.1 and 287 

MIMO transfer function matrix will be used in Section 5.2.  288 

 289 

 290 



5.1. Nonlinearity analysis of SISO system 291 

  Due to space limits, only the nonlinear evaluation of models in 4 major control loops (as listed in Table 1) is presented in this 292 

section. From the results displayed in Fig. 11, it is clear that nonlinearity degrees for lean solvent flowrate (u1) - capture rate (y1), 293 

steam flowrate (u2) – reboiler temperature (y2), condenser cooling water flowrate (u3) – condenser temperature (y3) models are very 294 

small, while the degree for cooler cooling water flowrate (u4) – lean solvent flowrate (y4) model is very large compared with the 295 

other 3 models. 296 

This demonstrates that the nonlinearities of models in u1-y1, u2-y2, u3-y3 control loops are weak and evenly distributed within the 297 

50%-95% capture rate operating range. The models in these 3 loops are close to the models in their adjacent working condition. 298 

However, the disparity in model output results (with same inputs) between low and high working conditions (e.g. 50% capture rate 299 

and 90% capture rate) can be very large. The u4-y4 model shows a strong nonlinear behavior with varying working conditions. The 300 

results obtained in this section are in consistent with the open-loop step response tests in Figs. 7-10.  301 

 302 

 303 

Fig 11. Nonlinearity degree of SISO system  304 

5.2. Nonlinearity analysis of MIMO system 305 

  In this section, a nonlinear gap measurement of MIMO system is attempted to discover the nonlinear characteristics of the overall 306 

system. The 4-input-4-output system is expressed in Equation (3), where gij denotes the transfer function model in the loop from 307 

uj to yi. Details of transfer function gij can be found in the Appendix.  308 
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                            (3) 310 

The results of nonlinear evaluations of System 1 are portrayed in Fig. 12. From this figure, the nonlinearity degree is very large 311 

in any two adjacent load conditions. This may be due to the strong nonlinear properties in the model of u4-y4 loop. This reveals that 312 

the controller tuned for a certain capture rate (e.g. 90% capture rate) can only function in the vicinity of the mentioned capture rate. 313 

The control performance may deteriorate if this tuned controller is used for much lower capture rates scenario. 314 

According to the open-loop step response test and nonlinearity analysis, PCC plant exhibits strong nonlinearity at varying capture 315 

rates. This indicates that the linear local models are not sufficiently enough to simulate the nonlinear dynamic characteristics. Given 316 

this context, it is necessary to develop a piece-wise model by a combination of linear local model in order to predict the nonlinear 317 

features of PCC process. Using more local models to develop such a piece-wise model will give more accurate prediction results 318 
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[19]. However, this will also increase the complexity in model implementation and calculation. Considering its evenly distributed 319 

nonlinearity of MIMO system, the local models in 50%, 60%, 70%, 80%, 90% and 95% capture rate are therefore selected to form 320 

the piece-wise model. 321 

 322 

Fig. 12. Nonlinearity degree of MIMO system 323 

6. Piece-wise model and model comparison 324 

6.1. Fuzzy-based piece-wise model 325 

According to the open-loop step response test and nonlinearity analysis of PCC process in the previous sections, the model 326 

dynamic characteristics differ significantly with varying capture rates. To this end, the identified models in Section 3.3 are selected 327 

to develop the piece-wise model in order to predict the nonlinear characteristics of PCC process. The unification of the local linear 328 

models is based on the concept of fuzzy sets theory [31]. This makes the fuzzy model simpler in application.  329 

In this section, the Takagi and Sugeno (TS) fuzzy modelling method [32] is adopted to combine the local linear models. The 330 

first step is to determine the fuzzy variables and their working range. Capture rate is used as scheduling variable. Owing to the 331 

targets to carry out in this study, capture rate is studied from 50% to 95%. In Fig. 13, a six-rule fuzzy triangular membership 332 

function of lean solvent flowrate – capture rate model is given as an example.  333 
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Fig. 13. Membership functions of lean solvent flowrate – capture rate model 335 

 336 

With the membership function, the output of piece-wise model can be derived from Equation (4): 337 
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                  (4) 338 

where hi(mfj) denotes the triangular weighting functions and yj denotes the output of local transfer function in the j th capture rate. 339 

hi(mfj) can be obtained from the triangular functions in Figure. 13 and ȭhi(mfj) equals to 1. 340 

Simulink was used to develop the fuzzy-based piece-wise model. The details of the model structures are described in Fig. 14. 341 

The models of other control loops, e.g. steam flowrate to reboiler temperature model, condenser cooling water flowrate to 342 

condenser temperature model and cooler cooling water flowrate to lean solvent temperature model, can be obtained in the same 343 

manner. 344 

0

0.15

0.3

0.45

0.6

0.75

50%-60% 60%-70% 70%-80% 80%-90% 90%-95%



 345 

Fig. 14. The piece-wise lean solvent flowrate – capture rate model in Simulink workspace 346 

6.2. Model comparison 347 

In this section, the proposed piece-wise models are compared with local linear models and simulation data in the wide-range 348 

variation of capture rates. The significance of this comparison is to demonstrate the accuracy of developed piece-wise model in 349 

predicting performance of solvent-based PCC plant at different operating conditions.  350 

Due to space limits, the piece-wise models in main 4 control loops (in Table 1) are presented as examples. For simplicity, 4 351 

scenarios are presented in this section, which include: 352 

 The piece-wise lean solvent flowrate to capture rate model is compared with local model (developed at 90% capture rate) 353 

and simulation data (collected around 92.5% capture rate).  354 

 The piece-wise steam flowrate to reboiler temperature model is compared with local model (developed at 70% capture rate) 355 

and simulation data (collected around 75% capture rate). 356 

 The piece-wise condenser cooling water flowrate to condenser temperature model is compared with local model (developed 357 

at 60% capture rate) and simulation data (collected around 65% capture rate).  358 

 The piece-wise cooler cooling water flowrate to lean solvent temperature model is compared with local model (developed 359 

at 50% capture rate) and simulation data (collected around 55% capture rate).   360 

Local models were identified for a given set of capture rates (in Section 3.3) and then combined to obtain the piece-wise models 361 

(in Section 6.1). The piece-wise models are compared with simulation data from other capture rates different from the given set. 362 

Therefore, the validity of the piece-wise model in simulating the performance of PCC plant at varying operating conditions is 363 

proven.  364 

The comparison results are given in Figs. 15-18. As shown in Fig. 15 and Fig. 18, it is clear that the piece-wise models are in 365 

good agreement with simulation data and are more accurate compared to local models. The results indicate a high level of 366 

divergence between piecewise and the local models. However, the disparity between piecewise and the local model in Fig. 15 is 367 

much narrow in comparison to the result in Fig. 18. This reveals a much stronger nonlinearity in cooler. A local linear model is not 368 

enough to simulate the nonlinear features of cooler unit. 369 

Nevertheless, from Fig. 16-17, it is obvious that the output results of the local models are close to those of the piece-wise models. 370 

This is due to the weak nonlinear effects of reboiler and condenser on the process of the PCC plant. The weakness of their nonlinear 371 

effects can be demonstrated by their large time constant, which slows down the variation of dynamic feature with the changing of 372 

input variables. This means that the number of local linear models for piece-wise combination can be reduced.  373 

In conclusion, the proposed fuzzy-based piece-wise model can satisfactorily simulate the dynamic characteristics of PCC plant 374 

over a wide range of operating conditions. The comparisons in these figures reveal strong nonlinearity in cooler, while much weaker 375 

nonlinearities in reboiler and condenser. These results are in in consistent with the conclusion displayed in Fig. 11. 376 



   377 

Fig. 15. Comparison of piece-wise lean solvent flowrate – capture rate model around 92.5% capture rate 378 

 379 

 380 

Fig. 16. Comparison of piece-wise steam flowrate – reboiler temperature model around 75% capture rate 381 

 382 

 383 

Fig. 17. Comparison of piece-wise condenser cooling water flowrate – condenser temperature model around 65% capture rate 384 

 385 



 386 

Fig. 18. Comparison of piece-wise cooler cooling water flowrate – lean solvent temperature model around 55% capture rate 387 

 388 

7. Conclusion  389 

On the basis of system identification and nonlinearity analysis, this paper developed a piece-wise model to simulate the nonlinear 390 

dynamic characteristics of the solvent-based PCC process. The piece-wise model shows satisfactory agreement with comparison 391 

data and it is more accurate compared with local models. Using simulation data from gCCS software, SISO local transfer function 392 

models were firstly identified at every capture rate scenario. Open-loop step response tests were then introduced to show the 393 

dynamic features of PCC plant under changing operating conditions. Lean solvent flowrate was found to be very influential on 394 

capture rate. The nonlinearity analysis was then carried out using differential gap metric. It was found that the nonlinearity degrees 395 

in lean solvent flowrate - capture rate model, steam flowrate – reboiler temperature model and condenser cooling water – condenser 396 

temperature model are very small for any two adjacent operating conditions. However, the cooler cooling water flowrate to lean 397 

solvent temperature model produces results which exhibit high divergence. Nonlinearity degrees of MIMO PCC system are proven 398 

to be equally high in any two operating conditions. The results of this study will provide an enhanced knowledge of transient 399 

performance of PCC process and provide guidance for the flexible controller design. 400 
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Appendix. Supplementary models 406 

  Supplementary models of solvent-based PCC process from 50% capture rate to 95% capture rate in each SISO loop are available. 407 
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