
Journal of Artificial Intelligence Research 64 (2019) 55-107 Submitted 09/18; published 01/19

Rank Pruning for Dominance Queries in CP-Nets

Kathryn Laing K.Laing@leeds.ac.uk

Peter Adam Thwaites P.A.Thwaites@leeds.ac.uk

John Paul Gosling J.P.Gosling@leeds.ac.uk

School of Maths

University of Leeds

Leeds, UK

LS2 9JT

Abstract

Conditional preference networks (CP-nets) are a graphical representation of a person’s
(conditional) preferences over a set of discrete features. In this paper, we introduce a novel
method of quantifying preference for any given outcome based on a CP-net representation
of a user’s preferences. We demonstrate that these values are useful for reasoning about
user preferences. In particular, they allow us to order (any subset of) the possible outcomes
in accordance with the user’s preferences. Further, these values can be used to improve
the efficiency of outcome dominance testing. That is, given a pair of outcomes, we can
determine which the user prefers more efficiently. Through experimental results, we show
that this method is more effective than existing techniques for improving dominance testing
efficiency. We show that the above results also hold for CP-nets that express indifference
between variable values.

1. Introduction

Conditional preference networks (CP-nets) as described by Boutilier, Brafman, Domshlak,
Hoos, and Poole (2004a) are structures for modelling a person’s conditional preferences
over a set of discrete features. Representing and reasoning with a person’s preferences is an
area of interest in AI with applications in automated decision making (Nunes, Miles, Luck,
Barbosa, & Lucena, 2015), recommender systems (Ricci, Rokach, Shapira, & Kantor, 2011),
and product configuration (Alanazi & Mouhoub, 2014). CP-nets represent preferences in a
compact manner that is easily interpreted. Further, they are based upon ceteris paribus (all
else being equal) preference statements, which are easy to elicit from a non-expert user or
client. For example, if a user was being asked about seat preferences on a flight, they might
say that they prefer to sit in business class rather than economy, given it is a long-haul
flight. It is implicit that the user is assuming everything else about the seat is the same
when making this statement.

Using the CP-net model to represent a user’s preference, we introduce a novel way of
quantifying the user’s preference for a single outcome, where an outcome is an assignment of
values to all variables of interest. In our example, an outcome might be the seat specification
〈economy class, long-haul flight, window seat〉. This quantification of user preference over
outcomes makes it easier to reason about the user’s preferences about the outcomes. Many
questions of interest in this setting are naturally about preference over the outcomes, in
particular, outcome optimization, consistent orderings, and dominance queries (Boutilier

c©2019 AI Access Foundation. All rights reserved.

Laing, Thwaites, & Gosling

et al., 2004a; Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004b; Brafman & Dimopoulos,
2004; Goldsmith, Lang, Truszczyński, & Wilson, 2008; Santhanam, Basu, & Honavar, 2016).
Outcome optimization asks which outcome is optimal, possibly given a partial assignment
to the variables, which would be of interest when doing product configuration or automated
decision making. Consistent orderings are orderings of (some subset of) the outcomes that
obey everything we know about the user’s preferences. That is, if one outcome (o) is known
to be preferred to another (o′), then o should appear in the ordering before o′. A natural
application of this is in recommender systems, in particular e-commerce, so that items
can be displayed such that those of most interest to the customer appear first. Finally, a
dominance query asks, given two outcomes, which is preferred by the user. Being able to
answer such queries is critical to automated decision making.

Outcome optimisation has been dealt with by Boutilier et al. (2004a), who provide a
method of obtaining the optimal outcome (possibly given a partial specification) in linear
time in the number of variables. We demonstrate how our quantification of user preference
over the outcomes (which are called outcome ranks) can be used to obtain a consistent
ordering of (any subset of) the outcomes. Boutilier et al. also detail how a consistent
ordering can be obtained for all outcomes or any subset. However, we demonstrate that for
larger subsets of the outcomes our method is more efficient. The size of the outcome set
is at least 2n (where n is the number of variables). Thus, subsets of the outcomes can get
very large even for relatively small CP-nets. Our method of obtaining consistent orderings
can also be applied, with no increase in complexity, in the case of CP-nets with indifference
statements. Comparatively, the method by Boutilier et al. has unknown complexity in the
case of indifference, though they conjecture that it is hard.

Despite being a natural question, dominance queries are NP-hard problems (even when
restricting to binary variables and an acyclic preference structure); see papers by Boutilier
et al. (2004a) and Goldsmith et al. (2008) for further results on the complexity of answer-
ing dominance queries. Santhanam, Basu, and Honavar (2010) introduce a novel approach
to answering dominance queries by using model checking, which is discussed further by
Santhanam et al. (2016). However, their experimental results all utilise binary CP-nets,
thus, it is unclear how well this method performs when there are multivalued variables.
Sun, Liu, and Wang (2017) introduce a different approach; they successively compose the
preferences of all variables (in topological order) to form a single preference table, which
has size exponential in the number of variables. From this table, consistent orderings can
be obtained and dominance queries can be answered. However, they also consider only bi-
nary CP-nets and so how well these methods handle multivalued CP-nets is unknown. The
more standard way of answering dominance queries is to attempt to construct an improving
flipping sequence between the two outcomes of interest (Boutilier et al., 2004a); we explain
this notion in more detail later on. If the dominance query asks ‘Is o preferred to o′?’, this
can be visualised as building up a search tree from the root node o′, that either eventually
reaches o (and so the dominance query is true) or eventually can not expand any further
(and so the dominance query is false). There have been several attempts to improve the
efficiency of this method by introducing procedures for pruning the branches of this search
tree as one constructs it (Boutilier et al., 2004a; Li, Vo, & Kowalczyk, 2011). We show how
our outcome ranks can be used to prune this search tree in a different way and thus improve
the efficiency of answering dominance queries. Our pruning technique can be combined with

56

Rank Pruning for Dominance Queries in CP-Nets

any of the existing pruning methods to further improve efficiency. We give an experimental
comparison of the performance of our rank pruning with the existing pruning methods that
preserve search completeness. These experiments also evaluate the performance of all the
possible combinations of the different methods to determine the optimal method for answer-
ing dominance queries. The results find that rank pruning is more effective than the existing
methods and a valuable addition when considering combinations of methods. Allen, Gold-
smith, Justice, Mattei, and Raines (2017) propose improving the efficiency of dominance
testing by imposing a bound on the search depth for improving flipping sequences. This
bound could be applied to our dominance testing procedure (Section 5) in the same way
Allen et al. apply it to the dominance testing procedure given by Li et al. (2011). However,
the depth bound proposed by Allen et al. has only been experimentally shown to preserve
completeness of dominance testing for relatively small binary CP-nets. This has not been
proven for binary CP-nets in general and for CP-nets with multivalued variables utilising
this bound does not preserve completeness in general.

There have been several previous attempts at quantifying a user’s preference over out-
comes, given a CP-net representation of the user’s preferences. Domshlak, Rossi, Venable,
and Walsh (2003) provide two methods of approximating user preferences in order to obtain
an ordering of the outcomes that is consistent with all known preference information. The
first method is to construct a penalty function over the outcomes and then order them
according to this function. The second method associates each outcome with an n-tuple,
obtained by evaluating the level of preference for each variable assignment individually. A
consistent ordering is then obtained by ordering these vectors lexicographically. However,
Domshlak et al. do not discuss how dominance queries about the CP-net might be answered
using these approximations. Li et al. (2011) introduce a penalty function over the outcomes
very similar to that introduced by Domshlak et al. They go on to show how these penalty
values can be used to prune the search tree of dominance queries analogously to how we
use our outcome ranks here. Further, Li, Vo, and Kowalczyk (2013) extend this penalty
function so that it is defined for TCP-nets (CP-nets with additional relative importance
statements) and they claim that it is straightforward to extend their pruning method to
dominance testing for TCP-nets, though this is not shown explicitly. We instead illustrate
how our definition (and pruning methods) can be generalised to allow the user to express
indifference, which is not permitted in Li et al.’s penalty definitions. Boutilier, Bacchus, and
Brafman (2001) also look at quantifying preference by introducing an extension of CP-nets
that has conditional utilities rather than conditional preferences, these structures are called
UCP-nets. One of the aims of combining utilities with the CP-net here is in order to obtain
a global utility over the outcomes, so that answering dominance queries would become a
simple task of comparing utilities. However, given a UCP-net elicited from a user with,
naturally, normalised utilities, their paper focuses on how one can narrow down the global
utility possibilities with the aim of choosing an optimal decision rather than with the aim of
obtaining a single global utility from which dominance queries can be answered. McGeachie
and Doyle (2002) present a method for obtaining a global utility over the outcomes, given
any set of (consistent) ceteris paribus preference rules. This utility function obeys the given
preference rules, but beyond this it cannot claim to be an accurate quantification of user
preference.

57

Laing, Thwaites, & Gosling

The remainder of this paper is structured as follows. First, Section 2 contains all of the
required background about CP-nets and their event tree representations. In Section 3, we
introduce our outcome ranks and show how they can be used to obtain a consistent ordering
of (any subset of) the outcomes. Further, we show that this method needs no adaptation for
CP-nets with additional plausibility constraints. In Section 4, we describe an algorithm for
calculating the rank of any given outcome. In Section 5, we show how our outcome ranks
can be used to improve the efficiency of answering dominance queries by pruning the search
tree. In Section 6, we present our experimental comparison of rank pruning with existing
methods of pruning the search tree (and all possible combinations of methods) and analyse
the results to determine the best method for answering dominance queries. In Section 7, we
show how our rank definition can be generalised to allow the user to express indifference.
Further, we show that all of our previous results hold for this generalised rank definition
and so apply also to CP-nets that have indifference. Finally, Section 8 provides a summary
of these results.

2. Preliminaries

In this section, we introduce the basics of conditional preference networks (CP-nets) as
defined by Boutilier et al. (2004a). We also show how a CP-net can be represented by an
event tree (Edwards, 1983). This alternate representation is important for the construction
of our outcomes ranks (Section 3.1).

2.1 CP-Nets

Definition 1: Conditional Preference Network (CP-Net) (Boutilier et al., 2004a).
A CP-net N , over variables V , is a directed graph G, with nodes V . Each node X, is
annotated with a conditional preference table CPT(X). For any X ∈ V , CPT(X) gives, for
each possible assignment of values to Pa(X) (the parent variables of X in G), the user’s
order of ceteris paribus preference over all possible values X can take (that is, the domain
of X, Dom(X)). We assume all variables to have discrete domains.

The graph G is a preferential dependency graph with the following underlying assump-
tion. For any X,Y ∈ V , X is preferentially independent of Y given Pa(X). That is,
once Pa(X) have been assigned values, the user’s preference over Dom(X) is fixed and not
affected by the value taken by Y . To illustrate these ideas, consider the following example.

Example 1. Suppose again that we are modelling a user’s preference over aeroplane
seats. The variables we might take into account, and their respective domains, are as
follows.

A = Flight Length Dom(A) = {a : short, ā : long-haul}
B = School Term Time Dom(B) = {b : term, b̄ : holiday}
C = Class Dom(C) = {c : economy, c̄ : business, ¯̄c : first}
D = Pay Extra for Wi-Fi Dom(D) = {d : no, d̄ : yes}

One example of a CP-net over these variables is given in Figure 1. The structure of this
CP-net shows that the user has a strict preference for short flights over long-haul flights
(ceteris paribus, that is, given B,C,D take the same values) and for flying in term time over

58

Rank Pruning for Dominance Queries in CP-Nets

flying in holiday time (ceteris paribus, that is, given A,C,D take the same values). These
preferences are unaffected by the values taken by any other variable. However, the user’s
preference for which class they fly in is dependent (conditional) upon the values taken by A
and B (Flight Length and School Term Time). If it is a short flight in term time, then
the user prefers economy to business to first class (ceteris paribus- given that D takes the
same value). However, if it is a short flight in holiday time, then the user prefers business
to first to economy class. Once the values of A and B are determined, these preferences
over C (Class) are fixed and do not change (regardless of the value taken by D), by our
preferential independence assumption above. Similarly, the user’s preference over D (Pay
Extra for Wi-Fi) depends on the value taken by C, but these preferences are independent
of the values taken by A and B.

 A B

C

D

Figure 1: CP-Net Example

We assume throughout this paper that we are dealing with CP-nets whose directed
graph (structure) is acyclic. When we refer to binary CP-nets we mean CP-nets where
all variables are binary. For the majority of this paper (except Section 7), we assume that
every row of the conditional preference tables (CPTs) contains a strict complete order of the
appropriate domain. In Section 7, we discuss how our results can be generalised to apply
to cases where the CPTs may express indifference between values. This is an important
extension because indifference is a natural notion that we may reasonably expect people to
express when specifying their preferences.

Given a CP-net N , over variables V = {V1, V2, ..., Vn}, an outcome o, is an n-tuple rep-
resenting an assignment of values to all variables, o ∈ Dom(V1)× Dom(V2)×· · ·× Dom(Vn).
Let Ω denote the set of all outcomes, then |Ω| = |Dom(V1)| × |Dom(V2)| × · · · × |Dom(Vn)|.
For our previous example, ab̄¯̄cd̄ is an example of an outcome (specifically this is a short flight

59

Laing, Thwaites, & Gosling

in holiday time, sitting in first class with Wi-Fi). In total, there are 24 possible outcomes
for the CP-net given in Example 1. In general, |Ω| ≥ 2n with equality only in the case of
binary CP-nets.

The preference graph induced by N (Boutilier et al., 2004a) is a directed graph GN ,
with the outcomes Ω as nodes and edges defined as follows. Let o, o′ ∈ Ω, then there is an
edge o→ o′ if and only if o and o′ differ on the value assigned to exactly one variable, say X,
and, in the row of CPT(X) corresponding to the assignment of values to Pa(X) in both o
and o′, the value of X taken in o′ is preferred to that in o. As the preference statements in
the CPTs of a CP-net are all ceteris paribus, they only encode preferences between outcome
pairs that differ on exactly one variable. Thus, the edges in the preference graph (and their
transitive closure) represent all known preference information about the user. That is, it is
an equivalent representation to the CP-net itself.

Definition 2: Entailment. Let N be a CP-net with induced preference graph GN ,
and two associated outcomes o and o′. We say that N entails the relation ‘o is preferred
to o′’, denoted N � o � o′, if and only if there is a directed path o′ o in GN .

The entailed relations are all of the user preferences between outcome pairs encoded in
the CP-net. A consistent ordering for a CP-net is a complete ordering of the outcomes Ω,
that obeys all known (entailed) preference information about the user. Equivalently, a con-
sistent ordering is any ordering of Ω such that if there is a path o o′ in the preference
graph, then o′ comes before o in the ordering (that is, any topological ordering of the pref-
erence graph). Notice that entailed relations hold in all consistent orderings. Further, as we
are considering only acyclic CP-nets, there will always be at least one consistent ordering
(Boutilier et al., 2004a).

Remark 1. The above definitions for entailment and consistent orderings are equivalent
but not identical to those given by Boutilier et al. (2004a). Boutilier et al. define orderings
that satisfy the CP-net (consistent orderings) to be complete orderings of the outcomes
that obey all of the ceteris paribus preference statements given in the CPTs. They go on to
define entailment as N � o � o′ if and only if o comes before o′ in all consistent orderings.
Boutilier et al. show their definition of entailment to be equivalent to the above definition.
For consistent orderings, it is clear that the two definitions are equivalent as the preference
graph is an equivalent representation of the CP-net. Thus, an ordering that respects the
CPTs is equivalent to an ordering that respects the preference graph. We use the above
definitions for simplicity. As we are using equivalent definitions, all results by Boutilier
et al. continue to hold.

Definition 3: Dominance Query (Boutilier et al., 2004a). Let N be a CP-net, and
let o and o′ be associated outcomes. A dominance query asks whether N � o � o′ holds.

This dominance query holds if and only if there is a directed path o′ o in the in-
duced preference graph (Boutilier et al., 2004a). That is, there is a sequence of outcomes
o′ = o1, o2, ..., om = o such that oi and oi+1 differ on the value of exactly one variable and
N � oi+1 � oi. We call this type of outcome sequence an improving flipping sequence (IFS).

60

Rank Pruning for Dominance Queries in CP-Nets

Thus, dominance queries can be reframed as a search for an IFS between the outcomes of
interest; this is how we approach dominance queries later on in this paper.

Finally, a short remark on notation. Let N be a CP-net over variables V , and let o be
an associated outcome. Let X ∈ V and Y ⊆ V . For ease of notation, let o[X] denote the
value assigned to X in o and let o[Y] be the |Y |-tuple of values assigned to Y in o. Further,
if Y = {Y1, Y2, ..., Yk} then let Dom(Y) denote Dom(Y1)×Dom(Y2)× · · · ×Dom(Yk). That
is, Dom(Y) consists of all |Y |-tuples of values that may be assigned to Y .

2.2 Event Tree Representation

Let N be a CP-net over variables V . We have mentioned previously that the induced
preference graph is an equivalent representation of this information. Another equivalent
way of representing CP-nets is by an event tree (Edwards, 1983). We use this alternate
representation to motivate and construct our quantification of user preference in Section 3.1.
The event tree representation of N , denoted T (N), can be constructed in three steps.

First, put the variables in a topological order according to the CP-net structure,
V = {V1, ..., Vn}. That is, Pa(Vi) ⊆ {V1, ..., Vi−1}. For the CP-net given in Example 1,
there are two such orderings, ABCD and BACD. We use ABCD for simplicity.

Second, construct an event tree representing the successive events of V1 taking a value,
then V2 taking a value, and so on up to Vn. The root node branches into |Dom(V1)|
possibilities (each branch should be labelled with an associated element of Dom(V1)). Then,
each of these nodes branches into |Dom(V2)| possibilities (each labelled with an associated
element of Dom(V2)). And so on until each of V1, V2, ..., Vn have taken a value. The final
tree has |Ω| root-to-leaf paths, corresponding to the outcomes. Figure 2 gives the event tree
representation for the CP-net in Example 1 (ignore the branch weights for the moment).

Finally, the branches need to be labelled with the level of preference of the associated
variable assignment. Suppose we are labelling the branch b, which represents that X = x
(for some X ∈ V). By inspecting the unique path from the root to the start of b, identify
the values assigned to Pa(X). From the appropriate row of CPT(X), you can identify the
position of preference of the choice X = x. If x is the best choice under this assignment
to Pa(X), then label b with ‘1st’, if it is the second best, then label it ‘2nd’, and so on. For
our running example, at the first stage, we would label the A = a branch ‘1st’ and the A = ā
branch ‘2nd’ because of CPT(A). Similarly, both B = b branches have the label ‘1st’ and
both B = b̄ branches have the label ‘2nd’. Now, consider the top-most instance of the
tree branching into the options for C (c, c̄, ¯̄c). At this point A and B have been assigned
values a and b and so we are concerned with this (top) row of CPT(C). From the CPT, we
can see that, given the history of this path, c is preferred to c̄ is preferred to ¯̄c, thus we give
the C = c branch the label ‘1st’, the C = c̄ branch the label ‘2nd’, and the C = ¯̄c branch
the label ‘3rd’. Labelling the rest of the C and D branches is a similar process. However,
for the D branches we only need to look at the value previously taken by C to determine
which CPT(D) row to consult.

From the example used above, it is clear that T (N) can become very large even for
smaller CP-nets. As mentioned previously, we use this event tree representation to aid the
construction of our outcome ranks in Section 3.1. However, in Section 4 we demonstrate
that constructing this tree is not necessary for their calculation, so the exponential size of
the trees is not a limitation.

61

Laing, Thwaites, & Gosling

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

𝑐

𝑐

𝑐

𝑑

𝑑

𝑑

𝑑

𝑑

𝑑

𝑑

𝑐

𝑑

𝑑

𝑑

𝑑

𝑐ҧ

𝑐Ӗ

𝑐ҧ

𝑐Ӗ

𝑐Ӗ

𝑐ҧ

𝑐Ӗ

𝑐ҧ

D C B A

𝑑

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑎

𝑎ത

𝑏

𝑏

𝑏ത

𝑏ത

1 ∙ (2 + 1) ∙ 𝟏

1 ∙ (2 + 1) ∙
𝟏

𝟐

1 ∙ (2 + 1) ∙
𝟏

𝟐

1 ∙ (2 + 1) ∙ 𝟏

1 ∙ (2 + 1) ∙
𝟏

𝟐

1 ∙ (2 + 1) ∙ 𝟏

1

4
∙ (1 + 1) ∙ 𝟏

1

4
∙ (1 + 1) ∙

𝟐

𝟑

1

4
∙ (1 + 1) ∙

𝟏

𝟑

1

4
∙ (1 + 1) ∙

𝟏

𝟑

1

4
∙ (1 + 1) ∙

𝟐

𝟑

1

4
∙ (1 + 1) ∙ 𝟏

1

4
∙ (1 + 1) ∙

𝟐

𝟑

1

4
∙ (1 + 1) ∙

𝟏

𝟑

1

4
∙ (1 + 1) ∙ 𝟏

1

4
∙ (1 + 1) ∙

𝟐

𝟑

1

4
∙ (1 + 1) ∙

𝟏

𝟑

1

4
∙ (1 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

Figure 2: Weighted Event Tree Example

62

Rank Pruning for Dominance Queries in CP-Nets

Remark 2. This event tree representation, T (N), is equivalent to the original CP-net
(recalling that the CP-net consists of both the structure and the CPTs). Clearly, one can
construct T (N) from N ; this process is described above. The key part to this claim is that
one can reconstruct N given T (N). A sketch of this process is as follows. From T (N) we can
read off the domains of the variables and a topological ordering. Suppose X1, X2, ..., Xn

is this topological ordering, then Pa(Xi) ⊆ {X1, ..., Xi−1}. If Y ∈ {X1, ..., Xi−1}, then
Y ∈ Pa(Xi) if and only if there are two direct paths p and p′, of length (i − 1) that begin
at the root of T (N) and have the following property. By definition, p and p′ assign values
to {X1, ..., Xi−1} only. We must have that p and p′ differ only on the value assigned to Y
and that the preference order over Xi is different for these two assignments. That is, the
labelling of the branches corresponding to the different values of Xi that come directly after
path p is different to those after p′. Identifying the parent sets determines the structure
of N and it only remains to construct the CPTs. Given the parents of a variable and their
respective domains, we know already the set of all parent assignments that corresponds to
the rows of the CPTs. Given a row of CPT(Xi), that is, an assignment of values to Pa(Xi),
say ui, we need to recover the corresponding preference order over Xi. This can be done
by finding any path p of length (i− 1) that begins at the root of T (N) and assigns Pa(Xi)
the values in ui. The relevant preference order over Xi can be read off from the labels
on the branches corresponding to the different values of Xi that come directly after p; the
value of Xi assigned the label ‘1st’ is first in the preference order (most preferred), the value
assigned the label ‘2nd’ is second and so on. We have now completely constructed the CPTs
and, thus, N .

3. Outcome Ranks

Given a CP-net representing the user’s preferences, our aim is to quantify the user’s prefer-
ence for each outcome; we will call this value an outcome rank. These values should induce
a consistent ordering of the outcomes. In most cases, CP-nets do not fully specify the user’s
preferences over the outcomes. Rather, there are usually several orderings of the outcomes
that could match the user’s preference (consistent orderings). Furthermore, given a basic
CP-net and no further information, we are unable to judge any consistent ordering to be
more likely than another to be the user’s true preference ordering. Thus, if you wish to
order the outcomes according to user preference, then you can do no better than to find
any consistent ordering.

3.1 Calculating Outcome Ranks

In this section, we introduce our outcome ranks (which successfully induce a consistent
ordering of the outcomes). These are obtained using the event tree representation discussed
in Section 2.2. Specifically, we first weight the edges of the event tree representation and
then read off the rank of an outcome from this weighted tree. The ranking we construct
reflects user preference so more preferred outcomes have higher scores.

To motivate our weighting convention for the edges of T (N), we must look at what
determines the user’s level of preference for an outcome o. The position of preference of
the values taken by the individual variables, according to the CPTs, needs to be taken into
account. However, according to the semantics of CP-nets, ancestor variables in the CP-net

63

Laing, Thwaites, & Gosling

structure are more important to the user than their descendants (Boutilier et al., 2004a).
Thus, if variable A is an ancestor of variable B, then when quantifying user preference
over outcomes, we must have a larger penalty for a decrease of preference for A than for a
decrease of preference for B. Therefore, the position of variables in the CP-net structure will
need to be taken into account in determining the user’s level of preference for an outcome.

As we are allowing our CP-net variables to be multivalued, we must also take into
account how domain size affects user preference. By the semantics of CP-nets, domain size
should be independent of the importance of a variable. Suppose we have variables X and Y
such that Y is a descendant of X in the CP-net. Then any decrease of preference in X
should dominate any decrease of preference in Y , regardless of their domain sizes. Thus,
our quantification of preference must also have this property.

Motivated by these restrictions imposed by the CP-net semantics, we have created the
following weighting for the branches of the event tree representation of a CP-net. Let N
be a CP-net over variables V = {X1, ..., Xn} and assume that this ordering of the variables
is a topological ordering with respect to the structure of N . Now, consider the event
tree representation of N , T (N). Let e be the edge of T (N) that indicates variable Xi takes
value xi givenX1, ..., Xi−1 take values x1, ..., xi−1. Use p to denote the directed path from the
root of T (N) to the start of e, that dictates in turn that X1 = x1, X2 = x2, ..., Xi−1 = xi−1.
Let ui ∈ Dom(Pa(Xi)) be the assignment of values to the parents of Xi dictated by p. We
attach the following weight to e:(∏

Y ∈Anc(Xi)

1

nY

)
(dXi + 1)

nXi − k + 1

nXi

, (1)

which uses the following notation:

– Anc(Xi) is the set of variables Y ∈ V such that there is a directed path Y Xi in
the structure of N (these are referred to as the ancestors of Xi),

– nXi := |Dom(Xi)|,

– dXi is the number of distinct directed paths of any length in the structure of N that
originate at Xi (the number of descendent paths of Xi),

– k is the position of preference of the choice of Xi = xi given Pa(Xi) = ui. So,
if Xi = xi is the best choice for the user, then k = 1, if it is the second best choice,
then k = 2, and so on. If it is the worst possible choice for Xi, then k = |Dom(Xi)|.

We refer to the leftmost product term in (1) as the ancestral factor of Xi, AFXi . This
factor scales the weight down by the size of Xi’s ancestors’ domains. The purpose of this
is so that any decrease in preference of an ancestor will dominate a decrease in preference
of Xi, regardless of the size of the ancestor’s domain relative to |Dom(Xi)|.

Consider the central term of (1), (dXi + 1). If X is an ancestor of Y , then dX > dY .
An ancestor variable is more important to the user than its descendent variables, this term
allocates these more important variables more weight. In particular, this term ensures that
reductions in preference of an ancestor variable have larger penalties than reductions in
preference of a descendant.

64

Rank Pruning for Dominance Queries in CP-Nets

We refer to the rightmost product term in (1) as the preference position of the choice
Xi = xi given Pa(Xi) = ui, denoted PP {Xi = xi | Pa(Xi) = ui}. This is a value
in {1/nXi , 2/nXi , ..., (nXi − 1)/nXi , 1}. This is simply a factor on the (0,1] scale indicating
to what degree the user prefers this choice of value for Xi. This naturally impacts the user’s
preference for the overall outcome. This factor gets larger for more preferred values with
the best value assigned preference position 1.

Notice that the preference position factor decreases in equal increments. Due to a lack
of information provided by the CP-net, we cannot justify a more complex increment when
quantitatively representing the user’s preferences over Dom(Xi). Consider a variable A
with Dom(A) = {a1, a2, a3} and CPT a1 � a2 � a3. This could mean that, to the user, a2

is slightly worse than a1, but a3 is much worse than a2. Alternatively, it could be that a2 is
much worse than a1, but a3 is only slightly worse than a2. We cannot determine which of
these is the case due to lack of information, and so we assume that preference decreases in
equal increments each time. In this situation, our preference positions would be 1, 2

3 , and 1
3

for a1, a2, and a3 respectively.
We refer to the event tree representation of N weighted using the above convention as

the weighted tree representation of N , W (N).

Example 2. We now return to the CP-net N , from Example 1 and corresponding event
tree T (N), given in Section 2.2. Simple examination of the CP-net structure and CPTs
gives us the following information:

Anc(A) = ∅, Anc(B) = ∅, Anc(C) = {A,B}, Anc(D) = {A,B,C},

nA = 2, nB = 2, nC = 3, nD = 2,

dA = 2, dB = 2, dC = 1, dD = 0.

From the nX values and the ancestor sets, we can calculate the ancestral factor of each
variable:

AFA = 1, AFB = 1,

AFC =
1

2
× 1

2
=

1

4
,

AFD =
1

2
× 1

2
× 1

3
=

1

12
.

We can now use these values and the CPTs to directly calculate the edge weights and thus
construct the weighted tree representation of this example. W (N) is given in Figure 2 with
the preference positions given in bold.

By examining the weighted tree for this example, it can be seen that the weights attached
to any two edges indicating the value taken by the same variable differ only on the preference
position (the bolded number). Consider the set of edges leaving any node in the tree. By
the definition of preference position, those edges indicating that the next variable takes a
more preferred value will have larger weights. Thus, we can recover T (N) given W (N).
As T (N) is an equivalent representation to N , this shows that W (N) is also an equivalent
representation to N . Recall that N is both the CP-net structure and the CPTs.

65

Laing, Thwaites, & Gosling

For ease of notation we shall, from this point on, simplify the notation for the weighted
tree representation of N from W (N) to W without ambiguity.

Now that we can construct the weighted tree representation of any given CP-net, we
use this structure to define our quantitative measure of preference for any outcome.

Definition 4: Rank. Given a CP-net N , and an associated outcome o, we define the
rank of o, r(o), to be the sum of the weights on the edges of the root-to-leaf path of W that
corresponds to o.

Example 3. Continuing on from Example 2, we calculate the ranks of several outcomes
directly from W :

r(āb¯̄cd̄) =

[
1 · (2 + 1) · 1

2

]
+

[
1 · (2 + 1) · 1

]
+

[
1

4
· (1 + 1) · 1

]
+

[
1

12
· (0 + 1) · 1

]
=

61

12
,

r(abc̄d̄) =

[
1 · (2 + 1) · 1

]
+

[
1 · (2 + 1) · 1

]
+

[
1

4
· (1 + 1) · 2

3

]
+

[
1

12
· (0 + 1) · 1

]
=

77

12
,

r(āb̄cd) =

[
1 · (2 + 1) · 1

2

]
+

[
1 · (2 + 1) · 1

2

]
+

[
1

4
· (1 + 1) · 1

3

]
+

[
1

12
· (0 + 1) · 1

]
=

39

12
.

Recall that our aim was to assign higher values to more preferred outcomes. Thus, the
relative sizes of these ranks are as we would expect as we can derive the following sequences
of preference directly from the CPTs:

abc̄d̄ � ab¯̄cd̄ � āb¯̄cd̄

āb¯̄cd̄ � āb¯̄cd � ābcd � āb̄cd

Thus, we have N |= abc̄d̄ � āb¯̄cd̄ � āb̄cd and r(abc̄d̄) > r(āb¯̄cd̄) > r(āb̄cd).

3.2 Obtaining Consistent Orderings from Outcome Ranks

In this section we demonstrate how our outcome ranks can be used to obtain consistent
orderings. This can be applied to the whole outcome set, in order to get a complete
consistent ordering for the CP-net, or to any subset of the outcomes. Further, this method
can be directly applied to CP-nets with additional plausibility constraints.

There are several methods of obtaining a consistent ordering in the existing literature,
some of which we outline below. As discussed in Section 1, Domshlak et al. (2003) use their
approximations to obtain consistent orderings. The penalty function defined by Li et al.
(2011) could also be used to obtain a consistent ordering in this manner, although this is

66

Rank Pruning for Dominance Queries in CP-Nets

not mentioned in their paper. The utility function defined by McGeachie and Doyle (2002)
would induce a consistent ordering, if the utility was based upon CP-net preferences. Sun
et al. (2017) utilise their complete preference table in order to obtain consistent orderings.
Boutilier et al. (2004a) take yet another approach which is to construct a lexicographic
ordering of the outcomes as follows. Let N be a CP-net with variables {X1, ..., Xn}, listed
such that a variable’s parents come before the variable itself. Suppose we have two out-
comes o1 and o2, that have the same values for X1, ..., Xk but differ on the value of Xk+1,
say o1[Xk+1] = xk+1 and o2[Xk+1] = x′k+1. If, given the assignment of values to Pa(Xk+1)
in both o1 and o2, CPT(Xk+1) dictates that xk+1 � x′k+1, then o1 comes before o2 in this
ordering.

As we have constructed our outcome ranks to reflect user preference, they obey all
entailed relations, as we wanted. Thus, our ranks induce a consistent ordering of the out-
comes, �∗. This �∗ is obtained simply by ordering the outcomes according to their rank,
with outcomes with higher ranks considered to be more preferred. Proof of these claims is
given below.

Theorem 1. Given a CP-net N , for any outcomes o and o′, we have that N |= o � o′ ⇒
r(o) > r(o′).

Proof given in Appendix A.

This tells us that if the CP-net dictates that the user prefers o to o′, then r(o) > r(o′),
that is, o �∗ o′. In fact, we can say more than r(o) > r(o′); we can find a lower bound for
the rank difference, r(o)− r(o′). Details of this lower bound are given in Section 5.

Corollary 1. Given a CP-net N , and two distinct associated outcomes o and o′,
r(o) = r(o′)⇒ N 2 o � o′ ∧N 2 o′ � o (we say that o and o′ are incomparable).

Proof: Theorem 1 tells us that for any two outcomes o1 and o2, N |= o1 � o2 ⇒
r(o1) > r(o2), or equivalently r(o1) ≤ r(o2) ⇒ N 2 o1 � o2. Using this equivalent
result gives us the following:

r(o) = r(o′)⇒ (r(o) ≤ r(o′)) ∧ (r(o′) ≤ r(o))⇒ N 2 o � o′ ∧N 2 o′ � o.

�

Corollary 2. Let N be a CP-net. Let �∗ be the ordering of the outcomes of N induced
by the outcome ranks. Then �∗ is a consistent ordering of the outcomes with respect to N .

Proof: In order to show that �∗ is a consistent ordering, we need to show that, for
any two outcomes o1 and o2, N � o1 � o2 =⇒ o1 �∗ o2. Theorem 1 shows that
N � o1 � o2 =⇒ r(o1) > r(o2). By definition of �∗, r(o1) > r(o2) =⇒ o1 �∗ o2. Thus,
we have N � o1 � o2 =⇒ o1 �∗ o2 and so can conclude that �∗ is a consistent ordering of
the outcomes. �

67

Laing, Thwaites, & Gosling

We cannot guarantee �∗ is a strict order. There is a possibility that two distinct
outcomes o and o′ could be assigned equal rank. However, Corollary 1 shows that this can
only occur when we do not know which the user prefers. If we want a strict ordering of
the outcomes, then it is enough to force any outcomes with equal ranks into an arbitrary
order. Any strict ordering of the outcomes obtained from �∗ in this manner is a consistent
ordering of the outcomes as we have only altered the order of incomparable outcomes.

We have now introduced a novel method of quantifying user preference and obtaining a
consistent outcome ordering given any (possibly multivalued) acyclic CP-net. Further, we
can ensure that this is a strict ordering of the outcomes. From now on, when we refer to
the outcome ordering induced by outcome ranks, we are referring to a strict ordering.

Example 4 For the CP-net in Example 1, the ordering of the outcomes induced by the
ranks is as follows:

abcd �∗ abcd̄ �∗ abc̄d̄ �∗ abc̄d �∗ ab¯̄cd̄ �∗ ab¯̄cd �∗ ab̄c̄d̄ = āb¯̄cd̄ �∗

ab̄c̄d = āb¯̄cd �∗ ab̄¯̄cd̄ = ābcd �∗ ab̄¯̄cd = ābcd̄ �∗ ab̄cd = ābc̄d̄ �∗

ab̄cd̄ = ābc̄d �∗ āb̄¯̄cd̄ �∗ āb̄¯̄cd �∗ āb̄c̄d̄ �∗ āb̄c̄d �∗ āb̄cd �∗ āb̄cd̄.

We can obtain a strict ordering of the outcomes simply by replacing each = with a �∗.

Our method of obtaining a consistent ordering using outcome ranks has the advantage
of how easily it can be adapted to find a consistent ordering of any subset of the outcomes.
Let N be a CP-net over variables V and let S be some subset of the outcomes, S ⊆ Ω.
Suppose we wish to put these outcomes S, in an order that agrees with everything the CP-
net tells us about the user’s preference. That is, we wish to find a strict order over S, �S ,
such that for any two outcomes o1, o2 ∈ S, we have that N � o1 � o2 =⇒ o1 �S o2. To
motivate the consistent ordering of subsets, consider an online shopping website displaying
its products and suppose the seller wishes to promote a certain range of items; the seller
would want exactly these items to appear on the first page. Putting these selected items
into an order such that those items of more interest to the client are higher up, is an example
of why we might want to put a specified subset of outcomes into a consistent order.

A consistent ordering of S ⊆ Ω can be obtained in exactly the same way we obtained a
consistent ordering for N . For each o ∈ S, calculate the rank of o, r(o), and then order S
according to rank value. To get a strict consistent ordering of S, force outcomes of equal
rank into an arbitrary order. Call this strict ordering of S �S . We can see that �S is a
consistent ordering of S by using exactly the same reasoning we used to show that �∗ is a
consistent ordering. In principal, we could instead obtain �S by constructing �∗ and then
restricting the ordering to S; however, this is unnecessary in practice, as the above method
is more efficient.

In Section 4, we present an algorithm that can calculate r(o) for any outcome in
time O(|V |4). Thus, a consistent ordering for a subset of size k can be obtained as de-
scribed above in O(|V |4k+k2) time. Boutilier et al. (2004a) also proposed a solution to the
problem of obtaining a consistent ordering for any subset of the outcomes. They proposed
finding a consistent ordering of S by repeatedly answering ordering queries (an ordering
query essentially asks, given two outcomes, find a consistent ordering of the two). Using
this method, a consistent ordering for a subset of size k can be obtained in O(|V |k2) time (as

68

Rank Pruning for Dominance Queries in CP-Nets

their method of answering ordering queries has complexity O(|V |)). Thus, for larger subsets
of the outcomes, our method becomes more efficient. This is because every ordering query
has complexity O(|V |), whereas, in our method, once the ranks are calculated the problem
is reduced to a simple sorting task. Note that the number of outcomes is at least 2|V | (with
equality only in the case of binary CP-nets), so subsets of the outcomes can get very large
even for relatively small CP-nets.

A particularly interesting application of being able to consistently order any subset of
the outcomes is finding a consistent ordering for CP-nets that have additional plausibil-
ity constraints. That is, a CP-net such that a specified proper subset of the outcomes,
say P (Ω, are possible and the remainder are considered impossible. In reality, this kind
of asymmetry in a CP-net system is commonplace. Consider, for example, an airline where
there are no flights between specified dates and destinations with available business class
seats, this would then be an impossible outcome.

Lemma 1. Given a CP-net N , and the further constraint that the only outcomes
that are possible are those contained in P ⊂ Ω, call the CP-net with these added con-
straints NC . Let �P be any strict ordering over P such that, for all o, o′ ∈ P , we have
N � o � o′ =⇒ o �P o′. Then �P is a consistent ordering for NC .

Proof: In order to show �P to be a consistent ordering for NC , it is enough to show that
NC � o � o′ =⇒ o �P o′. We know that N � o � o′ =⇒ o �P o′ holds so it will be
sufficient to prove that NC � o � o′ =⇒ N � o � o′ holds. Recall that a CP-net entails
the relation o � o′ if and only if there is a path o′ o in the preference graph. Let GN be
the preference graph for N and let GNC

be the preference graph for NC . Then GNC
is the

induced subgraph of GN on outcomes P . Thus, if there exists a o′ o path in GNC
, then

this will be a path (improving flipping sequence) in GN that exclusively uses outcomes in P .
Therefore, there is a path o′ o in GN and so we have that NC � o � o′ =⇒ N � o � o′

holds. �

By Lemma 1, every consistent ordering (with respect to N) of the subset P ⊂ Ω is a
consistent ordering for NC . Thus, being able to obtain a consistent ordering of any subset
of outcomes for a CP-net N , means that we can also obtain a consistent ordering for any
constrained CP-net NC .

In the case of CP-nets with additional plausibility constraints, any consistent ordering
restricted to P will be a consistent ordering for NC . To obtain a consistent ordering of P
using outcome ranks you do not have to construct the full consistent ordering. In fact, you
only need to calculate the edge weights for W for edges that are on root-to-leaf paths cor-
responding to some o ∈ P . Thus, depending on the severity of the plausibility constraints,
this could cut down calculations significantly.

Example 5. Consider the CP-net given in Example 1 with the following constraints.

C = {¬ā,¬(b ∧ c),¬(b̄ ∧ c̄),¬(b̄ ∧ ¯̄c ∧ d̄)}.

In order to construct a consistent ordering for NC , we only need to consider the restricted W
seen in Figure 3 (edge weights are calculated exactly the same way as in Figure 2).

69

Laing, Thwaites, & Gosling

1

4
∙ (1 + 1) ∙

𝟐

𝟑

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

12
∙ (0 + 1) ∙

𝟏

𝟐

𝑐ҧ

𝑐

𝑑

𝑑

𝑑

𝑐Ӗ

𝑐Ӗ

D C B A

𝑑

𝑑ҧ

𝑑ҧ

𝑑ҧ

𝑎

𝑏

𝑏ത

1 ∙ (2 + 1) ∙ 𝟏

1 ∙ (2 + 1) ∙
𝟏

𝟐

1 ∙ (2 + 1) ∙ 𝟏

1

4
∙ (1 + 1) ∙

𝟏

𝟑

1

4
∙ (1 + 1) ∙

𝟏

𝟑

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙

𝟏

𝟐

1

12
∙ (0 + 1) ∙ 𝟏

1

4
∙ (1 + 1) ∙

𝟐

𝟑

Figure 3: Constrained CP-Net Example

From this much smaller tree, we calculate ranks as usual and order the possible out-
comes (P) by their rank:

abc̄d̄ �P abc̄d �P ab¯̄cd̄ �P ab¯̄cd �P ab̄¯̄cd �P ab̄cd �P ab̄cd̄.

This is a consistent ordering of P for NC . It can be seen by comparing �P to �∗ (given in
Example 4) that �P is the restriction of �∗ to P .

We have now introduced a novel quantification of user preference from a given CP-net.
We have shown that these ranks successfully reflect all entailed relations and how they can
be used to obtain a consistent ordering of the outcomes. Further, we have shown that this
method can be directly applied to obtain a consistent ordering of any subset of the outcomes
or any CP-net with additional plausibility constraints.

4. Rank Calculation Algorithms

The outcome ranks defined in Section 3.1 (Definition 4) are time consuming to calculate
by hand even for fairly small CP-net examples. In this section, we present an algorithm

70

Rank Pruning for Dominance Queries in CP-Nets

for calculating the rank of any outcome. In the previous section, we used the event tree
representation of CP-nets in both constructing our rank definition and in calculating exam-
ple ranks. However, in this section, we show that ranks can be calculated directly from a
CP-net input. Further, we can calculate the rank of any outcome in O(|V |4) time, where |V |
is the number of variables in the CP-net.

Algorithm 1 takes a CP-net and an outcome as inputs and outputs the rank of the
given outcome. Recall, the rank of an outcome o, is the sum of the weights on the root
to leaf path of W corresponding to o. Algorithm 1 calls two other algorithms. Algo-
rithm 2 takes a variable X, and outputs the set of its ancestors in the CP-net, Anc(X) =
{Y | ∃ a directed path Y X in N}. Algorithm 3 takes a variable X, and calculates the
number of descendent paths of this variable in the CP-net, dX . Algorithms 2 and 3 are
given in Appendix B.3.

For the remainder of this section, suppose we have a CP-net N , over a set of variables
V = {X1, ..., Xn}, which are in a topological order with respect to the structure of N . We
assume that N is input to Algorithm 1 as a pair, N = (A,CPT), where A is the adjacency
matrix for the structure of N . That is, A is a |V | × |V | matrix such that Ai,j = 1 if there is
an edge Xi → Xj in N , and Ai,j = 0 otherwise. The second entry in the CP-net pair, CPT ,
is the set of CPTs associated with N . We assume this to be input in a particular format,
which is given in Appendix B.1 with an illustrative example. From this CPT input, we
can extract |Dom(Xi)| for any 1 ≤ i ≤ n. To keep Algorithm 1 as readable as possible,
we assume that, given i, we can obtain |Dom(Xi)|, rather than putting the details of how
this is achieved (these details are given in Appendix B.1). We also leave the details of the
format for input outcomes to Appendix B.1.

Algorithm 1: Rank Calculation Algorithm

Inputs: N = (A,CPT) - CP-Net

o - Outcome

Note: Variables and array elements are indexed from 1 (rather than 0) in our pseudocode

1 r(o) := 0

2 for i in {1, 2, ..., |V |} #Looping through the set of variables

3 Anc := ancestor(i, A) #ancestor function calls Algorithm 2

#Anc: set of ancestors of variable i

4 AF :=
∏
Y ∈Anc

1
|Dom(Y)|

5 d := DP (i, A) #DP function calls Algorithm 3

#d: number of descendent paths of variable i

6 Pa := {j | Aj,i = 1} #Parent set of variable i

7 u := o[Pa] #Values taken by the parents of variable i in outcome o

8 order := CPT [i][u] #Preference order over variable i given that Pa = u

9 k := order[o[i]] #o[i]: value taken by variable i in outcome o

#k: position of preference of o[i] in the previous order

10 PP := |Dom(Xi)|−k+1
|Dom(Xi)|

11 r(o) = r(o) +AF · (d+ 1) · PP
12 return r(o)

71

Laing, Thwaites, & Gosling

Algorithm 1 takes the CP-net N , and some outcome o, and outputs the rank of this
outcome r(o). It calculates r(o) by setting the value of r(o) to 0 (step 1) and successively
adding the edge weights of the root to leaf path in W that corresponds to o (steps 2-11).
A more detailed explanation of how Algorithm 1 works and why it is correct can be found
in Appendix B.2.

We have used W here and in Appendix B.2 to help explain what Algorithm 1 is doing
and to show why it is correct. However, notice that the algorithm itself does not utilise W at
any point and instead works directly with the CP-net to obtain the rank. This shows that,
whilst the event tree representation was useful in motivating and explaining our ranking
system, constructing the tree is not a necessary step in calculating the rankings. This is
reassuring as it is clear from the relatively small CP-net given in Example 1, that W quickly
becomes large.

For a CP-net N , with n variables, Algorithm 2 and Algorithm 3 both have complex-
ity O(n3) and Algorithm 1 has complexity O(n4). Thus, for any associated outcome o, we
can compute r(o) in O(n4) time; that is, finding the rank of an outcome is tractable.

Remark 3. We could use Algorithm 1 to produce a consistent ordering, given a CP-
net N , as shown by Corollary 2. This is done by using Algorithm 1 to calculate the rank
of each outcome, and then sorting these outcomes into rank-order. However, to obtain a
consistent ordering in this manner, we are applying Algorithm 1 |Ω| many times, making
the time complexity in terms of |Ω|. As |Ω| ≥ 2n (with equality only in the case of binary
CP-nets) this is not a tractable method. This is unsurprising as putting |Ω| objects into
an order will always have time complexity in terms of |Ω| (intractable). Our aim is to use
these ranks (algorithms) to improve the efficiency of dominance testing, which, as shown in
Section 5, does not require a consistent ordering. Thus, we are not concerned by this lack
of tractability.

5. Rank Pruning for Dominance Queries

In Section 3, we constructed an outcome rank that reflects all entailed relations, that is,
N � o1 � o2 =⇒ r(o1) > r(o2). In this section, we demonstrate how these ranks can be
used to improve the efficiency of dominance testing. We first show that this statement is
not all we can say about the difference in ranks of o1 and o2. We can also identify a lower
bound on the difference in rank values as detailed below.

Definition 5: Least Rank Improvement. Let N be a CP-net over variables V . For
any X ∈ V , we define the least rank improvement of X, denoted L(X), as

L(X) = AFX(dX + 1)
1

nX
−

∑
Y ∈Ch(X)

AFY (dY + 1)
nY − 1

nY
,

where, for anyX ∈ V , nX = |Dom(X)| and Ch(X) = {Y ∈ V | X ∈ Pa(Y)}. We call Ch(X)
the children of X.

This value L(X), is interpreted as the least possible increase in rank that can result
from flipping X to a more preferred value. That is, L(X) corresponds to the rank increase

72

Rank Pruning for Dominance Queries in CP-Nets

of the improving X flip α→ β (L(X) = r(β)− r(α)), where X only increases in preference
by one preference position and every Y ∈ Ch(X) goes from being the most preferred value
to the least preferred value. Note that for all other variables Z, the value taken by Z and
its associated preference position must be identical in α and β. As β must be preferred
to α, we would expect L(X) to be a strictly positive value. This is shown to hold by the
following Lemma.

Lemma 2. Let N be a CP-net over variables V . For any X ∈ V , L(X) > 0.

Proof in Appendix A.

Least rank improvement terms can be used to find a lower bound on the difference in rank
implied by entailment. That is, given N � o1 � o2, Theorem 1 tells us that r(o1) > r(o2);
however, using these L(X) terms we can find a lower bound for r(o1)− r(o2).

Corollary 3. Let N be a CP-net over variables V . Let o1 and o2 be associated outcomes
and D = {X ∈ V | o1[X] 6= o2[X]}. Then,

N � o1 � o2 =⇒ r(o1)− r(o2) ≥
∑
X∈D

L(X) > 0.

Proof in Appendix A.

Definition 6: Least (Entailed) Rank Difference. Let N be a CP-net over vari-
ables V , and let o1, o2 be associated outcomes. Let D = {X ∈ V | o1[X] 6= o2[X]}. The
least (entailed) rank difference of o1 and o2, denoted LD(o1, o2), is defined as follows:

LD(o1, o2) =
∑
X∈D

L(X).

We now illustrate how Corollary 3 can be used to improve the efficiency of answering
dominance queries. A dominance query (Boutilier et al., 2004a) asks whether the user
prefers one outcome to another. That is, given a CP-net N , and two associated outcomes o
and o′, ‘Does N � o � o′ hold?’ is a dominance query. If N � o � o′, then the user prefers o
to o′ and so o comes before o′ in all consistent orderings. As dominance queries require us to
consider all consistent orderings (unlike previously since we have been concerned only with
finding an arbitrary consistent ordering), they are very complex to answer (Boutilier et al.,
2004a; Goldsmith et al., 2008). This is because, to answer the dominance query N � o � o′?,
you need to prove either that o comes before o′ in every consistent ordering or, alternatively,
that there exists a consistent ordering where o′ comes before o. Unless one is lucky enough
to construct a consistent ordering where o′ comes before o, this cannot be answered by
considering a single arbitrary consistent ordering.

Suppose we have a CP-net N , and we wish to answer the dominance query N � o � o′?.
There are three possibilities, either N � o � o′, N � o′ � o, or N 2 o � o′ ∧N 2 o′ � o. We
can get at least halfway to answering this dominance query by calculating the ranks of o
and o′ and their least rank difference. As shown in Corollary 3, if r(o′) + LD(o, o′) > r(o),

73

Laing, Thwaites, & Gosling

then N 2 o � o′ and the answer to the dominance query is no. If r(o) ≥ r(o′) + LD(o, o′),
then, by Theorem 1 and Lemma 2, N 2 o′ � o and so it remains to determine whether
N � o � o′ or N 2 o � o′ ∧N 2 o′ � o.

Recall that N � o � o′ if and only if there is a directed path o′ o in the preference
graph of N (Boutilier et al., 2004a). This directed path corresponds to a sequence of
outcomes o′ = o1, o2, ..., om = o, such that oi and oi+1 differ on the value of exactly one
variable and N � oi+1 � oi. We call this an improving flipping sequence (IFS) from o′ to o.
Therefore, a dominance query can be reframed as a search for an IFS in the preference
graph of N .

There have been several techniques introduced to improve the efficiency of searching for
a flipping sequence (Boutilier et al., 2004a; Li et al., 2011; Allen et al., 2017). We propose
using our outcome ranks to impose an upper bound on such searches, in order to improve
efficiency. Ideally, our upper bound would be implemented alongside other methods of
improving search efficiency. We evaluate the performance of our method in combination
with different techniques in Section 6. However, here we illustrate how this upper bound
works with a basic search method.

Returning to the dominance query N � o � o′?, suppose we have already confirmed
that r(o) ≥ r(o′) +LD(o, o′). We can answer this dominance query by determining whether
or not there exists an IFS from o′ to o. Note that if o′ = o1, o2, ..., on = o is such an IFS,
then, by Corollary 3, oi must satisfy r(o) ≥ r(oi) +LD(o, oi); this is what enforces an upper
bound on the search. The method for determining whether such a sequence exists is as
follows:

For any outcome o∗, define F (o∗) := {o | o∗ → o is an improving flip}. That is, F (o∗) is
the set of outcomes o, that differ from o∗ on exactly one variable and N � o � o∗. This set
can be evaluated by inspecting the appropriate rows of the CPTs of N . First, evaluate F (o′),
this is all outcomes that can be reached from o′ in one improving flip. If o ∈ F (o′), then
clearly there is an o′ o IFS and the answer to the dominance query is yes, N � o � o′.
If o 6∈ F (o′), then we cannot reach o from o′ in one improving flip and the next step is to
determine whether it can be reached in two improving flips. However, before looking at all
outcomes that can be reached from F (o′) in a further improving flip, there may be some
search directions that can already be dismissed using our upper bound. For each o∗ ∈ F (o′)
evaluate r(o∗) + LD(o, o∗). Any outcome o∗ such that r(o∗) + LD(o, o∗) > r(o) is not on
an o′ o IFS, so it is unnecessary to evaluate what outcomes can be reached by improving
flips from o∗. Let Flip1 = {o∗ ∈ F (o′) | r(o∗) + LD(o∗, o) ≤ r(o)}.

Let F (Flip1) =
⋃
o∗∈Flip1

F (o∗). If o ∈ F (Flip1), then o can be reached from o′ in

two improving flips. That is, there is a length two IFS from o′ to o, so the answer to the
dominance query is yes, N � o � o′. If not, then we move on to looking at whether o
can be reached in three improving flips. Again, we may be able to eliminate certain search
directions by removing any outcomes o∗, such that r(o∗) + LD(o, o∗) > r(o) before we
continue to search. Let Flip2 = {o∗ ∈ F (Flip1) | r(o∗) + LD(o, o∗) ≤ r(o)}.

We continue to repeat this process until either o is reached, so the answer to the domi-
nance query is yes (N � o � o′), or we reach some Flipi = ∅, in which case the answer to the
dominance query is no (N 2 o � o′). The upper bound means that we can stop considering
an improving flipping sequence as soon we reach an outcome o∗, such that r(o∗) +LD(o, o∗)
exceeds r(o), rather than pursuing all unsuccessful paths until they reach the optimal out-

74

Rank Pruning for Dominance Queries in CP-Nets

come (where all IFS terminate). Visualising a consistent ordering induced by the ranks as
a list of outcomes, we know that o is above o′ and an IFS invariably moves up the list. This
upper bound restricts the search area to the o→ o′ segment of this list, as searching stops
as soon as you reach any outcome above o. The maximum possible number of steps to this
search process is equal to the length of the o→ o′ list segment, so it will always terminate
in finite time. Note that if we reach an outcome o∗, in the search that we have previously
considered, then we can dismiss it as we have already considered all possible IFSs that can
emanate from o∗.

Example 6. We now use the CP-net given in Example 1 to illustrate our method of
answering dominance queries.

Does N � āb¯̄cd � ābc̄d̄ hold? First, we evaluate the ranks of the two outcomes, which
can be done by consulting W , given in Figure 2, or using Algorithm 1:

r(āb¯̄cd) =
121

24
, r(ābc̄d̄) =

114

24
.

We must also calculate LD(āb¯̄cd, ābc̄d̄). We calculate L(X) for all X ∈ V :

L(A) =
7

6
, L(B) =

7

6
, L(C) =

1

8
, L(D) =

1

24
.

Then, we calculate LD(āb¯̄cd, ābc̄d̄):

LD(āb¯̄cd, ābc̄d̄) =
∑

X∈{C,D}

L(X) =
1

6
.

As r(āb¯̄cd) > r(ābc̄d̄) + LD(āb¯̄cd, ābc̄d̄), to answer the dominance query we will need to
determine whether there exists an IFS from ābc̄d̄ to āb¯̄cd.

The first step is to evaluate F (ābc̄d̄). From the CPTs, we can see that only A and C
can be changed into a more preferred position. So we have F (ābc̄d̄) = {abc̄d̄, ābcd̄, āb¯̄cd̄}.
As āb¯̄cd 6∈ F (ābcd), we cannot reach āb¯̄cd from ābc̄d̄ in one improving flip. We now calcu-
late r(o) + LD(āb¯̄cd, o) for each o ∈ F (ābc̄d̄). Again, we use W or Algorithm 1 to calculate
the ranks and we can use the L(X) values calculated above to find the LD terms.

r(abc̄d̄) + LD(āb¯̄cd, abc̄d̄) =
154

24
+

(
7

6
+

1

8
+

1

24

)
=

186

24
,

r(ābcd̄) + LD(āb¯̄cd, ābcd̄) =
117

24
+

(
1

8
+

1

24

)
=

121

24
,

r(āb¯̄cd̄) + LD(āb¯̄cd, āb¯̄cd̄) =
122

24
+

(
1

24

)
=

123

24
.

As abc̄d̄ and āb¯̄cd̄ both satisfy r(o) + LD(āb¯̄cd, o) > r(āb¯̄cd), we do not need to pursue
these search directions further (as they will not lie on an IFS from ābc̄d̄ to āb¯̄cd). Thus, we
have Flip1 = {ābcd̄}.

Next, we look at which outcomes can be reached from Flip1 in a single improving
flip. This is in order to see whether āb¯̄cd can be reached from ābc̄d̄ in two improving

75

Laing, Thwaites, & Gosling

flips. In this case, F (Flip1) = F (ābcd̄). By inspecting the CPTs we find F (Flip1) =
F (ābcd̄) = {abcd̄, āb¯̄cd̄, ābcd}. As āb¯̄cd 6∈ F (Flip1), we cannot reach āb¯̄cd from ābc̄d̄ in two
improving flips. Evaluate the ranks and LD terms of the outcomes in F (Flip1):

r(abcd̄) + LD(āb¯̄cd, abcd̄) =
157

24
+

(
7

6
+

1

8
+

1

24

)
=

189

24
,

r(āb¯̄cd̄) + LD(āb¯̄cd, āb¯̄cd̄) =
122

24
+

(
1

24

)
=

123

24
,

r(ābcd) + LD(āb¯̄cd, ābcd) =
118

24
+

(
1

8

)
=

121

24
.

As abcd̄ and āb¯̄cd̄ both satisfy r(o) + LD(āb¯̄cd, o) > r(āb¯̄cd), we can stop searching in these
directions. Alternatively, for āb¯̄cd̄, we could have dismissed this outcome immediately as
we have considered it previously. This leaves us with Flip2 = {ābcd}.

To see if we can reach āb¯̄cd from ābc̄d̄ in three improving flips, we now evaluate F (Flip2):
F (Flip2) = F (ābcd) = {abcd, āb¯̄cd}.

We have āb¯̄cd ∈ F (Flip2), thus āb¯̄cd can be reached from ābc̄d̄ in three improving flips.
That is, there is an IFS from ābc̄d̄ to āb¯̄cd of length three, and so the answer to our domi-
nance query is yes, N � āb¯̄cd � ābc̄d̄ holds. A helpful way of visualising this method is the
search tree given in Figure 4.

𝑎 𝑏𝑐 𝑑

𝑎 𝑏𝑐𝑑 𝑎 𝑏𝑐 𝑑 𝑎𝑏𝑐 𝑑

𝑎 𝑏𝑐 𝑑 𝑎 𝑏𝑐𝑑 𝑎𝑏𝑐𝑑

𝒂 𝒃𝒄 𝒅 𝑎𝑏𝑐𝑑


Figure 4: Dominance Query Search Tree Example

The method we have described in this section uses a basic search tree method for finding
an IFS (Boutilier et al., 2004a). Rank values and LD terms are used to prune certain
branches as we construct the tree in order to improve search efficiency. Suffix fixing and least

76

Rank Pruning for Dominance Queries in CP-Nets

variable flipping, introduced by Boutilier et al. (2004a), as well as the penalty-based pruning
introduced by Li et al. (2011) can all be viewed as methods of pruning this search tree.
Ideally, our rank-based pruning method would be implemented alongside some of these other
pruning methods for a more efficient dominance testing process. We give an experimental
comparison of the performance of our rank pruning with some of these different pruning
techniques and their combinations in Section 6 in order to evaluate the most efficient pruning
schema for dominance testing. Allen et al. (2017) introduce the idea of only searching
for an IFS to a certain depth. This could clearly be applied to our dominance testing
procedure, one would simply stop searching once the specified depth was reached. They
find experimentally that for relatively small binary CP-nets, the longest possible IFS has
length

⌊
1
4(|V |+ 1)2

⌋
. However, it is not proven that this holds for all binary CP-nets and

it does not hold for multivalued CP-nets in general. Thus, if such a depth bound was
incorporated with our dominance testing procedure, it would lose completeness.

6. Experimental Evaluation of Pruning Measures

In Section 5 we showed how our outcome ranks can be used to make dominance testing
more efficient by pruning the search tree. In this section, we evaluate the performance of
our rank pruning, in comparison with the existing pruning methods. We also examine the
performance of all possible combinations of these methods, in order to determine the most
effective pruning schema for dominance testing. We first give the details of our experiments,
then analyse the performance results of the different dominance testing methods. These
results show our rank pruning to be the best of the individual methods, and the most
important to include when considering combinations of techniques.

Before describing the experiments, we must formalise the notions of dominance query
search trees and the pruning of these trees. In Section 5, we mentioned that our method of
answering dominance queries, using ranks to eliminate certain directions, could be viewed
as building up a search tree and using outcome ranks to prune this tree as it is constructed.
We explain this idea more explicitly below.

Given the dominance query N � o � o′, we want to determine whether o is reachable
from o′ in the preference graph, GN . We do this by building the dominance query search
tree G(o′), until either o is reached (and so the dominance query is true) or it cannot be
constructed further (and so the dominance query is false). This search tree is constructed
as follows. Start with o′ as the root of the tree. Select some leaf ō that has not previously
been considered, and for every improving flip, o∗, of ō that is not already in G(o′) add the
edge ō→ o∗ to the tree. We now say that ō has been considered. Repeat this process until
either o is reached (the dominance query is true) or all leaves have been considered (the
dominance query is false). This method successfully answers the dominance query because,
when G(o′) is fully constructed, we have ō ∈ G(o′) if and only if ō is reachable from o′

in GN .

We can use outcome ranks to prune this tree as it is constructed (without affecting the
completeness of the search) as follows. When considering leaf ō, any improving flip, o∗,
satisfying r(o∗) + LD(o, o∗) > r(o) can be pruned from the tree. That is, o∗ does not need
to be added to the tree because, by Corollary 3, we know that searching in this direction
will not lead to o. This is fundamentally the same as the process described in Section 5

77

Laing, Thwaites, & Gosling

for answering dominance queries with outcome ranks. However, in Section 5 at each step
we considered all leaves (that had not been previously considered) at once, for ease of
explanation. Here, we consider one leaf at a time and do not specify how the leaf should
be selected. We discuss the choice of leaf prioritisation in Section 6.1.

6.1 Experiment

There are many existing methods to improve dominance testing efficiency. We have chosen
to compare rank pruning to the other methods for pruning the search tree that preserve
search completeness. This means that we are comparing our rank pruning to penalty
pruning by Li et al. (2011) and suffix fixing by Boutilier et al. (2004a). We have excluded
from our comparisons, least variable flipping by Boutilier et al. and the depth bound on
flipping sequences proposed by Allen et al. (2017), as they do not preserve completeness. We
also do not consider the model checking method introduced by Santhanam et al. (2010), the
composition of preference tables introduced by Sun et al. (2017), or the CP-net preprocessing
method, forward pruning, by Boutilier et al.

Suffix fixing (Boutilier et al., 2004a) prunes the dominance query search tree as follows.
Suppose we are answering the dominance query N � o � o′ by constructing G(o′). Let N
be a CP-net over variables V and suppose {X1, X2, ..., Xn} is a topological ordering of V .
The kth suffix of any outcome o∗ is o∗[Xk, Xk+1, ..., Xn]. As we construct G(o′), when
considering a leaf ō, that has the same kth suffix as o, any improving flips of ō that do not
have the same kth suffix are pruned. This pruning condition preserves search completeness
as Boutilier et al. (2004a) proved the following. If o and o′ have the same kth suffix and
N � o � o′, then there exists an improving flipping sequence o′ = o1, o2, ..., om = o, such
that every oi has the same kth suffix as o and o′.

Penalty pruning by Li et al. (2011) is based upon their penalty function for outcomes.
This penalty function is similar to our rank values in that it quantifies user preference;
outcomes more preferred by the user have smaller penalty values. The formula for these
penalties is

pen(o) =
∑
X∈V

wXp
o
X

where wX is the importance weight

wX =
∑

Y ∈Ch(X)

wY (|Dom(Y)| − 1).

The poX term is the degree of penalty of X with respect to o. That is, if o[X] is the most
preferred value of X, given Pa(X) = o[Pa(X)], then poX = 0. If o[X] is the second most
preferred value of X, then poX = 1 and so on. If o[X] is the least preferred value of X,
then poX = Dom(X)− 1.

Suppose again that we wish to answer the dominance query N � o � o′ by construct-
ing G(o′), this time using penalty values to prune the tree. First we define the following
evaluation function

f(o∗) = pen(o∗)− pen(o)−HD(o∗, o),

where HD is Hamming distance, HD(o1, o2) = |{X|o1[X] 6= o2[X]}|. Li et al. (2011) have
shown that if there is an IFS o′ = o1, o2, ..., om = o, then f(oi) ≥ 0 for all i. Thus, when
constructing G(o′), any improving flips with f < 0 can be pruned.

78

Rank Pruning for Dominance Queries in CP-Nets

This penalty-based pruning was originally presented by Li et al. (2011) in combination
with suffix fixing. We treat penalty pruning separately here, in order to see more clearly
which pruning methods are most effective, both individually and in different combinations.

It is simple to combine any of the three pruning measures we are considering. Suppose
we wish to answer the dominance query N � o � o′, utilising the combination of a set of
pruning measures, Γ. We build G(o′) as usual. When considering the outcome ō, let F (ō)
denote the set of all improving flips of ō, as in Section 5. As usual, we prune any elements
of F (ō) that are already present in G(o′). Then, for each pruning measure γ ∈ Γ, in turn, we
prune all elements remaining in F (ō) that satisfy the pruning condition of γ. Any improving
flips that have not been pruned from F (ō) are added to G(o′) in the normal manner. We
continue until o is reached, that is, the dominance query is true, or the pruned G(o′) is
complete (that is, all leaves have been considered), and thus the dominance query is false.

In our experiment, we evaluated the performance of each pruning measure individually,
all pairwise combinations, and all three methods combined. Thus, we are comparing the
performance of seven different pruning schemas. However, as mentioned previously, in
order for these methods to be fully defined, we must declare how we select the next leaf
for consideration when constructing G(o′). Different methods of leaf prioritisation have
been suggested previously by Boutilier et al. (2004a) and Li et al. (2011) and one could
similarly propose a prioritisation heuristic based on rank values, but no analysis has been
done on the effect of this choice. In our experiments, each pruning method utilised the
prioritisation heuristic that was optimal for that method (given that it did not require
additional calculations). For suffix fixing, this was prioritisation of leaves at minimal depth
in the search tree. For penalty pruning and the combination of penalty pruning with suffix
fixing, the prioritisation heuristic by Li et al. was used. For rank pruning and all other
combinations, leaves of maximal rank were prioritised. Full details of the prioritisation
methods we considered and those utilised, as well as the performances of each pruning
method when used in conjunction with all possible prioritisation techniques, are available
online at www.github.com/KathrynLaing/DQ-Pruning.

We measured the performance of the dominance testing functions in two ways. First,
we looked at outcomes traversed, this is the number of outcomes added to the search tree
before an answer to the dominance query can be determined. This is similar to the measure
used by Li et al. (2011) in their pruning method comparisons (where they compared penalty
pruning combined with suffix fixing to suffix fixing and least variable flipping). Outcomes
traversed provides us with a theoretical measure of how effective the different methods are
at pruning the search tree. It reflects the number of steps the different algorithms have
to go through before the queries can be answered, thus showing how efficient the different
methods are in a theoretical sense. This measure has the advantage of being independent
of the specific code used and the order in which pruning conditions in combinations are
considered.

Note that it is possible for the number of outcomes traversed to be zero, that is, the
dominance query may be answered without starting to construct a search tree. This can
happen in three different ways for the dominance query N � o � o; first, if o = o′, then this
is trivially false. Second, if (one of) the pruning measure(s) used is penalty pruning, then,
if f(o′) < 0, we can determine the dominance query to be false (Li et al., 2011). Finally,
if (one of) the pruning measure(s) used is rank pruning, then, if r(o) − r(o′) < LD(o, o′),

79

Laing, Thwaites, & Gosling

we can determine the dominance query to be false, by Corollary 3. As these conditions
are all assessed before starting to construct the search tree, they result in zero outcomes
traversed. In Appendix C we look at the proportion of queries that the different functions
immediately determine to be false (that is, those queries that have zero outcomes traversed).
By evaluating this proportion in comparison to the total proportion of false queries, we can
see how accurately these initial conditions predict the query outcome.

Our second measure of performance is the time elapsed (in seconds) while the function
answers the query. Whilst this measure is dependent upon the exact code used, we have
tried to keep the code for the different functions as uniform as possible, so that differences
in performance are due to the methods rather than the code. From time elapsed we can
identify which method will be the most efficient in practice. By looking at both performance
measures, we can see the tradeoff between how effective a method is theoretically and the
time cost due to the complexity of implementing that method. Ultimately, we will see if
the theoretical benefit is worth the cost in complexity by looking at the time elapsed plots.

The experiments we ran to evaluate performance were as follows. For given n (number
of CP-net variables) and dU (maximum domain size of the variables) values, 100 CP-nets
were randomly generated. Each of these CP-nets has an acyclic structure over n variables,
each variable has a domain size of at most dU , and all parent-child relations are valid
(that is, if there is an edge X → Y in the CP-net structure, it is possible to change the
preference over Y by altering the value of X only). For each CP-net, 10 dominance queries
were randomly generated. Each of these 1000 dominance queries was answered by all seven
dominance testing functions and the outcomes traversed and time elapsed were recorded.
The average of these values over the 1000 queries are the values plotted for (n, dU) in the
following plots.

This experiment was run in the binary case, dU = 2, for n = 3, 4, ..., 10. For the
multivalued variable case, we allowed domain size to be up to five. We ran the experiments
in this case (dU = 5) for n = 3, 4, ..., 8.

We have made further details of the above experiment available at the online reposi-
tory www.github.com/KathrynLaing/DQ-Pruning. This includes the random CP-net gen-
erator code and a description of how this generator works, as well as the code for the different
dominance testing functions. We have also uploaded the raw results of the experiment to
this repository.

6.2 Results

We have four sets of data (binary CP-nets with outcome traversed and time elapsed data,
and similarly for multivalued CP-nets) for each of the 7 functions. These four data sets are
given in Figures 5-8. In each of Figures 5-8, Figure (a) shows the performance of the three
pruning measures when used individually. To keep this plot legible, a logarithmic scale
is used. Figure (b) shows the performance of all seven combinations of the three pruning
measures.

In each figure, the ±SE (standard error) interval of rank pruning is illustrated by a
shaded region. The standard error interval depicts where we expect the true mean perfor-
mance of the function to lie. The uncertainty represented by this interval comes from the
fact that the complexity of a dominance query, regardless of the pruning technique used, is
dependent upon both the CP-net and the outcomes of interest; CP-nets with denser struc-

80

Rank Pruning for Dominance Queries in CP-Nets

tures, or more convoluted preference graphs, are more likely to produce dominance queries
that take longer to answer. Once a CP-net has been chosen, the position of the outcomes of
interest within the preference graph further impacts how difficult the dominance query is to
answer. As our CP-nets and queries were randomly generated, it is unsurprising that each
function shows variation in performance. However, as all functions were tested on the same
set of dominance queries, our results should accurately portray their relative performance
on average.

In the multivalued case, the domain sizes were allowed to vary between two and five.
Larger domain sizes will produce harder dominance queries in general, so we would expect
this extra uncertainty to result in further variation within the results. Moreover, CP-nets
with larger domain sizes have larger preference graphs, so there will also be more variation
in dominance queries of the same CP-net. Hence, in the multivalued case, we expect more
uncertainty in the average performance of the functions.

From Figures 5(b) and 7(b), we can see that adding extra pruning conditions always
improves the theoretical performance of a method (that is, it results in fewer outcomes
traversed on average). This shows that all three pruning measures are distinct, and that
no pruning measure is subsumed by any other. Further, this shows us that each technique
prunes branches that are not affected by either of the other two methods. It is not obvious
from the way in which they are formulated that the three pruning measures are distinct
in this manner. Moreover, this is not confirmed by any comparisons in existing literature.
From this result, it is unsurprising that the best performing function, in the theoretical
sense, is that which uses all three pruning measures.

However, finding the best pruning schema is not as simple as applying as many pruning
conditions as possible. As we are aware that additional pruning methods come at the cost of
additional complexity, we would naturally question whether these improvements are large
enough to warrant the additional cost. Looking at the time elapsed results (Figures 6(b)
and 8(b)), we can see that some of these ‘improvements’ actually increase the average time
taken, so the theoretical benefit is not worth the complexity cost. In particular, in the
binary case, we find that a pairwise combination is actually faster than using all three
pruning methods.

Consider the Figure (a) plots, which show the performance of the three pruning methods
used individually. It is clear in all four cases that rank pruning is the most effective and
most efficient method of the three by a large margin. Further, the performance of rank
pruning (outcomes traversed or time elapsed) shows a much slower rate of growth than the
others as the number of variables (n) increases, particularly in the binary variable case.
Thus, if we wanted to pick a single pruning method, rank pruning is plainly the best choice.

Now consider the Figure (b) plots, these show the performance of all possible combi-
nations of the different pruning methods. In all four of these figures, you can see a clear
distinction in performance between the functions represented by dashed lines and those
represented by solid lines. The functions represented by solid lines perform much better
and show a slower rate of growth with n than the functions represented by the dashed lines.
These solid lines are exactly those functions that include rank pruning in their combination.
Hence, we can see a clear distinction in performance between those functions that do and do
not apply rank pruning. Thus, we may conclude that rank pruning is a necessary ingredient
for a good pruning schema.

81

Laing, Thwaites, & Gosling

3 4 5 6 7 8 9 10

Binary CP − nets (dU = 2)

n=|V|

#
 O

u
tc

o
m

e
s
 T

ra
ve

rs
e

d

Outcomes Traversed

Pruning Method

Suffix Fixing
Penalty
Rank

2
−

1
2

1
2

3
2

5
2

7

(a) Individual Pruning Measures

3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

Binary CP − nets (dU = 2)

n=|V|

#
 O

u
tc

o
m

e
s
 T

ra
ve

rs
e

d

Outcomes Traversed

Pruning Method

Penalty
Rank
SF
Penalty + Rank
Penalty + SF
Rank + SF
Penalty + Rank + SF

(b) All Pruning Measure Combinations

Figure 5: Binary CP-Nets - Outcomes Traversed Results

82

Rank Pruning for Dominance Queries in CP-Nets

3 4 5 6 7 8 9 10

Binary CP − nets (dU = 2)

n=|V|

A
v
g

.
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

Time Elapsed

Pruning Method

Suffix Fixing
Penalty
Rank

2
−

3
2

−
1

2
1

2
3

2
5

2
7

(a) Individual Pruning Measures

3 4 5 6 7 8 9 10

0
1

2
3

4
5

6

Binary CP − nets (dU = 2)

n=|V|

A
v
g

.
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

Time Elapsed

Pruning Method

Penalty
Rank
SF
Penalty + Rank
Penalty + SF
Rank + SF
Penalty + Rank + SF

(b) All Pruning Measure Combinations

Figure 6: Binary CP-Nets - Time Elapsed Results

83

Laing, Thwaites, & Gosling

3 4 5 6 7 8

Multivalued CP − nets (dU = 5)

n=|V|

#
 O

u
tc

o
m

e
s
 T

ra
ve

rs
e

d
Pruning Method

Suffix Fixing
Penalty
Rank

2
0

2
2

2
4

2
6

2
8

Outcomes Traversed

(a) Individual Pruning Measures

3 4 5 6 7 8

0
2

0
4

0
6

0
8

0
1

0
0

Multivalued CP − nets (dU = 5)

n=|V|

#
 O

u
tc

o
m

e
s
 T

ra
ve

rs
e

d

Outcomes Traversed

Pruning Method

Penalty
Rank
SF
Penalty + Rank
Penalty + SF
Rank + SF
Penalty + Rank + SF

(b) All Pruning Measure Combinations

Figure 7: Multivalued CP-Nets - Outcomes Traversed Results

84

Rank Pruning for Dominance Queries in CP-Nets

3 4 5 6 7 8

Multivalued CP − nets (dU = 5)

n=|V|

A
v
g

.
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

Time Elapsed

Pruning Method

Suffix Fixing
Penalty
Rank

2
−

2
2

0
2

2
2

4
2

6
2

8
2

1
0

2
1

2

(a) Individual Pruning Measures

3 4 5 6 7 8

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

Multivalued CP − nets (dU = 5)

n=|V|

A
v
g

.
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

Time ElapsedTime Elapsed

Pruning Method

Penalty
Rank
SF
Penalty + Rank
Penalty + SF
Rank + SF
Penalty + Rank + SF

(b) All Pruning Measure Combinations

Figure 8: Multivalued CP-Nets - Time Elapsed Results

85

Laing, Thwaites, & Gosling

In Figure (b), the shaded area shows the standard error interval for rank pruning, the
best performing of the individual pruning measures. Thus, only functions that lie below
this area may be considered significantly better than using rank pruning alone. In both
Figures 5(b) and 7(b), adding penalty pruning to rank pruning makes little improvement to
the average number of outcomes traversed. This suggests that there are few branches pruned
by penalty pruning that are not already pruned by rank pruning. This would account for
why adding penalty pruning results in only minor improvement in the time elapsed cases
also. In fact, in the binary case (Figure 6(b)), adding penalty pruning increases the average
time elapsed. This is because the additional complexity of checking the penalty condition
outweighs the theoretical benefit.

The combination of rank pruning with suffix fixing and the combination of all three
measures both perform significantly better than rank pruning alone, in terms of outcomes
traversed (Figures 5(b) and 7(b)). This is probably due to less overlap in the branches
pruned by rank pruning and suffix fixing. The two functions show very similar performances
in terms of outcomes traversed (both in the binary and multivalued cases), though the
function using all three methods does slightly better in this theoretical case, as expected.
In terms of time elapsed (Figures 6(b) and 8(b)), these functions again perform better than
rank pruning alone. However, they are not significantly faster than rank pruning, probably
due to the associated cost of implementing the additional pruning measures. In the binary
case, the combination of rank pruning and suffix fixing outperforms the combination of all
three pruning methods, as the slight theoretical improvement provided by penalty pruning is
not worth the associated complexity cost. In the multivalued case however, the combination
of all three methods is more efficient on average, though its performance remains close to
that of rank pruning and suffix fixing combined. We conjecture that, for larger values of n,
the combination of rank pruning and suffix fixing is likely to become more efficient than
using all three methods. This is motivated by the fact that the average size of the search
tree is rapidly increasing, and thus so is the number of times the penalty condition must be
checked (in the case of using all three methods). Whereas the number of additional branches
pruned by this check, that is, the theoretical improvement of adding penalty pruning (to
rank pruning and suffix fixing combined) remains small.

From the above results, we have seen that our rank pruning is the most efficient of the
individual methods considered. Further, from the clear distinction between functions that
do and do not utilise rank pruning, we can see that rank pruning constitutes a valuable
contribution to the existing methods when we allow combinations. Considering all the pos-
sible combinations of our pruning methods, the above results suggest that the most efficient
combination for dominance testing in the binary case is rank pruning and suffix fixing. In
the multivalued case, the most efficient method is to use all three pruning measures.

7. CP-Nets with Indifference

In this section, we give a more general form of our outcome rank formula that allows for
indifference statements within the CP-net’s CPTs. These more general ranks still reflect all
entailed relations and, therefore, allow all of our previous methods and results to be applied
to CP-nets that express indifference as we show below.

86

Rank Pruning for Dominance Queries in CP-Nets

We do not assume here that the preference ordering over Dom(X), given the values
taken by Pa(X), is a strict ordering (Boutilier et al., 2004a). For example, consider the
CP-net given in Example 1, we would now permit CPT(C) to express that, if it is a short
flight in term time, then the user prefers to fly economy but is indifferent between first
and business class. This would make the entry of CPT(C) that corresponds to AB = ab
be c � c̄ ∼ ¯̄c. This kind of ceteris paribus indifference statement is natural and likely to be
commonplace when looking at real world systems (Allen, 2013). Thus, being able to deal
with indifference expands the applications of our results. Further, if one were comfortable
modelling unknown preferences as indifference, our results could be applied to partially
specified CP-nets also.

Boutilier et al. (2004a) show that the presence of such indifference allows CP-nets with
acyclic structures to be inconsistent (that is, have no consistent ordering). However, this
can be avoided if one assumes that switching between indifferent assignments of values to
parent variables should have no effect on the order of preference over any children (Boutilier
et al., 2004a). Therefore, we assume here that all CP-nets with indifference statements obey
this condition.

Recall from Section 3.1 that the rank of an outcome o was the sum of weights attached
to each variable assignment (of o). These weights were constructed to approximate the
utility of each variable choice in o. If o[X] = x and o[Pa(X)] = u, then the weight attached
to the assignment of X is:

AFX(dX + 1)PP {X = x | Pa(X) = u}

The justification for the presence of each of these factors remains valid for CP-nets
with indifference statements. Thus, we do not need to create a new weighting convention,
we simply need to generalize this formula so that it is defined in the cases of indifference.
The AFXi and dXi terms depend only on the CP-net structure, not on the CPTs, and thus
can remain as they were defined previously. The PP {X = x | Pa(X) = u} factor, as defined
in Section 3.1, needs to be redefined to allow for the possibility of indifference statements.

Recall that PP {X = x | Pa(X) = u} is a factor on the (0,1] scale indicating to what de-
gree the user prefers this choice of value for X (given Pa(X) = u). We redefine
PP {X = x | Pa(X) = u} more generally as follows. Suppose the row of CPT(X) that
corresponds to Pa(X) = u has ` indifferences, then

PP {X = x | Pa(X) = u} =
(nX − `)− k + 1

nX − `
.

Where k is the position of preference of the choice of X = x given Pa(X) = u. Note that
we consider all values of X to which the user is pairwise indifferent to be in the same pref-
erence position, that is, there are nX − ` possible positions of preference (1, 2, ..., nX − `).
Here, k = 1 if x is (one of) the most preferred value(s) X can take, k = 2 if x is (one of)
the value(s) of X in the 2nd most preferred position, and so on.

Example 7. Let N be a CP-net over variables V . Let X ∈ V be some variable with
the following partial CPT:

Pa(X) = u x1 � x2 ∼ x3 ∼ x4 � x5 � x6 ∼ x7 � x8

87

Laing, Thwaites, & Gosling

Then, using the generalised PP definition, we have the following PP values.

PP {X = x1 | Pa(X) = u} =
(8− 3)− 1 + 1

8− 3
=

5

5
,

PP {X = x2 | Pa(X) = u} =
(8− 3)− 2 + 1

8− 3
=

4

5
,

PP {X = x3 | Pa(X) = u} =
4

5
, PP {X = x4 | Pa(X) = u} =

4

5
,

PP {X = x5 | Pa(X) = u} =
3

5
, PP {X = x6 | Pa(X) = u} =

2

5
,

PP {X = x7 | Pa(X) = u} =
2

5
, PP {X = x8 | Pa(X) = u} =

1

5
.

Notice that this generalised definition of PP {X = x | Pa(X) = u} is a value in
{1/(nXi−`), 2/(nXi−`), ..., (nXi−`−1)/(nXi−`), 1}. Further, this can still be interpreted
as a factor on the (0,1] scale indicating to what degree the user prefers this choice of value
for X (given Pa(X) = u).

Now that all of the terms in our previous weight formula are defined in the case of N
having indifference statements, we can define outcome ranks for CP-nets with indifference.

Definition 7: (Generalised) Outcome Rank. Let N be a CP-net over variables V ,
which may have indifference statements in its CPTs. Let o be an associated outcome. Then,
the (generalised) rank of o, rG(o), is defined as

rG(o) =
∑
X∈V

AFX(dX + 1)PP {X = o[X] | Pa(X) = o[Pa(X)]},

where the PP term uses the more general form given above.

For the special case in which there are zero indifference statements, the general form
of PP clearly simplifies to the original definition, given in Section 3.1. Thus, the generalised
outcome ranks in this special case, simplify to the outcome ranks given by Definition 4 (for
multivalued CP-nets in which we assumed no indifference statements).

Remark 4. We have could have used an event tree representation to define generalised
outcome ranks by generalising the notion of event tree representation to include indifference.
This generalised T (N) would have the same structure as before, but use the k values from
the above definition of PP in order to label the branches. For example, let N be the CP-net
in Example 7. At the point where T (N) branches into the possible values of X, if Pa(X)
were previously assigned the values in u, then these X branches are labelled as follows. The
branch corresponding to x1 would be labelled ‘1st’. The x2, x3, and x4 branches would all
be labelled ‘2nd’. The x5 branch would be labelled ‘3rd’ and so on. We again have that N
and T (N) are equivalent by an argument almost identical to that given in Remark 2. The
weighted event tree W (N), would be defined in the same way as in Section 3.1, now using
the new definition of PP , and the generalised outcome rank would be defined analogously
to rank (Definition 4). Further, W (N) would also be equivalent to N , by similar reasoning

88

Rank Pruning for Dominance Queries in CP-Nets

to that given in Section 3.1.

All of our applications of the outcome ranks defined in Section 3.1 rely solely on the
fact that they reflect all entailed relations (Theorem 1). Naturally, we want this property
to hold for our generalised outcome ranks and the following theorem shows that it does.

Theorem 2. Let N be a CP-net over a set of variables V , which may have indifference
statements in its CPTs. Let o, o′ be associated outcomes. Then,

N � o � o′ =⇒ rG(o) > rG(o′)

and N � o ∼ o′ =⇒ rG(o) = rG(o′).

Proof in Appendix A.

Thus, the (not necessarily strict) ordering of the outcomes, %∗, induced by the ranks rG,
is again a consistent ordering. That is, N � o � o′ =⇒ o �∗ o′ and N � o ∼ o′ =⇒
o ∼∗ o′. Thus, using the generalised outcome ranks, we can obtain a (not necessarily
strict) consistent ordering for any N , which may have indifference statements, using exactly
the same method as given in Section 3.2. Similarly, we can obtain a (not necessarily
strict) consistent ordering for any subset of the outcomes or for a CP-net with additional
plausibility constraints using the methods given in Section 3.2 (ignoring any instruction to
arbitrarily order outcomes with equal ranks), now using the generalised ranks rG, given
by Definition 7. These orderings can be shown to be consistent in the same way as the
corresponding orderings in Section 3.2. Boutilier et al. (2004a) claim that their methods
for obtaining a consistent ordering of (any subset of) the outcomes also apply to CP-nets
with indifference. However, the complexity of ordering queries in this case is unknown
(though they conjecture that it is hard) and, therefore, so is the complexity of their method
for consistently ordering a subset of the outcomes. In contrast, if one uses our method,
the complexity of consistently ordering any subset of the outcomes of size k in the case of
indifference is still O(|V |4k+ k2). This is a result of the fact that we can compute rG(o) in
the same time complexity as r(o) as we show below.

In all of the above applications of rG, we have obtained a consistent ordering (of N ,
some subset of the outcomes, or some constrained CP-net NC), %∗, which is not necessarily
strict. That is, for any entailed relation o � o′ (or o ∼ o′) we have o �∗ o′ (or o ∼∗ o′). The
presence of indifference might mean that we do not mind a non-strict ordering; however
o ∼∗ o′ ; o and o′ are indifferent. Further, it is not trivial to distinguish between
when o ∼∗ o′ is caused by o and o′ indifferent and when this is due to o and o′ incomparable.
Thus, there is no trivial way of obtaining a consistent ordering from%∗ that has equality only
in the case of indifference. If a strict consistent ordering is required (so we are not interested
in preserving indifference), then we can obtain a strict ordering of the outcomes, �∗, from %∗

simply by forcing outcomes of equal rank into an arbitrary order. This strict ordering retains
the property that for any entailed relation, o � o′, we have o �∗ o′ by Theorem 2. Thus,
we can obtain a strict ordering that is consistent with all entailed preferences (but not
indifferences).

Algorithms 1, 2, and 3 can be used to calculate rG(o) exactly as described for r(o) in
Section 4 (with the same time complexity) if we make two small adjustments. First, line 10

89

Laing, Thwaites, & Gosling

of Algorithm 1 should use |Dom(Xi)|−` in place of |Dom(Xi)|, where ` = # indifferences in
the Pa(Xi) = o[Pa(Xi)] entry of CPT(Xi). Second, in the case of indifference statements,
the preference positions in the input CPTs must be as defined in our definition of the more
general form of PP (these are the k terms). Thus, we can compute rG(o) in the same time
as r(o) and so all complexity results transfer directly to CP-nets with indifferences in their
CPTs.

Suppose N is a CP-net, which may have indifferences in its CPTs, and let o and o′ be
associated outcomes. The dominance queryN � o � o′ can be answered using a method very
similar to the one described in Section 5. First, note that N � o � o′ if and only if there is an
improving flipping sequence o′ o (Boutilier et al., 2004a). As there may be indifferences
we must clarify what we mean by IFS. An IFS is a sequence o′ = o1, o2, ..., om = o such that,
for all i, oi and oi+1 differ on the value taken by exactly one variable and either N � oi+1 � oi
or N � oi+1 ∼ oi holds; further, for at least one j we have N � oj+1 � oj . Returning to
our dominance query, if rG(o′) ≥ rG(o), then the dominance query is false by Theorem 2.
Otherwise, starting from o′, we build up the tree as in Section 5, only now an outcome
branches into all improving flips and all indifferent flips. Only outcomes that are not
already in the tree may be added. A branch to outcome o∗ is pruned (not explored further)
if rG(o∗) > rG(o) as, if o∗ is on a o′ o IFS, we must have N � o � o∗ or N � o ∼ o∗ and so,
by Theorem 2, rG(o∗) ≤ rG(o). As in Section 5, this pruning will improve the efficiency of
answering dominance queries and in finitely many steps we will either reach o (dominance
query is true) or there will be no more valid branches to explore (dominance query is
false). Boutilier et al. (2004a) claim that their pruning methods for dominance queries
also transfer to CP-nets with indifference. Additionally, Allen (2013) looked at answering
dominance queries for CP-nets with indifference utilising a SAT solver. In contrast to our
work, he considers ‘weak dominance’, that is, asking whether N � o % o′ holds.

Note that we can answer indifference queries, N � o ∼ o′? (if rG(o) = rG(o′)) using the
same search technique as above, only now the outcomes branch only into indifference flips.
However, we cannot use ranks to prune this search as all the outcomes in the tree will have
the same rank (the same as that of o and o′).

Note that least rank improvement (L(X)) terms are defined the same way in the case
where a CP-net has indifferences. Thus, Lemma 2 still holds in the case where N has indif-
ferences in its CPTs. Further, if N may have indifference statements in its CPTs, we have
the following analogous result to Corollary 3.

Corollary 4. Let N be a CP-net over variables V , which may have indifference
statements within its CPTs. Let o1 and o2 be associated outcomes and
D = {X ∈ V | o1[X] 6= o2[X]}. Then,

N � o1 � o2 =⇒ rG(o1)− rG(o2) ≥ minX∈D{L(X)} > 0.

The proof of this result is very similar to that of Corollary 3. One just needs to note
that an IFS o2 o1 must have at least one improving (not indifferent) flip of at least
one X ∈ D. Further, an improving flip of X ∈ V corresponds to a rank increase of at
least L(X) (as we showed for Corollary 3 only now we must allow N to have indifference).

90

Rank Pruning for Dominance Queries in CP-Nets

Definition 8: Minimum (Entailed) Rank Difference. Let N be a CP-net over
variables V , which may express indifference. Let o and o′ be associated outcomes and
let D = {X ∈ V | o[X] 6= o′[X]}. The minimum (entailed) rank difference of o and o′,
denoted MD(o, o′), is defined to be

MD(o, o′) = minX∈D{L(X)}.

By Corollary 4, these terms can be used to prune dominance queries more
effectively. Suppose we are answering the dominance query N � o � o′, such that
rG(o) ≥ rG(o′) + MD(o, o′). Then, starting at o′, we build up the search tree as de-
scribed above. Any branch to an outcome o∗ such that rG(o∗) > rG(o) can be pruned, as
before. Further, we may prune any branch to an outcome o∗ such that rG(o∗) < rG(o)
and rG(o∗) + MD(o∗, o) > rG(o). This is because, if o∗ is on an IFS o′ o, then ei-
ther N � o � o∗ or N � o ∼ o∗, but as rG(o∗) 6= rG(o) we can’t have N � o ∼ o∗ (by Theo-
rem 2). However, we can’t have N � o � o∗ by Corollary 4, as rG(o∗) +MD(o∗, o) > rG(o).
Thus, o∗ is not on an IFS o′ o and so we do not need to explore the branch further and
can prune it from the search. In comparison to the previously described dominance testing
method for CP-nets with indifference, we now have an additional pruning condition. This
will further reduce the size of a dominance query’s search tree, making it easier to answer.

In this section, we have shown how our rank definition can be generalised to allow
for indifference. Further, we have demonstrated that all of our results now apply to CP-
nets with indifference. In particular, we can obtain consistent orderings and improve the
efficiency of dominance queries in almost exactly the same way as for CP-nets without
indifference.

8. Summary

In this paper, we have introduced a novel method of quantifying a user’s preference over
outcomes, given a CP-net representation of their preferences. We have shown these outcome
ranks to be an accurate representation of user preference because all entailed (known) user
preferences are reflected in the rank values. Thus, our ranks naturally induce a consistent
ordering of (any subset of) the outcomes. We have also shown that this is sufficient to
find a consistent ordering of any CP-net with additional plausibility constraints. We have
presented algorithms for calculating these outcome ranks in O(n4) time, where n is the
number of variables of interest. Further, we have shown how these outcome ranks can
be used to improve the efficiency of answering dominance queries by pruning the search
tree. Through experimental comparisons, we have shown that this is more efficient than
the existing methods of pruning the search tree. These experiments also evaluated the
performance of combinations of pruning methods and found rank pruning to be a crucial
component of any effective pruning schema. Finally, we have generalised our outcome rank
definition to allow for indifference statements within the CPTs. We have shown that these
generalised ranks remain an accurate representation of preference as all entailed preference
and indifference is reflected in the rank values. From this result, we have shown that all of
our previous results apply also to CP-nets with indifference.

91

Laing, Thwaites, & Gosling

Acknowledgments

The work of K. Laing was supported by a University of Leeds Research Scholarship. Part
of this work was undertaken on ARC3, part of the High Performance Computing facilities
at the University of Leeds, UK.

Appendix A. Proofs

Proof of Theorem 1. Before we commence the proof, recall the following. The edge
of W (N) that indicates that X = x, given Pa(X) = u previously, has the following weight.

AFX(dX + 1)PP {X = x | Pa(X) = u} (2)

Full explanation of the notation is given in Section 3.1.

If N � o � o′, then there exists an improving flipping sequence of outcomes
o′ = o1, o2, ..., om = o, such that oi+1 differs from oi on the value taken by exactly one
variable and N � oi ≺ oi+1 (Boutilier et al., 2004a). Thus, proving the theorem for o and o′

that differ on the value of exactly one variable is sufficient, as the more general result follows
by transitivity.

Suppose o and o′ differ only on the value taken by X. Let x and x′ be the values assigned
to X in o and o′ respectively (that is, o[X] = x and o′[X] = x′). Let u be the set of values
assigned to Pa(X) in both outcomes (u = o[Pa(X)] = o′[Pa(X)]).

Let x1 � x2 � · · · � xm be the preference ordering of Dom(X) given that Pa(X) = u.
This is the row of CPT(X) that corresponds to Pa(X) = u. Suppose x = xi and x′ = xj ,
we know that i < j as o′ → o is an improving flip of X.

Let ok denote the outcome that has ok[X] = xk and for all variables Y 6= X has
ok[Y] = o[Y](= o′[Y]). Then the sequence of outcomes om, om−1, ..., o1, is a sequence of flips
of X through the values xm, xm−1, ..., x1. As Pa(X) = u in each ok, these are improving
flips of X so N � o1 � o2 � · · · � om. Notice that o = oi and o′ = oj with i < j so we
have N � o = oi � oi+1 � · · · � oj = o′. Hence, it is sufficient to prove r(o) > r(o′) for
the specific case where x and x′ are adjacent in the ordering x1 � x2 � · · · � xm, that
is, j = i+ 1. The more general case, where x and x′ are not adjacent (j > i+ 1) follows by
the fact that > is transitive.

To see this explicitly, suppose we have proven the case where x and x′ are adja-
cent (j = i + 1). If we then have the non-adjacent case (j > i + 1), then we have
N � o = oi � oi+1 � · · · � oj = o′. From the adjacent case we get that r(oi) > r(oi+1),
r(oi+1) > r(oi+2),...,r(oj−1) > r(oj). Thus, by the transitivity of >, we have r(oi) > r(oj),
that is, r(o) > r(o′). It is therefore sufficient to prove the theorem in the case where o′ → o
is an improving flip of X between adjacent values of X in the ordering x1 � x2 � · · · � xm.
Thus, we can assume that x and x′ are adjacent values, that is, x and x′ are the ith

and (i+ 1)th most preferred values of X, given Pa(X) = u, for some i.

We now demonstrate that r(o) > r(o′) under the above assumptions. Let p and p′ be
the root-to-leaf paths of W (N) that correspond to o and o′. Recall that r(o) is the sum of
the edge weights of p. Similarly r(o′) is the sum of the edge weights of p′. Thus, to evaluate
these ranks, we must first determine what these edge weights are.

92

Rank Pruning for Dominance Queries in CP-Nets

Let Y ∈ V be a variable such that Y 6= X and X 6∈ Pa(Y). As o and o′ differ only on the
value of X, Y and Pa(Y) must take the same values in both o and o′. Let y = o[Y] = o′[Y]
(y ∈ Dom(Y)) and w = o[Pa(Y)] = o′[Pa(Y)] (w ∈ Dom(Pa(Y))). From (2), the weight
assigned to the edge of p indicating Y takes the value y is
AFY (dY + 1)PP {Y = y | Pa(Y) = w}. The weight assigned by (2) to the edge of p′

indicating Y takes the value y is identical. Thus, any such variable (any variable which is
neither X itself, nor a child of X) contributes exactly the same quantity to both sums, r(o)
and r(o′). Let α denote the total contribution to r(o) (and thus r(o′) also) by such variables.

The weight on the edge of p indicating X takes the value x is
AFX(dX + 1)PP {X = x | Pa(X) = u}. As we have assumed x to be the ith most pre-
ferred value of X, given Pa(X) = u, PP {X = x | Pa(X) = u} = nX−i+1

nX
.

The weight on the edge of p′ indicating X takes the value x′ is
AFX(dX + 1)PP {X = x′ | Pa(X) = u}. As we have assumed x′ to be the (i + 1)th most

preferred value of X, given Pa(X) = u, PP {X = x′ | Pa(X) = u} = nX−(i+1)+1
nX

.

Let Ch(X) = {Y1, ..., Y`} be the set of variables that have X as one of their parent
variables in the structure of N , these are the children of X. Let yj = o[Yj] = o′[Yj].
Let vj = o[Pa(Yj)] and v′j = o′[Pa(Yj)]. The weight on the edge of p which indicates Yj = yj
is AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = vj}. The weight on the edge of p′ which indi-
cates Yj = yj is AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}.

Now that we know the weights of all edges in p and p′ we can evaluate r(o) and r(o′).

r(o) = α+AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = vj},

r(o′) = α+AFX(dX + 1)
nX − (i+ 1) + 1

nX
+
∑̀
j=1

AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}.

Recall that, for any Z ∈ V , AFZ =
∏
W∈Anc(Z)

1
nW

. If Yj is a child of X, then

Anc(X) ∪ {X} ⊆ Anc(Yj). Thus, AFYj = AFX
1
nX
βj , for some 0 < βj ≤ 1.

Notice that, for any Z ∈ V , z ∈ Dom(Z), and w ∈ Dom(Pa(Z)), we have
1
nZ
≤ PP {Z = z | Pa(Z) = w} ≤ 1. Thus, for any 1 ≤ j ≤ `, we have

1

nYj
≤ PP {Yj = yj | Pa(Yj) = vj} ≤ 1,

1

nYj
≤ PP {Yj = yj | Pa(Yj) = v′j} ≤ 1.

Using these results we can rewrite r(o) and r(o′) and obtain the following inequalities:

r(o) = α+AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)PP {Yj = yj | Pa(Yj) = vj}

≥ α+AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj
,

93

Laing, Thwaites, & Gosling

r(o′) =α+AFX(dX + 1)
nX − (i+ 1) + 1

nX

+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}

≤α+AFX(dX + 1)
nX − (i+ 1) + 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1) · 1.

Next, we show that dX =
∑`

j=1(dYj + 1). As |Ch(X)| = ` there are exactly ` di-
rected paths of length 1 in the structure of N that originate at X. Thus, dX − ` is
the number of directed paths of length greater than 1 that originate at X (in the struc-
ture of N). Every such path can be turned into a distinct directed path that originates
at one of {Y1, ..., Y`} by removing the first edge. Further, any path that originates at
some Yj ∈ {Y1, ..., Y`} can be turned into a distinct directed path of length greater than 1
that originates at X by attaching X → Yj to the beginning. Thus, the number of directed
paths of length greater than 1 that originate at X is equal to the number of directed paths
that originate at some Yj ∈ {Y1, ..., Y`}. That is, dX − ` =

∑`
j=1 dYj or equivalently

dX =
∑`

j=1 dYj + ` =
∑`

j=1(dYj + 1).
Recall that our aim is to show that r(o) > r(o′). For the purposes of contradiction,

suppose r(o) ≤ r(o′). Then

α+AFX(dX + 1)
nX − i+ 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj

≤ α+AFX(dX + 1)
nX − (i+ 1) + 1

nX
+
∑̀
j=1

AFX
1

nX
βj(dYj + 1) · 1

=⇒ (dX + 1)(nX − i+ 1) +
∑̀
j=1

βj(dYj + 1)
1

nYj
≤ (dX + 1)(nX − i) +

∑̀
j=1

βj(dYj + 1) · 1

=⇒ dX + 1 ≤
∑̀
j=1

βj(dYj + 1)

(
1− 1

nYj

)
Now let m = max{nYj | 1 ≤ j ≤ `}. This implies

dX + 1 ≤
∑̀
j=1

βj(dYj + 1)

(
1− 1

m

)
Since 0 < βj ≤ 1 for all 1 ≤ j ≤ `, it follows that

dX + 1 ≤
∑̀
j=1

1 · (dYj + 1)

(
1− 1

m

)
Recall that dX =

∑`
j=1(dYj + 1), this implies

(dX + 1) ≤ dX
(

1− 1

m

)

94

Rank Pruning for Dominance Queries in CP-Nets

If X has no descendent paths, that is dX = 0, then we have shown r(o) ≤ r(o′) =⇒
1 ≤ 0. So we have derived a contradiction.

If dX > 0, then r(o) ≤ r(o′) implies that

1 +
1

dX
≤ 1− 1

m
< 1

=⇒ 1

dX
< 0

=⇒ 1 < 0.

Thus, we have again derived a contradiction and so we can conclude r(o) > r(o′). �

Proof of Lemma 2. Let Y ∈ Ch(X), then by the reasoning given in the proof of Theo-
rem 1, AFY = AFX

1
nX
βY for some 0 < βY ≤ 1. Also,

∑
Y ∈Ch(X)(dY + 1) = dX , as in the

proof of Theorem 1.
Suppose for contradiction L(X) ≤ 0, this implies

AFX(dX + 1)
1

nX
−

∑
Y ∈Ch(X)

AFY (dY + 1)
nY − 1

nY
≤ 0

=⇒ AFX(dX + 1)
1

nX
≤

∑
Y ∈Ch(X)

AFX
1

nX
βY (dY + 1)

nY − 1

nY

=⇒ (dX + 1) ≤
∑

Y ∈Ch(X)

βY (dY + 1)
nY − 1

nY

As βY ,
nY −1
nY
≤ 1 for all Y ∈ Ch(X), it follows that

(dX + 1) ≤
∑

Y ∈Ch(X)

(dY + 1) = dX

Thus, we have reached a contradiction and so can conclude L(X) > 0. �

Proof of Corollary 3. If N � o1 � o2, then there exists a sequence of outcomes
o2 = p1, p2, ..., pm = o1, such that N � p1 ≺ p2 ≺ · · · ≺ pm and pi and pi+1 differ
on the value taken by exactly one variable (Boutilier et al., 2004a). That is, starting
at o2, we can reach o1 through m − 1 improving variable flips. By Theorem 1, we know
that r(pi+1)− r(pi) > 0. We can rewrite r(o1)− r(o2) as the sum of the rank improvements
of each flip as follows

r(o1)− r(o2) = [r(p2)− r(p1)] + [r(p3)− r(p2)] + · · ·+ [r(pm)− r(pm−1)].

Suppose α → β is an improving flip of variable X, that is, α and β differ only on the
value taken by X and N � β � α. Thus, X must be in a more preferred position in β
than α, given Pa(X) = β[Pa(X)](= α[Pa(X)]).

The only variables whose preference position may differ in α and β are X and the
children of X, Ch(X). Thus, we can deduce the following lower bound on the increase in
rank, r(β)− r(α).

95

Laing, Thwaites, & Gosling

r(β)− r(α) =

[
AFX(dX + 1)PP {X = β[X] | Pa(X) = β[Pa(X)]}

+
∑

Y ∈Ch(X)

AFY (dY + 1)PP {Y = β[Y] | Pa(Y) = β[Pa(Y)]}

]

−

[
AFX(dX + 1)PP {X = α[X] | Pa(X) = α[Pa(X)]}

+
∑

Y ∈Ch(X)

AFY (dY + 1)PP {Y = α[Y] | Pa(Y) = α[Pa(Y)]}

]

Recall that PP {Y = y | Pa(Y) = z} ∈ {1/nY , 2/nY , ..., 1} ∀Y ∈ V, y ∈ Dom(Y),
z ∈ Dom(Pa(Y)). Thus, we have that

r(β)− r(α) ≥AFX(dX + 1)

[
PP {X = β[X] | Pa(X) = β[Pa(X)]}−

PP {X = α[X] | Pa(X) = α[Pa(X)]}
]

+
∑

Y ∈Ch(X)

AFY (dY + 1)

[
1

nY
− 1

]
As PP {X = β[X] | Pa(X) = β[Pa(X)]} > PP {X = α[X] | Pa(X) = α[Pa(X)]}, we have
that

r(β)− r(α) ≥AFX(dX + 1)
1

nX
−

∑
Y ∈Ch(X)

AFY (dY + 1)
nY − 1

nY

=L(X) > 0.

In order to reach o1 from o2, each X ∈ D must be flipped at least once in the sequence
of m − 1 flips. We know from the above that any improving flip of X corresponds a rank
increase of at least L(X). Thus, as r(o1) − r(o2) is the sum of the rank increases of each
of the m − 1 flips (each of which has been shown to produce an increase in rank by the
above), we have that r(o1)−r(o2) ≥

∑
X∈D L(X). As N � o1 � o2, we cannot have o1 = o2,

thus D 6= ∅ and so
∑

X∈D L(X) > 0 by Lemma 2. �

Proof of Theorem 2. Note that, for the entirety of this proof, PP refers to the generalised
definition given in Section 7.

The preference graph for N is defined as before, with the addition of undirected edges
for indifference. That is, if o1 and o2 are outcomes that differ only on variable X, and o1[X]
is preferred to o2[X], given the values assigned to Pa(X) in both o1 and o2, then there is
an edge o2 → o1 in the preference graph. If the user is indifferent between o1[X] and o2[X],
given the values assigned to Pa(X), then there is an undirected edge between o1 and o2 in
the preference graph.

Thus, N � o � o′ if and only if there is a path o′ o in the preference graph
which may utilise undirected edges but must utilise at least one directed edge. This means

96

Rank Pruning for Dominance Queries in CP-Nets

that N � o � o′ if and only if there exists a sequence of outcomes o = o1, o2, ..., om = o′ such
that, for all i, oi and oi+1 differ on the value of exactly one variable and either N � oi � oi+1

or N � oi ∼ oi+1 (with N � oj � oj+1 for some j).
Also, N � o ∼ o′ if and only if there is a path between o and o′ that exclusively uses

undirected edges. This means that N � o ∼ o′ if and only if there exists a sequence of
outcomes o = o1, o2, ..., om = o′ such that, for all i, oi and oi+1 differ on the value of exactly
one variable and N � oi ∼ oi+1.

The above results mean that it is sufficient to prove that N � o � o′ =⇒ rG(o) > rG(o′)
and N � o ∼ o′ =⇒ rG(o) = rG(o′) in the case where o and o′ differ on exactly one variable.
The more general results then follow by these specific results and the transitivity of = and >.

Let us assume that o and o′ differ only on the value taken by X ∈ V . Let X take the
value x in o (o[X] = x) and the value x′ in on o′ (o′[X] = x′).

First, we show that N � o ∼ o′ =⇒ rG(o) = rG(o′). Assume that N � o ∼ o′.
Let u = o[Pa(X)] = o′[Pa(X)]. Recall that

rG(o) =
∑
Z∈V

AFZ(dZ + 1)PP {Z = o[Z] | Pa(Z) = o[Pa(Z)]}

and similarly for rG(o′). Thus, to evaluate rG(o) and rG(o′), and subsequently prove
that rG(o) = rG(o′), we must first evaluate these summation terms for all Z ∈ V for
both rG(o) and rG(o′).

Let Y ∈ V be a variable such that Y 6= X and X 6∈ Pa(Y). Then, as o and o′

differ only on the value of X, Y and Pa(Y) must take the same values in both o and o′.
Let y = o[Y] = o′[Y] and w = o[Pa(Y)] = o′[Pa(Y)]. Then we have

AFY (dY + 1)PP {Y = o[Y] | Pa(Y) = o[Pa(Y)]} = AFY (dY + 1)PP {Y = y | Pa(Y) = w},

AFY (dY + 1)PP {Y = o′[Y] | Pa(Y) = o′[Pa(Y)]} = AFY (dY + 1)PP {Y = y | Pa(Y) = w}.

Thus, any such variable (that is, any variable that is neither X itself, nor a child of X)
contributes exactly the same quantity to both sums, rG(o) and rG(o′).

As N � o ∼ o′, and o and o′ differ only on X, we must have that x ∼ x′ under Pa(X) = u.
Therefore x and x′ are in the same preference position in the row of CPT(X) corresponding
to Pa(X) = u. Let x and x′ be in preference position i, given Pa(X) = u.

Consider the summation term contributed by X. By our assumptions about o and o′

the X summation terms in rG(o) and rG(o′) (respectively) are

AFX(dX + 1)PP {X = x | Pa(X) = u} = AFX(dX + 1)
nX − `− i+ 1

nX − `
,

AFX(dX + 1)PP {X = x′ | Pa(X) = u} = AFX(dX + 1)
nX − `− i+ 1

nX − `
,

where ` is the number of indifferences in the preference ordering over Dom(X) under
Pa(X) = u, given in CPT(X). Thus, X contributes exactly the same quantity to both
sums, rG(o) and rG(o′).

Finally, we must consider the weights contributed by Ch(X) = {Y1, ..., Yk}. Let
yj = o[Yj] = o′[Yj], vj = o[Pa(Yj)], and v′j = o′[Pa(Yj)]. The Yj summation term

97

Laing, Thwaites, & Gosling

in rG(o) is AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = vj}. The Yj summation term in rG(o′)
is AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}.

Note that vj and v′j differ only on the value taken by X. We assume, in general, that flip-
ping a variable between values to which the user is indifferent should not be allowed to affect
the user’s preference over that variable’s children (Boutilier et al., 2004a). Here, the user is
indifferent between x and x′ and the only difference between vj and v′j is whether X = x
or X = x′. By our assumption, the user’s preference over Yj should be identical un-
der Pa(Yj) = vj and Pa(Yj) = v′j . This means, under both Pa(Yj) = vj and Pa(Yj) = v′j ,
there are the same number of indifferences in the preference order over Dom(Yj), and yj
is in the same position of preference in this preference order. By our new definition of PP
(Section 7), this implies PP {Yj = yj | Pa(Yj) = vj} = PP {Yj = yj | Pa(Yj) = v′j}. Thus, Yj
contributes exactly the same quantity to both sums, rG(o) and rG(o′).

We have shown that all variables Z ∈ V , contribute exactly the same quantity to both
sums, rG(o) and rG(o′). Thus, we must have rG(o) = rG(o′). We have therefore shown
that N � o ∼ o′ =⇒ rG(o) = rG(o′).

Next, we show that N � o � o′ =⇒ rG(o) > rG(o′). Suppose N � o � o′.
Let u = o[Pa(X)] = o′[Pa(X)] again. Let x1 % x2 % · · · % xm be the preference or-
dering of Dom(X) given that Pa(X) = u. This is the row of CPT(X) that corresponds
to Pa(X) = u. Suppose x = xi and x′ = xj , we know that i < j as o′ → o is an improving
flip of X.

Let ok denote the outcome that has ok[X] = xk and for all variables Y 6= X has
ok[Y] = o[Y](= o′[Y]). Then o1, ..., om is a sequence of flips of X through the val-
ues x1, x2, ..., xm. As Pa(X) = u in all ok, we know that om, ..., o1 is a sequence of
improving or indifferent flips (as x1 % x2 % · · · % xm when Pa(X) = u). Thus we
have N � o1 % o2 % · · · % om. Notice that o = oi and o′ = oj for i < j so we
have N � o = oi % oi+1 % · · · % oj = o′. This shows that it is sufficient to prove
that rG(o) > rG(o′) for the special case where x and x′ are adjacent in x1, x2, ..., xm, that
is j = i + 1. The more general case, when x and x′ are not adjacent, follows from this
specific case and that N � o ∼ o′ =⇒ rG(o) = rG(o′) as proven above (this can be seen
via similar reasoning to that given in the proof of Theorem 1). Thus, we can assume that x
and x′ are adjacent values. This implies that x and x′ are either (one of) the ith and (one of)
the (i+ 1)th most preferred values of X respectively, given Pa(X) = u, or they are in same
preference position. However, x and x′ cannot be in the same preference position, as then
we must have x ∼ x′ under Pa(X) = u and therefore N � o ∼ o′. This is a contradiction to
our assumption that N � o � o′. So we may assume that x and x′ are (one of) the ith and
(one of) the (i+ 1)th most preferred values of X respectively, given Pa(X) = u.

We have now assumed that o and o′ are outcomes associated with N , such that o and o′

differ only on the value taken by X ∈ V such that o[X] = x and o′[X] = x′. Further, under
the values assigned to Pa(X), u, by both o and o′, we have assumed that x is (one of)
the ith most preferred value(s) of X and x′ is (one of) the (i+ 1)th most preferred value(s).

In order to evaluate rG(o) and rG(o′), and subsequently prove that rG(o) > rG(o′), we
must first consider the individual summation terms in rG(o) and rG(o′), as we did in the
indifference case above.

Let Y ∈ V be a variable such that Y 6= X and X 6∈ Pa(Y). Then by the same
reasoning as in the indifference case above, Y contributes exactly the same quantity to both

98

Rank Pruning for Dominance Queries in CP-Nets

sums, rG(o) and rG(o′). Let α denote the total contribution to rG(o) (and thus to rG(o′)
also) by such variables.

Now, consider the X summation terms. By our assumptions about o and o′ the X
summation terms in rG(o) and rG(o′) (respectively) are

AFX(dX + 1)PP {X = x | Pa(X) = u} = AFX(dX + 1)
nX − `− i+ 1

nX − `
,

AFX(dX + 1)PP {X = x′ | Pa(X) = u} = AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `
,

where ` is the number of indifferences in the preference ordering over Dom(X) under
Pa(X) = u, given in CPT(X). Note that 0 ≤ ` ≤ nX − 2 and 1 ≤ i ≤ nX − `− 1.

Finally, we must consider the weights contributed by Ch(X) = {Y1, ..., Yk}. Let
yj = o[Yj] = o′[Yj], vj = o[Pa(Yj)], and v′j = o′[Pa(Yj)]. The Yj summation term
in rG(o) is AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = vj}. The Yj summation term in rG(o′)
is AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}.

Now that we know all of the summation terms we can evaluate rG(o) and rG(o′) as
follows.

rG(o) =α+AFX(dX + 1)
nX − `− i+ 1

nX − `

+

k∑
j=1

AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = vj},

rG(o′) =α+AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `

+

k∑
j=1

AFYj (dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}.

By the same reasoning given in the proof of Theorem 1, AFYj = AFX
1
nX
βj , for

some 0 < βj ≤ 1.

Let Z ∈ V be any variable, z ∈ Dom(Z), w ∈ Dom(Pa(Z)), and let ` be the num-
ber of indifferences in the row of CPT(Z) that corresponds to Pa(Z) = w. Then, by
definition, 1

nZ−` ≤ PP {Z = z | Pa(Z) = w} ≤ 1. As 0 ≤ ` ≤ nZ − 1, this means

that 1
nZ
≤ PP {Z = z | Pa(Z) = w} ≤ 1. Thus, for any 1 ≤ j ≤ k, we have that

1

nYj
≤ PP {Yj = yj | Pa(Yj) = vj} ≤ 1,

1

nYj
≤ PP {Yj = yj | Pa(Yj) = v′j} ≤ 1.

99

Laing, Thwaites, & Gosling

Using these results we can rewrite rG(o) and rG(o′) and obtain the following inequalities:

rG(o) =α+AFX(dX + 1)
nX − `− i+ 1

nX − `

+
k∑
j=1

AFX
1

nX
βj(dYj + 1)PP {Yj = yj | Pa(Yj) = vj}

≥α+AFX(dX + 1)
nX − `− i+ 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj
,

rG(o′) =α+AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `

+

k∑
j=1

AFX
1

nX
βj(dYj + 1)PP {Yj = yj | Pa(Yj) = v′j}

≤α+AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1) · 1.

Recall that our aim is to show that rG(o) > rG(o′). For the purposes of contradiction,
suppose rG(o) ≤ rG(o′). This implies

α+AFX(dX + 1)
nX − `− i+ 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1)

1

nYj

≤ α+AFX(dX + 1)
nX − `− (i+ 1) + 1

nX − `
+

k∑
j=1

AFX
1

nX
βj(dYj + 1) · 1

=⇒ (dX + 1)
nX − `− i+ 1

nX − `
+

k∑
j=1

1

nX
βj(dYj + 1)

1

nYj

≤ (dX + 1)
nX − `− i
nX − `

+
k∑
j=1

1

nX
βj(dYj + 1) · 1

=⇒ (dX + 1)
nX

nX − `
≤

k∑
j=1

βj(dYj + 1)

(
1− 1

nYj

)

As 0 ≤ ` ≤ nX − 2, and thus 1 ≤ nX
nX−` , it follows that

dX + 1 ≤
k∑
j=1

βj(dYj + 1)

(
1− 1

nYj

)

From this point, we derive a contradiction in an identical manner to the proof of Theorem 1.
Thus, we have shown N � o � o′ =⇒ rG(o) > rG(o′). �

100

Rank Pruning for Dominance Queries in CP-Nets

Appendix B. Algorithm Details

In this section, we describe how CP-nets and outcomes should be formatted as inputs to
Algorithm 1, given in Section 4. We also explain how Algorithm 1 works and why it is
correct. Further, we give Algorithms 2 and 3, which are both called by Algorithm 1, and
explain why they are correct.

B.1 Input Formats for Algorithm 1

For this section, suppose we have a CP-net N , over a set of variables V = {X1, ..., Xn},
which are in a topological ordering with respect to the structure of N . Further, sup-
pose Dom(Xi) = {x1

i , ..., x
ni
i }.

CP-nets are input to Algorithm 1 as a pair, N = (A,CPT). The first entry A, is the
adjacency matrix for the structure of N , as described in Section 4.

Example 8. For the CP-net given in Example 1, the adjacency matrix would be:

A B C D


A 0 0 1 0
B 0 0 1 0
C 0 0 0 1
D 0 0 0 0

The second entry in the pair is the set of CPTs associated with N . We input CPT as
a list of the CPTs, so for any 1 ≤ i ≤ n, CPT [i] = CPT(Xi).

Let Pa(Xi) = {Xβ1 , ..., Xβ`} (β1 < β2 · · · < β`).
Let u be an assignment of values to Pa(Xi), u = xα1

β1
· · ·xα`

β`
, so u is a |Pa(Xi)|-tuple

in Dom(Pa(Xi)).
Then CPT(Xi) is input as an array such that CPT(Xi)[α1, ..., α`] is a |Dom(Xi)|-

tuple, σ.
For all 1 ≤ k ≤ |Dom(Xi)|, σ[k] is the position of preference of xki according to the

CPTs, given that Pa(Xi) = u (σ[k] = 1 if xki is the most preferred and so on).

Example 9. For the CP-net given in Example 1, recall that CPT(C) is as follows:

ab c � c̄ � ¯̄c
ab̄ c̄ � ¯̄c � c
āb̄ ¯̄c � c̄ � c
āb ¯̄c � c � c̄

For this example, V = {A,B,C,D} (note that B,A,C,D is also a valid topological or-
dering, we use A,B,C,D for ease) and CPT = [CPT(A),CPT(B),CPT(C),CPT(D)]. We
have X1 = A,X2 = B,X3 = C, and Dom(A) = {a, ā}, Dom(B) = {b, b̄},
Dom(C) = {c, c̄, ¯̄c}. Thus, x1

1 = a, x2
1 = ā, and x1

2 = b, x2
2 = b̄, and x1

3 = c, x2
3 = c̄, x3

3 = ¯̄c.
Also, Pa(C) = {A,B}, so we would input CPT(C) (CPT [3]) as follows:

[·, 1] [·, 2]

[1, ·] (1, 2, 3) (3, 1, 2)

[2, ·] (2, 3, 1) (3, 2, 1)

101

Laing, Thwaites, & Gosling

This says, for example, that CPT(C)[2, 1] = CPT [3][2, 1] = (2, 3, 1). Here we are inputting
the user’s preference over Dom(C) under X1 = x2

1 and X2 = x1
2, that is, A = ā and B = b.

We know that in this case we have ¯̄c � c � c̄, so x1
3 = c is in preference position 2, x2

3 = c̄ is in
preference position 3, and x3

3 = ¯̄c is in preference position 1. Hence CPT(C)[2, 1] = (2, 3, 1).

Note that from this input CPT [3], we can clearly extract |Dom(C)| by looking at the
length of the tuples in the array. To keep Algorithm 1 in Section 4 as readable as possible,
we assume that, given 1 ≤ i ≤ n = |V |, we can extract |Dom(Xi)| from the CPTs input
rather than putting the details of how this is achieved.

An outcome o, should be input as a |V |-tuple in {1, ..., n1} × · · · × {1, ..., nn} (recall
that ni = |Dom(Xi)|). If Xi takes value xki and Xj takes value x`j in outcome o, then o[i] = k
and o[{i, j}] = (k, `). For our running example, consider the outcome o = āb¯̄cd, we can
rewrite this as o = x2

1x
1
2x

3
3x

1
4 and we would input it as the tuple (2, 1, 3, 1). So, in o, B

takes value b, that is, X2 takes value x1
2, and so o[2] = 1. Similarly X3 takes value x3

3 (C
takes value ¯̄c) so o[3] = 3.

B.2 Correctness of Algorithm 1

In this section we give the details of how Algorithm 1 works and why it is correct.

Algorithm 1 takes the CP-net N , and some outcome o, and outputs the rank of this
outcome r(o). It calculates r(o) by setting the value of r(o) to 0 (step 1) and successively
adding the edge weights of the root to leaf path in W that corresponds to o (steps 2-11).
The weight attached to the edge indicating the value taken by Xi in o is given by (1) in
Section 3.1.

The algorithm calculates the weight given by (1) for each Xi in several steps, and then
adds it to the r(o) term. The leftmost product term in (1) is calculated in two steps (3-4).
First, calling Algorithm 2, ancestor, to obtain Anc(Xi), and then forming the product of the
inverses of the domains of all Y ∈ Anc(Xi). We then call Algorithm 3, DP, to obtain the
number of descendent paths of Xi, dXi , (step 5) in order to calculate the central product
term in (1).

Extracting the rightmost term in (1) from N and o is slightly more convoluted. The
parent set of Xi, Pa(Xi), is the set of variables Y , such that there is an edge Y → Xi in the
structure of N . We can extract this set directly from the adjacency matrix (step 6). We can
then find the values taken by Pa(Xi) in o by extracting the appropriate entries of o, we call
this assignment to the parent variables u (step 7). So u is a |Pa(Xi)|-tuple in Dom(Pa(Xi)).
Next, we can find the user’s order of preference over Dom(Xi) under Pa(Xi) = u by ex-
tracting the appropriate entry of the CPT(Xi) array input, CPT(Xi)[u] (step 8).

The k in the rightmost product of (1) is the position of preference of the value taken
by Xi in o in the preference order we have just obtained. Thus, we can find k by extracting
the element of the order that indicates the position of preference of the value taken by Xi

in o (this is o[i]) (step 9). Now that we have k we can calculate the rightmost term in (1)
with nXi = |Dom(Xi)| (10). Finally, we form the whole term given in (1) and add it to
the r(o) term (step 11). Repeating this for every Xi ∈ V gives us the rank of o by definition.
At this point, Algorithm 1 exits its “for” loop and outputs r(o) (step 12).

102

Rank Pruning for Dominance Queries in CP-Nets

B.3 Algorithms 2 and 3

Algorithm 2: Ancestor Algorithm

Inputs: 1 ≤ i ≤ |V |
A - Adjacency matrix of N

1 Anc := 0|V | #0|V | is the zero |V |-tuple

2 a := A·,i #A·,i is the ith column of A

3 while sum(a) > 0

4 Anc = Anc + a

5 a = Aa

6 Anc = {Xj |Anc[j] 6= 0} #The set of variables with a non-zero entry in Anc

7 return Anc

Algorithm 2, ancestor, takes i (an integer, 1 ≤ i ≤ |V |, indicating which variable’s
ancestor set we are interested in) and the adjacency matrix A and outputs Anc(Xi). For
any X ∈ V , the following statements are equivalent.

Y ∈ Anc(X) ⇐⇒ ∃ directed Y X path ⇐⇒ (Ak)Y,X 6= 0 for some 1 ≤ k ≤ |V | − 1

because (Ak)i,j = # directed paths of length k in N originating at Xi and terminating
at Xj . Also, no path in N can be of length greater than |V | − 1 as there are |V | variables
(vertices) in the (acyclic) structure. Thus, Algorithm 2 calculates Anc(Xi) by summing,
component-wise, the ith columns of Ak for k = 1, ..., |V |−1. Then Anc(Xi) are the variables
whose corresponding element is non-zero.

Algorithm 3: Descendent Path, DP, Algorithm

Inputs: 1 ≤ i ≤ |V |
A - Adjacency matrix of N

1 a := Ai,· #Ai,· is the ith row of A

2 d := 0

3 while sum(a) > 0

4 d = d+ sum(a)

5 a = aA

6 return d

Algorithm 3, DP, takes i (an integer, 1 ≤ i ≤ |V |, indicating which variable’s descendent
paths we are interested in) and the adjacency matrix A, and outputs dXi .
As (Ak)ij = # directed paths of length k in N originating at Xi and terminating at Xj ,

103

Laing, Thwaites, & Gosling

then for any variable Xi, we have

dXi =

|V |∑
j=1

#directed paths Xi Xj

=

|V |∑
j=1

|V |−1∑
k=1

#directed paths Xi Xj of length k

=

|V |∑
j=1

|V |−1∑
k=1

(Ak)i,j =

|V |−1∑
k=1

|V |∑
j=1

(Ak)i,j

Therefore, Algorithm 3 calculates dXi by summing the entries of the ith rows of Ak

for k = 1, ..., |V | − 1.

Appendix C. Zero Outcomes Traversed Cases

In Section 6, we experimentally evaluated the performance of seven different dominance
testing functions by applying them to the same sets of dominance queries and recording
outcomes traversed and time elapsed. These seven functions were all possible combinations
of suffix fixing (Boutilier et al., 2004a), penalty pruning (Li et al., 2011), and rank pruning
(Section 5). Each combination has certain conditions that would result in a dominance
query being immediately found false, and the outcomes traversed would be recorded as
zero, as discussed in Section 6.1. We shall refer to these as the initial conditions of the
pruning combinations. Suppose we wish to answer the dominance query N � o � o′, a
summary of these initial conditions is given below.

Initial Condition Pruning Combination

o = o′ All
f(o′) < 0 All combinations including penalty pruning

r(o)− r(o′) < LD(o, o′) All combinations including rank pruning

In this section, we look at the proportion of queries from our Section 6 experiment that
resulted in zero outcomes traversed (that is, that met one of the initial conditions) for each
function (pruning combination). This proportion shows us how often a dominance testing
function’s initial conditions are strong enough to immediately answer the query. Further,
by comparing these proportions to the proportion of queries that were false, we can evaluate
how well a function’s initial conditions can predict the outcome of a dominance query.

First note that adding suffix fixing to a combination does not add any initial conditions.
Thus, it is sufficient to evaluate these proportions only for the four functions that used rank
pruning, penalty pruning, suffix fixing, and the combination of rank pruning and penalty
pruning.

In the case of binary CP-nets, for each of 3 ≤ n ≤ 10, we tested all seven functions on a
set of 1000 dominance queries in the Section 6 experiment. Thus, each function answered
the same set of 8000 dominance queries. Out of these queries, 5870 (0.73375) of them
were false. Note that, despite the random generation of queries, this is not close to 0.5.

104

Rank Pruning for Dominance Queries in CP-Nets

This is because there are three possibilities, either N � o � o′, N � o′ � o, or o and o′

are incomparable. For the dominance query ‘N � o � o′?’, only the first case makes the
query true, the other two cases imply that the query is false. In Table 1, for each function,
we give the proportion of the 8000 queries that were determined to be false by the initial
conditions (that is, were answered with zero outcomes traversed), ZP , and the proportion
of false queries that were identified as false by the initial conditions, ZP /0.73375.

Rank Penalty Suffix Fixing Rank + Penalty

ZP 0.70463 0.63300 0.03288 0.70513

ZP /0.73375 0.96031 0.86269 0.04480 0.96099

Table 1: Zero Outcomes Traversed Proportions - Binary Case

The ZP value for suffix fixing shows us the proportion of o = o′ cases. Thus, the initial
rank condition determines 0.67175 = 0.70463 − 0.03288 of the 8000 queries to be false
immediately, and similarly for the initial penalty condition. Clearly, the rank condition is
stronger than the penalty condition as it determines a greater number of queries to be false.
Further, by looking at the ZP value for rank and penalty pruning combined, we can see
that utilising both conditions is only a slight improvement upon the rank condition alone.
The ZP /0.73375 value shows us how many of the false dominance queries were detected by
the initial conditions. Using rank pruning alone, over 96% of the false dominance queries
were determined to be false by the initial conditions. This suggests that our initial conditions
could be used as fairly accurate predictor for the outcome of a dominance query. Any
dominance query determined to be false by the rank pruning initial conditions is false. Of
those that do not meet any of these initial conditions (that is, those we would ‘predict’ to
be true), only (0.73375 − ZP)/(1 − ZP) × 100 = 9.860% would actually be false (in these
cases, o and o′ are incomparable). This percentage would be slightly smaller if both the
rank and penalty pruning initial conditions were used. Thus, we could use these initial
conditions, which are quick to check, to predict dominance query outcomes to a reasonable
level of accuracy.

For the multivalued case, we tested all seven functions on a set of 1000 queries for
each 3 ≤ n ≤ 8. So, in this case, we have 6000 dominance queries and 4520 (0.75333) of
these were false. Table 2 gives the proportion of queries with zero outcomes traversed for
each function, and the proportion of false queries identified by initial conditions for each
function.

Rank Penalty Suffix Fixing Rank + Penalty

ZP 0.66250 0.55700 0.009 0.66583

ZP /0.75333 0.87942 0.73938 0.01195 0.88385

Table 2: Zero Outcomes Traversed Proportions - Multivalued Case

These proportions show similar patterns to the binary case. The initial rank condition re-
mains the strongest condition, determining the largest number of queries to be false. Again,

105

Laing, Thwaites, & Gosling

adding the initial penalty condition makes little improvement to this number. However, the
proportions are smaller in general in this case; only 88% of false queries are identified by the
initial conditions of rank pruning in this case. Thus, these initial conditions would be less
accurate here at predicting dominance query outcomes. If we used the initial conditions of
rank pruning as a predictor here, then (0.75333−ZP)/(1−ZP)× 100 = 27.914% of queries
predicted to be true would in fact be incomparable cases (false queries).

From the above proportions, we can see that including rank pruning in a dominance
testing function allows a large proportion of dominance queries to be answered immediately
(by initial conditions). The number answered immediately by rank pruning initial conditions
is greater than that answered by the initial conditions of penalty pruning, showing rank
pruning initial conditions to be stronger. Further, the number of queries answered by the
combination of the two is only slightly more than those answered by rank pruning initial
conditions alone. This suggests that there are few queries answered by the initial penalty
condition that are not already answered by the initial rank condition. We have also seen
that rank pruning initial conditions identify the majority of false queries. Thus, at least
in the binary case, the initial condition of rank pruning, which is quick to check, could be
used as a reasonably accurate predictor of dominance query outcomes.

References

Alanazi, E., & Mouhoub, M. (2014). Configuring the webpage content through conditional
constraints and preferences. In Proc. of 27th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, Part II, LNAI
8482, pp. 436–445, Kaohsiung, Taiwan.

Allen, T. E. (2013). CP-nets with indifference. In Proc. of 51st Annual Allerton Conference
on Communication, Control, and Computing, pp. 1488–1459, NJ, USA. IEEE.

Allen, T. E., Goldsmith, J., Justice, H. E., Mattei, N., & Raines, K. (2017). Uniform ran-
dom generation and dominance testing for CP-nets. Journal of Artificial Intelligence
Research, 59, 771–813.

Boutilier, C., Bacchus, F., & Brafman, R. I. (2001). UCP-networks: A directed graphical
representation of conditional utilities. In Proc. of the 17th Conference on Uncertainty
in Artificial Intelligence, pp. 56–64, WA, USA.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., & Poole, D. (2004a). CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research, 21, 135–191.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., & Poole, D. (2004b). Preference-
based constrained optimization with CP-nets. Computational Intelligence, 20 (2), 137–
157.

Brafman, R. I., & Dimopoulos, Y. (2004). Extended semantics and optimization algorithms
for CP-networks. Computational Intelligence, 20 (2), 218–245.

Domshlak, C., Rossi, F., Venable, K. B., & Walsh, T. (2003). Reasoning about soft con-
straints and conditional preferences: complexity results and approximation techniques.

106

Rank Pruning for Dominance Queries in CP-Nets

In Proc. of 18th International Joint Conference on Artificial Intelligence, pp. 215–220,
Acapulco, Mexico. Available at arXiv:0905.3766.

Edwards, A. W. F. (1983). Pascal’s problem: The ‘gambler’s ruin’. International Statistical
Review, 51 (1), 73–79.

Goldsmith, J., Lang, J., Truszczyński, M., & Wilson, N. (2008). The computational com-
plexity of dominance and consistency in CP-nets. Journal of Artificial Intelligence
Research, 33, 403–432.

Li, M., Vo, Q. B., & Kowalczyk, R. (2011). Efficient heuristic approach to dominance
testing in CP-nets. In Tumer, Yolum, Sonenberg, & Stone (Eds.), Proc. of 10th In-
ternational Conference on Autonomous Agents and Multiagent Systems, pp. 353–360,
Taipei, Taiwan.

Li, M., Vo, Q. B., & Kowalczyk, R. (2013). Penalty scoring functions for
TCP-nets and its applicability in related areas. Working paper. Available
at http://www.ict.swin.edu.au/personal/myli/AI2013.pdf [Accessed 8 March
2017].

McGeachie, M., & Doyle, J. (2002). Efficient utility functions for ceteris paribus preferences.
In Proc. of the 18th National Conference on Artificial Intelligence, AAAI, pp. 279–284,
Alberta, Canada.

Nunes, I., Miles, S., Luck, M., Barbosa, S., & Lucena, C. (2015). Decision making with
natural language based preferences and psychology-inspired heuristics. Engineering
Applications of Artificial Intelligence, 42, 16–35.

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (Eds.). (2011). Recommender Systems
Handbook. Springer, NY, USA.

Santhanam, G. R., Basu, S., & Honavar, V. (2010). Dominance testing via model checking.
In Proc. of 24th AAAI Conference on Artificial Intelligence, pp. 357–362, GA, USA.

Santhanam, G. R., Basu, S., & Honavar, V. (2016). Representing and Reasoning with Quali-
tative Preferences: Tools and Applications. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, CA, USA.

Sun, X., Liu, J., & Wang, K. (2017). Operators of preference composition for CP-nets.
Expert Systems With Applications, 86, 32–41.

107

