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Abstract

We develop a flexible, two-locus model for the spread of insecticide resistance applicable to

mosquito species that transmit human diseases such as malaria. The model allows differen-

tial exposure of males and females, allows them to encounter high or low concentrations of

insecticide, and allows selection pressures and dominance values to differ depending on

the concentration of insecticide encountered. We demonstrate its application by investigat-

ing the relative merits of sequential use of insecticides versus their deployment as a mixture

to minimise the spread of resistance. We recover previously published results as subsets of

this model and conduct a sensitivity analysis over an extensive parameter space to identify

what circumstances favour mixtures over sequences. Both strategies lasted more than 500

mosquito generations (or about 40 years) in 24% of runs, while in those runs where resis-

tance had spread to high levels by 500 generations, 56% favoured sequential use and 44%

favoured mixtures. Mixtures are favoured when insecticide effectiveness (their ability to kill

homozygous susceptible mosquitoes) is high and exposure (the proportion of mosquitoes

that encounter the insecticide) is low. If insecticides do not reliably kill homozygous sensitive

genotypes, it is likely that sequential deployment will be a more robust strategy. Resistance

to an insecticide always spreads slower if that insecticide is used in a mixture although this

may be insufficient to outperform sequential use: for example, a mixture may last 5 years

while the two insecticides deployed individually may last 3 and 4 years giving an overall ‘life-

span’ of 7 years for sequential use. We emphasise that this paper is primarily about design-

ing and implementing a flexible modelling strategy to investigate the spread of insecticide

resistance in vector populations and demonstrate how our model can identify vector control

strategies most likely to minimise the spread of insecticide resistance.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005327 January 17, 2017 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Levick B, South A, Hastings IM (2017) A

Two-Locus Model of the Evolution of Insecticide

Resistance to Inform and Optimise Public Health

Insecticide Deployment Strategies. PLoS Comput

Biol 13(1): e1005327. doi:10.1371/journal.

pcbi.1005327

Editor: Mercedes Pascual, University of Chicago,

UNITED STATES

Received: July 27, 2016

Accepted: December 20, 2016

Published: January 17, 2017

Copyright: © 2017 Levick et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by: Bill and

Melinda Gates Foundation, grant #37999.01 to

IMH; and Wellcome Trust Institutional Strategic

Strengthening fund; grant #105620/Z/14/Z to

Liverpool School of Tropical Medicine; sub-funding

to IMH. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005327&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005327&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005327&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005327&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005327&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005327&domain=pdf&date_stamp=2017-01-31
http://creativecommons.org/licenses/by/4.0/


Author Summary

Malaria results in hundreds of thousands of deaths annually. The two most effective

malaria control interventions have been insecticide treated bed nets and indoor residual

spraying of insecticides but their successes are now threatened by insecticide resistance in

mosquitoes. Insecticide deployment strategies can be designed to try to minimise the

spread of insecticide resistance. We develop a highly flexible model of the evolution of

insecticide resistance which we use to assess the relative performance of two insecticide

deployment strategies: two insecticides used in sequence (where one is replaced by the

other once a resistance threshold is reached) or as a mixture (where they are applied

together). The relative performance of the strategies depended on the input parameter val-

ues that are likely to depend on the insecticide properties and local malaria transmission

patterns. In the parameter space we explored, mixtures were favoured when insecticide

effectiveness (ability to kill wildtype susceptible mosquitoes) was high and exposure (the

proportion of mosquitoes that encounter the insecticide) was low. If insecticides do not

reliably kill susceptible mosquitoes, it is likely that sequential deployment will be better.

This flexible model is designed to enable detailed exploration of deployment issues and

their influence on the strategies most likely to minimise the evolution of insecticide

resistance.

Introduction

Insect populations are controlled for many reasons: as agricultural pests, to reduce nuisance-

biting mosquitoes, and to control a variety of vector-borne infectious diseases. The World

Health Organisation (WHO) estimates that 17% of all infectious diseases are vector-borne [1],

important examples being malaria, dengue, Japanese encephalitis, filariasis and, most recently,

Zika virus. This manuscript will focus on the control of mosquitoes responsible for transmit-

ting human malaria, which is the target of considerable public health efforts through deploy-

ment of insecticide-treated bed nets (ITNs) and insecticides sprayed onto house walls (indoor

residual spraying; IRS). Bed nets and IRS both require persistent, long-acting insecticides and

this combination of persistence and widespread coverage acts as a potent driver of insecticide

resistance [2]. The evolution of insecticide resistance (IR) appears to be a near-inevitable con-

sequence of attempting to control insect populations through insecticides and there is consid-

erable interest in designing and optimising strategies to offset its impact. Species of anopheline

mosquitoes in Africa (where malaria kills close to 0.4 million people per year) are becoming

increasing resistant to the insecticides used in personal protection as ITNs and in public health

campaigns based on IRS [2]. Recent estimates are that ITNs and IRS were responsible for 68%

and 13%, respectively, of the substantial declines in falciparum malaria clinical cases observed

in Africa between 2000 and 2015 [3]. Concerns over the potential impact of IR has led the

WHO to produce comprehensive plans to try and maintain their effectiveness in malaria con-

trol [4] and the influential Insecticide Resistance Action Committee (IRAC; http://www.irac-

online.org/) has produced similar, but more general guidelines for controlling vectors of other

human vector-borne disease [5].

There are four main strategies that may potentially be used as insecticide deployment strate-

gies. Sequential use, with each insecticide being replaced as the resistance arises to the previous

one. This has been the de facto strategy in public health where pyrethroids have been the major

insecticides used to date due to their low cost and low human toxicity (they are the only class

able to be used on ITNs). Mixtures constitute an alternative strategy where insecticides are co-
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deployed as mixtures of two or more compounds. The reasoning underlying mixtures is that

using two different insecticides means that mosquitoes must be resistant to both insecticides

to survive. Assuming independent mechanisms of resistance, resistance mutations must then

be present at two different genes to survive contact with a mixture, potentially slowing the evo-

lution of IR. There is considerable interest in mixtures as it is now mandatory to use drugs in

combination to control resistance in the main human infectious killers of the tropics i.e.

malaria, HIV and TB. Theoretical descriptions of this are well established for malaria parasites

[6], HIV [7] and TB (e.g. [8]) but is surprisingly poorly developed for IR in human disease vec-

tors. Rotations are a strategy where one insecticide is periodically withdrawn from use and

replaced by another, irrespective of its resistance profile; this has been used in agriculture but

not, to our knowledge, in public health. Mosaics are the final option, where different insecti-

cides are deployed alone but in different settings. The mosaics may differ in scale: it may be

that ITN and IRS use different insecticides in the same house, it may be that adjacent villages

use different insecticides in their IRS programmes, or it may be that different health districts

in the same country use different insecticides. There was a pilot study of mosaics [9] but this

has not been adopted as policy. Much of the deployment in public health has been rather ad
hoc and driven primarily by cost and availability in their typical, resource poor settings. DDT

was widely used until environmental concerns plus increasing resistance curtailed its used.

Pyrethroids are now the mainstay due to low cost and low toxicity. Carbamates may be used as

IRS but are expensive. The lack of insecticide options and increasing levels of resistance stimu-

lated the Bill and Melinda Gates Foundation to support an Innovative Vector Control Consor-

tium (IVCC) [10] whose remit was to develop and/or re-purpose insecticides for public health

use. They now have three products nearing the end of their R&D pipeline and nearly ready for

deployment. There is consequently an excellent opportunity to deploy these new products in a

planned, rational way to minimise selection for resistance while maintaining their impact in

disease control; the key policy question is to identify the best way(s) to achieve this goal.

There is considerable literature on how insecticide deployment policies drive, or may avert,

the evolution of IR (or the analogous example of genetically-encoded insecticidal toxins) in

agriculture (e.g. [11–16]). This work has been relatively well resourced either by agrichemical

companies directly, or by Western governments where IR imposes a substantial economic cost

on their agricultural sector. Much of that work is relevant to public health in the tropics but

there are two important differences. Firstly, the insect species differ in their life histories: vec-

tors must bite humans and often it is only the females which feed. There is often considerable

sex-differences in insecticide exposure that typically do not occur in agricultural pest species.

A second difference is in the degree of control the authorities have over insecticide deploy-

ment. Agricultural deployment, at least in developed countries, may be controlled by regula-

tory bodies and/or the agro-chemical industries and/or farming organisations. In contrast, in

public health there are severe operational difficulties that dictate that robust, simple polices be

implemented. For example, insecticides in agricultural use are often deployed as rotation

where one insecticide is periodically replaced by another irrespective of resistance status. Such

strategies might be desirable in tropical public health but is difficult to see how this could be

implemented in the face of challenges arising from relative costs, the need to retrain operators,

maintenance of robust supply-chains and so on. Consequently, the literature on agricultural

use has developed in a rather independent manner from that applied to public health. The best

known example of the latter was written by the late Chris Curtis and published in 1985 [17].

This has been highly influential. It has been cited nearly 200 times, not just for IR, but for anal-

ogous situations of drug resistance in other sexual diploid organisms such as parasitic worms.

Curtis explored the application of his model to mosquito vectors of malaria with particular

emphasis on policy implications. One key finding reported in that paper was the “at first sight
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unexpected, point that the use of a mixture where the initial gene frequencies are unequal

leads to more rapid increase in the frequency of the rarer of the genes”. Since any new insecti-

cide becoming available for the public health deployment would almost inevitably be the insec-

ticide to which resistance was “rarer”, this paper implies that any new insecticide should not

be used in a mixture. Our results (see later) suggest this statement is open to a different inter-

pretation but this assertion has influenced public-health insecticide deployment policy for

nearly 30 years.

A key tenet of science is that results should be repeatable. Unfortunately, Curtis did not

publish the equations used to implement his model, nor has it been possible to find the com-

puter code among his personal documents and computer file that remain in the London

School of Hygiene and Tropical Medicine (J. Lines, pers. Comm.). In addition, the paper con-

tained results based on both single-generation and multi-generation arguments. Consequently,

it is impossible at present to easily duplicate his work nor to re-calibrate and re-run his models

to assess whether his assertions are robust across all parameter values. This manuscript

describes how we developed a model to repeat and extend his results in an open-source frame-

work following modern good practice for developing scientific software (e.g. [18]). The Curtis

model also made several assumptions, presumably dictated by computing restrictions at the

time that we will relax in the development of our current model. Specifically:

• Curtis assumed that male and female mosquitoes are equally exposed to insecticide. The lat-

ter is problematic for Anopheles mosquitoes because only females bite humans and are con-

sequently believed to be more highly exposed to insecticides in those species that forage into

human habitation to find hosts (e.g. [19]). We therefore allowed differential exposure of

males and females to insecticide.

• We also allowed a more flexible description of how mosquitoes encounter insecticides. One

of the key determinants of how quickly IR evolves is the extent to which resistance mutations

are genetically dominant. The degree of dominance can change depending on the level of

insecticide that is encountered (e.g. [20, 21]), see Fig 1. We therefore allow mosquitoes to

encounter none/low/high concentrations of each of two insecticides (although time con-

straints precluded us exploring this option). This leads to 9 distinct ‘niches’ and the user can

define differential exposure of males and females to these niches.

The basic model construction using ‘niches’ is shown on Table 1. The design principle was

to make the model as flexible as possible with the intention of allowing specific scenarios to be

investigated as simpler subsets of the models. For example, the Curtis model will be recreated

by only allowing potential exposure in four niches (no insecticide, high concentration of insec-

ticide ‘A’, high concentration of insecticide ‘B’, a mixture of ‘A’ and ‘B’) and to set equal male/

female exposure within these niches. The current model design is flexible as it allows us to

investigate some key operational scenarios e.g. the consequences of not regularly spraying

walls or replacing bednets so that the ‘high concentration mixture’ niche is gradually replaced

by ‘Low concentration mixture niche’ with, potentially, a corresponding change in dominance.

Similarly, we can investigate the simultaneous co-deployment of both mixtures and single-

insecticides, any putative repellency of insecticides driving more mosquitoes into the unex-

posed niche [19], and so on.

Methods

The methodology and underlying assumptions made in deriving the methodology are stan-

dard ones generally made in the construction of population genetics models (e.g. [22, 23]; we
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Fig 1. The importance of genetic dominance and the need for different ‘niches’ in the model. (A) The rate of spread

of insecticide resistance depending on whether the resistance mutation is dominant, semi-dominant, or recessive. (B) An

illustration showing how the concentration of insecticide alters selection for resistance and the dominance level of resistance

alleles. Declining concentration of insecticide resistance is represented by the purple line and the colour of the genotypes

indicates whether they survive (green), die (red) or have borderline sensitivity (yellow) at that insecticide concentration.

Initially, insecticide concentration may be so high that no genotypes survive and there is consequently no selection for

resistance; note that this stage may not occur if resistance alleles encode very high levels of resistance and/or if the

insecticide is applied at sub-optimal concentrations. As concentrations decline, they start to select for resistance. At

relatively high concentrations only the RR individuals survive so resistance is recessive; as concentrations decline further

some RS mosquitoes survive making resistance semi-dominant and at low concentration both RR and RS mosquitoes

A Model of Insecticide Resistance to Inform Public Health
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assume that many readers will be unfamiliar with the methodologies so discuss them in more

detail than is usual in genetic publications.

Model construction and initial calibration

The first step is to define the exposure of males and females to each of the nine niches as

defined on Table 1. These values lie between 0 and 1, representing the proportion of the popu-

lation likely to contact that niche. Individual niches can be ignored simply by setting their

exposures to zero.

The second step is to define the fitness of the different genotypes (Table 2); these are all

scaled relative to the fully sensitive mosquito in the absence of insecticide (as in a previous sin-

gle-locus model of resistance evolution [24]) whose fitness is denoted 1. ‘Fitness’ is essentially

a measure of the reduced viability (i.e. death rate) following contact with the insecticide), and/

or of decreased fertility (i.e. mosquitoes surviving contact with an insecticide subsequently

produce fewer viable offspring). The population genetic methodology means it is unnecessary

to define the mechanism by which fitness is reduced.

Fitness costs of resistance may arise in mosquitoes which do not make contact with the

insecticide. This reflects the possibility that the metabolic changes that enable IR may have del-

eterious effects on their normal metabolic function (e.g. [25, 26]). We therefore allow the

option of fitness costs i.e. by setting z>0 in column “-”of Table 2 and these costs may exhibit

different levels of dominance quantified by the associated ‘h’ parameter; fitness costs can be

easily ignored (i.e. z = 0) if they are believed, or assumed, to be absent.

The third step is to define the initial frequency of the different genotypes in each sex. The

simplest option is to define the starting frequency of resistance at each locus, and assume

Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE). The alternative is to

define the genotype frequencies directly which is required if the assumptions of HWE and LE

are violated; this may occur when one insecticide strategy is replaced by another as selection

pressures for IR during the first strategy may have caused deviations from HWE and LE.

Tracking the population genetics of IR genotypes

The basic assumptions made in this implementation, conventional in the population genetics

literature (e.g. [22, 23]), are that individuals mate at random, have non-overlapping genera-

tions, and Mendelian inheritance.

The first step in the genetic model is to calculate the fitness of the diploid genotypes in each

niche; this is achieved by multiplying the fitnesses of each single-locus genotype (summarised

survive, making resistance dominant; at very low concentrations all three genotype survive and there is no further selection

for resistance (for further discussion see, for example, [20, 21]).

doi:10.1371/journal.pcbi.1005327.g001

Table 1. The basic model construction. Two insecticides are deployed i.e. “a/A” and “b/B” each of which may be absent (symbol “-“), present in low concen-

trations (lower case “a” or “b”) or present at high concentrations (upper case “A” or “B”). This gives nine insecticide-exposure “niches” in total, one in which

insecticide is completely absent, four in which a single insecticide is present alone, and four where both insecticides are present. The model allows differential

exposure patterns of males and females to the niches; their exposure is quantified as αwith the superscript (m, f) denoting the sex of the mosquito and the sub-

script denoting the niche. These α values are the proportions encountering each niche so that, obviously, the male α values must sum to unity, as must the

female exposures.

Insecticide niche

Insecticide encountered -, - a, - A, - b, - B, - a, b A, b a, B A, B

Male exposure am
� ;�

ama;� amA;� amb;� amB;� ama;b amA;b ama;B amA;B

Female exposure af
� ;�

afa;� afA;� afb;� afB;� afa;b afA;b afa;B afA;B

doi:10.1371/journal.pcbi.1005327.t001
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in Table 2) in the niche, to obtain the 2-locus genotypic fitnesses given in S1 Table of the Sup-

porting Information. Our simulations will assume that the effects of insecticides in a mixture

are multiplicative e.g. if the probability of surviving exposure to insecticide A alone is 0.3 and

of surviving insecticide B alone is 0.2, then the probability of surviving expose to a mixture of

A and B is 0.3�0.2 = 0.06. In other words, there is no synergy or antagonistic interactions

between the insecticides. We do build flexibility into our methodology by scaling the fitnesses

in niches where mosquitoes encounter both insecticides by a factor ΛAB, ΛAb, ΛaB or Λab (S1

Table). If insecticides are synergistic then Λ<1, but if insecticides are antagonistic, for example

because they share the same target site or share a similar mechanism of (cross)resistance, then

Λ>1. This is a flexible approach, which we do not explore further here, but other strategies are

also possible, for example if the insecticides are highly antagonistic then the fitness may be

defined as the locus with the higher individual fitness factor, w.

The fitness of males and females of each 2-locus genotype are denoted by the upper case W

to distinguish them from single locus fitnesses, w, on Table 2. Their values are their weighted

average fitness across the nine different niches, the weighting reflecting the extent of their

exposures (α) in each niche. For example, males carrying SS at both loci would have overall fit-

ness as follows:

Wm;SS1SS2 ¼ ðam
� ;�
W SS1 SS2
� ;�

Þ þ ðama;� W
SS1 SS2
a;� Þ þ ðamA;� W

SS1 SS2
A;� Þ þ ðamb;� W

SS1 SS2
b;� Þþ

ðamB;� W
SS1 SS2
B;� Þ þ ðama;bW

SS1 SS2
a;b Þ þ ðamA;BW

SS1 SS2
A;B Þ þ ðamA;bW

SS1 SS2
A;b Þþ

ðama;BW
SS1 SS2
a;B Þ

ð1Þ

Similarly, females carrying RS at locus 1 and RR at locus 2 would have overall fitnesses as

follows:

Wf ; RS1 RR2 ¼ ðaf
� ;�
W RS1 RR2
� ;�

Þ þ ðafa;� W
RS1 RR2
a;� Þ þ ða

f
A;� W RS1 RR2

A;� Þ þ ða
f
b;� W RS1 RR2

b;� Þþ

ða
f
B;� W RS1 RR2

B;� Þ þ ða
f
a;bW RS1 RR2

a;b Þ þ ða
f
A;BW RS1 RR2

A;B Þ þ ða
f
A;bW RS1 RR2

A;b Þþ

ða
f
a;BW RS1 RR2

a;B Þ

ð2Þ

The remaining 16 fitness values (i.e. eight in each sex) are calculated in the same way. Note

that we assume that the repulsion and coupling double-heterozygotes (see below) have the

same fitness (S1 Table) although a difference could be encoded if required. We also assume

males and females have the same fitnesses in each niche although, in principle, two versions of

Table 2 could be constructed, one for males and one for females; this seemed like an over-elab-

oration in the current context. These fitness calculations describe selection due to insecticide

exposure; they are independent of genotype frequency so need only be calculated once i.e.

before the genetic model is run.

This is a diploid, 2-locus model. There are three genotypes at each locus (SS, SR, RR) mak-

ing nine distinct 2-locus genotypes. However genotypes that are heterozygote at both loci are

tracked as two types to allow for the fact that the two loci may be physically linked on the same

chromosome and, if so, recombination may occur between the loci (S2 Table) i.e.

Coupling heterozygotes are where one chromosome is RR and the other SS

Repulsion heterozygotes are where one chromosome is RS and the other SR

Hence 10 diploid genotypes are tracked in the model. We need to track the relative frequen-

cies of each genotype in each sex within the population. This is represented as F (the lower

case ‘f’ is more conventional but we wish to distinguish frequency, F, from the female symbol,

f). The first superscript to F indicates gender (male of female) while the second superscript

indicates genotype at loci 1 and 2 so, for example, Fm, SS1SR2 is the relative frequency, among

A Model of Insecticide Resistance to Inform Public Health
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males, of the genotype SS at locus 1 and SR at locus 2, and Ff, RR1SR2 is the relative frequency,

among females, of the genotype RR at locus 1 with SR at locus 2.

The first step is to obtain the genotype frequencies for the current mosquito generation. If

the current generation is Generation 1 it takes the user-defined input values (which can, if

desired, be genotypes that are not in HWE or LE), if not it takes the updated estimates of F’

produced in the previous generation of the simulation (see below).

The next step is to allow for mating among the survivors to produce the next mosquito gen-

eration. The most convenient way to do this is to calculate the relative frequencies of the four

possible gametes from each sex (gamete outputs have to be calculated separately for each sex

because survival of males and female genotypes may differ depending on their patterns of

exposure to insecticides). The frequencies of gamete produced by each sex are denoted G

where the subscript denotes the sex (m or f) of the gamete and the superscript the haplotype of

the gamete, with the alleles at locus 1 given first and the allele at locus 2 given second. So, for

example, GSRm is the frequency of male gametes with the sensitive allele at locus 1 and a resistant

allele at locus 2. The proportions of gametes produced by each diploid parental genotype are

the product of three factors: the frequency of the parental genotype, its fitness in the face of

insecticide deployment (cf Eqs 1 and 2), and the proportion of each type of gametes it pro-

duces. The latter is calculated according to the normal rules of meiosis with linkage and

recombination. The calculations are summarised on S2 Table and gamete frequencies obtained

by summing the production from each diploid genotype (i.e. summing within each columns

in S2 Table). For example

GSSm ¼ ½ðF
m;SS1SS2 �Wm;SS1SS2 � 1Þ þ ðFm;SS1RS2 �Wm;SS1RS2 � 0:5Þ þ . . . þ ðFm;RR1RR2 �Wm;RR1RR2 � 0Þ�=Gm

GRSm ¼ ½ðF
m;SS1SS2 �Wm;SS1SS2 � 0Þ þ ðFm;SS1RS2 �Wm;SS1RS2 � 0Þ þ . . . þ ðFm;RR1RR2 �Wm;RR1RR2 � 0Þ�=Gm

ð3Þ

And so on, where Gm is a normalisation coefficient that equals the sum of the numerators of

the four male gamete production equations. A similar set of equations is required for females,

again normalised by a coefficient Gf.

Once these male and female gamete frequencies are calculated, random mating produces

the diploid genotypes in the next generation which are conventionally denoted with a prime

(F’). Both loci are assumed to be autosomal in the analyses presented here, although the model

is structured to allow sex-linkage to be investigated, see later. For the autosomal case, female

and male diploid genotype frequencies at the start of the next generation are identical. The

details are in S3 Table and it is simply a case of summing within the rows of that Table. For

example, genotypes SS1SS2 can only be formed by one gamete combination so

F0m;SS1SS2 ¼ F0f ;SS1SS2 ¼ GSSf � G
SS
m ð4Þ

Genotype SS1SR2 can be formed by two gamete combination so

F0m;SS1SR2 ¼ F0f ;SS1SR2 ¼ GSSf � G
SR
m þ G

SR
f � G

SS
m ð5Þ

The other calculations can be re-derived from the details in S3 Table. Note that because the

gamete frequencies are normalised within each sex, then the frequencies of diploid genotypes

in each sex sum to unity. It is possible to adapt this approach to allow one of the loci to be sex-

linked as described in the Supporting Information. These updated genotype frequencies, F’,

are then used as the genotype frequencies in the next mosquito generation and the process is

iterated over mosquito generations until a user-defined end-point is reached; typical endpoints

are frequency of IR alleles exceeding a critical frequency.

A Model of Insecticide Resistance to Inform Public Health
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We record, and present, two main types of genetic data. The frequency of IR alleles at each

locus and the extent of linkage disequilibrium (LD) between the loci. The programme tracks

both haploid (gametic) and diploid (genotypic) frequencies so LD can be measured directly

from gametic frequencies, or inferred from genotypic frequencies. There are various measures

of LD but here, for consistency, we report the metric used by Curtis [17] that uses gametic fre-

quencies i.e.

LD ¼ f ðRRÞ � f ðR1Þf ðR2Þ ð6Þ

Where f(RR) is the frequency of gametes carrying the resistance alleles at both loci, and f(R1)

and f(R2) are the frequencies of gametes carrying the resistance alleles at locus 1 and locus 2

respectively. Our model allows differential selection between the sexes so female and male

gametes may have different allele and haplotype frequencies (this complication did not arise in

Curtis as he assumed equal exposure of male and female mosquitoes to insecticide). In these

circumstances we take the average of the male and female LD values because both contribute

equal numbers of gametes to the next generation.

The use of sub-models illustrated by the re-derivation of the results in the

Curtis paper

The methodology described above is designed to be flexible, comprehensive and, importantly,

able to investigate specific scenarios by running sub-sets of the model. We demonstrate this

application by re-deriving the results from previous analyses primarily by Curtis [17] who

investigated IR in public health, and, as discussed later, other 2-locus models applied to agri-

culture; the intention is to show consistency between our simulations and to investigate how

robust are the conclusion from that Curtis paper. All these publications made essentially the

same assumptions i.e. 2-loci, resistance to each of two ‘insecticides’ encoded by different loci,

equal exposure of sexes to the ‘insecticide’, and perfect deployment of ‘insecticides’ (we denote

‘insecticide’ in inverted commas because some studies (e.g. [11]) investigated plant-encoded

insecticidal toxins rather than insecticides but the models are analogous). The process also

serves as an illustration of how to investigate specific insecticide deployment patterns as sub-

sets of our larger, nine niche, model. Figs 1 and 2 from Curtis [17] illustrated the use of insecti-

cides alone or as mixtures. In this case the insecticide-free niche is, by definition “-, -”while the

single insecticides are represented as niches “A, -“, “-, B” and the mixture as “A, B”. Other

niches were omitted simply by setting exposure levels, α, to be zero for the five unrequired

niches (Table 1). The fitness parameter in niches not required in the models (Table 2) are

immaterial as they will never enter the calculation (they are scaled by their exposure value, i.e.

multiplied by zero). The fitness parameters required to complete the calibration (Table 2) used

by Curtis for his Figs 1 and 2 in [17] can be extracted from that paper as described in the SI.

This information is sufficient for us to calibrate and run our model to replicate Fig 1 in [17].

His figure incorporates a period of relaxed selection when insecticide is not present, so the

simulations must be stopped at generation 3, the genotype frequencies at time of stopping

(generation 3) be retained, the exposure variables altered so that no insecticides are encoun-

tered, the model run until generation 12, the genotypes values retained and exposure variables

changed back to reflect renewed insecticide deployment.

An influential assertion made in the Curtis paper is that mixtures may be counter-produc-

tive (made in the abstract and repeated on page 261) where Curtis refers to his Example (vi) on

Table 1 in [17]. Unfortunately, Fig 1 in [17] only shows the spread of resistance using a mixture

and does not quantify the extent to which it is inferior to sequential use. However the calibra-

tion used to replicate Fig 1 in [17] allows us to extend the one-generation argument presented

A Model of Insecticide Resistance to Inform Public Health
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in Table 1(vi) in [17] over the numerous generations required to simulate the spread of resis-

tance (see later discussion of our Table 3). Figure 2 in [17] examined a more realistic set of

genetic parameters, calibrated against field data, for two insecticides DDT and HCH where

resistant and sensitive homozygotes survive DDT exposure with fitnesses of 50% and 27%

respectively (caption to his Fig 2); the calibration can be extracted from Curtis data into the

form required by our model as described in our Supporting Information.

Sensitivity analysis of the model

Curtis used single examples to illustrate and develop his arguments. Substantial improve-

ments in computer power and simulation software in the subsequent 30+ years enable more

sophisticated investigations to be undertaken. We illustrate this approach by performing a

sensitivity analysis around the results shown on Fig 2 in [17] in which Curtis shows that mix-

tures perform better than sequential use for a single parameter set based on field and lab

data. We do this as follows. As in Curtis, (1) Only two niches are present in any run i.e. no-

insecticide plus insecticide-present (either as a single insecticide or as a mixture). (2) The

simulations are started in Hardy-Weinberg equilibrium with linkage equilibrium between

loci (3) Natural selection coefficients (z in Table 2) are set to zero; consequently the values of

their dominance coefficients are immaterial (so z = h = 0 in all equations in the “-, -” column

of Table 2).

We then ran 10,000 simulations varying the remaining parameters independently within

the value ranges in Table 4. These parameters can be briefly summarised as follows.

Table 3. Investigation of the two insecticide deployment scenarios presented by Curtis using arbi-

trary data on insecticide resistance. Curtis argued that mixtures may sometimes be counterproductive

compared to sequential use of the insecticides so, following Curtis, we defined time to resistance as the time,

in mosquito generations, until resistance to both insecticides exceeds 50%. The Curtis study may also be

interpreted (see Discussion in main text) as postulating that resistance to the insecticide with a lower starting

frequency of resistance may spread faster if deployed in a mixture compared to being deployed alone; we

therefore calculated the time, in mosquito generations, for resistance to reach 50% for that insecticide under

the two policies. Note that the starting frequency of resistance at the locus with a higher frequency is immate-

rial when the insecticide with lower starting frequency is deployed alone. We have assumed that the insecti-

cide with lower levels of resistance would be a “newer” insecticide replacing an older insecticide where

resistance had already reached relatively high frequencies; we therefore assume the “new” insecticide is the

one deployed second in a sequential deployment. The idealised example presented in Table 1, example (vi) in

[17], assumed both resistance alleles are fully dominant and have different starting frequencies; Note that the

fourth row, where frequency of starting resistance at loci A and B are 0.01 and 0.001 respectively corresponds

to the specific case given by Curtis (Table 1, example (iv) in [17]) which is recreated as described in the main

text. Locus B encodes the rarer allele so the time for it to reach 50% determines the lifespan of the deployment

so these are the parameters presented in the results column.

Locus A starting

Frequency

Locus B starting

Frequency

time to resistance

Ratio Mix/Seq

Time to 50%

(B) alone

Time to 50%

(B) in Mix

0.01 10^-2 6/7 = 0.86 3 7

0.1 5/6 = 0.83 3 6

0.3 4/5 = 0.80 3 4

0.01 10^-3 8/8 = 1 4 8

0.1 6/7 = 0.86 4 6

0.3 6/6 = 1 4 6

0.01 10^-4 9/9 = 1 5 9

0.1 8/8 = 1 5 8

0.3 7/7 = 1 5 7

doi:10.1371/journal.pcbi.1005327.t003
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• Starting frequencies of resistance: we use a log-uniform distribution to allow sampling of

low values i.e. 10-x where x is uniformly sampled.

• Exposure to insecticide: the proportion of female mosquitoes that encounter insecticides.

• A “male exposure” parameter which defines the proportion of males exposed to insecticide

as a proportion of the female exposure; it is assumed to be the same for each insecticide

and niche. Assuming, for example. that female exposure is as follows: unexposed = 0.2;

AB = 0.56; A = 0.12; B = 0.12. If "male exposure" is 0.6, then male exposure to niches ‘AB’,

‘A’, and ‘B’ are 0.56�0.6 = 0.336, 0.12�0.6 = 0.072 and 0.12�0.6 = 0.072 respectively and the

proportion unexposed rises to 0.2 + (0.8�0.40) = 0.52.

• Effectiveness of insecticide 1 & 2 is defined as the proportion of SS mosquitoes killed after

contact with insecticide (i.e. the four φ values in Table 2). The fitness of SS genotypes in pres-

ence of the insecticide to which it encodes resistance are calculated as 1 minus these effec-

tiveness inputs.

• Dominance coefficients for allele 1 & 2: the “h” coefficients in Table 2.

• Two “rr restoration coefficients” for insecticides 1& 2. These coefficients are used to generate

the selective advantage of the RR genotypes (i.e. the six sRR coefficients in Table 2). It is not

possible to define the selection coefficients sRR directly, because high values could enable the

fitness of RR genotypes to exceed 1. Values >1 are not acceptable because the SS genotype in

the absence of insecticide is assumed to have the maximum possible fitness in the population

and is assigned the reference fitness value of 1 (see Table 2). We avoid this possibility by not-

ing that the maximum value of selection coefficient that can occur and the RR fitness still be

�1 is 1 − ωSS and Table 2 shows that 1 − ωSS = (1 − φSS) = φ. The rr_restoration parameter

quantifies the ability of the RR genotype to overcome the effect of the insecticide and restore

mosquito fitness in the presence of insecticide towards it maximum value of 1.0 i.e.the selec-

tion coefficients of the RR genotypes are calculated as the rr_restoration_coefficient times φ.

For example a rr_restoration parameter with value 1.0 means the RR genotype is completely

unaffected by the insecticide (the RR genotypes in the presence of the insecticide have the

same fitness as SS genotypes in the absence of insecticide i.e. 1.0) while a rr_restoration

Table 4. Variables used in the main text, Figures and Tables. Their definitions, the corresponding sym-

bols used in Equations, and their parameter distributions used for sensitivity analysis.

Variable name Definition Symbol Parameter distribution

(uniform unless stated)

start_freq_allele1

start_freq_allele2

Starting frequency of resistant allele

at locus 1 and 2.

n/a 0.0001–0.1 (log uniform)

exposure Proportion of female mosquitos

exposed to insecticide.

Α (Table 1) 0.1–0.9

male_exposure_prop Male exposure to insecticide as

proportion of female exposure.

n/a 0–1

effectiveness_ins1

effectiveness_ins2

Proportion of SS mosquitoes killed

after contact with insecticide 1 or 2

φSS1
A ; φSS1

B

(Table 2)

0.3–1.0

dominance_allele1

dominance_allele2

Dominance of resistance at locus 1

and 2

hA, hB

(Table 2)

0–1

rr_restoration_ins1

rr_restoration_ins2

The ability of the RR genotype to

restore the fitness that has been

reduced by the insecticide

n/a 0.2–1

correct_mix_deploy Percentage of insecticide treatment

that is deployed correctly.

n/a 0.5–1

doi:10.1371/journal.pcbi.1005327.t004
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parameter with value of 0 means the ‘resistance’ mutation is completely ineffective i.e. that

the RR genotype has the same fitness as the SS genotypes (we ignore the possibility of over-

dominance).

• A “correct mixture deployment” parameter is incorporated in the simulations investigating

the use of mixtures. Correct deployment is often not achieved for a variety of operational

reasons and exposure to insecticides may not be as anticipated. In particular, mixtures may

be mandated but not achieved (e.g. due to stock-outs) such that they are replaced by the sin-

gle insecticide that is available. In our simulation the incorrectly exposed mosquitoes are

equally divided into exposure to each of the single insecticides. e.g. if exposure is 0.8 and

"correct mixture deployment" is 0.7 then 0.8 x 0.7 = 0.56 are exposed to the mixture, while

[0.8x0.3]/2 = 0.12 are exposed to insecticide 1 and 0.12 to insecticide 2. In reality, poor

deployment will result in exposure to different concentrations of insecticides in both mixture

and sequential applications and our model could be used to investigate these implications

further.

It is necessary to identify thresholds or ’critical points’ in insecticide deployment strategies

to define the time at which an insecticide or mixture is deemed of no further value (and, in the

case of a sequence strategy, be replaced by the next insecticide). This threshold is defined here

in terms of frequency of resistance alleles. Plausible values would be 10%, 25%, 50%; here we

follow Curtis and use 50% (c.f. his Fig 2). This has been used in other modelling studies on IR

(e.g. [19] and resistance in other organisms (e.g. [27]), but see Gould [11] for an example of

thresholds based on mosquito viability. The timescale until these thresholds are reached are

measured in units of mosquito generations. The number of mosquito generations per year

depends on the vector species and their local environment/ecology but a figure of one genera-

tion per month, or 12 generations per year seems reasonable and enables the timescale to be

easily converted from generations into years. Three deployment policies are investigated as

follows.

Sequential deployment. One insecticide is deployed until its resistance frequency reaches

the 50% threshold, at which point it is replaced by the second insecticide until its resistance

allele frequency also reaches the threshold. Thus the time to resistance of the sequential strat-

egy is defined as the number of generations for the two insecticide resistance alleles frequencies

to exceed 50%.

Mixture deployment. The two insecticides are deployed at the same time as a mixture

and the time to resistance is defined as the number of generations until both resistance allele

frequencies exceed 50%.

Adaptive mixture deployment. The mixture is deployed until one resistance allele

reaches the 50% threshold, then, to save costs, the insecticide to which resistance has not yet

reached the critical point is deployed alone. Time to resistance is defined as the number of gen-

erations until both resistance allele frequencies exceed 50%. This option is intermediate

between mixture and sequential deployment and its time to resistance can be estimated from

the data generated during these two deployment types. The time until one allele frequency

exceeds the threshold is obtained from the data recorded in the mixture deployment. The time

for the replacement single-insecticide to reach 50% is obtained from the data produced in

sequential use using the starting frequency at the time the mixture is replaced by the single

insecticide; this ignores differences in HWE and LD that may have arisen during the selective

processes but these take just a few generations to return to background levels in the absence of

selection.

The results obtained from the sensitivity analysis were analysed using partial rank correla-

tion coefficients (PRCC) and by generating classification trees (as in a previous study of
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insecticide use and strategy decisions; see Fig 4 of Barbosa et al [24] and associated discussion).

PRCC is analogous to standard (Pearson) correlation but takes account of other parameters in

the dataset. It is interpreted in the standard manner: a value of zero indicates no relationship

between variable and outcome, values close to +1 or -1 indicate a variable with a high impact

on the outcome, and the signs of the coefficients indicate the direction of the relationship. The

variables given in Table 4 were included in a classification tree as was the ratio of the higher to

lower starting frequency because Curtis had speculated that this ratio (i.e. the discrepancy in

initial starting frequencies) could be important. To avoid overfitting, the number of levels in

the classification trees was restricted to the minimum where the relative error plus the stan-

dard error was less than the cross-validation error. We generated two classification trees. One

where mixtures were deemed superior if their time to resistance was longer than the time to

resistance under sequential use, and another where mixtures were only deemed superior if the

time to resistance was >20% longer than for sequential use.

Runs where the resistance threshold of 50% was not reached within 500 generations were

not included in the sensitivity analysis. The reasoning behind this decision is that, assuming a

mosquito generation lasts one month, then 500 generations represents a timeframe of around

42 years. Realistic strategy considerations act over a much shorter timeframe and we are only

interested in decisions made in this timeframe, hence our focus on simulations where resis-

tance arises in less than 42 years.

The model is implemented in the statistical environment R [28] and the sensitivity analysis

uses the packages “sensitivity” and “rpart”. The code is available at https://github.com/

AndySouth/resistance and on request. A user interface demonstrating the model is available at

https://andysouth.shinyapps.io/shinyFig2Curtis/. It shows how the model can generate Fig 2

in [17] and allows the user to change parameter values to examine the consequences of doing

so.

Results

We successfully recreated Figs 1 and 2 in [17] as shown on Fig 2 of this paper. These figures

presented simulations based on single sets of parameter values so we extended the number of

parameter sets upon which they were based. We first investigated the assertion of Curtis

(which he did not quantify) that mixtures could be counterproductive if deploying a new

insecticide when resistance to both insecticides was dominant, and the frequency of resistance

to the ‘new’ insecticide was lower that frequency of resistance to the ‘old’. This assertion

appears to be true over a range of resistance starting frequencies using the simple example he

presented in his Table 1, example (iv). The differences were relatively small with sequential use

lasting for at most a single mosquito generation longer (the”time to resistance ratio Mix/seq”

column in Table 3). Resistance spreads extremely rapidly under his assumptions (complete

survival of RS and RR genotypes) and the insecticides became ineffective within a few genera-

tions of either strategy. Consequently, the differences in time to resistance between mixtures

and sequential use were relatively small so these simulations were rather insensitive metrics for

comparing the relative merits of mixtures and sequential use. It is debatable if this level of

insecticide exposure and intense selection is likely to occur in real deployments (although we

note extremely high coverages of ITNs have been reported). We then relaxed this assumption

of complete dominance at both loci and explored the relative merits of mixture and sequential

deployment using Curtis’s HCH and DDT example (i.e. the calibrations used in Fig 2 in [17]).

The results are given on Table 5. The results consistently showed that deploying insecticides

as mixtures increases their time to resistance compared to sequential deployment, with time

to resistance being ~2.5 fold to ~4 fold longer when deploying insecticides as mixtures.
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Fig 2. Using the methodology described in the main text to recreate Figs 1 and 2 from Curtis [17]. Panel (A) is our

recreation of Curtis’s original Fig 1 in [17] which investigated a simple, idealised scenario: that insecticide is 100% effective

against SS genotypes and has no effect against SR and RR genotypes. He tracked two simulations: one in which selection

was continuous, and one where selection was “relaxed” selection (i.e. insecticide is not deployed) between generations 3 and

11 inclusive; the two lines are therefore superimposed up to generation 3. Panel (B) is our recreation of Fig 2 in [17] which

simulated the deployment of the insecticides HCH and DDT and was calibrated using more realistic laboratory and field

estimates of their effectiveness against the SS, SR and RR genotypes as described in the main text. Note that the switch to

DDT in Panel (B) is only triggered the generation after the threshold of 50% is crossed (because the models use one-

generation timesteps) so the level of resistance will inevitably ’overshoot’ the threshold. These recreations of Curtis’s figures

are indistinguishable from the originals, but we are unable to show the latter due to copyright regulations.

doi:10.1371/journal.pcbi.1005327.g002

Table 5. Investigation of the two insecticide deployment scenarios presented by Curtis using field

data on insecticide resistance. As for Table 3 but investigating the Curtis example based on field and labo-

ratory data on gamma-hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) deployment

(Fig 2 in [17]). HCH resistance is the rarer of the resistance alleles when deployment is initiated so is invariably

the rate-limiting factor in the dynamics and the time for that allele to reach 50% in a mixture determines the life-

span of the mixture i.e. the time for both alleles to exceed 50%. Similarly, when HCH is deployed in a

sequence, resistance to DDT spreads very rapidly from its relatively high frequency so it is the time taken for

HCH resistance to reach 50% that largely determines the lifespan of the sequential deployment.

DDT(R) starting

Frequency

HCH(R) starting

Frequency

time to resistance

Ratio Mix/Seq

Time to 50%

HCH alone

Time to 50%

HCH in Mix

0.1 10^-2 110/40 = 2.75 20 90

0.3 90/35 = 2.57 20 82

0.5 78/30 = 2.60 20 78

0.1 10^-3 580/150 = 3.87 150 550

0.3 520/150 = 3.47 150 510

0.5 480/150 = 3.20 150 480

0.1 10^-4 1700/500 = 3.40 500 1700

0.3 1500/500 = 3.00 500 1500

0.5 1380/500 = 2.76 500 1380

doi:10.1371/journal.pcbi.1005327.t005
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We next investigated the statement by Curtis (page 261), that “the use of a mixture where

the initial gene frequencies are unequal leads to more rapid increase in the frequency of the

rarer of the genes”. The context of this statement has been widely interpreted as an assertion

that resistance to the insecticide with lower levels of resistance will spread faster when that

insecticide is used in a mixture compared to if it is used alone (although we could not reconcile

this interpretation of its context with the data; see later discussion). Curtis’s example was based

on his simple example (his Table 1, example (vi)) and on selection over a single-generation.

We therefore ran this example over a number of generations to allow for linkage disequilib-

rium to build up. The results are shown on Fig 3 and are inconsistent with the above interpre-

tation i.e. our results show that resistance to an insecticide spreads faster when the insecticide

is deployed alone than when deployed in a mixture (although in this example the overall

sequential and mixture operational lifespans are equal). We then varied the relative frequencies

of resistance and again found resistance always spreads faster when the insecticide with lower

frequency of resistance is deployed alone, than if it is deployed in a mixture (last two columns

of Table 3). We then performed the same calculations for Curtis’s HCH/DDT example and

again found resistance always spreads faster if deployed alone than in a mixture (last two col-

umns of Table 5).

After recovering the results of Curtis, we moved on to a sensitivity analysis of strategy

choice in our parameter space. Twenty four percent of sensitivity runs did not reach the resis-

tance threshold within 500 generations and were excluded from further analyses as the time-

scale is so long that both strategies can be regarded as operationally equivalent. These runs

were characterised by low values of starting frequencies, exposure and dominance (as would

be expected from the model equations). We could, of course, vary these input ranges so that

>95% of runs reach the threshold in less than 500 generation, however we did not wish to

restrict our coverage of parameter-space. In particular, we wanted to include low levels of start-

ing frequency because, under these circumstances most resistance alleles will occur in hetero-

zygotes and dominance becomes important under these circumstances.

In those runs where resistance allele frequencies did exceed 50% in less than 500 genera-

tions, 56% favoured sequential use and 44% favoured mixtures. The distributions of times to

resistance in the sensitivity analysis differed for each deployment strategy but with consider-

able overlap between them (Fig 4). Mean time to resistance was shortest when insecticides

were used alone (plotted as “Seq 1st” on Fig 4) and longest for the mixture strategy. In between

these extremes mean time to resistance was slightly shorter for the adaptive mixture strategy,

as would be expected because removing the “failing” insecticide removes any lingering small-

scale protection it may have afforded in the mixture. The relative influence of the parameters

on times to resistance was similar across strategies as shown by their partial rank correlation

coefficients (PRCC) on Fig 5. Insecticide exposure had the greatest influence in all strategies

with their PRCC coefficients of absolute magnitude greater than 0.75. Insecticide effectiveness

(which will later be shown to be important for determining whether sequential use or mixtures

are optimal) has a negative impact on times to resistance in sequential use (PRCC -0.5), but

has less of an impact in mixtures. Examples of the relationship between these key parameters

and times to resistance are shown on Fig 6. Exposure and dominance have a consistent effect

on each strategy whereas, in contrast, effectiveness has less of a negative effect on the mixture

strategies than the sequential.

The analyses shown so far (i.e. Figs 4 to 6) all investigated deployment strategies separately.

We now focus on direct comparisons of the difference in times to resistance between strategies

within each parameter set. Fig 7 shows the PRCC between these differences and the input val-

ues. For the difference in time to resistance between the standard mixture and sequential strat-

egies the most influential parameters (i.e. with coefficients greater than 0.5) were insecticide
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exposure and the effectiveness of the insecticides (Fig 7A). Similar results were obtained for

the adaptive mixture strategy compared to Sequential use (Fig 7B). Note the key difference of

these PRCC results compared with the PRCC results shown in Fig 5 i.e. that insecticide effec-

tiveness now has a large coefficient and hence a large influence on determining which deploy-

ment strategy is optimal under any given set of parameters. Curtis putatively identified two

factors that differentially affect whether mixtures or sequential use is favoured: unequal start-

ing frequencies and dominance. Interestingly, neither had a particularly large impact in our

sensitivity analysis where effectiveness of the insecticides and exposure were the main differen-

tiating factors.

Classification trees based on the sensitivity analysis are shown on Fig 8. Their results are

similar to those obtained by PRCC analyses (Fig 7) i.e. effectiveness of the insecticides in kill-

ing the sensitive genotypes was the primary variable driving decisions. The advantage of classi-

fication trees over PRCC is their utility as a decision support tool which is discussed below. So

Fig 3. Recreating example vi of Curtis as given in his Table 1 in [17]. Curtis reported calculations and

results for a single generation of selection under a range of assumptions in his Table 1 (note: this table is

absent from many current electronic reprints). He made particular use of his example (iv) to develop influential

arguments about the (dis)advantages of using an insecticide mixture when the initial frequencies of resistance

are unequal. We therefore extended this example to plot the subsequent, multi-generational dynamics of

resistance spread assuming, as he did, that the first insecticide deployed in a sequence become non-

beneficial, and is switched when alleles encoding resistance to the insecticide reach 50%. Resistance to both

insecticides exceeded 50% by generation 8, irrespective of whether they were deployed in sequence or as a

mixture.

doi:10.1371/journal.pcbi.1005327.g003
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far, we have looked at the absolute difference in time to resistance between the sequential and

mixture strategies. Mixtures would involve using more insecticide and therefore to be favoured

in a cost-benefit analysis may need to demonstrate greater long-term benefits. We can take

this into account by making a requirement that time to resistance must be>20% longer in the

mixture and this is shown on Fig 8B. Finally, having identified insecticide effectiveness and

exposure as the key inputs identified in the classification trees and PRCC analysis, we

attempted informally to construct a simple metric that would predict whether sequential

deployment or use of mixtures would be favoured. We summed the effectivenesses to insecti-

cide 1 and 2 and used this metric with exposure to generate a plot showing how these variables

affect the time to resistance (Fig 9). This informal approach resulted in a good separation

between those runs in which time to resistance was longer in each of the insecticide use strate-

gies. The mixture strategy is favoured by lower values of exposure and higher values of effec-

tiveness. Within the parameter space investigated mixture strategies can provide greater

benefits with time to resistance being more than 200 generations longer than in sequential

strategy (upper left of Fig 9). In contrast for the parameter space where times to resistance are

longer in sequential strategies (lower right of Fig 9) the differences are generally less than

around 100 generations. We identified (and highlight on the Figure) those runs in which the

Fig 4. A Violin plot of the times, in mosquito generations, for resistance allele frequency to reach 50%. The width of the plot

indicates density of points and the horizontal bars the 25% and 75% quartiles. The results were obtained from the sensitivity analysis

described on Table 4. “Seq 1st” is the distributions of times until resistance to the first insecticide deployed in the sequence reaches

50%. This is equivalent to the times that would occur if insecticides are used alone. “Mix 1st” is the time until resistance reaches 50%

against either insecticide deployed in a mixture. “Seq both” is the time until resistance has exceeded 50% to both insecticides that

were deployed in sequence. “Adaptive both” shows the time until resistance is reached for both insecticides in a mixture when the

first to reach resistance has been adaptively withdrawn (because there is widespread resistance to it). “Mix both” is the time until

resistance alleles frequency exceeds 50% for both insecticides in a non-adaptive mixture.

doi:10.1371/journal.pcbi.1005327.g004

A Model of Insecticide Resistance to Inform Public Health

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005327 January 17, 2017 18 / 35



Fig 5. The partial rank correlations (PRCC) between the parameter values of the sensitivity analysis

(Table 4) and times to resistance under each deployment strategy. A value of zero (represented by the

horizontal dotted line) indicates no relationship while increasing distance from zero, up to the maximum value of 1

or -1, indicates parameters with increasing impact on times to resistance. The variable names on the X axis are as

described and defined on Table 4, except for resist_start_1_div_2 which is the starting frequency of the resistance

allele at locus 1 divided by the starting frequency of the resistance allele at locus 2. Similarly, resist_start_hi_div_lo

is the higher of the two starting frequencies of resistance divided by the lower frequency. These ratios were

included because Curtis [17] speculated that they may be important determinants of strategy choice. The output

variables analysed were times for both resistance allele frequencies to exceed 50% for three deployment

strategies summarised in Fig 4 i.e. Panel (A) is time under a policy of sequential deployment, Panel (B) is time

when deployed as an adaptive mixture, and Panel (C) is time when the insecticides are always deployed as

mixture.

doi:10.1371/journal.pcbi.1005327.g005
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Fig 6. Examples of the relationship between time in mosquito generations until resistance allele frequency reaches

50% and three key variables (as identified by PRCC) in the sensitivity analysis. The X axis parameters are as defined in

Table 4 which also gives their distributions in the sensitivity analysis. The lines are smoothed conditional means whose

surrounding grey areas are their 95% confidence intervals. The red dotted lines indicate the parameter values used by Curtis in

Fig 2 in [17]. Panel (A) is time to resistance as a function of mosquito exposure to insecticide. Panel (B) is time to resistance as a

function of the effectiveness of the insecticides against the SS genotypes, the effectiveness of each insecticide being summed to

construct the X-axis variable. Panel (C) is time to resistance as a function of the dominance of the resistance alleles, the

dominance values being summed to construct the X-axis variable.

doi:10.1371/journal.pcbi.1005327.g006
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time to resistance was reached at the same time in the two strategies, and fitted a linear model

to them. Such a linear model could be used to predict when time to resistance might be

expected to be longer using mixture or sequential strategies. The empirically-derived putative

decision line D̂ shown on Fig 9 is given by

D̂ ¼ 1:07þ 0:56 � exposure ð7Þ

Prediction of best strategy based on this line results in a true positive rate of 0.82 and a true

negative rate of 0.95 and the consequences of being wrong are likely to be small: the colour

coding on Fig 9 indicating that differences in time to resistance in the misclassified cases are

likely to be in the region of<20 generations. Furthermore, this is over all parameter space so

narrowing parameters space down, as may occur when specific deployment locations are

known, may well decrease the misclassification rate. We also attempted this for the situation

where time to resistance of mixtures must be>20% longer to be favoured over sequential use;

the data with the empirically-derived putative decision line D̂ are shown on Fig 10 where

D̂ ¼ 1:42þ 0:32 � exposure ð8Þ

Fig 7. The partial rank correlations (PRRC) between the parameters of the sensitivity analysis (Table 4)

and strategy choice. The effect of strategy choice was calculated as follows: For each of the 10,000 parameter

combination in the sensitivity analysis, the time to 50% resistance was recorded for sequential, mixture and

adaptive mixtures and used to calculate (A) time to resistance in mixture minus that under sequential deployment.

(B) time to resistance in adaptive mixture minus that under sequential. X axis parameters are as defined in Table 4

except from resist_start_1_div_2 and resist_start_hi_div_lo which are defined in the caption to Fig 5.

doi:10.1371/journal.pcbi.1005327.g007
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The number of runs in which the mixture strategy is favoured are reduced, remaining in the

upper left of the plot at low values of exposure and high values of effectiveness. The classifica-

tion has a true positive rate of 0.78 and a true negative rate of 0.93.

It is intuitively unlikely that resistance to an insecticide would spread slower when used

alone than when used as a mixture (because the second insecticide would be expected to have

Fig 8. Classification tree from the sensitivity analysis showing under what circumstances sequential

deployment is superior to using mixtures, or vice versa. The decision nodes indicate whether to move to the left (if

the statement is true), or to the right (if the statement is false). The final classification boxes are shaded red if mixtures

are the most favoured outcome having followed that decision path, and are shaded green if sequential use if favoured.

The numbers below each classification box are the number of simulations in that box favouring Mixture on the left and

Sequence on the right. (A) Mixtures are deemed superior to sequential deployment if their time to resistance is longer

than Sequential deployment (B) Mixtures are only deemed superior to sequential deployment if their time to resistance is

at least 20% longer than Sequential. Parameter names are as defined on Table 4.

doi:10.1371/journal.pcbi.1005327.g008
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at least some protective effect and impact in slowing resistance to the first insecticide). We

therefore interrogated our data and confirmed that this was indeed the case, again using time

for resistance to reach 50% as the criterion. In every case, irrespective of whether mixtures or

sequential use was eventually favoured, each insecticide lasted longer when deployed as part of

a mixture than when deployed on its own. An obvious question is how can sequential use

sometimes be favoured even though resistance to individual insecticides always spreads faster

if the insecticide is deployed on its own? The answer seems to be that the time delay until the

second insecticide is deployed is sometimes sufficiently long to offset the greater rate of spread

Fig 9. Using insecticide effectiveness and exposure to determine whether time to resistance to the insecticides is longer

using Adaptive mixture or Sequential strategies. Our analyses suggested that insecticide effectiveness and levels of insecticide

exposure were key determinants of whether mixtures outperformed sequential deployment, or vice versa. We investigate how well

they combine to predict optimal strategy by constructing this figure based on two axes: (i) “Effectiveness”, defined as the sum of

effectivenesses of insecticide 1 and 2 against the SS genotypes(see Table 4 for details), and (ii) “Exposure”, defined as the proportion

of female mosquitoes that encounter the insecticide. The difference in times until resistance under the two strategies are indicted by

colour coding as shown on the Figure key. The black cross indicates the values used by Curtis in his Fig 2 in [17]. Red triangles are

those runs in which time to resistance is identical for the two strategies (and are repeated in both panels). The red line is a linear

model through these same points, and is described by Eq 7 in the main text.

doi:10.1371/journal.pcbi.1005327.g009
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of resistance to each insecticide deployed individually. As a hypothetical example, two drugs

may last 3 and 4 years each when deployed alone but 5 years when deployed as a mixture: resis-

tance spreads slower to each in a mixture but sequential use lasts longer i.e. 3 + 4 = 7 years

compared to 5 years for a mixture. A specific example of this is shown on Fig 11 which plots

the dynamics of a simulation where sequential use is favoured.

Discussion

The main purpose of this manuscript is to develop, implement and demonstrate a flexible,

two-locus model of insecticide resistance that can incorporate factors such a differential expo-

sure of females and males to insecticide-based interventions, the impact of poor adherence to

deployment recommendations, and other factors such as physical linkages of the two loci on

an autosome, or the presence of one locus on the X chromosome. It is explicitly aimed at

Fig 10. As for Fig 9 except that the deployment decision is based on whether an Adaptive mixture can increase the time to

resistance by at least 20% compared to Sequential. The red triangles now indicate run where time to resistance in Adaptive

mixtures are between 19 and 21% longer than in a Sequential strategy. The gradient of the red line is given in Eq 8 in the main text.

doi:10.1371/journal.pcbi.1005327.g010
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public health deployments. A parallel literature has developed in agricultural insecticides (op.

cit. i.e. [11–16]) but differs somewhat in that the problems and insect species addressed are dif-

ferent (which make it less relevant to public-health audience) and because agricultural use is

relatively well funded and often occurs in a well-developed infrastructure that makes deploy-

ment relatively precise. For example, strict seasonal-rotations of different insecticides can be

proposed and enforced.

Fig 11. An example of a parameter combination in which resistance develops more slowly when

insecticides are used in sequence relative to when they are used in a mixture. The labels on the upper

margin of the plot mark where the resistance threshold is reached for the second insecticide in a sequence

(’seq’) and the first and second insecticides in a mixture (’mix1’ and ’mix2’). Note that resistance spreads

faster for both insecticides when they are deployed on their own (dashed lines) than when they are deployed

in a mixture (solid lines). The reason sequential use is favoured is because of the time delay that occurs

before insecticide #2 is deployed in the sequence. In this example, the frequency of resistance alleles to both

insecticides in the mixture exceeded 50% at generation 100. Resistance allele frequency to insecticide 1

deployed alone required 53 generations to exceed 50% (at which point it was replaced by insecticide 2 as

indicated by the vertical dotted line). It then took 75 generations for resistance allele frequency to exceed 50%

for insecticide 2 deployed alone. The total of these timescales, i.e. 53 + 75 = 128 generations, is greater than

the 100 generations for resistance to evolve to the mixture, indicating that sequential deployment is favoured

in this simulation. [parameter combinations are as used for Curtis in his Fig 2 in [17] (our Fig 2B) with the

exception that each effectiveness was reduced by 0.2 to 0.53 for insecticide1 and to 0.8 for insecticide2]

doi:10.1371/journal.pcbi.1005327.g011
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The secondary objective was to apply the methodology to re-examine the highly influential

paper by Curtis [17]. Notably, the abstract of this paper states

“The use of a mixture appears advantageous provided that resistance is not fully dominant,
but, if it is, linkage disequilibrium builds up rapidly and nullifies the advantage of the
mixture”.

Later, on page 261, Curtis states that

“Example vi shows the, at first sight unexpected, point that the use of a mixture where the ini-
tial gene frequencies are unequal leads to more rapid increase in the frequency of the rarer of
the genes. This follows from the fact that the double heterozygotes, which are selectively
favoured, preserve equal numbers of AR and BR genes and this number is a larger proportion
of whichever gene is rarer”

The first statement appears not to apply in our parameter ranges as PRCC and classification

trees suggested dominance is not a key determinant of the optimal strategy. The second quote

has been extremely influential in guiding deployment of new insecticides. Many key mosquito

vector species have already evolved resistance to most of the existing insecticides [2], but,

hopefully, resistance is not yet present to the new insecticide. A mismatch in initial gene fre-

quencies will therefore be inevitable, with resistance to the “new” insecticide being lower than

that to the old insecticides. Hence Curtis’s statement could be interpreted as suggesting that

deploying a new insecticide as a mixture with an existing insecticide would be counter-produc-

tive for the new insecticide because resistance to the new insecticide would spread faster if

used in a mixture compared to if it was used alone. However there are two way of interpreting

Curtis’s statement that differ depending on how the key phrase “more rapid increase” is inter-

preted. The first interpretation, which appears to be widely held (pers. comms.), assumes that

this phrase indicates a comparison is being made between using the “new” insecticide on its

own compared to the “new” insecticide being deployed as a mixture with an existing insecti-

cide to which resistance has already spread. This appears to be the most obvious interpretation

given the context, but it has two drawbacks. First, it conflicts with our results (which appear

consistent in every other aspect). The increase in frequency of resistance to the new insecticide

over a single generation when used as a mixture (i.e. ‘B’, the one at lower frequency) is from

0.1% to 0.118% (data extracted from Table 1, example iv in [17]). Curtis does not provide anal-

ogous increases for sequential use, but applying Equation S3 in the Supporting Information

gives the increase in frequency when then insecticide is deployed on its own as rising from

0.1% to 0.98%. This value of 0.98% is also obtained when running our full IR model so it

appears that this interpretation is not supported by the data. Secondly, Curtis did not provide

the data to justify this comparison which would, in our opinion, be uncharacteristic of him.

The second interpretation is that the key phrase “more rapid increase” refers to a comparison

between the lower-frequency and the higher-frequency alleles when insecticides are used in

the same mixture, i.e. that the increase in frequency of the low-frequency allele would be larger

than the higher-frequency allele. This interpretation seems less likely given the context, but has

two points in its favour: it is consistent with our results, and Curtis provides the data to justify

the statement. The lower-frequency allele increases from 0.1% to 0.118% i.e. by a factor of 1.18,

while the higher-frequency resistance increases from 1% to 1.108 i.e. by a factor of 1.108 (both

sets of data are given on Table 1 in [17]). We shall never know definitively which interpretation

is correct (Curtis is deceased) but would urge caution in interpreting this second statement

from Curtis.
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The impact of this re-analysis of Curtis’s results for insecticide deployment strategy depends

on the context. If a single new insecticide is available, and we no longer care about maintaining

the effectiveness of pre-existing insecticides, it is always optimal (if we ignore the increased

cost) to deploy the new insecticide as a mixture with pre-existing ones because IR always

spreads slower to new insecticides deployed as a mixture compared to deployed alone. If we do

care about pre-existing insecticides, for example pyrethroids, then a decision has to made that

maximises the duration of effectiveness for both insecticides and that decision depends on a

variety of factors (Figs 7 to 10). Alternately, a decision may be taken to delay deploying the

new insecticide until a second new insecticide has become available so that a mixture can be

deployed that contains two new insecticides with each, hopefully, having very low resistance

levels in the mosquito populations.

Moving on from Curtis, we investigated a wider range of parameter space. A simple analysis

based on the two main parameters identified in the PRCC analysis and decision tree allowed a

relatively clear separation of parameter space into those combinations that favoured mixtures

vs sequential deployment (Figs 9 and 10); presumably, principle component analysis would

provide an even clearer separation but would pay a heavy price in their axes not being easy to

interpret. This empirical approach is not guaranteed always to work, but did so here. It shows

that mixtures are favoured when the effectiveness of insecticides are higher; presumably this

will be the case with new insecticides currently under development so it may well be worth-

while considering their deployment as mixtures.

We emphasise that the timeframe in mosquito generations is arbitrary. It would be over-

interpreting our results to infer that if, for example, we predict a mixture would last 200 gener-

ations, then it would last 20 years (assuming 10 mosquito generations per year). The timescale

is arbitrary and was used solely to compare strategies (mixtures vs sequential) on the same

scale rather than to make absolute predictions of times until resistance. Most obviously, time

to resistance depends critically on the frequency of resistance at the time insecticides are first

deployed and this is generally unknowable.

We used classification trees in our sensitivity analysis because the methodology developed

here is primarily designed to identify optimal strategy choice and hence should be made as

accessible as possible to decision makers with little (or no) technical interest in modelling. The

idea is that decision makers can specify, or commission, the likely parameter ranges and distri-

bution (cf our Table 4) and modellers can return a classification tree that allows decision mak-

ers to reach, and justify, a transparent decision. There are two caveats to this approach. The

first is to emphasise that decision trees are not independent of parameter space. For example,

the level of insecticide effectivenesses are the primary determinant of whether a mixture or

sequential strategy is favoured in the tree shown Fig 8. However these variable were varied

over a range of 0.3 to 1.0 (Table 4) so, conversely, if we varied their values between 0.3 and

0.35 it is possible that they would have no impact in determining whether mixtures are

favoured over sequential use. Similarly, it is important to avoid the interpretation that the

“best” strategy is that which is favoured in the majority of the simulations as this also depends

on the parameter space being investigated. The second caveat is more subjective. We periodi-

cally constructed classification trees during the course of the project and noted that their struc-

ture could change markedly as a consequence of even quite small changes in parameter values

and/or their distribution. We would counsel users to make some small changes to their param-

eter space to make informal checks that the decision tree structure is stable. One strategy to

increase tree stability would be to prune the tree based on cross validation error as described

in the methods but in our parameter space this resulted in a tree whose decision structure was

based only on insecticide effectiveness; this is a neat result but lacks the illustrative advantages

of the unpruned trees we show on Fig 8.
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Similar 2-locus models have been developed before e.g. by Curtis [17] and by Gould [11],

Mani [16] and Roush [13] for use in agricultural genetics. The approach here has been to con-

struct a flexible model that will remove the need for each new researcher to re-derive and re-

programme the model. The flexibility lies in how the niche exposures are defined and how pre-

vious analyses may be run as sub-sets of the whole model with different calibrations, e.g. previ-

ous analyses which may have assumed fitness costs to be negligible, assumed complete

dominance, and so on. Previous models have focused on paradigm situations and often

ignored the operational problems that will arise in practice when attempting to implement

these policies. These problems are particularly acute in resource- and infrastructure-poor

regions of sub-Saharan Africa. For example, it may well be that a mixture strategy is suggested

with a pyrethroid on bednets and carbamate on house walls; the mixture comes from the idea

that (most) females will contact both the bednet and house wall in her feeding cycle. However

its seems extremely likely that practicalities will result in some house walls not being sprayed

with carbamate, or re-spraying being so infrequent that it is often effectively absent. In addi-

tional, non public-health insecticide use may play a role in driving resistance, such as agricul-

tural and casual peri-household use of pyrethroids. These uses are outside control of the

formal health sector and their deployment is often ad-hoc with little regard for the appropriate

concentration being deployed. The reason we set up the niches in the models was to allow us

to investigate how deviations from the paradigm, recommended implementations may under-

mine the benefits of that strategy. It may be that even small departures from the paradigm may

have major consequences. In the similar case of using drug combinations to treat malaria, it

was realised early in the modelling processes that the benefits of combination therapy decline

sharply if parasites resistant to one drug had even a small chance of surviving treatment with

the combination [27]. One point to note is that operational failings alter the distribution of

mosquitoes across niches (Table 1) and not their finesses within these niches (Table 2; the lat-

ter reflect insect physiology), which makes the impact of operationally shortfalls relatively easy

to investigate within this methodology. The model described here is designed to be highly flex-

ible. We have used upper case ‘A’ and ‘B’ to indicate high insecticide concentrations as

opposed to the lower concentrations indicated by their lower case equivalents. It is simple, and

valid, to simply change their definition so that, for example, lower case may mean exposure to

larvicides in breeding sites, while upper case indicates exposure in adults. The ‘niche’ structure

also allows more specific strategy decisions to be explored using more specific calibrations.

The main policies suggested for vector control are sequential use, mixtures, and mosaics.

We would add rotation as a possible strategy for completeness. Rotations requires the insecti-

cide be periodically rotated irrespective of resistance status; it is widely used in agriculture of

developed countries where infrastructure, experience and expertise is sufficiency well devel-

oped to allow its implementation and commercial penalties or incentives may be applied to

ensure adherence to deployment recommendations. We would also split mosaics into two

types. “Micro-mosaics” which occur over small geographic scales: examples would be houses

in a village sprayed with different insecticides, or if children are given bednets that use a differ-

ent insecticide from adults. In this case we can assume a single, randomly mating mosquito

population that can be investigated simply by using two of the single-insecticide niches in

Table 1 in conjunction with the unexposed “-, -”niche. “Macro-mosaics” occur over larger geo-

graphic scales for example different villages or even health districts may use different insecti-

cides. This geographic separation may invalidate the assumption of random mating within a

single mosquito population. The appropriate strategy would then be to run two (or more) ver-

sions of the above model, each model corresponding to one piece of the mosaic. Mosquito

movement, and hence gene flow, between mosaic “patches” can then be incorporated by allow-

ing a certain proportion of gametes to be exchanged between the models in each generation.
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One of the main drawbacks of previous models, at least in our opinions, is that insecticide

deployment is assumed to be ‘perfect’, i.e. mixtures are always deployed as mixtures (rather

than occasionally as single insecticides when the other is unobtainable). We therefore included

an illustrative “correct deployment” parameter. This was meant to demonstrate ‘proof-of-prin-

ciple’ rather than being definitive and there are important points to be made about its con-

struction. Firstly, this effect may bias analyses against mixtures because sequential, single-

insecticide use was assumed to be unaffected by poor deployment which would presumably be

manifested by their deployment at concentrations lower than those recommended. The reason

we did not have poor adherence to the latter is that its means “A” and “B” niches would be

reduced to “a” and “b” respectively, which means we need a whole suite of parametrisation for

low insecticide levels. Poor deployment of mixtures is also assumed to be symmetrical i.e. the

recommended “AB” is equally likely to go to “A” and “B” whereas in reality, the more expen-

sive (or locally saleable) insecticide may more frequently be absent from the mixture. Finally,

the poor deployment pattern is constant over the whole simulation time whereas in reality

poor deployment is more likely to occur as random fluctuations over time depending on tem-

poral problems in insecticide supply chain management. In summary, the effect of poor

deployment is included here as a simple proof-of-principle demonstration, capable of being

elaborated and refined in models that investigate more specific deployment scenarios.

We have focused on genetic arguments in this manuscript (i.e., which strategy minimises

the spread of resistance) and have given little consideration to operational implications e.g. the

additional cost of mixtures, possible additional impacts of mixtures on non-vector species in

the environment, commercial considerations and risk. For example, when there are only two

or three insecticides then combining them in a mixture is risking everything if that mixture

fails rapidly. Three novel insecticides are being developed through the IVCC and it may be

commercially difficult to keep products off-market while they run through a sequence awaiting

resistance to evolve. Such considerations could be added to our modelling framework but we

have avoided doing so, in the interest of simplicity and brevity. Here we simply recognised the

unpredictability of their cost/impact by considering a decision based on the need of mixtures

to last>20% longer than sequential to offset these uncertainties.

The option to allow a locus to be sex-linked was included in the model because Anopheles
gambiae has only 2 autosomes and one sex chromosome. In contrast other vectors, notable

Aedes aegypti, lack distinct sex chromosomes and have single male-determining loci on other-

wise “normal” autosomes. The X chromosome in A. gambiae is relatively small and hetero-

chromatic in some regions but appears to contains 8.2% of the known coding genes

(information extracted from the VectorBase, Anopheles gambia page at https://www.

vectorbase.org/Anopheles_gambiae/Location/Genome; the X encodes 1,068 out of 13,007

known coding genes) so it is unclear how likely it is that IR-encoding mutations would arise

on the X chromosome. The know main IR-mutations in A. gambiae, ace-1 and kdr, are autoso-

mal although there are reports that X-linked selective sweeps have contributed to IR [29]. In

any case, the ability to investigate the potential role of sex-linked genes to IR is an important

potential use of the methodology described above. Another reason for having this option is

that many types of genetic constructs intended for release into, and control of, mosquito popu-

lations (recently reviewed in [30]) attempt to manipulate adult sex-ratio and it is entirely plau-

sible that suppressors of such constructs will primary arise on the X chromosome most

obviously in the “X-shredder” construct.

There was a flurry of theoretical work in the 1980s investigating whether to use sequential

applications or mixtures of insecticides. Space precludes a full discussion of this work, but

can be accessed by reviews such as those by Tabashnik [14] and Roush [31]. However some

works did explicitly apply 2-locus models and it is important to reconcile their results with
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those presented here. The paper of Curtis (1985) is extensively discussed above. Mani (1985)

in a highly cited paper (153 citations to date) concluded that “It is shown that the use of mix-

tures is always more effective in delaying the onset of resistance, often by many orders of

magnitude.” This contrasts sharply with our conclusions (and those of Gould and Roush, see

below) that sequential use may be favoured in a significant number of scenarios. The differ-

ences probably arose from the parameter space examined by Mani in his simulations. He

assumed SS genotypes are always killed by the insecticide (i.e. “insecticide effectiveness” = 1

in our terminology), while RR genotypes always survived. He also did not vary exposure but

used an “escape” parameter that was fixed at 0.1. Thus, the two factors that we found most

important for predicting whether or not sequential use or mixtures were favoured i.e. insecti-

cide effectiveness and exposure (e.g. our Figs 7 to 10) were not varied in his model and were

set at values that our results show would greatly favour the use of mixtures (our Fig 9). Gould

(1986; [11]) and Roush (1998; [13]) investigated insecticidal toxins genetically-engineered

into plants rather than externally-applied insecticides. The evolution of resistance in these

contexts are analogous. Gould [11] assumed additive fitness effects (rather than multiplica-

tive as used here) and assumed mortality of SS homozygotes to be 24% to 48%. He did differ

from other work by explicitly considering the impact of resistance on control, see discussion

below around Eq 9. The ‘insecticide’ was switched in a sequence when the fitness of the mos-

quito population fell below 0.8 and this level also served as the definition of when control

ceased (equivalent to our time to resistance) when comparing the longevity of different strat-

egies (these criteria differ from those of resistance allele frequency used here and in publica-

tions such as Curtis [17]). He examined a wide parameter space and concluded that no single

method was clearly superior; this conclusion is obviously highly compatible with those pre-

sented here. Roush [13] was more definite: he identified mortality of SS homozygotes (our

“insecticide effectiveness” parameter) as critical (his Fig 3) and concluded (page 1784) that

“As a result of incomplete coverage and residue decay, the mortality of susceptible homozy-

gotes is rarely consistently high enough for pesticide mixtures to be effective”; our sensitivity

analyses supports this assertion, and the choice between sequential and mixture deployment

appears to rest mainly on how confident we are that the insecticides will reliably and consis-

tently kill the SS homozygotes.

One question, often raised in meetings, is why not routinely use insecticides as mixtures

given that drug combinations are now mandatory for treating many infections including the

big three global killers: malaria, tuberculosis and HIV/Aids? The use of drug combinations for

TB and HIV were driven by clinical observations that resistance almost inevitably arose in

patients given monotherapies. However the dynamics of how resistance arises in these two

infections are very different to how insecticide resistance arises. Resistance in TB and HIV

occur mainly by within-host dynamics: new, spontaneous mutations arise in the huge number

of individual pathogens present in that patient and then spread within-patient to dominate the

infection. Also, (crudely speaking; see [32]), there are no refugia or differential drug exposure

within a patient, and patients may be dosed so that both/all drugs in mixture are fully effective

against sensitive pathogens. Malaria is somewhat different, and more similar to insecticide

resistance, in that drug-resistant mutations arise relatively rarely and then spread throughout

the population (although this depends on the drug: resistance to atovaquone arises very easily

from within the infection but, interestingly, has a lethal fitness cost in the insect vector [33]).

The use of drug combinations to treat malaria was therefore predicted on the type of popula-

tion genetic models described above for insecticide resistance (see [6] for access to the litera-

ture) which showed that drug combinations should slow the input and subsequent spread of

drug-resistant mutations. These early genetic models tended to assume the antimalarial drugs

were fully effective against sensitive parasites and/or that the double-resistant genotypes were
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completely unaffected by the drugs (these genotypes had resistance alleles at two loci; malaria

is haploid so has no heterozygotes). The one model that did allow relatively low selection pres-

sures against malaria parasites with both resistant and sensitive alleles [27] had selection pres-

sures that depended on “the fraction of infected persons who are treated, dosage, and so on”;

in our terminology this confounded exposure and effectiveness. It will therefore be highly

informative to revisit these models of antimalarial drug resistance and investigate how robust

they are when the assumption of complete drug effectiveness is removed; we are currently

undertaking these analyses.

Future Directions

The results presented above use only a part of the functionality that was built into our model

to make it as flexible as possible. Many simplifications made by us have been noted in the pre-

vious literature. For example, Tabashnik [15] discussed the impact of mutations encoding

cross-resistance to both insecticides and noted that mixtures (and presumably mosaics) would

constitute “intense selection for cross resistance”; this cross resistance can be incorporated

using the antagonist/synergistic functions on our S1 Table. Tabashnik [15] also noted that “an

implicit assumption of all these models is that the pesticides in the mixture have equal persis-

tence so that no individuals are exposed to only one pesticide” (page 1264): again this is simple

to incorporate by using AB as the niche encountered when both insecticides are present at

high concentrations, Ab when the faster degrading insecticide, B/b in this case, is at relatively

low concentrations, and a, - when insecticide A has fallen to low concentrations and b has

fallen to ineffective concentration. We also note that policies are changed and insecticides

deemed “ineffective” when resistance allele frequency reaches 50%; this was done to maintain

consistency with previous work. This criterion presupposes that the resistance allele has been

identified so that its frequency can be tracked. The 50% allele frequency also has only a weak

link with effectiveness; once allele frequency reaches 50%, then if the allele is dominant then

75% of mosquitoes will have resistant genotypes (i.e. RS, RR), whereas if it is recessive only

25% of mosquitoes are resistant (RR). Moreover, these resistant genotypes may differ in their

fitness so that even the RR forms are often killed by contact. The methodology allows a more

flexible definition of when a switch occurs and/or when an insecticide becomes ineffective

(e.g. >25% of mosquitoes surviving exposure); again, this is straightforward to code (see Eq 9

below) and should be addressed in the future.

One other factor, not considered in our model, is that mixture may kill more mosquitoes

than single use. As a simple example, if resistance allele frequency has reached the level where

40% of mosquitoes survive contact if used alone. If used in a mixture where the other insecti-

cide kills 30% of the population, then the proportion surviving the mixture will be 40% x 30%

= 12% i.e., the mixture will have a much higher killing rate than either insecticide used alone

and will, putatively, have a greater impact on disease transmission. This raises another, final,

point. Population genetic models such as the one developed here only track the frequencies of

genotypes in the populations. They do not predict how this impacts the population size or

female longevity of the mosquito population which are key determinants of disease transmis-

sion if the mosquito is a vector (reviewed in [34]). We can go some way to addressing this by

calculating the relative fitness of the population being controlled (really the reduction in egg

lay) compared to a fully sensitive population in the absence of insecticide following Gould [11]

as

W ¼
X10

i¼1

Ff ;iWf ;i ð9Þ
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Where summation over i represented the fitnesses of the 10 possible 2-locus genotypes (cf

S1 Table). Note that we use females in this summation as we assume sufficient males survive

to ensure all eggs are fertilised. How this reduction in egg lay translates into vector popula-

tion size the next generation is not defined here and it depends on the ecology of the organ-

ism i.e. the extent to which density-dependent population regulation helps restore the

original population size. Nor does this consider the longevity of mosquitoes which is an

important component of vector-borne disease epidemiology. The three disciplines of genet-

ics, ecology and epidemiology are highly interlinked and future modelling should try to

build an explicit bridge between the two approaches to investigate specific control methods

of specific disease vectors. The work described here builds the foundation for one of these

three components.

Importantly, we are not at this point advocating mixtures or sequential deployment as a

universal policy measure, simply demonstrating how more modern and powerful modelling

techniques may be applied to the research questions raised by Curtis. Our results indicate that

the relative performance of mixture and sequential strategies depends upon attributes of the

insecticides, their application, mosquito behaviour and genetics. One highly encouraging

result is that choosing between mixtures and sequential deployment depends mainly on two

parameters, the effectiveness of the insecticides against the SS genotypes and exposure, both of

which are under operator control. They can also be measured or predicted; for example experi-

mental huts (e.g. [35–38]) could be used to estimate the effectiveness of insecticides against the

SS genotypes. The key point is that we do not need to know anything about the resistant SR

and RR genotypes (fitness, dominance) which would be impossible to predict prior to them

emerging in the population after the strategy decision has been made.

One practical problem is that deployment strategies will most probably be made on a

regional, possibly national, level, and there may well be considerable heterogeneity within the

region/country, some areas favouring sequential use and some mixtures. In short the decision

will be difficult and will require more directed modelling incorporating the specific attributes

of the insecticides, their proposed mode of deployment, and the biological parameters and bio-

metrics of the vector species operating in the proposed deployment area. Hence we have

focused here of describing the requisite methodology and postpone detailed investigation of

specific scenarios to future publications.
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